Capitolo 2 Distribuzioni di frequenza

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Capitolo 2 Distribuzioni di frequenza"

Transcript

1 Edizioni Simone - Vol. 43/1 Compendio di statistica Capitolo 2 Distribuzioni di frequenza Sommario 1. Distribuzioni semplici Distribuzioni doppie Distribuzioni parziali: condizionate e marginali Misure sintetiche di distribuzioni statistiche. 1. Distribuzioni semplici La distribuzione di frequenza è una particolare tipologia di rappresentazione dei dati statistici. Per illustrare una distribuzione di frequenza è necessario costruire una tabella statistica nella quale ad ogni modalità o classe di modalità (qualitativa o quantitativa), corrisponde la rispettiva frequenza assoluta o relativa. Il passaggio dalla frequenza assoluta alla frequenza relativa, è utile in tutti i casi in cui si intende confrontare due o più distribuzioni caratterizzate da un numero complessivo di osservazioni differenti. Una tabella statistica può essere semplice o multipla a seconda che si rilevino le modalità relative ad uno o più caratteri. La tabella seguente indica la distribuzione (semplice) di frequenza di un carattere X discreto: Modalità di X Frequenze x 1 n 1 x 2 n 2 : : x i : : n i x k Totale n k n Tabella 1 (a)

2 16 Capitolo 2 La tabella seguente indica, invece, la distribuzione (semplice) di frequenza di un carattere continuo (con modalità raggruppate in classi): Classi di modalità di X Frequenze x 1 =x 2 n 1 x 2 =x 3 n 2 : : x i =x i+1 n i : : x k =x k+1 Totale n k n Tabella 1 (b) Nulla vieta di disporre la distribuzione, anziché per colonne, per righe, per cui le modalità (o le classi di modalità) del carattere saranno indicate nella prima riga mentre le frequenze corrispondenti nella seconda riga. L individuazione del numero di classi di frequenza da costruire in tabella, rappresenta una problematica piuttosto rilevante nella statistica descrittiva poiché la ricostruzione della distribuzione reale di un fenomeno, è attendibile solo qualora vi siano un numero sufficientemente elevato di osservazioni. In genere, il numero ottimale di classi utilizzate abitualmente in un indagine campionaria, varia da un minimo di 4-5, fino ad un massimo di 10-15; la determinazione nel caso concreto, avverrà sulla base della valutazione del numero complessivo di osservazioni. Infatti, un numero di classi estremamente esiguo, determinerebbe, una sostanziale perdita di informazioni a causa dell eccessivo raggruppamento dei dati, mentre un numero troppo elevato di classi disperderebbe eccessivamente i valori della distribuzione. I due metodi più utilizzati per la determinazione ottimale delle classi sono: quello proposto da Sturges 10 C = 1 + $ log 3 10 (N) ove C indica il numero ottimale di classi, e N la numerosità delle osservazioni; metodo di Scott, espresso dalla relazione: 3,5 $ S h = N ove S è la deviazione standard (di cui si tratterà oltre).

3 Distribuzioni di frequenza 17 Nel caso si consideri un carattere qualitativo, nella tabella, invece delle modalità, figurano gli attributi. Esempio 1 Nella tabella seguente è riportata la distribuzione di frequenza delle famiglie residenti in un quartiere per numero di componenti: Componenti Numero delle famiglie Totale Tabella 2 Determinare le frequenze relative, le frequenze cumulate assolute e le frequenze cumulate relative. Nella distribuzione riportata la frequenza relativa corrispondente alla modalità 1 componente è ottenuta nel modo seguente: 803 f i = = 0, La frequenza cumulata assoluta della modalità 2 componenti è: nl i = = mentre, la frequenza cumulata relativa è: fl i = + = 0, È ovvio che la frequenza cumulata assoluta o relativa corrispondente alla 1 a modalità del carattere è pari alla frequenza assoluta o relativa della modalità 1 componente. Modalità Frequenze Frequenze relative Frequenze cumulate assolute cumulate relative 1 0, , , , , ,93703 (Segue)

4 18 Capitolo 2 4 0, , , , , , , Totale 1,00000 Schema 1 Esempio 2 Nella seguente tabella è riportata la distribuzione di frequenza di 270 impiegati di un azienda tessile per classi di età: Classi di età Numero di impiegati Tabella 3 Determinare il valore centrale, la frequenza relativa e la frequenza cumulata di ogni classe. I valori centrali, le frequenze relative e le frequenze cumulate di ogni classe sono indicati nello schema seguente: Classi di età Frequenza assoluta Valore centrale Frequenza relativa Frequenza cumulata ,5 0, ,5 0, ,5 0, ,5 0, ,5 0, ,5 0, (Segue)

5 Distribuzioni di frequenza ,5 0, ,5 0, ,5 0, Schema 2 2. Distribuzioni doppie La distribuzione doppia è una distribuzione congiunta di due caratteri X e Y, i quali si suppone possano essere legati da una relazione, ed è esaminata rispetto al contemporaneo verificarsi di una modalità x i per X e di una modalità y j per Y. Verosimilmente in una distribuzione doppia, dall analisi delle modalità assunte rispettivamente da X e Y, alcune frequenze risulteranno essere più elevate rispetto ad una situazione in cui vi è assenza di qualsiasi legame fra le variabili esaminate. Una tabella a doppia entrata, o tabella tetracorica, è una tabella statistica in cui sono riportate le frequenze assolute o relative riguardanti le diverse combinazioni di modalità o classi di modalità di due caratteri X e Y, desumibili da una distribuzione doppia. Si consideri la tabella seguente: X Y y 1 y 2 y j y c Totale x 1 n 11 n 12 n 1j n 1c n 1. x 2 n 21 n 22 n 2j n 2c n 2. : : : : : : x i n i1 n i2 n ij n ic n i. : : : : : : x r n r1 n r2 n rj n rc n r. Totale n.1 n.2 n.j n.c n Tabella 4 La prima riga della tabella è detta riga madre, in essa figurano le modalità del carattere Y: y 1, y 2,, y c La prima colonna, invece, è detta colonna madre, in essa figurano le modalità del carattere X: x 1, x 2,, x r

6 20 Capitolo 2 Il corpo della tabella è una matrice r c (con r righe e c colonne), in essa figurano frequenze del tipo n ij (i = 1, 2,, r; j = 1, 2,, c) in cui il primo indice rappresenta la riga e il secondo la colonna, la frequenza n ij indica il numero di elementi della popolazione n che possiedono le modalità: x i di X e y j di Y, simultaneamente. Nell ultima riga, detta riga marginale, figurano le frequenze marginali, che rappresentano i totali delle c colonne, e precisamente la frequenza: n.j = r / n ij i = 1 indica il numero di elementi che possiedono la modalità y j del carattere Y, indipendentemente da come essa sia in combinazione con le modalità del carattere X. Per esempio, in una tabella che rileva le frequenze doppie di peso (X) e altezza (Y), la frequenza marginale n.j indica quanti individui sono alti un dato numero di centimetri, a prescindere dal loro peso. Analogamente, nell ultima colonna, detta colonna marginale, figurano le frequenze marginali rappresentanti i totali delle r righe, e precisamente la frequenza: n i. = / c n ij j = 1 indica il numero di elementi che possiedono la modalità x i, del carattere X, indipendentemente da come essa sia in combinazione con le modalità del carattere Y. Nella medesima tabella relativa al peso (X) e all altezza (Y), la frequenza marginale n i. indica quanti individui pesano un dato numero di chili, a prescindere dalla loro altezza. Ovviamente, il totale generale è: r c r c n = / n i. = / n.j = / / n ij i = 1 j = 1 Le considerazioni esposte possono essere estese al caso di variabili continue le cui modalità sono raggruppate in classi, e al caso di variabili qualitative per le quali, invece delle modalità, figurano gli attributi. i = 1 j = 1 Esempio 3 Nella seguente tabella è riportata la distribuzione doppia di lavoratori per settori di attività economica e per posizione professionale:

