Statistica. Alfonso Iodice D Enza

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Statistica. Alfonso Iodice D Enza iodicede@unicas.it"

Transcript

1 Statistica Alfonso Iodice D Enza Università degli studi di Cassino () Statistica 1 / 2

2 Outline () Statistica 2 / 2

3 Misura del legame Data una variabile doppia (X, Y ), la misura del legame che caratterizza le componenti X ed Y si definisce se X e Y sono mutabili correlazione se X e Y sono () Statistica 3 / 2

4 Interdipendenza e dipendenza Se le componenti di una variabile doppia (X, Y ) oggetto di studio rivestono lo stesso ruolo ai fini dell analisi si studia l interdipendenza tra X e Y. Se si vuole studiare, invece, l andamento della variabile Y rispetto ad X, si farà riferimento alla dipendenza di Y da X. Y si definisce variabile dipendente X si definisce variabile indipendente () Statistica 4 / 2

5 Frequenze condizionate () Statistica 5 / 2

6 Frequenze condizionate () Statistica / 2

7 Frequenze relative condizionate La distribuzione delle frequenze relative condizionate della variabile A (k modalità) rispetto alla j sima modalità della variabile B (h modalità) si ottiene dividendo ciascun elemento dell j ma colonna (frequenza assoluta) per il rispettivo totale di di colonna n ij /n.j per i = 1,..., k. () Statistica 7 / 2

8 Frequenze relative condizionate La distribuzione delle frequenze relative condizionate della variabile B (h modalità) rispetto alla i sima modalità della variabile A (k modalità) si ottiene dividendo ciascun elemento dell i ma riga (frequenza assoluta) per il rispettivo totale di riga n ij /n i. per j = 1,..., h. () Statistica 8 / 2

9 Esempio di tabella a doppia entrata Si consideri di aver registrato la meta del viaggio e il mezzo di trasporto di un collettivo di 592 persone. I risultati sono raccolti nella seguente tabella occhi/capelli Italia Spagna P ortogallo F rancia T ot macchina aereo treno nave T ot () Statistica 9 / 2

10 Distribuzioni relative condizionate Frequenze condizionate della variabile destinazione rispetto alle modalità della variabile mezzo mezzo/destinazione Italia Spagna P ortogallo F rancia T ot macchina aereo treno nave Frequenze condizionate della variabile mezzo rispetto alle modalità della variabile destinazione mezzo/destinazione Italia Spagna P ortogallo F rancia macchina aereo treno nave T ot () Statistica 10 / 2

11 e distribuzioni condizionate Le componenti di una variabile doppia (X, Y ) sono indipendenti se le distribuzioni di frequenze relative condizionate Y X e X Y sono costanti. Formalmente dovrà risultare per Y X e per X Y n i1 n.1 = n i2 n.2 = n i3 n.3 =... = n ih n.h n 1j n 1. = n 2j n 2. = n 3j n 3. =... = n kj n k. () Statistica 11 / 2

12 Si supponga che nel precedente esempio sia stata osservata la seguente distribuzione doppia. mezzo/destinazione Italia Spagna P ortogallo F rancia T ot macchina aereo treno nave T ot () Statistica 12 / 2

13 In questo caso le frequenze condizionate della variabile destinazione rispetto alle modalità della variabile mezzo mezzo/destinazione Italia Spagna P ortogallo F rancia T ot macchina aereo treno nave T ot Mentre le frequenze condizionate della variabile mezzo rispetto alle modalità della variabile destinazione mezzo/destinazione Italia Spagna P ortogallo F rancia T ot. macchina aereo treno nave T ot () Statistica 13 / 2

14 Se le componenti di una variabile doppia (X, Y ) sono indipendenti (le distribuzioni di frequenze relative condizionate Y X e X Y sono costanti), allora vale la seguente relazione ˆn ij = n i.n.j n.. con i = 1,..., k; j = 1,..., h Pertanto, data una distribuzione doppia di frequenze, il legame tra le due componenti (mutabile) varierà tra una situazione di indipendenza (assenza di legame) e un qualche grado di () Statistica 14 / 2

15 Indice quadratico di (X 2 ) Gli indici per la misura della connessioni sono basati sulle differenze tra le frequenze osservate sul collettivo n ij e le frequenze teoriche ˆn ij, che si osserverebbero sul collettivo se le mutabili considerate fossero indipendenti. Indice quadratico di (X 2 ) è dato dalla seguente relazione X 2 = i=1 j=1 h (n ij ˆn ij ) 2 ˆn ij in caso di indipendenza, essendo n ij = ˆn ij, risulta X 2 = 0 il massimo valore dell indice è dato dalla seguente espressione: n min(k 1, h 1) () Statistica 15 / 2

16 Indice quadratico di (X 2 ) Per calcolare l indice quadratico di che caratterizza le mezzo e destinazione, con distribuzione congiunta di frequenze n ij : mezzo/destinazione Italia Spagna P ortogallo F rancia T ot. macchina aereo treno nave T ot si deve calcolare la distribuzione di frequenze che si osserverebbero in caso di indipendenza ˆn ij : mezzo/destinazione Italia Spagna P ortogallo F rancia T ot. macchina aereo treno nave T ot () Statistica 1 / 2

17 Indice quadratico di (X 2 ) ( n ij ˆn ij ) 2 ˆn ij : mezzo/destinazione Italia Spagna P ortogallo F rancia macchina aereo treno nave L indice X 2 è dato dunque dalla somma degli elementi in tabella h X 2 (n ij ˆn ij ) 2 = = i=1 j=1 ˆn ij = () Statistica 17 / 2

18 Indice ν di Cramer avendo definito n min(k 1, h 1) come valore massimo che X 2 può assumere, è possibile ottenere una versione normalizzata dell indice di. Viene definito indice ν di Cramer. X ν = 2 n min(k 1, h 1) con k e h numero di modalità delle componenti della mutabile doppia. L indice è normalizzato, quindi 0 ν 1. () Statistica 18 / 2

19 Indice ν di Cramer Con riferimento ai dati dell esercizio, si ha che X 2 = , n = 592, h = 4 e k = 4 X ν = 2 n min(k 1, h 1) = min(3, 3) = 0.28 () Statistica 19 / 2

20 Connessione in media Data una distibuzione doppia di un carattere misto (X, Y ), si dir che la componente Y indipendente in media da X se al variare delle modalità di X le medie condizionate di X rimangono costanti (vale il viceversa). Il fatto che Y sia indipendente in media da X non implica che sia vero il contrario (come invece accade per l indipendenza in distribuzione). () Statistica 20 / 2

21 Connessione in media Data una distibuzione doppia di un carattere misto (X, Y ), si dir che la componente Y indipendente in media da X se al variare delle modalità di X le medie condizionate di X rimangono costanti (vale il viceversa). Il fatto che Y sia indipendente in media da X non implica che sia vero il contrario (come invece accade per l indipendenza in distribuzione). µ y = y = 1 h y j n.j n j=1 Rappresenta la media di Y e si ottiene considerando la distribuzione marginale di Y. y i = y x i = 1 h y j n ij n i. j=1 Rappresenta la media di Y condizionata alla i ma modalità della variabile X. () Statistica 20 / 2

22 Decomposizione della devianza Ricordando che la devianza il numeratore della varianza... h Dev y = (y j y) 2 n ij = i=1 j=1 h = (y j y i + y i y) 2 n ij = i=1 j=1 h h = (y j y i ) 2 n ij + (y i y) 2 n ij + i=1 j=1 i=1 j=1 h + 2 (y j y i )(y i y)n ij i=1 j=1 () Statistica 21 / 2

23 Decomposizione della devianza h = (y j y i ) 2 n ij + (y i y) 2 n i. + i=1 j=1 i=1 h + 2 (y j y i ) (y i y)n ij = i=1 j=1 = [Dev(Y X = x i )] + (y i y) 2 n i. = i=1 i=1 = Dev(W ) + Dev(B) () Statistica 21 / 2

24 Decomposizione della devianza h = (y j y i ) 2 n ij + (y i y) 2 n i. + i=1 j=1 i=1 h + 2 (y j y i ) (y i y)n ij = i=1 j=1 = [Dev(Y X = x i )] + (y i y) 2 n i. = i=1 i=1 = Dev(W ) + Dev(B) () Statistica 21 / 2

25 Decomposizione della devianza h = (y j y i ) 2 n ij + (y i y) 2 n i. + i=1 j=1 i=1 h + 2 (y j y i ) (y i y)n ij = i=1 j=1 = [Dev(Y X = x i )] + (y i y) 2 n i. = i=1 i=1 = Dev(W ) + Dev(B) () Statistica 21 / 2

26 Decomposizione della devianza h = (y j y i ) 2 n ij + (y i y) 2 n i. + i=1 j=1 i=1 h + 2 (y j y i ) (y i y)n ij = i=1 j=1 = [Dev(Y X = x i )] + (y i y) 2 n i. = i=1 i=1 = Dev(W ) + Dev(B) () Statistica 21 / 2

27 Rapporto di correlazione di Pearson (η 2 ) Dev(W ) rappresenta la varianza all interno dei gruppi definiti dalle modalità di X. Dev(B) rappresenta invece la tà tra i gruppi: ovvero la tà delle medie condizionate rispetto alla media generale. () Statistica 22 / 2

28 Rapporto di correlazione di Pearson (η 2 ) Dev(W ) rappresenta la varianza all interno dei gruppi definiti dalle modalità di X. Dev(B) rappresenta invece la tà tra i gruppi: ovvero la tà delle medie condizionate rispetto alla media generale. Se Y indipendente in media da X, allora le medie condizionate y i saranno tutte costanti, la tà ad esse associate sar uguale a zero. In particolare risulter Dev(B) = 0 quindi Dev(Y ) = Dev(W ) + 0 () Statistica 22 / 2

29 Rapporto di correlazione di Pearson (η 2 ) Dev(W ) rappresenta la varianza all interno dei gruppi definiti dalle modalità di X. Dev(B) rappresenta invece la tà tra i gruppi: ovvero la tà delle medie condizionate rispetto alla media generale. Se Y indipendente in media da X, allora le medie condizionate y i saranno tutte costanti, la tà ad esse associate sar uguale a zero. In particolare risulter Dev(B) = 0 quindi Dev(Y ) = Dev(W ) + 0 Quindi, per quantificare la dipendenza in media di Y da X occorre un indice basato su Dev(B). η 2 = Dev(B) Dev(Y ) () Statistica 22 / 2

30 Calcolo del rapporto di correlazione: valori in classi Si consideri l esempio della variabile doppia reddito/grado di anzianità () Statistica 23 / 2

31 Calcolo del rapporto di correlazione Ai fini del calcolo del rapporto di correlazione necessario calcolare la devianza totale della variabile Dev(Y ) e la devianza tra le classi Dev(B) (ovvero la devianza tra le medie condizionate Y X = x i, i = 1, 2,..., k e la media globale). Dunque µ(y ) = 1 ( ) + (17.5 2) ( ) + (27.5 ) = () Statistica 24 / 2

32 Calcolo del rapporto di correlazione µ(y x i = Nord) = 1 (12.5 0) + (17.5 7)+ 4 + ( ) + (27.5 5) = µ(y x i = Centro) = 1 (12.5 1) + ( ) (22.5 5) + (27.5 1) = 18.7 µ(y x i = Sud) = 1 ( ) + (17.5 1) (22.5 0) + (27.5 0) = 12. () Statistica 25 / 2

33 Calcolo del rapporto di correlazione dev(y ) = ( ) ( ) ( ) ( ) 2 = dev(b) = ( ) ( ) ( ) 2 32 = η 2 = dev(b) dev(y ) = = 0.7 () Statistica 2 / 2

Lezione 8. Statistica. Alfonso Iodice D Enza Università degli studi di Cassino. Lezione 8. A. Iodice. Relazioni tra variabili

Lezione 8. Statistica. Alfonso Iodice D Enza Università degli studi di Cassino. Lezione 8. A. Iodice. Relazioni tra variabili Statistica Alfonso Iodice D Enza iodicede@unicas.it Università degli studi di Cassino () Statistica 1 / 26 Outline 1 2 3 4 () Statistica 2 / 26 Misura del legame Data una variabile doppia (X, Y ), la misura

Dettagli

Statistica. Alfonso Iodice D Enza

Statistica. Alfonso Iodice D Enza Statistica Alfonso Iodice D Enza iodicede@gmail.com Università degli studi di Cassino () Statistica 1 / 41 Outline 1 2 3 4 5 () Statistica 2 / 41 Misura del legame Data una variabile doppia (X, Y ), la

Dettagli

Statistica. Alfonso Iodice D Enza

Statistica. Alfonso Iodice D Enza Statistica Alfonso Iodice D Enza iodicede@unina.it Università degli studi di Cassino () Statistica 1 / 24 Outline 1 () Statistica 2 / 24 Outline 1 2 () Statistica 2 / 24 Outline 1 2 3 () Statistica 2 /

Dettagli

CORSO DI STATISTICA (parte 2) - ESERCITAZIONE 1

CORSO DI STATISTICA (parte 2) - ESERCITAZIONE 1 CORSO DI STATISTICA (parte 2) - ESERCITAZIONE 1 Dott.ssa Antonella Costanzo a.costanzo@unicas.it A.Studio dell interdipendenza tra variabili: riepilogo Concetto relativo allo studio delle relazioni tra

Dettagli

Metodi statistici per l economia (Prof. Capitanio) Slide n. 4. Materiale di supporto per le lezioni. Non sostituisce il libro di testo