7 Distribuzioni di frequenza 21 Settori Posizione professionale Dipendenti Autonomi Totale Agricoltura Industria Altre attività Totale Tabella 5 Nella tabella, la frequenza marginale di riga corrispondente alla modalità Agricoltura del primo carattere Occupati per settore di attività è calcolata sommando 485 a 776; essa sta ad indicare che persone sono occupate in Agricoltura, a prescindere dalla posizione professionale. La frequenza marginale di colonna corrispondente alla modalità Dipendenti del secondo carattere Occupati per posizione professionale è ottenuta sommando i seguenti valori: 485, 4.147, 4.941; essa sta ad indicare che persone sono lavoratori dipendenti, a prescindere dal settore in cui sono occupati. La somma delle frequenze marginali di riga è pari alla somma delle frequenze marginali di colonna e corrisponde alla numerosità della popolazione oggetto di osservazione. Esempio 4 Nella seguente tabella è riportato il numero complessivo di lavoratori dipendenti impiegati nelle varie sedi di una grande azienda, distinti per settore d impiego (X) e genere (Y). X/Y M F Amministrazione Vendite Logistica Totale Tabella 6 Calcolare: Le distribuzioni marginali n i., n.j ; Le frequenze relative congiunte f ij ; Le distribuzioni di frequenza marginali relative f i., f.j ; Per ciascuna modalità x i del carattere X, la frequenza marginale ni. si ottiene sommando le frequenze congiunte che si trovano sulla riga corrispondente. Analogamente le frequenze marginali n.j per ciascuna modalità y i del carattere Y, si ottengono sommando le frequenze congiunte che si trovano sulla colonna corrispondente.

8 22 Capitolo 2 n i. = n.j = 2 / n ij j = 1 3 / n ij i = 1 X/Y M F Totale Amministrazione Vendite Logistica Totale Tabella 7 Per ottenere le frequenze relative congiunte si dividono, invece, le frequenze assolute congiunte per la numerosità totale n = 535. Esempio: f ij = n ij /n numerosità dei maschi impiegati nel settore amministrativo = 22 numerosità totale n = 535 quindi: 22/535= 0,041. Ripetendo la medesima operazione per ciascuna frequenza assoluta congiunta, si ottiene la tabella seguente (Tabella 8). In essa sono riportate, quindi, le frequenze marginali relative f i., f.j per i due sessi. X/Y M F Totale Amministrazione 0,041 0,058 0,099 Vendite 0,529 0,316 0,845 Logistica 0,035 0,020 0,055 Totale 0,605 0,394 1 Tabella 8

9 Distribuzioni di frequenza Distribuzioni parziali: condizionate e marginali Da una tabella a doppia entrata si desumono distribuzioni che consentono di evidenziare caratteristiche diverse di una distribuzione doppia di frequenza; esse sono denominate distribuzioni parziali e sono: le distribuzioni condizionate e le distribuzioni marginali. A) Distribuzioni condizionate Una distribuzione condizionata è una distribuzione semplice ottenuta associando, in una tabella a doppia entrata (v. Tabella 4), la riga madre con una qualsiasi delle r righe successive, oppure associando la colonna madre con una qualsiasi delle c colonne successive. La distribuzione Y _ X = x i i è la distribuzione condizionata del carattere Y dato il valore x i del carattere X. La tabella derivata è la 9 (a) seguente. Analogamente, la distribuzione X _ Y = y j i è la distribuzione condizionata del carattere X dato il valore y j del carattere Y. La tabella statistica risultante è la 9 (b). Y Frequenze X Frequenze y 1 n i1 x 1 n 1j y 2 n i2 x 2 n 2j y j n ij x i n ij y c n ic x r n rj Totale n i. Totale n.j Tabella 9 (a) Tabella 9 (b) Da una tabella a doppia entrata, quindi, si desumono: r distribuzioni condizionate del carattere Y alle corrispondenti modalità del carattere X; c distribuzioni condizionate del carattere X alle corrispondenti modalità del carattere Y.

10 24 Capitolo 2 B) Distribuzioni marginali Una distribuzione marginale è una distribuzione semplice ottenuta associando, in una tabella a doppia entrata (v. Tabella 4), la riga madre con la riga marginale, oppure la colonna madre con la colonna marginale. La prima distribuzione indica gli elementi della popolazione che possiedono le modalità y 1, y 2,, y c del carattere Y indipendentemente da come esse siano associate alle modalità x 1, x 2, x r del carattere X. La tabella statistica risultante è la 10 (a) a pagina seguente. La seconda distribuzione indica gli elementi della popolazione che possiedono le modalità x 1, x 2,, x r del carattere X, indipendentemente da come esse siano associate alle modalità y 1, y 2,, y c del carattere Y. La tabella statistica risultante è la 10 (b) a pagina seguente. Y Frequenze X Frequenze y 1 n.1 x 1 n 1. y 2 n.2 x 2 n 2. y j n.j x i n i. y c n.c x r n r. Totale n Totale n Tabella 10 (a) Tabella 10 (b) Da una tabella a doppia entrata si desumono: 1 distribuzione marginale per il carattere X; 1 distribuzione marginale per il carattere Y. Esempio Facendo riferimento alla distribuzione doppia riportata in tabella 5, determinare: a) gli occupati nei settori a prescindere dalla posizione professionale; b) gli occupati per posizione professionale a prescindere dal settore.

11 Distribuzioni di frequenza 25 La distribuzione riportata nella tabella 5 è doppia e attinente ai due caratteri: Occupati per settori di attività economica e Occupati per posizione professionale. a) Il primo punto richiede la determinazione della distribuzione marginale del carattere Occupati per settori di attività economica. Essa si ottiene associando la colonna madre con la colonna marginale: Settori Occupati Agricoltura Industria Altre attività Totale Tabella 11 Pertanto, a prescindere dalla loro posizione professionale, gli occupati in agricoltura sono 1.261, gli occupati nell industria sono 5.103, gli occupati in altre attività sono, invece, b) Al secondo punto si chiede di determinare la distribuzione marginale del carattere Occupati per posizione professionale. Essa si ottiene associando la riga madre con la riga marginale: Posizione professionale Occupati Dipendenti Autonomi Totale Tabella 12 Pertanto, a prescindere dal settore di attività economica, i lavoratori dipendenti sono 9.573, mentre i lavoratori autonomi sono Misure sintetiche di distribuzioni statistiche L analisi statistica fornisce misure sintetiche per valutare aspetti complessi e globali della distribuzione di un fenomeno X mediante un solo numero reale costruito in modo da disperdere al minimo le informazioni sui dati originari. In rapporto alle caratteristiche che si misurano si parla di rapporti statistici, indici di posizione, indici di variabilità, indici di forma, di essi ci occuperemo, rispettivamente, nei capitoli quarto, quinto, sesto e settimo.