Metodi statistici per l economia (Prof. Capitanio) Slide n. 4. Materiale di supporto per le lezioni. Non sostituisce il libro di testo Metodi statistici per l economia (Prof. Capitanio) Slide n. 4 Materiale di supporto per le lezioni. Non sostituisce il libro di testo Dipendenza di un carattere QUANTITATIVO da un carattere QUALITATIVO

Dettagli

Titolo della lezione. Analisi dell associazione tra due caratteri: indipendenza e dipendenza

Titolo della lezione. Analisi dell associazione tra due caratteri: indipendenza e dipendenza Titolo della lezione Analisi dell associazione tra due caratteri: indipendenza e dipendenza Introduzione Analisi univariata, bivariata, multivariata Analizzare le relazioni tra i caratteri, per cercare

Dettagli

Statistica. Alfonso Iodice D Enza

Statistica. Alfonso Iodice D Enza Statistica Alfonso Iodice D Enza iodicede@unina.it Università degli studi di Cassino () Statistica 1 / 1 Outline () Statistica 2 / 1 La curtosi La curtosi è la caratteristica della forma della distribuzione

Dettagli

Prova di autovalutazione Prof. Roberta Siciliano

Prova di autovalutazione Prof. Roberta Siciliano Prova di autovalutazione Prof. Roberta Siciliano Esercizio 1 Nella seguente tabella è riportata la distribuzione di frequenza dei prezzi per camera di alcuni agriturismi, situati nella regione Basilicata.

Dettagli

Dott.ssa Caterina Gurrieri

Dott.ssa Caterina Gurrieri Dott.ssa Caterina Gurrieri Le relazioni tra caratteri Data una tabella a doppia entrata, grande importanza riveste il misurare se e in che misura le variabili in essa riportata sono in qualche modo

Dettagli

Statistica. Alfonso Iodice D Enza iodicede@unina.it

Statistica. Alfonso Iodice D Enza iodicede@unina.it Statistica Alfonso Iodice D Enza iodicede@unina.it Università degli studi di Cassino () Statistica 1 / 16 Outline 1 () Statistica 2 / 16 Outline 1 2 () Statistica 2 / 16 Outline 1 2 () Statistica 2 / 16

Dettagli

Statistica. Esercitazione 15. Alfonso Iodice D Enza iodicede@unicas.it. Università degli studi di Cassino. Statistica. A. Iodice

Statistica. Esercitazione 15. Alfonso Iodice D Enza iodicede@unicas.it. Università degli studi di Cassino. Statistica. A. Iodice Esercitazione 15 Alfonso Iodice D Enza iodicede@unicas.it Università degli studi di Cassino () 1 / 18 L importanza del gruppo di controllo In tutti i casi in cui si voglia studiare l effetto di un certo

Dettagli

Esercitazione 1 del corso di Statistica 2 Prof. Domenico Vistocco

Esercitazione 1 del corso di Statistica 2 Prof. Domenico Vistocco Esercitazione 1 del corso di Statistica 2 Prof. Domenico Vistocco Alfonso Iodice D Enza April 26, 2007 1...prima di cominciare Contare, operazione solitamente semplice, può diventare complicata se lo scopo

Dettagli

STATISTICA DESCRITTIVA BIVARIATA

STATISTICA DESCRITTIVA BIVARIATA STATISTICA DESCRITTIVA BIVARIATA Si parla di Analisi Multivariata quando su ogni unità statistica, appartenente ad una determinata popolazione, si rileva un certo numero s di caratteri X 1, X 2,,X s. Si

Dettagli

Analisi bivariata. Dott. Cazzaniga Paolo. Dip. di Scienze Umane e Sociali paolo.cazzaniga@unibg.it

Analisi bivariata. Dott. Cazzaniga Paolo. Dip. di Scienze Umane e Sociali paolo.cazzaniga@unibg.it Dip. di Scienze Umane e Sociali paolo.cazzaniga@unibg.it Introduzione : analisi delle relazioni tra due caratteristiche osservate sulle stesse unità statistiche studio del comportamento di due caratteri

Dettagli

Esame di Statistica Prof.ssa Paola Zuccolotto

Esame di Statistica Prof.ssa Paola Zuccolotto Esame di Statistica Prof.ssa Paola Zuccolotto Tema 1 indicare cognome, nome e numero di matricola su tutti i fogli; utilizzare i fogli protocollo per effettuare i calcoli, indicando tutti i passaggi necessari

Dettagli

Dipendenza tra caratteri: connessione. N:B: Si tratta di coppie di caratteri sia qualitativi

Dipendenza tra caratteri: connessione. N:B: Si tratta di coppie di caratteri sia qualitativi 1 Associazione tra variabili Tratteremo: Dipendenza tra caratteri: connessione N:B: Si tratta di coppie di caratteri sia qualitativi che quantitativi!!!! 2 Associazione tra variabili Riprendiamo l esempio

Dettagli

STATISTICA (A-K) a.a. 2007-08 Prof.ssa Mary Fraire Test di STATISTICA DESCRITTIVA Esonero del 2007

STATISTICA (A-K) a.a. 2007-08 Prof.ssa Mary Fraire Test di STATISTICA DESCRITTIVA Esonero del 2007 A STATISTICA (A-K) a.a. 007-08 Prof.ssa Mary Fraire Test di STATISTICA DESCRITTIVA Esonero del 007 STESS N.O. RD 00 GORU N.O. RD 006 ) La distribuzione del numero degli occupati (valori x 000) in una provincia

Dettagli

Capitolo 2 Distribuzioni di frequenza

Capitolo 2 Distribuzioni di frequenza Edizioni Simone - Vol. 43/1 Compendio di statistica Capitolo 2 Distribuzioni di frequenza Sommario 1. Distribuzioni semplici. - 2. Distribuzioni doppie. - 3. Distribuzioni parziali: condizionate e marginali.

Dettagli

OCCUPATI SETTORE DI ATTIVITA' ECONOMICA

OCCUPATI SETTORE DI ATTIVITA' ECONOMICA ESERCIZIO 1 La tabella seguente contiene i dati relativi alla composizione degli occupati in Italia relativamente ai tre macrosettori di attività (agricoltura, industria e altre attività) negli anni 1971

Dettagli

Analisi di dati di frequenza

Analisi di dati di frequenza Analisi di dati di frequenza Fase di raccolta dei dati Fase di memorizzazione dei dati in un foglio elettronico 0 1 1 1 Frequenze attese uguali Si assuma che dalle risposte al questionario sullo stato

Dettagli

Appunti di Statistica Descrittiva

Appunti di Statistica Descrittiva Appunti di Statistica Descrittiva 30 dicembre 009 1 La tabella a doppia entrata Per studiare dei fenomeni con caratteristiche statistiche si utilizza l espediente della tabella a doppia entrata Per esempio

Dettagli

Statistica. Esercitazione 3 5 maggio 2010 Serie storiche. Connessione e indipendenza statistica

Statistica. Esercitazione 3 5 maggio 2010 Serie storiche. Connessione e indipendenza statistica Corso di Laurea in Scienze dell Organizzazione Facoltà di Sociologia, Università degli Studi di Milano-Bicocca a.a. 2008/2009 Statistica Esercitazione 3 5 maggio 2010 Serie storiche. Connessione e indipendenza

Dettagli

Il test del Chi-quadrato

Il test del Chi-quadrato Il test del Chi-quadrato Prof.ssa Montomoli- Univ. di Pavia Prof.ssa Zanolin Univ. di Verona Il rischio di contrarre epatite C è associato all avere un tatuaggio? Cosa vuol dire ASSOCIAZIONE tra due variabili?

Dettagli

Capitolo 11 Test chi-quadro

Capitolo 11 Test chi-quadro Levine, Krehbiel, Berenson Statistica II ed. 2006 Apogeo Capitolo 11 Test chi-quadro Insegnamento: Statistica Corso di Laurea Triennale in Ingegneria Gestionale Facoltà di Ingegneria, Università di Padova

Dettagli

Relazioni statistiche: regressione e correlazione

Relazioni statistiche: regressione e correlazione Relazioni statistiche: regressione e correlazione È detto studio della connessione lo studio si occupa della ricerca di relazioni fra due variabili statistiche o fra una mutabile e una variabile statistica

Dettagli

Confronto tra media e mediana Indice di Yule-Bowley Indice di Fisher

Confronto tra media e mediana Indice di Yule-Bowley Indice di Fisher ESERCIZIO La tabella littlecompany,disponibile sul sito (in formato pdf e xls) riporta i dati relativi a dipendenti dell'azienda Little Company S.r.l. su cui sono state rilevate le seguenti variabili:

Dettagli

Un po di statistica. Christian Ferrari. Laboratorio di Matematica

Un po di statistica. Christian Ferrari. Laboratorio di Matematica Un po di statistica Christian Ferrari Laboratorio di Matematica 1 Introduzione La statistica è una parte della matematica applicata che si occupa della raccolta, dell analisi e dell interpretazione di

Dettagli

ESERCIZI SVOLTI PER LA PROVA DI STATISTICA

ESERCIZI SVOLTI PER LA PROVA DI STATISTICA ESERCIZI SVOLTI PER LA PROVA DI STATISTICA Stefania Naddeo (anno accademico 4/5) INDICE PARTE PRIMA: STATISTICA DESCRITTIVA. DISTRIBUZIONI DI FREQUENZA E FUNZIONE DI RIPARTIZIONE. VALORI CARATTERISTICI

Dettagli

CORSO DI STATISTICA (parte 2) - ESERCITAZIONE 8

CORSO DI STATISTICA (parte 2) - ESERCITAZIONE 8 CORSO DI STATISTICA (parte 2) - ESERCITAZIONE 8 Dott.ssa Antonella Costanzo a.costanzo@unicas.it Esercizio 1. Test delle ipotesi sulla varianza In un azienda che produce componenti meccaniche, è stato

Dettagli

Facciamo qualche precisazione

Facciamo qualche precisazione Abbiamo introdotto alcuni indici statistici (di posizione, di variabilità e di forma) ottenibili da Excel con la funzione Riepilogo Statistiche Facciamo qualche precisazione Al fine della partecipazione

Dettagli

CENNI DI METODI STATISTICI

CENNI DI METODI STATISTICI Corso di Laurea in Ingegneria Aerospaziale CENNI DI METODI STATISTICI Docente: Page 1 Page 2 Page 3 Due eventi si dicono indipendenti quando il verificarsi di uno non influisce sulla probabilità di accadimento

Dettagli

ANALISI DELLE FREQUENZE: IL TEST CHI 2

ANALISI DELLE FREQUENZE: IL TEST CHI 2 ANALISI DELLE FREQUENZE: IL TEST CHI 2 Quando si hanno scale nominali o ordinali, non è possibile calcolare il t, poiché non abbiamo medie, ma solo frequenze. In questi casi, per verificare se un evento

Dettagli

Statistica. Alfonso Iodice D Enza

Statistica. Alfonso Iodice D Enza Statistica Alfonso Iodice D Enza iodicede@unicas.it Università degli studi di Cassino () Statistica 1 / 33 Outline 1 2 3 4 5 6 () Statistica 2 / 33 Misura del legame Nel caso di variabili quantitative

Dettagli

Slide Cerbara parte1 5. Le distribuzioni teoriche

Slide Cerbara parte1 5. Le distribuzioni teoriche Slide Cerbara parte1 5 Le distribuzioni teoriche I fenomeni biologici, demografici, sociali ed economici, che sono il principale oggetto della statistica, non sono retti da leggi matematiche. Però dalle

Dettagli

Come descrivere un fenomeno in ambito sanitario fondamenti di statistica descrittiva. Brugnaro Luca

Come descrivere un fenomeno in ambito sanitario fondamenti di statistica descrittiva. Brugnaro Luca Come descrivere un fenomeno in ambito sanitario fondamenti di statistica descrittiva Brugnaro Luca Progetto formativo complessivo Obiettivo: incrementare le competenze degli operatori sanitari nelle metodiche

Dettagli

STATISTICA IX lezione

STATISTICA IX lezione Anno Accademico 013-014 STATISTICA IX lezione 1 Il problema della verifica di un ipotesi statistica In termini generali, si studia la distribuzione T(X) di un opportuna grandezza X legata ai parametri

Dettagli

Disegni di Ricerca e Analisi dei Dati in Psicologia Clinica. Indici di Affidabilità

Disegni di Ricerca e Analisi dei Dati in Psicologia Clinica. Indici di Affidabilità Disegni di Ricerca e Analisi dei Dati in Psicologia Clinica Indici di Affidabilità L Attendibilità È il livello in cui una misura è libera da errore di misura È la proporzione di variabilità della misurazione

Dettagli

Lezione 6: Forma di distribuzione Corso di Statistica Facoltà di Economia Università della Basilicata. Prof. Massimo Aria

Lezione 6: Forma di distribuzione Corso di Statistica Facoltà di Economia Università della Basilicata. Prof. Massimo Aria Lezione 6: Forma di distribuzione Corso di Statistica Facoltà di Economia Università della Basilicata Prof. Massimo Aria aria@unina.it Standardizzazione di una variabile Standardizzare una variabile statistica

Dettagli

Facoltà di ECONOMIA Corso di Statistica a.a. 2005/2006 Esame del 27/09/2006 Statistica descrittiva