12 26 Capitolo 2 In rapporto alla natura, gli indici si distinguono in: indici assoluti che sono introdotti per valutare in modo sintetico un aspetto di una distribuzione e sono espressi nella stessa unità di misura del fenomeno o in sua funzione; indici relativi che non dipendono dall unità di misura del fenomeno, e si ottengono rapportando due misure assolute oppure un indice assoluto al suo massimo. Infine, gli indici normalizzati sono indici relativi che assumono valori in un intervallo finito quasi sempre [0, 1] oppure [ 1, +1]. Questionario 1. Quando una distribuzione di frequenza si dice semplice e quando si dice multipla? (par. 1) 2. Quali sono i principali metodi per l individuazione del numero ottimale di classi di frequenza da costruire in tabella? (par. 1) 3. In una tabella a doppia entrata, cosa esprimono le frequenze marginali? (par. 2) 4. Da una tabella a doppia entrata costituita da 6 righe e 4 colonne quante distribuzioni condizionate si traggono? (par. 3) 5. Da una tabella a doppia entrata costituita da 6 righe e 4 colonne quante distribuzioni marginali si traggono? (par. 3) 6. In quale unità di misura sono espressi gli indici relativi di un dato fenomeno statistico? (par. 4)

CLASSIFICAZIONE DEI CARATTERI

CLASSIFICAZIONE DEI CARATTERI CLASSIFICAZIONE DEI CARATTERI Come abbiamo visto, su ogni unità statistica si rilevano una o più informazioni di interesse (caratteri). Il modo in cui un carattere si manifesta in un unità statistica è

Dettagli

Dott.ssa Caterina Gurrieri

Dott.ssa Caterina Gurrieri Dott.ssa Caterina Gurrieri Le relazioni tra caratteri Data una tabella a doppia entrata, grande importanza riveste il misurare se e in che misura le variabili in essa riportata sono in qualche modo

Dettagli

1. L analisi statistica

1. L analisi statistica 1. L analisi statistica Di cosa parleremo La statistica è una scienza, strumentale ad altre, concernente la determinazione dei metodi scientifici da seguire per raccogliere, elaborare e valutare i dati

Dettagli

OCCUPATI SETTORE DI ATTIVITA' ECONOMICA

OCCUPATI SETTORE DI ATTIVITA' ECONOMICA ESERCIZIO 1 La tabella seguente contiene i dati relativi alla composizione degli occupati in Italia relativamente ai tre macrosettori di attività (agricoltura, industria e altre attività) negli anni 1971

Dettagli

STATISTICA DESCRITTIVA UNIVARIATA

STATISTICA DESCRITTIVA UNIVARIATA Capitolo zero: STATISTICA DESCRITTIVA UNIVARIATA La STATISTICA è la scienza che si occupa di fenomeni collettivi che richiedono lo studio di un grande numero di dati. Il termine STATISTICA deriva dalla

Dettagli

Come descrivere un fenomeno in ambito sanitario fondamenti di statistica descrittiva. Brugnaro Luca

Come descrivere un fenomeno in ambito sanitario fondamenti di statistica descrittiva. Brugnaro Luca Come descrivere un fenomeno in ambito sanitario fondamenti di statistica descrittiva Brugnaro Luca Progetto formativo complessivo Obiettivo: incrementare le competenze degli operatori sanitari nelle metodiche

Dettagli

Il concetto di valore medio in generale

Il concetto di valore medio in generale Il concetto di valore medio in generale Nella statistica descrittiva si distinguono solitamente due tipi di medie: - le medie analitiche, che soddisfano ad una condizione di invarianza e si calcolano tenendo

Dettagli

Corso di laurea in Scienze Motorie. Corso di Statistica. Docente: Dott.ssa Immacolata Scancarello Lezione 2: Misurazione, tabelle

Corso di laurea in Scienze Motorie. Corso di Statistica. Docente: Dott.ssa Immacolata Scancarello Lezione 2: Misurazione, tabelle Corso di laurea in Scienze Motorie Corso di Statistica Docente: Dott.ssa Immacolata Scancarello Lezione : Misurazione, tabelle 1 Misurazione Definizione: La misura è l attribuzione di un valore numerico

Dettagli

Pivot è bello. Principali. misure di variabilità. Il contesto è di tipo matematico, in particolare riguarda l uso di dati numerici e delle loro

Pivot è bello. Principali. misure di variabilità. Il contesto è di tipo matematico, in particolare riguarda l uso di dati numerici e delle loro Pivot è bello Livello scolare: 1 biennio Abilità Conoscenze interessate Predisporre la struttura della Distribuzioni delle matrice dei dati grezzi con frequenze a seconda del riguardo a una rilevazione

Dettagli

STATISTICA DESCRITTIVA - SCHEDA N. 1 VARIABILI QUALITATIVE

STATISTICA DESCRITTIVA - SCHEDA N. 1 VARIABILI QUALITATIVE Matematica e statistica: dai dati ai modelli alle scelte www.dima.unige/pls_statistica Responsabili scientifici M.P. Rogantin e E. Sasso (Dipartimento di Matematica Università di Genova) STATISTICA DESCRITTIVA

Dettagli

Lezione 1. Concetti Fondamentali

Lezione 1. Concetti Fondamentali Lezione 1 Concetti Fondamentali 1 Sonetto di Trilussa Sai ched è la statistica? E E na cosa che serve pe fa un conto in generale de la gente che nasce, che sta male, che more, che va in carcere e che sposa.

Dettagli

Elementi di Statistica descrittiva Parte I

Elementi di Statistica descrittiva Parte I Elementi di Statistica descrittiva Parte I Che cos è la statistica Metodo di studio di caratteri variabili, rilevabili su collettività. La statistica si occupa di caratteri (ossia aspetti osservabili)

Dettagli

Appunti di complementi di matematica

Appunti di complementi di matematica Appunti di complementi di matematica UITA STATISTICA: è l unità su cui si raccolgono le informazioni oggetto dell indagine e possono essere individui, famiglie, oggetti. UIVERSO STATISTICO O POLAZIOE STATISTICA

Dettagli

Indice Statistiche Univariate Statistiche Bivariate

Indice Statistiche Univariate Statistiche Bivariate Indice 1 Statistiche Univariate 1 1.1 Importazione di un file.data.............................. 1 1.2 Medie e variabilità................................... 6 1.3 Distribuzioni di frequenze...............................