Facoltà di ECONOMIA Corso di Statistica a.a. 2005/2006 Esame del 27/09/2006 Statistica descrittiva Esame del 27/09/2006 Statistica descrittiva 1. Un grossista di apparecchiature informatiche ha rilevato l ammontare totale in migliaia di euro degli ordini effettuati nel 2005 dai suoi principali clienti

Dettagli

Esercitazioni di statistica

Esercitazioni di statistica Esercitazioni di statistica Misure di associazione: Indipendenza assoluta e in media Stefania Spina Universitá di Napoli Federico II stefania.spina@unina.it 22 ottobre 2014 Stefania Spina Esercitazioni

Dettagli

Statistica. Alfonso Iodice D Enza

Statistica. Alfonso Iodice D Enza Statistica Alfonso Iodice D Enza iodicede@gmail.com Università degli studi di Cassino () Statistica 1 / 9 Outline () Statistica 2 / 9 Connessione in media Si consideri una variabile Y quantitativa ed una

Dettagli

Corso di laurea in Scienze Motorie. Corso di Statistica. Docente: Dott.ssa Immacolata Scancarello Lezione 2: Misurazione, tabelle

Corso di laurea in Scienze Motorie. Corso di Statistica. Docente: Dott.ssa Immacolata Scancarello Lezione 2: Misurazione, tabelle Corso di laurea in Scienze Motorie Corso di Statistica Docente: Dott.ssa Immacolata Scancarello Lezione : Misurazione, tabelle 1 Misurazione Definizione: La misura è l attribuzione di un valore numerico

Dettagli

Capitolo 4 Probabilità

Capitolo 4 Probabilità Levine, Krehbiel, Berenson Statistica II ed. 2006 Apogeo Capitolo 4 Probabilità Insegnamento: Statistica Corso di Laurea Triennale in Economia Facoltà di Economia, Università di Ferrara Docenti: Dott.

Dettagli

L Analisi della Varianza ANOVA (ANalysis Of VAriance)

L Analisi della Varianza ANOVA (ANalysis Of VAriance) L Analisi della Varianza ANOVA (ANalysis Of VAriance) 1 CONCETTI GENERALI Finora abbiamo descritto test di ipotesi finalizzati alla verifica di ipotesi sulla differenza tra parametri di due popolazioni

Dettagli

Corso di. Dott.ssa Donatella Cocca

Corso di. Dott.ssa Donatella Cocca Corso di Statistica medica e applicata Dott.ssa Donatella Cocca 1 a Lezione Cos'è la statistica? Come in tutta la ricerca scientifica sperimentale, anche nelle scienze mediche e biologiche è indispensabile

Dettagli

La dipendenza. Antonello Maruotti

La dipendenza. Antonello Maruotti La dipendenza Antonello Maruotti Outline 1 Distribuzioni doppie 2 Medie e varianze condizionate 3 Indici di associazione Distribuzione doppia Definizione Una distribuzione doppia si ha quando su di uno

Dettagli

Fonti e strumenti statistici per la comunicazione (prof.ssa I.Mingo) Esercizi (soluzioni e suggerimenti )

Fonti e strumenti statistici per la comunicazione (prof.ssa I.Mingo) Esercizi (soluzioni e suggerimenti ) Esercizio 1 Fonti e strumenti statistici per la comunicazione (prof.ssa I.Mingo) Esercizi (soluzioni e suggerimenti ) Qualitativo Sconnesso: Marca di Jeans preferita, Partito votato nelle ultime elezioni,

Dettagli

LEZIONE 3. Ing. Andrea Ghedi AA 2009/2010. Ing. Andrea Ghedi AA 2009/2010

LEZIONE 3. Ing. Andrea Ghedi AA 2009/2010. Ing. Andrea Ghedi AA 2009/2010 LEZIONE 3 "Educare significa aiutare l'animo dell'uomo ad entrare nella totalità della realtà. Non si può però educare se non rivolgendosi alla libertà, la quale definisce il singolo, l'io. Quando uno

Dettagli

RELAZIONE TRA VARIABILI QUANTITATIVE. Lezione 7 a. Accade spesso nella ricerca in campo biomedico, così come in altri campi della

RELAZIONE TRA VARIABILI QUANTITATIVE. Lezione 7 a. Accade spesso nella ricerca in campo biomedico, così come in altri campi della RELAZIONE TRA VARIABILI QUANTITATIVE Lezione 7 a Accade spesso nella ricerca in campo biomedico, così come in altri campi della scienza, di voler studiare come il variare di una o più variabili (variabili

Dettagli

Il coefficiente di correlazione di Spearman per ranghi

Il coefficiente di correlazione di Spearman per ranghi Il coefficiente di correlazione di Spearman per ranghi Questo indice di correlazione non parametrico viene indicato con r s o Spearman rho e permette di valutare la forza del rapporto tra due variabili

Dettagli

STATISTICA DESCRITTIVA - SCHEDA N. 1 VARIABILI QUALITATIVE

STATISTICA DESCRITTIVA - SCHEDA N. 1 VARIABILI QUALITATIVE Matematica e statistica: dai dati ai modelli alle scelte www.dima.unige/pls_statistica Responsabili scientifici M.P. Rogantin e E. Sasso (Dipartimento di Matematica Università di Genova) STATISTICA DESCRITTIVA

Dettagli

LEZIONE n. 5 (a cura di Antonio Di Marco)

LEZIONE n. 5 (a cura di Antonio Di Marco) LEZIONE n. 5 (a cura di Antonio Di Marco) IL P-VALUE (α) Data un ipotesi nulla (H 0 ), questa la si può accettare o rifiutare in base al valore del p- value. In genere il suo valore è un numero molto piccolo,

Dettagli

Statistica (Prof. Capitanio) Slide n. 1. Materiale di supporto per le lezioni. Non sostituisce il libro di testo

Statistica (Prof. Capitanio) Slide n. 1. Materiale di supporto per le lezioni. Non sostituisce il libro di testo Statistica (Prof. Capitanio) Slide n. 1 Materiale di supporto per le lezioni. Non sostituisce il libro di testo MEDIA GEOMETRICA M g = x g = n n x i i=1 1 PROPRIETA 1) Identità di prodotto ( ) n n M =

Dettagli

Elementi di Psicometria con Laboratorio di SPSS 1

Elementi di Psicometria con Laboratorio di SPSS 1 Elementi di Psicometria con Laboratorio di SPSS 1 5-Indici di variabilità (vers. 1.0c, 20 ottobre 2015) Germano Rossi 1 germano.rossi@unimib.it 1 Dipartimento di Psicologia, Università di Milano-Bicocca

Dettagli

IL RISCHIO D IMPRESA ED IL RISCHIO FINANZIARIO. LA RELAZIONE RISCHIO-RENDIMENTO ED IL COSTO DEL CAPITALE.

IL RISCHIO D IMPRESA ED IL RISCHIO FINANZIARIO. LA RELAZIONE RISCHIO-RENDIMENTO ED IL COSTO DEL CAPITALE. IL RISCHIO D IMPRESA ED IL RISCHIO FINANZIARIO. LA RELAZIONE RISCHIO-RENDIMENTO ED IL COSTO DEL CAPITALE. Lezione 5 Castellanza, 17 Ottobre 2007 2 Summary Il costo del capitale La relazione rischio/rendimento

Dettagli

Corso di Informatica Generale (C. L. Economia e Commercio) Ing. Valerio Lacagnina Rappresentazione in virgola mobile

Corso di Informatica Generale (C. L. Economia e Commercio) Ing. Valerio Lacagnina Rappresentazione in virgola mobile Problemi connessi all utilizzo di un numero di bit limitato Abbiamo visto quali sono i vantaggi dell utilizzo della rappresentazione in complemento alla base: corrispondenza biunivoca fra rappresentazione

Dettagli

VARIANZA CAMPIONARIA E DEVIAZIONE STANDARD. Si definisce scarto quadratico medio o deviazione standard la radice quadrata della varianza.

VARIANZA CAMPIONARIA E DEVIAZIONE STANDARD. Si definisce scarto quadratico medio o deviazione standard la radice quadrata della varianza. VARIANZA CAMPIONARIA E DEVIAZIONE STANDARD Si definisce varianza campionaria l indice s 2 = 1 (x i x) 2 = 1 ( xi 2 n x 2) Si definisce scarto quadratico medio o deviazione standard la radice quadrata della

Dettagli

Università di Firenze - Corso di laurea in Statistica Seconda prova intermedia di Statistica. 18 dicembre 2008

Università di Firenze - Corso di laurea in Statistica Seconda prova intermedia di Statistica. 18 dicembre 2008 Università di Firenze - Corso di laurea in Statistica Seconda prova intermedia di Statistica 18 dicembre 008 Esame sull intero programma: esercizi da A a D Esame sulla seconda parte del programma: esercizi

Dettagli

PARTE TERZA. STATISTICA DESCRITTIVA MULTIDIMENSIONALE (Analisi delle Relazioni)

PARTE TERZA. STATISTICA DESCRITTIVA MULTIDIMENSIONALE (Analisi delle Relazioni) PARTE TERZA STATISTICA DESCRITTIVA MULTIDIMESIOALE (Analisi delle Relazioni) La notazione matriciale 3 III.. LA OTAZIOE MATRICIALE III... L analisi statistica dei fenomeni multivariati L intrinseca complessità

Dettagli

Statistica. Lezione 6

Statistica. Lezione 6 Università degli Studi del Piemonte Orientale Corso di Laurea in Infermieristica Corso integrato in Scienze della Prevenzione e dei Servizi sanitari Statistica Lezione 6 a.a 011-01 Dott.ssa Daniela Ferrante

Dettagli

Statistica. Alfonso Iodice D Enza

Statistica. Alfonso Iodice D Enza Statistica Alfonso Iodice D Enza iodicede@gmail.com Università degli studi di Cassino () Statistica 1 / 24 Outline 1 2 3 4 5 () Statistica 2 / 24 Dipendenza lineare Lo studio della relazione tra caratteri

Dettagli

CORSO DI STATISTICA (parte 2) - ESERCITAZIONE 7

CORSO DI STATISTICA (parte 2) - ESERCITAZIONE 7 CORSO DI STATISTICA (parte 2) - ESERCITAZIONE 7 Dott.ssa Antonella Costanzo a.costanzo@unicas.it Esercizio 1. Test delle ipotesi per la media (varianza nota), p-value del test Il manager di un fast-food

Dettagli

Sistema di misurazione e valutazione delle posizioni dirigenziali

Sistema di misurazione e valutazione delle posizioni dirigenziali Allegato Sistema di misurazione e valutazione delle posizioni dirigenziali Approvato con Delibera di Giunta n. 7 del 1/0/01 Comune di Prato Regolamento per l ordinamento degli Uffici e dei Servizi Allegato

Dettagli

Probabilità condizionata: p(a/b) che avvenga A, una volta accaduto B. Evento prodotto: Evento in cui si verifica sia A che B ; p(a&b) = p(a) x p(b/a)

Probabilità condizionata: p(a/b) che avvenga A, una volta accaduto B. Evento prodotto: Evento in cui si verifica sia A che B ; p(a&b) = p(a) x p(b/a) Probabilità condizionata: p(a/b) che avvenga A, una volta accaduto B Eventi indipendenti: un evento non influenza l altro Eventi disgiunti: il verificarsi di un evento esclude l altro Evento prodotto:

Dettagli

LA STATISTICA NEI TEST INVALSI

LA STATISTICA NEI TEST INVALSI LA STATISTICA NEI TEST INVALSI 1 Prova Nazionale 2011 Osserva il grafico seguente che rappresenta la distribuzione percentuale di famiglie per numero di componenti, in base al censimento 2001. Qual è la

Dettagli

Soluzioni degli Esercizi del Parziale del 30/06/201 (Ippoliti-Fontanella-Valentini)

Soluzioni degli Esercizi del Parziale del 30/06/201 (Ippoliti-Fontanella-Valentini) Soluzioni degli Esercizi del Parziale del 30/06/201 (Ippoliti-Fontanella-Valentini) Esercizio 1 In uno studio sugli affitti mensili, condotto su un campione casuale di 14 monolocali nella città nella città

Dettagli

Indice Statistiche Univariate Statistiche Bivariate

Indice Statistiche Univariate Statistiche Bivariate Indice 1 Statistiche Univariate 1 1.1 Importazione di un file.data.............................. 1 1.2 Medie e variabilità................................... 6 1.3 Distribuzioni di frequenze...............................

Dettagli

Università del Piemonte Orientale. Corsi di Laurea Triennale. Corso di Statistica e Biometria. Introduzione e Statistica descrittiva

Università del Piemonte Orientale. Corsi di Laurea Triennale. Corso di Statistica e Biometria. Introduzione e Statistica descrittiva Università del Piemonte Orientale Corsi di Laurea Triennale Corso di Statistica e Biometria Introduzione e Statistica descrittiva Corsi di Laurea Triennale Corso di Statistica e Biometria: Introduzione

Dettagli

Metodologia per l analisi dei dati sperimentali L analisi di studi con variabili di risposta multiple: Regressione multipla

Metodologia per l analisi dei dati sperimentali L analisi di studi con variabili di risposta multiple: Regressione multipla Il metodo della regressione può essere esteso dal caso in cui si considera la variabilità della risposta della y in relazione ad una sola variabile indipendente X ad una situazione più generale in cui

Dettagli

3. Confronto tra medie di due campioni indipendenti o appaiati

3. Confronto tra medie di due campioni indipendenti o appaiati BIOSTATISTICA 3. Confronto tra medie di due campioni indipendenti o appaiati Marta Blangiardo, Imperial College, London Department of Epidemiology and Public Health m.blangiardo@imperial.ac.uk MARTA BLANGIARDO