Dettagli

Lezione 1. Concetti Fondamentali

Lezione 1. Concetti Fondamentali Lezione 1 Concetti Fondamentali Sonetto di Trilussa Sai ched è la statistica? E na cosa che serve pe fa un conto in generale de la gente che nasce, che sta male, che more, che va in carcere e che sposa.

Dettagli

Corso di. Dott.ssa Donatella Cocca

Corso di. Dott.ssa Donatella Cocca Corso di Statistica medica e applicata Dott.ssa Donatella Cocca 1 a Lezione Cos'è la statistica? Come in tutta la ricerca scientifica sperimentale, anche nelle scienze mediche e biologiche è indispensabile

Dettagli

Università del Piemonte Orientale. Corsi di Laurea Triennale. Corso di Statistica e Biometria. Introduzione e Statistica descrittiva

Università del Piemonte Orientale. Corsi di Laurea Triennale. Corso di Statistica e Biometria. Introduzione e Statistica descrittiva Università del Piemonte Orientale Corsi di Laurea Triennale Corso di Statistica e Biometria Introduzione e Statistica descrittiva Corsi di Laurea Triennale Corso di Statistica e Biometria: Introduzione

Dettagli

Statistica 1. Esercitazioni. Dott. Luigi Augugliaro 1. Università di Palermo

Statistica 1. Esercitazioni. Dott. Luigi Augugliaro 1. Università di Palermo Statistica 1 Esercitazioni Dott. 1 1 Dipartimento di Scienze Statistiche e Matematiche S. Vianelli, Università di Palermo ricevimento: lunedì ore 15-17 mercoledì ore 15-17 e-mail: luigi.augugliaro@unipa.it

Dettagli

STATISTICA 1 ESERCITAZIONE 1 CLASSIFICAZIONE DELLE VARIABILI CASUALI

STATISTICA 1 ESERCITAZIONE 1 CLASSIFICAZIONE DELLE VARIABILI CASUALI STATISTICA 1 ESERCITAZIONE 1 Dott. Giuseppe Pandolfo 30 Settembre 2013 Popolazione statistica: insieme degli elementi oggetto dell indagine statistica. Unità statistica: ogni elemento della popolazione

Dettagli

ESERCIZI SVOLTI PER LA PROVA DI STATISTICA

ESERCIZI SVOLTI PER LA PROVA DI STATISTICA ESERCIZI SVOLTI PER LA PROVA DI STATISTICA Stefania Naddeo (anno accademico 4/5) INDICE PARTE PRIMA: STATISTICA DESCRITTIVA. DISTRIBUZIONI DI FREQUENZA E FUNZIONE DI RIPARTIZIONE. VALORI CARATTERISTICI

Dettagli

Statistica descrittiva univariata

Statistica descrittiva univariata Statistica descrittiva univariata Elementi di statistica 2 1 Tavola di dati Una tavola (o tabella) di dati è l insieme dei caratteri osservati nel corso di un esperimento o di un rilievo. Solitamente si

Dettagli

Analisi bivariata. Dott. Cazzaniga Paolo. Dip. di Scienze Umane e Sociali paolo.cazzaniga@unibg.it

Analisi bivariata. Dott. Cazzaniga Paolo. Dip. di Scienze Umane e Sociali paolo.cazzaniga@unibg.it Dip. di Scienze Umane e Sociali paolo.cazzaniga@unibg.it Introduzione : analisi delle relazioni tra due caratteristiche osservate sulle stesse unità statistiche studio del comportamento di due caratteri

Dettagli

Elementi di statistica. Giulia Simi (Università di Siena) Istituzione di matematica e fondamenti di Biostatistica Siena 2015-2016 1 / 1

Elementi di statistica. Giulia Simi (Università di Siena) Istituzione di matematica e fondamenti di Biostatistica Siena 2015-2016 1 / 1 Elementi di statistica Giulia Simi (Università di Siena) Istituzione di matematica e fondamenti di Biostatistica Siena 2015-2016 1 / 1 Statistica La statistica si può definire come: l insieme dei metodi

Dettagli

Università del Piemonte Orientale. Corsi di Laurea Triennale di Area Tecnica. Corso di Statistica e Biometria. Statistica descrittiva

Università del Piemonte Orientale. Corsi di Laurea Triennale di Area Tecnica. Corso di Statistica e Biometria. Statistica descrittiva Università del Piemonte Orientale Corsi di Laurea Triennale di Area Tecnica Corso di Statistica e Biometria Statistica descrittiva 1 Statistica Funzioni Descrittiva Induttiva (inferenziale) Statistica

Dettagli

STATISTICA E PROBABILITá

STATISTICA E PROBABILITá STATISTICA E PROBABILITá Statistica La statistica è una branca della matematica, che descrive un qualsiasi fenomeno basandosi sulla raccolta di informazioni, sottoforma di dati. Questi ultimi risultano

Dettagli

Il concetto di correlazione

Il concetto di correlazione SESTA UNITA Il concetto di correlazione Fino a questo momento ci siamo interessati alle varie statistiche che ci consentono di descrivere la distribuzione dei punteggi di una data variabile e di collegare

Dettagli

STATISTICA DESCRITTIVA BIVARIATA

STATISTICA DESCRITTIVA BIVARIATA STATISTICA DESCRITTIVA BIVARIATA Si parla di Analisi Multivariata quando su ogni unità statistica, appartenente ad una determinata popolazione, si rileva un certo numero s di caratteri X 1, X 2,,X s. Si

Dettagli

LA STATISTICA si interessa del rilevamento, dell elaborazione e dello studio dei dati; studia ciò che accade o come è fatto un gruppo numeroso di

LA STATISTICA si interessa del rilevamento, dell elaborazione e dello studio dei dati; studia ciò che accade o come è fatto un gruppo numeroso di STATISTICA LA STATISTICA si interessa del rilevamento, dell elaborazione e dello studio dei dati; studia ciò che accade o come è fatto un gruppo numeroso di oggetti; cerca, attraverso l uso della matematica

Dettagli

Slide Cerbara parte1 5. Le distribuzioni teoriche

Slide Cerbara parte1 5. Le distribuzioni teoriche Slide Cerbara parte1 5 Le distribuzioni teoriche I fenomeni biologici, demografici, sociali ed economici, che sono il principale oggetto della statistica, non sono retti da leggi matematiche. Però dalle

Dettagli

ESERCIZI DI STATISTICA DESCRITTIVA

ESERCIZI DI STATISTICA DESCRITTIVA ESERCIZI DI STATISTICA DESCRITTIVA ES1 Data la seguente serie di dati su Sesso e Altezza di 8 pazienti, riempire opportunamente due tabelle per rappresentare le distribuzioni di frequenze dei due caratteri,

Dettagli

2.1 Definizione di applicazione lineare. Siano V e W due spazi vettoriali su R. Un applicazione

2.1 Definizione di applicazione lineare. Siano V e W due spazi vettoriali su R. Un applicazione Capitolo 2 MATRICI Fra tutte le applicazioni su uno spazio vettoriale interessa esaminare quelle che mantengono la struttura di spazio vettoriale e che, per questo, vengono dette lineari La loro importanza

Dettagli

Statistica descrittiva: prime informazioni dai dati sperimentali

Statistica descrittiva: prime informazioni dai dati sperimentali SECONDO APPUNTAMENTO CON LA SPERIMENTAZIONE IN AGRICOLTURA Statistica descrittiva: prime informazioni dai dati sperimentali La statistica descrittiva rappresenta la base di partenza per le applicazioni

Dettagli

5. IL PC E INTERNET NELLE DIVERSE TIPOLOGIE FAMILIARI

5. IL PC E INTERNET NELLE DIVERSE TIPOLOGIE FAMILIARI 5. IL PC E INTERNET NELLE DIVERSE TIPOLOGIE FAMILIARI 5.1 Considerazioni generali Il livello di informatizzazione delle famiglie toscane è stato esaminato, oltre che sulla base del territorio, anche tenendo

Dettagli

Appunti di Statistica Descrittiva

Appunti di Statistica Descrittiva Appunti di Statistica Descrittiva 30 dicembre 009 1 La tabella a doppia entrata Per studiare dei fenomeni con caratteristiche statistiche si utilizza l espediente della tabella a doppia entrata Per esempio

Dettagli

Lezione 6: Forma di distribuzione Corso di Statistica Facoltà di Economia Università della Basilicata. Prof. Massimo Aria

Lezione 6: Forma di distribuzione Corso di Statistica Facoltà di Economia Università della Basilicata. Prof. Massimo Aria Lezione 6: Forma di distribuzione Corso di Statistica Facoltà di Economia Università della Basilicata Prof. Massimo Aria aria@unina.it Standardizzazione di una variabile Standardizzare una variabile statistica

Dettagli

VARIABILI ALEATORIE MULTIPLE E TEOREMI ASSOCIATI. Dopo aver trattato delle distribuzioni di probabilità di una variabile aleatoria, che

VARIABILI ALEATORIE MULTIPLE E TEOREMI ASSOCIATI. Dopo aver trattato delle distribuzioni di probabilità di una variabile aleatoria, che VARIABILI ALATORI MULTIPL TORMI ASSOCIATI Fonti: Cicchitelli Dall Aglio Mood-Grabill. Moduli 6 9 0 del programma. VARIABILI ALATORI DOPPI Dopo aver trattato delle distribuzioni di probabilità di una variabile

Dettagli

Statistica. Esercitazione 3 5 maggio 2010 Serie storiche. Connessione e indipendenza statistica

Statistica. Esercitazione 3 5 maggio 2010 Serie storiche. Connessione e indipendenza statistica Corso di Laurea in Scienze dell Organizzazione Facoltà di Sociologia, Università degli Studi di Milano-Bicocca a.a. 2008/2009 Statistica Esercitazione 3 5 maggio 2010 Serie storiche. Connessione e indipendenza

Dettagli

Un po di statistica. Christian Ferrari. Laboratorio di Matematica

Un po di statistica. Christian Ferrari. Laboratorio di Matematica Un po di statistica Christian Ferrari Laboratorio di Matematica 1 Introduzione La statistica è una parte della matematica applicata che si occupa della raccolta, dell analisi e dell interpretazione di

Dettagli

Misure della dispersione o della variabilità

Misure della dispersione o della variabilità QUARTA UNITA Misure della dispersione o della variabilità Abbiamo visto che un punteggio di per sé non ha alcun significato e lo acquista solo quando è posto a confronto con altri punteggi o con una statistica.

Dettagli

Fonti e strumenti statistici per la comunicazione (prof.ssa I.Mingo) Esercizi (soluzioni e suggerimenti )

Fonti e strumenti statistici per la comunicazione (prof.ssa I.Mingo) Esercizi (soluzioni e suggerimenti ) Esercizio 1 Fonti e strumenti statistici per la comunicazione (prof.ssa I.Mingo) Esercizi (soluzioni e suggerimenti ) Qualitativo Sconnesso: Marca di Jeans preferita, Partito votato nelle ultime elezioni,

Dettagli

VARIANZA CAMPIONARIA E DEVIAZIONE STANDARD. Si definisce scarto quadratico medio o deviazione standard la radice quadrata della varianza.

VARIANZA CAMPIONARIA E DEVIAZIONE STANDARD. Si definisce scarto quadratico medio o deviazione standard la radice quadrata della varianza. VARIANZA CAMPIONARIA E DEVIAZIONE STANDARD Si definisce varianza campionaria l indice s 2 = 1 (x i x) 2 = 1 ( xi 2 n x 2) Si definisce scarto quadratico medio o deviazione standard la radice quadrata della

Dettagli

Introduzione alle relazioni multivariate. Introduzione alle relazioni multivariate

Introduzione alle relazioni multivariate. Introduzione alle relazioni multivariate Introduzione alle relazioni multivariate Associazione e causalità Associazione e causalità Nell analisi dei dati notevole importanza è rivestita dalle relazioni causali tra variabili Date due variabili

Dettagli

Analisi di dati di frequenza

Analisi di dati di frequenza Analisi di dati di frequenza Fase di raccolta dei dati Fase di memorizzazione dei dati in un foglio elettronico 0 1 1 1 Frequenze attese uguali Si assuma che dalle risposte al questionario sullo stato

Dettagli

Prova di autovalutazione Prof. Roberta Siciliano

Prova di autovalutazione Prof. Roberta Siciliano Prova di autovalutazione Prof. Roberta Siciliano Esercizio 1 Nella seguente tabella è riportata la distribuzione di frequenza dei prezzi per camera di alcuni agriturismi, situati nella regione Basilicata.

Dettagli

Lezione n. 2 (a cura di Chiara Rossi)

Lezione n. 2 (a cura di Chiara Rossi) Lezione n. 2 (a cura di Chiara Rossi) QUANTILE Data una variabile casuale X, si definisce Quantile superiore x p : X P (X x p ) = p Quantile inferiore x p : X P (X x p ) = p p p=0.05 x p x p Graficamente,

Dettagli

La statistica bivariata consiste nello studio del comportamento di due caratteri osservati congiuntamente sulle stesse unità statistiche

La statistica bivariata consiste nello studio del comportamento di due caratteri osservati congiuntamente sulle stesse unità statistiche 1 Analisi statistica bivariata Lo studio di un fenomeno di interesse, generalmente, si svolge rilevando contemporaneamente più caratteri su ciascuna unità statistica per spiegare il fenomeno attraverso

Dettagli

Statistica. Alfonso Iodice D Enza iodicede@unicas.it

Statistica. Alfonso Iodice D Enza iodicede@unicas.it Statistica Alfonso Iodice D Enza iodicede@unicas.it Università degli studi di Cassino () Statistica 1 / 2 Outline 1 2 3 4 () Statistica 2 / 2 Misura del legame Data una variabile doppia (X, Y ), la misura

Dettagli

UNIVERSITA DEGLI STUDI DI PERUGIA STATISTICA MEDICA. Prof.ssa Donatella Siepi donatella.siepi@unipg.it tel: 075 5853525