Dettagli

VALIDAZIONE METODI DI PROVA PROVE MICROBIOLOGICHE

VALIDAZIONE METODI DI PROVA PROVE MICROBIOLOGICHE VALIDAZIONE METODI DI PROVA PROVE MICROBIOLOGICHE 1 Il processo di validazione/qualificazione di un metodo microbiologico presuppone che i fattori critici siano adeguatamente disciplinati da indicazioni

Dettagli

FACOLTÀ DI SOCIOLOGIA CdL in SCIENZE DELL ORGANIZZAZIONE SIMULAZIONE della PROVA SCRITTA di STATISTICA 23/03/2011

FACOLTÀ DI SOCIOLOGIA CdL in SCIENZE DELL ORGANIZZAZIONE SIMULAZIONE della PROVA SCRITTA di STATISTICA 23/03/2011 FACOLTÀ DI SOCIOLOGIA CdL in SCIENZE DELL ORGANIZZAZIONE SIMULAZIONE della PROVA SCRITTA di STATISTICA 23/3/2 ESERCIZIO (2+2+2+2) La seguente tabella riporta la distribuzione della variabile "Stato Civile"

Dettagli

FONDAMENTI DI PSICOMETRIA - 8 CFU

FONDAMENTI DI PSICOMETRIA - 8 CFU Ψ FONDAMENTI DI PSICOMETRIA - 8 CFU STIMA DELL ATTENDIBILITA STIMA DELL ATTENDIBILITA DEFINIZIONE DI ATTENDIBILITA (affidabilità, fedeltà) Grado di accordo tra diversi tentativi di misurare uno stesso

Dettagli

Stima per intervalli Nei metodi di stima puntuale è sempre presente un ^ errore θ θ dovuto al fatto che la stima di θ in genere non coincide con il parametro θ. Sorge quindi l esigenza di determinare una

Dettagli

Università degli Studi di Cassino, Anno accademico 2004-2005 Corso di Statistica 2, Prof. M. Furno

Università degli Studi di Cassino, Anno accademico 2004-2005 Corso di Statistica 2, Prof. M. Furno Università degli Studi di Cassino, Anno accademico 2004-2005 Corso di Statistica 2, Prof. M. Furno Esercitazione del 18/1/2005 Dott. Claudio Conversano Esercizio 1 (non svolto in aula) Vengono lanciati

Dettagli

Secondo Rapporto sulla Previdenza Privata I giovani. A cura del centro studi AdEPP

Secondo Rapporto sulla Previdenza Privata I giovani. A cura del centro studi AdEPP Secondo Rapporto sulla Previdenza Privata I giovani A cura del centro studi AdEPP Il Centro Studi AdEPP All interno dell Associazione degli Enti di Previdenza Privati è operativo il Centro Studi AdEPP

Dettagli

ESAME DI STATISTICA Nome: Cognome: Matricola:

ESAME DI STATISTICA Nome: Cognome: Matricola: ESAME DI STATISTICA Nome: Cognome: Matricola: ISTRUZIONI: Per la prova è consentito esclusivamente l uso di una calcolatrice tascabile, delle tavole della normale e della t di Student. I risultati degli

Dettagli

Soluzioni Esercizi elementari

Soluzioni Esercizi elementari Soluzioni sercizi elementari Capitolo. carattere: itolo di Studio, carattere qualitativo ordinato modalità: Diploma, Licenza media, Laurea, Licenza elementare unità statistiche: Individui. carattere: Fatturato,

Dettagli

Statistica 1 A.A. 2015/2016

Statistica 1 A.A. 2015/2016 Corso di Laurea in Economia e Finanza Statistica 1 A.A. 2015/2016 (8 CFU, corrispondenti a 48 ore di lezione frontale e 24 ore di esercitazione) Prof. Luigi Augugliaro 1 / 19 Analisi dell associazione

Dettagli

PROBABILITA, VALORE ATTESO E VARIANZA DELLE QUANTITÁ ALEATORIE E LORO RELAZIONE CON I DATI OSSERVATI

PROBABILITA, VALORE ATTESO E VARIANZA DELLE QUANTITÁ ALEATORIE E LORO RELAZIONE CON I DATI OSSERVATI statistica, Università Cattaneo-Liuc, AA 006-007, lezione del 08.05.07 IDICE (lezione 08.05.07 PROBABILITA, VALORE ATTESO E VARIAZA DELLE QUATITÁ ALEATORIE E LORO RELAZIOE CO I DATI OSSERVATI 3.1 Valore

Dettagli

Indagine sulla mobilità privata per acquisti delle famiglie a Piacenza. ESTRATTO Piacenza@fondazioneitl.org +39 0523 606731

Indagine sulla mobilità privata per acquisti delle famiglie a Piacenza. ESTRATTO Piacenza@fondazioneitl.org +39 0523 606731 Indagine sulla mobilità privata per acquisti delle famiglie a Piacenza ESTRATTO Piacenza@fondazioneitl.org Premessa L indagine sulla mobilità per acquisti delle famiglie di Piacenza è stata curata dalla

Dettagli

PROGRAMMA SVOLTO NELLA SESSIONE N.

PROGRAMMA SVOLTO NELLA SESSIONE N. Università C. Cattaneo Liuc, Corso di Statistica, Sessione n. 1, 2014 Laboratorio Excel Sessione n. 1 Venerdì 031014 Gruppo PZ Lunedì 061014 Gruppo AD Martedì 071014 Gruppo EO PROGRAMMA SVOLTO NELLA SESSIONE

Dettagli

GRUPPO QUATTRO RUOTE. Alessandro Tondo 19632 Laura Lavazza 19758 Matteo Scordo 19813 Alessandro Giosa 19894. Gruppo Quattro Ruote 1

GRUPPO QUATTRO RUOTE. Alessandro Tondo 19632 Laura Lavazza 19758 Matteo Scordo 19813 Alessandro Giosa 19894. Gruppo Quattro Ruote 1 GRUPPO QUATTRO RUOTE Alessandro Tondo 19632 Laura Lavazza 19758 Matteo Scordo 19813 Alessandro Giosa 19894 Gruppo Quattro Ruote 1 2. ANALISI BIVARIATA 3.1. RISULTATI (continua) 2.1 Consumi ridotti (variabile

Dettagli

11. Analisi statistica degli eventi idrologici estremi

11. Analisi statistica degli eventi idrologici estremi . Analisi statistica degli eventi idrologici estremi I processi idrologici evolvono, nello spazio e nel tempo, secondo modalità che sono in parte predicibili (deterministiche) ed in parte casuali (stocastiche

Dettagli

La statistica bivariata consiste nello studio del comportamento di due caratteri osservati congiuntamente sulle stesse unità statistiche