UNIVERSITA DEGLI STUDI DI PERUGIA STATISTICA MEDICA. Prof.ssa Donatella Siepi donatella.siepi@unipg.it tel: 075 5853525 UNIVERSITA DEGLI STUDI DI PERUGIA STATISTICA MEDICA Prof.ssa Donatella Siepi donatella.siepi@unipg.it tel: 075 5853525 2 LEZIONE Statistica descrittiva STATISTICA DESCRITTIVA Rilevazione dei dati Rappresentazione

Dettagli

ESERCIZIO N 4. Fatturato Supermercati [0;500) 340 [500;1000) 368 [1000;5000) 480 [5000;10000) 37 [10000;20000) 15 taglia = 1240

ESERCIZIO N 4. Fatturato Supermercati [0;500) 340 [500;1000) 368 [1000;5000) 480 [5000;10000) 37 [10000;20000) 15 taglia = 1240 ESERCIZIO N 4 Fatturato Supermercati [0;500) 340 [500;1000) 368 [1000;5000) 480 [5000;10000) 37 [10000;20000) 15 taglia = 1240 PUNTO a CALCOLO MODA E QUARTILI La moda rappresenta quell'elemento del campione

Dettagli

USO DI EXCEL CLASSE PRIMAI

USO DI EXCEL CLASSE PRIMAI USO DI EXCEL CLASSE PRIMAI In queste lezioni impareremo ad usare i fogli di calcolo EXCEL per l elaborazione statistica dei dati, per esempio, di un esperienza di laboratorio. Verrà nel seguito spiegato:

Dettagli

Premesse alla statistica

Premesse alla statistica Premesse alla statistica Versione 22.10.08 Premesse alla statistica 1 Insiemi e successioni I dati di origine sperimentale si presentano spesso non come singoli valori, ma come insiemi di valori. Richiamiamo

Dettagli

Relazioni statistiche: regressione e correlazione

Relazioni statistiche: regressione e correlazione Relazioni statistiche: regressione e correlazione È detto studio della connessione lo studio si occupa della ricerca di relazioni fra due variabili statistiche o fra una mutabile e una variabile statistica

Dettagli

CORSO DI STATISTICA (parte 2) - ESERCITAZIONE 8

CORSO DI STATISTICA (parte 2) - ESERCITAZIONE 8 CORSO DI STATISTICA (parte 2) - ESERCITAZIONE 8 Dott.ssa Antonella Costanzo a.costanzo@unicas.it Esercizio 1. Test delle ipotesi sulla varianza In un azienda che produce componenti meccaniche, è stato

Dettagli

QUANTIZZAZIONE diverse fasi del processo di conversione da analogico a digitale quantizzazione

QUANTIZZAZIONE diverse fasi del processo di conversione da analogico a digitale quantizzazione QUANTIZZAZIONE Di seguito lo schema che illustra le diverse fasi del processo di conversione da analogico a digitale. Dopo aver trattato la fase di campionamento, occupiamoci ora della quantizzazione.

Dettagli

19txtI_BORRA_2013 18/11/13 10:52 Pagina 449 TAVOLE STATISTICHE

19txtI_BORRA_2013 18/11/13 10:52 Pagina 449 TAVOLE STATISTICHE 19txtI_BORRA_2013 18/11/13 10:52 Pagina 449 TAVOLE STATISTICHE Nell inferenza è spesso richiesto il calcolo di alcuni valori critici o di alcune probabilità per le variabili casuali che sono state introdotte

Dettagli

STATISTICA IX lezione

STATISTICA IX lezione Anno Accademico 013-014 STATISTICA IX lezione 1 Il problema della verifica di un ipotesi statistica In termini generali, si studia la distribuzione T(X) di un opportuna grandezza X legata ai parametri

Dettagli

[ Analisi della. concentrazione] di Luca Vanzulli. Pag. 1 di 1

[ Analisi della. concentrazione] di Luca Vanzulli. Pag. 1 di 1 [ Analisi della concentrazione] di Luca Vanzulli Pag. 1 di 1 LA CONCENTRAZIONE NELL ANALISI DELLE VENDITE L analisi periodica delle vendite rappresenta un preziosissimo indicatore per il monitoraggio del

Dettagli

PRIMA PARTE STATISTICA DESCRITTIVA

PRIMA PARTE STATISTICA DESCRITTIVA PRIMA PARTE STATISTICA DESCRITTIVA 1 PRIMA UNITA Primi concetti elementari 1. Che cos è la statistica La statistica si occupa della raccolta, presentazione ed elaborazione delle informazioni, in genere

Dettagli

QUARTO INCONTRO LABORATORIO CORSO INDAGINI CAMPIONARIE. Laboratorio Stefania Porchia

QUARTO INCONTRO LABORATORIO CORSO INDAGINI CAMPIONARIE. Laboratorio Stefania Porchia QUARTO INCONTRO LABORATORIO CORSO INDAGINI CAMPIONARIE Laboratorio Stefania Porchia Incontri e argomenti trattati nel laboratorio 29 marzo 14.00 15.30 l indagine qualitativa come strategia di formulazione

Dettagli

Elementi di statistica descrittiva I 31 Marzo 2009

Elementi di statistica descrittiva I 31 Marzo 2009 Il Concetti generali di Statistica) Corso Esperto in Logistica e Trasporti Elementi di Statistica applicata Elementi di statistica descrittiva I Marzo 009 Concetti Generali di Statistica F. Caliò franca.calio@polimi.it

Dettagli

COMPITO B - ANALISI DEI DATI PER IL MARKETING OTTOBRE 2009

COMPITO B - ANALISI DEI DATI PER IL MARKETING OTTOBRE 2009 COGNOME E NOME COMPITO B - ANALISI DEI DATI PER IL MARKETING OTTOBRE 2009 Esercizio I MATR. Si è effettuata un indagine di customer satisfaction su un campione di 100 acquirenti d un modello di auto, chiedendo

Dettagli

ESERCITAZIONE 13 : STATISTICA DESCRITTIVA E ANALISI DI REGRESSIONE

ESERCITAZIONE 13 : STATISTICA DESCRITTIVA E ANALISI DI REGRESSIONE ESERCITAZIONE 13 : STATISTICA DESCRITTIVA E ANALISI DI REGRESSIONE e-mail: tommei@dm.unipi.it web: www.dm.unipi.it/ tommei Ricevimento: su appuntamento Dipartimento di Matematica, piano terra, studio 114

Dettagli

Modelli descrittivi, statistica e simulazione

Modelli descrittivi, statistica e simulazione Modelli descrittivi, statistica e simulazione Master per Smart Logistics specialist Roberto Cordone (roberto.cordone@unimi.it) Statistica descrittiva Cernusco S.N., giovedì 21 gennaio 2016 (9.00/13.00)

Dettagli

Prof.ssa Paola Vicard

Prof.ssa Paola Vicard Questa nota consiste perlopiù nella traduzione da Descriptive statistics di J. Shalliker e C. Ricketts, 2000, University of Plymouth Consideriamo come esempio il data set contenuto nel foglio excel esercizio2_dati.xls.