La statistica bivariata consiste nello studio del comportamento di due caratteri osservati congiuntamente sulle stesse unità statistiche 1 Analisi statistica bivariata Lo studio di un fenomeno di interesse, generalmente, si svolge rilevando contemporaneamente più caratteri su ciascuna unità statistica per spiegare il fenomeno attraverso

Dettagli

Basi di matematica per il corso di micro

Basi di matematica per il corso di micro Basi di matematica per il corso di micro Microeconomia (anno accademico 2006-2007) Lezione del 21 Marzo 2007 Marianna Belloc 1 Le funzioni 1.1 Definizione Una funzione è una regola che descrive una relazione

Dettagli

Esercizi di Statistica

Esercizi di Statistica Esercizi di Statistica Selezione di esercizi proposti durante le esercitazioni dei corsi di Statistica tenute presso la Facoltà di Economia dell Università di Salerno Versione del 17 ottobre 2006 2 Per

Dettagli

Appunti di complementi di matematica

Appunti di complementi di matematica Appunti di complementi di matematica UITA STATISTICA: è l unità su cui si raccolgono le informazioni oggetto dell indagine e possono essere individui, famiglie, oggetti. UIVERSO STATISTICO O POLAZIOE STATISTICA

Dettagli

LEZIONI DI STATISTICA

LEZIONI DI STATISTICA ez10 l GIOVANNI GIRONE Ordinario nell'università di Bari TOMMASO SALVEMINI Ordinario nel!' Università di Roma LEZIONI DI STATISTICA Volume Secondo CACUCCI EDITORE - BARI - 1992 CENTRO " G. ASTENGO» INVENTARIO

Dettagli

Il concetto di valore medio in generale

Il concetto di valore medio in generale Il concetto di valore medio in generale Nella statistica descrittiva si distinguono solitamente due tipi di medie: - le medie analitiche, che soddisfano ad una condizione di invarianza e si calcolano tenendo

Dettagli

età sesso luogo-abitazione scuola superiore esperienza insegnamento 1 2 2 2 1 2 2 2 2 2 1 2 3 2 2 2 1 2 4 2 2 2 1 2 5 3 2 2 1 2 6 2 2 2 1 2 7 3 2 1 1

età sesso luogo-abitazione scuola superiore esperienza insegnamento 1 2 2 2 1 2 2 2 2 2 1 2 3 2 2 2 1 2 4 2 2 2 1 2 5 3 2 2 1 2 6 2 2 2 1 2 7 3 2 1 1 età sesso luogo-abitazione scuola superiore esperienza insegnamento 1 1 1 3 1 4 1 5 3 1 6 1 7 3 1 1 8 3 1 9 3 1 10 3 1 11 3 1 1 1 13 4 1 1 14 3 1 15 1 16 1 17 1 18 1 19 1 0 1 1 1 1 3 3 1 4 1 Come analizzare

Dettagli

ESERCITAZIONE 13 : STATISTICA DESCRITTIVA E ANALISI DI REGRESSIONE

ESERCITAZIONE 13 : STATISTICA DESCRITTIVA E ANALISI DI REGRESSIONE ESERCITAZIONE 13 : STATISTICA DESCRITTIVA E ANALISI DI REGRESSIONE e-mail: tommei@dm.unipi.it web: www.dm.unipi.it/ tommei Ricevimento: su appuntamento Dipartimento di Matematica, piano terra, studio 114

Dettagli

FACOLTÀ DI ECONOMIA Soluzione della Prova di autovalutazione 2012 (primi 6 CFU) ANALISI STATISTICA PER L IMPRESA

FACOLTÀ DI ECONOMIA Soluzione della Prova di autovalutazione 2012 (primi 6 CFU) ANALISI STATISTICA PER L IMPRESA FACOLTÀ DI ECONOMIA Soluzione della Prova di autovalutazione 2012 (primi 6 CFU) ANALISI STATISTICA PER L IMPRESA NB Come potete vedere facendo la somma dei punteggi il numero di quesiti è superiore a quello

Dettagli

Correzione dell Esame di Statistica Descrittiva (Mod. B) 1 Appello - 28 Marzo 2007 Facoltà di Astronomia

Correzione dell Esame di Statistica Descrittiva (Mod. B) 1 Appello - 28 Marzo 2007 Facoltà di Astronomia Correzione dell Esame di Statistica Descrittiva (Mod. B) 1 Appello - 8 Marzo 007 Facoltà di Astronomia ESERCIZIO 1 La seguente tabella riporta la distribuzione congiunta della situazione lavorativa e dello

Dettagli

Un gioco con tre dadi

Un gioco con tre dadi Un gioco con tre dadi Livello scolare: biennio Abilità interessate Costruire lo spazio degli eventi in casi semplici e determinarne la cardinalità. Valutare la probabilità in diversi contesti problematici.

Dettagli

IL TEST CHI QUADRATO χ 2

IL TEST CHI QUADRATO χ 2 IL TEST CHI QUADRATO χ 2 Test parametrici I test studiati nelle lezioni precedenti (test-t, testz) consentono la verifica di ipotesi relative al valore di specifici parametri di popolazione Esempio: differenza

Dettagli

Statistica. Le rappresentazioni grafiche

Statistica. Le rappresentazioni grafiche Statistica Le rappresentazioni grafiche Introduzione Le rappresentazioni grafiche costituiscono uno dei mezzi più efficaci, sia per descrivere in forma visiva i risultati di numerose osservazioni riguardanti

Dettagli

Excel Terza parte. Excel 2003

Excel Terza parte. Excel 2003 Excel Terza parte Excel 2003 TABELLA PIVOT Selezioniamo tutti i dati (con le relative etichette) Dati Rapporto tabella pivot e grafico pivot Fine 2 La tabella pivot viene messa di default in una pagina

Dettagli

Psicometria (8 CFU) Corso di Laurea triennale STANDARDIZZAZIONE

Psicometria (8 CFU) Corso di Laurea triennale STANDARDIZZAZIONE Psicometria (8 CFU) Corso di Laurea triennale Un punteggio all interno di una distribuzione è in realtà privo di significato se preso da solo. Sapere che un soggetto ha ottenuto un punteggio x=52 in una

Dettagli

CORSO DI LAUREA IN OTTICA E OPTOMETRIA CORSO DI INFORMATICA E STATISTICA DANIELE.MONTANINO@UNISALENTO.IT

CORSO DI LAUREA IN OTTICA E OPTOMETRIA CORSO DI INFORMATICA E STATISTICA DANIELE.MONTANINO@UNISALENTO.IT CORSO DI LAUREA IN OTTICA E OPTOMETRIA CORSO DI INFORMATICA E STATISTICA DANIELE.MONTANINO@UNISALENTO.IT CONVENZIONE SULLE CIFRE SIGNIFICATIVE La convenzione usata sul troncamento delle cifre è troncare

Dettagli