Dettagli

Capitolo 11 Test chi-quadro

Capitolo 11 Test chi-quadro Levine, Krehbiel, Berenson Statistica II ed. 2006 Apogeo Capitolo 11 Test chi-quadro Insegnamento: Statistica Corso di Laurea Triennale in Ingegneria Gestionale Facoltà di Ingegneria, Università di Padova

Dettagli

TEORIA sulle BASI DI DATI

TEORIA sulle BASI DI DATI TEORIA sulle BASI DI DATI A cura del Prof. Enea Ferri Cos è un DATA BASE E un insieme di archivi legati tra loro da relazioni. Vengono memorizzati su memorie di massa come un unico insieme, e possono essere

Dettagli

LE ASSUNZIONI DELL'ANOVA

LE ASSUNZIONI DELL'ANOVA LE ASSUNZIONI DELL'ANOVA Sono le assunzioni del test t, ma estese a tutti i gruppi: o La variabile deve avere una distribuzione normale in tutte le popolazioni corrispondenti ai gruppi campionati o Le

Dettagli

Capitolo 4 Probabilità

Capitolo 4 Probabilità Levine, Krehbiel, Berenson Statistica II ed. 2006 Apogeo Capitolo 4 Probabilità Insegnamento: Statistica Corso di Laurea Triennale in Economia Facoltà di Economia, Università di Ferrara Docenti: Dott.

Dettagli

Lo scopo di questo capitolo è quello di introdurre le principali tecniche di descrizione dei dati.

Lo scopo di questo capitolo è quello di introdurre le principali tecniche di descrizione dei dati. Indice 1 Descriviamo i Dati 1 1.1 L Informazione in Statistica................... 1 1.2 Variabili Qualitative....................... 5 1.2.1 Distribuzioni di Frequenza................ 5 1.2.2 Rappresentazioni

Dettagli

Titolo della lezione. Analisi dell associazione tra due caratteri: indipendenza e dipendenza

Titolo della lezione. Analisi dell associazione tra due caratteri: indipendenza e dipendenza Titolo della lezione Analisi dell associazione tra due caratteri: indipendenza e dipendenza Introduzione Analisi univariata, bivariata, multivariata Analizzare le relazioni tra i caratteri, per cercare

Dettagli

Università degli Studi di Cassino. Facoltà di Scienze Motorie Corso di Laurea in Scienze Motorie Anno accademico 2009/2010

Università degli Studi di Cassino. Facoltà di Scienze Motorie Corso di Laurea in Scienze Motorie Anno accademico 2009/2010 Università degli Studi di Cassino Facoltà di Scienze Motorie Corso di Laurea in Scienze Motorie Anno accademico 2009/2010 Biostatistica (L22) Principi di Statistica Descrittiva (L33) Bruno Federico b.federico@unicas.it

Dettagli

Facciamo qualche precisazione

Facciamo qualche precisazione Abbiamo introdotto alcuni indici statistici (di posizione, di variabilità e di forma) ottenibili da Excel con la funzione Riepilogo Statistiche Facciamo qualche precisazione Al fine della partecipazione

Dettagli

Elementi di Statistica

Elementi di Statistica Elementi di Statistica Contenuti Contenuti di Statistica nel corso di Data Base Elementi di statistica descrittiva: media, moda, mediana, indici di dispersione Introduzione alle variabili casuali e alle

Dettagli

Il test del Chi-quadrato

Il test del Chi-quadrato Il test del Chi-quadrato Prof.ssa Montomoli- Univ. di Pavia Prof.ssa Zanolin Univ. di Verona Il rischio di contrarre epatite C è associato all avere un tatuaggio? Cosa vuol dire ASSOCIAZIONE tra due variabili?

Dettagli

Modelli di Ottimizzazione

Modelli di Ottimizzazione Capitolo 2 Modelli di Ottimizzazione 2.1 Introduzione In questo capitolo ci occuperemo più nel dettaglio di quei particolari modelli matematici noti come Modelli di Ottimizzazione che rivestono un ruolo

Dettagli

Statistica multivariata. Statistica multivariata. Analisi multivariata. Dati multivariati. x 11 x 21. x 12 x 22. x 1m x 2m. x nm. x n2.

Statistica multivariata. Statistica multivariata. Analisi multivariata. Dati multivariati. x 11 x 21. x 12 x 22. x 1m x 2m. x nm. x n2. Analisi multivariata Statistica multivariata Quando il numero delle variabili rilevate sullo stesso soggetto aumentano, il problema diventa gestirle tutte e capirne le relazioni. Cercare di capire le relazioni

Dettagli

Chiusura lineare. N.B. A può essere indifferentemente un insieme, finito o no, o un sistema. Es.1. Es.2

Chiusura lineare. N.B. A può essere indifferentemente un insieme, finito o no, o un sistema. Es.1. Es.2 Chiusura lineare Def. Sia A V (K) con A. Si dice copertura lineare (o chiusura lineare) di A, e si indica con L(A), l insieme dei vettori di V che risultano combinazioni lineari di un numero finito di

Dettagli

Soluzioni Esercizi elementari

Soluzioni Esercizi elementari Soluzioni sercizi elementari Capitolo. carattere: itolo di Studio, carattere qualitativo ordinato modalità: Diploma, Licenza media, Laurea, Licenza elementare unità statistiche: Individui. carattere: Fatturato,

Dettagli

Statistica 1 A.A. 2015/2016

Statistica 1 A.A. 2015/2016 Corso di Laurea in Economia e Finanza Statistica 1 A.A. 2015/2016 (8 CFU, corrispondenti a 48 ore di lezione frontale e 24 ore di esercitazione) Prof. Luigi Augugliaro 1 / 39 Introduzione Come si è detto,

Dettagli

E NECESSARIO RICORRERE ALLE VARIABILI CASUALI

E NECESSARIO RICORRERE ALLE VARIABILI CASUALI IL CONCETTO DI VARIABILE CASUALE Associare una misura di probabilità al verificarsi di un certo evento (come esito di un esperimento) non sempre è sufficiente a risolvere gran parte dei problemi reali

Dettagli

Dr. Marco Vicentini marco.vicentini@unipd.it Anno Accademico 2010 2011 Rev 30/03/2011

Dr. Marco Vicentini marco.vicentini@unipd.it Anno Accademico 2010 2011 Rev 30/03/2011 Università degli Studi di Padova Facoltà di Psicologia, L4, Psicometria, Modulo B Dr. Marco Vicentini marco.vicentini@unipd.it Anno Accademico 2010 2011 Rev 30/03/2011 Statistica descrittiva e inferenziale

Dettagli

Indicazione per lo svolgimento dell esercitazione di laboratorio

Indicazione per lo svolgimento dell esercitazione di laboratorio Indicazione per lo svolgimento dell esercitazione di laboratorio Margini e indici di bilancio di una spa, rappresentazioni grafiche e presentazione dei risultati all assemblea dei soci Fabio Ferriello

Dettagli

Statistica. L. Freddi. L. Freddi Statistica

Statistica. L. Freddi. L. Freddi Statistica Statistica L. Freddi Statistica La statistica è un insieme di metodi e tecniche per: raccogliere informazioni su un fenomeno sintetizzare l informazione (elaborare i dati) generalizzare i risultati ottenuti

Dettagli

PROBABILITÀ - SCHEDA N. 2 LE VARIABILI ALEATORIE

PROBABILITÀ - SCHEDA N. 2 LE VARIABILI ALEATORIE Matematica e statistica: dai dati ai modelli alle scelte www.dima.unige/pls_statistica Responsabili scientifici M.P. Rogantin e E. Sasso (Dipartimento di Matematica Università di Genova) PROBABILITÀ -

Dettagli

Per forma di una distribuzione si intende il modo secondo il quale si dispongono i valori di un carattere intorno alla rispettiva media.

Per forma di una distribuzione si intende il modo secondo il quale si dispongono i valori di un carattere intorno alla rispettiva media. FORMA DI UNA DISTRIBUZIONE Per forma di una distribuzione si intende il modo secondo il quale si dispongono i valori di un carattere intorno alla rispettiva media. Le prime informazioni sulla forma di

Dettagli

PROBABILITA, VALORE ATTESO E VARIANZA DELLE QUANTITÁ ALEATORIE E LORO RELAZIONE CON I DATI OSSERVATI

PROBABILITA, VALORE ATTESO E VARIANZA DELLE QUANTITÁ ALEATORIE E LORO RELAZIONE CON I DATI OSSERVATI statistica, Università Cattaneo-Liuc, AA 006-007, lezione del 08.05.07 IDICE (lezione 08.05.07 PROBABILITA, VALORE ATTESO E VARIAZA DELLE QUATITÁ ALEATORIE E LORO RELAZIOE CO I DATI OSSERVATI 3.1 Valore

Dettagli

Esercitazioni del corso di Statistica Prof. Mortera a.a. 2008/2009

Esercitazioni del corso di Statistica Prof. Mortera a.a. 2008/2009 Esercitazioni del corso di Statistica Prof. Mortera a.a. 2008/2009 Esercizi di statistica descrittiva 1. Secondo i dati ISTAT 1997 sull occupazione, la Lombardia e il Veneto presentano le seguenti distribuzione

Dettagli

Igiene nelle Scienze motorie

Igiene nelle Scienze motorie Igiene nelle Scienze motorie Epidemiologia generale Epidemiologia Da un punto di vista etimologico, epidemiologia è una parola di origine greca, che letteralmente significa «discorso riguardo alla popolazione»

Dettagli

Lezione 1- Introduzione. Statistica medica e Biometria. Statistica medica-biostatistica. Prof. Enzo Ballone

Lezione 1- Introduzione. Statistica medica e Biometria. Statistica medica-biostatistica. Prof. Enzo Ballone Lezione 1- Introduzione Cattedra di Biostatistica Dipartimento di Scienze sperimentali e cliniche, Università degli Studi G. d Annunzio di Chieti Pescara Prof. Enzo Ballone Statistica medica e Biometria

Dettagli

Kangourou della Matematica 2014 finale nazionale italiana Mirabilandia, 12 maggio 2014

Kangourou della Matematica 2014 finale nazionale italiana Mirabilandia, 12 maggio 2014 Kangourou della Matematica 2014 finale nazionale italiana Mirabilandia, 12 maggio 2014 LIVELLO STUDENT K,M N CD BC A S1. (5 punti ) In figura si vede una circonferenza della quale i segmenti AB, BC e CD

Dettagli

Progettazione di un Database

Progettazione di un Database Progettazione di un Database Per comprendere il processo di progettazione di un Database deve essere chiaro il modo con cui vengono organizzati e quindi memorizzati i dati in un sistema di gestione di

Dettagli

STATISTICA DESCRITTIVA SCHEDA N. 5: REGRESSIONE LINEARE

STATISTICA DESCRITTIVA SCHEDA N. 5: REGRESSIONE LINEARE STATISTICA DESCRITTIVA SCHEDA N. : REGRESSIONE LINEARE Nella Scheda precedente abbiamo visto che il coefficiente di correlazione fra due variabili quantitative X e Y fornisce informazioni sull esistenza

Dettagli

CORSO DI STATISTICA (parte 1) - ESERCITAZIONE 1

CORSO DI STATISTICA (parte 1) - ESERCITAZIONE 1 CORSO DI STATISTICA (parte 1) - ESERCITAZIONE 1 Dott.ssa Antonella Costanzo a.costanzo@unicas.it Un breve riepilogo: caratteri, unità statistiche e collettivo UNITA STATISTICA: oggetto dell osservazione

Dettagli

Elaborazione dei dati su PC Regressione Multipla

Elaborazione dei dati su PC Regressione Multipla 21 Elaborazione dei dati su PC Regressione Multipla Analizza Regressione Statistiche Grafici Metodo di selezione Analisi dei dati 21.1 Introduzione 21.2 Regressione lineare multipla con SPSS 21.3 Regressione

Dettagli

Università di Firenze - Corso di laurea in Statistica Seconda prova intermedia di Statistica. 18 dicembre 2008

Università di Firenze - Corso di laurea in Statistica Seconda prova intermedia di Statistica. 18 dicembre 2008 Università di Firenze - Corso di laurea in Statistica Seconda prova intermedia di Statistica 18 dicembre 008 Esame sull intero programma: esercizi da A a D Esame sulla seconda parte del programma: esercizi

Dettagli

Teoria dei Giochi non Cooperativi

Teoria dei Giochi non Cooperativi Politecnico di Milano Descrizione del gioco Egoismo Razionalità 1 L insieme dei giocatori 2 La situazione iniziale 3 Le sue possibili evoluzioni 4 I suoi esiti finali I Giochi della teoria Perché studiare

Dettagli

Dimensione di uno Spazio vettoriale

Dimensione di uno Spazio vettoriale Capitolo 4 Dimensione di uno Spazio vettoriale 4.1 Introduzione Dedichiamo questo capitolo ad un concetto fondamentale in algebra lineare: la dimensione di uno spazio vettoriale. Daremo una definizione

Dettagli

STATISTICA DESCRITTIVA. Le misure di tendenza centrale

STATISTICA DESCRITTIVA. Le misure di tendenza centrale STATISTICA DESCRITTIVA Le misure di tendenza centrale 1 OBIETTIVO Individuare un indice che rappresenti significativamente un insieme di dati statistici. 2 Esempio Nella tabella seguente sono riportati

Dettagli

Corso di Psicometria Progredito

Corso di Psicometria Progredito Corso di Psicometria Progredito 2.1 Statistica descrittiva (Richiami) Prima Parte Gianmarco Altoè Dipartimento di Pedagogia, Psicologia e Filosofia Università di Cagliari, Anno Accademico 2013-2014 Sommario

Dettagli

I FIORENTINI E LA TRANVIA Indagine conoscitiva sull utilizzo della linea 1 della tranvia

I FIORENTINI E LA TRANVIA Indagine conoscitiva sull utilizzo della linea 1 della tranvia I FIORENTINI E LA TRANVIA Indagine conoscitiva sull utilizzo della linea 1 della tranvia Introduzione 1. Obiettivi e caratteristiche dell indagine L indagine è progettata dal Settore Pianificazione Integrata

Dettagli