3. Confronto tra medie di due campioni indipendenti o appaiati

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "3. Confronto tra medie di due campioni indipendenti o appaiati"

Transcript

1 BIOSTATISTICA 3. Confronto tra medie di due campioni indipendenti o appaiati Marta Blangiardo, Imperial College, London Department of Epidemiology and Public Health MARTA BLANGIARDO CONFRONTO TRA MEDIE DI 2 CAMPIONI- 3.1

2 O APPAIATI SPECULARE UNIVERSO PARAMETRI PROGRAMMARE INFERIRE CAMPIONE STIMATORI DESCRIVERE MARTA BLANGIARDO CONFRONTO TRA MEDIE DI 2 CAMPIONI- 3.2

3 O APPAIATI Siamo interessati a valutare se due diete (A e B) determinano diversi incrementi del peso delle cavie con esse nutrite UNIVERSO PARAMETRI CAMPIONE STIMATORI MARTA BLANGIARDO CONFRONTO TRA MEDIE DI 2 CAMPIONI- 3.3

4 Siamo interessati a valutare se due diete (A e B) determinano diversi incrementi del peso delle cavie con esse nutrite UNIVERSO PARAMETRI PROGRAMMARE CAMPIONE STIMATORI Vengono scelti casualmente due campioni di 12 e 13 cavie ciascuno, ad ognuno di essi viene somministrata una delle due diete in studio dalla nascita fino all età di 3 mesi e ne vengono registrati gli incrementi di peso. I campioni sono indipendenti MARTA BLANGIARDO CONFRONTO TRA MEDIE DI 2 CAMPIONI- 3.4

5 CAMPIONE 1 CAMPIONE 2 STATISTICHE DESCRIVERE STATISTICHE STATISTICHE STATISTICHE n 1 = y i1 : generica i-esima osservazione del campione 1 (j =1) n 2 = 13 y i2 : generica i-esima osservazione del campione 2 (j =2) MARTA BLANGIARDO CONFRONTO TRA MEDIE DI 2 CAMPIONI- 3.5

6 4 CAMPIONE s 1 = 4.24 y 1 = CAMPIONE 2 s 2 = y 2 = MARTA BLANGIARDO CONFRONTO TRA MEDIE DI 2 CAMPIONI- 3.6

7 IPOTESI: I due campioni provengono dalla stessa popolazione di cavie e se potessimo misurare l intera popolazione sarebbe X ~ N(µ,σ 2 ) µ Media campionaria Noi non conosciamo nè la media µ nè la varianza σ 2, ma conosciamo i parametri campionari: y 1 y 2 medie s 1 s 2 Dev. standard n 1 n 2 numerosità MARTA BLANGIARDO CONFRONTO TRA MEDIE DI 2 CAMPIONI- 3.7

8 POPOLAZIONE campione 1 campione 2 Dieta A Dieta B n 1 = 12 y 1 = 60 s 1 = 4.24 n 2 = 13 y 2 = s 2 = 4.21 Ai due campioni assegniamo diete diverse. Le osservazioni ottenute sono ancora compatibili con l ipotesi che i due campioni provengono dalla stessa popolazione? MARTA BLANGIARDO CONFRONTO TRA MEDIE DI 2 CAMPIONI- 3.8

9 SPECULARE UNIVERSO PARAMETRI PROGRAMMARE INFERIRE CAMPIONE STIMATORI DESCRIVERE MARTA BLANGIARDO CONFRONTO TRA MEDIE DI 2 CAMPIONI- 3.9

10 POPOLAZIONE BERSAGLIO Tutti i possibili campioni y 1 y 2 µ Media Medie campionaria campionarie δ = µ 2 - µ 1 = µ - µ =0 d = y 2 y 1 H 0 : δ=0 MARTA BLANGIARDO CONFRONTO TRA MEDIE DI 2 CAMPIONI- 3.10

11 POPOLAZIONE 1 (dieta A) (tutte le medie campionarie y 1 ) POPOLAZIONE 2 (dieta B) (tutte le medie campionarie y 2 ) Tutti i possibili campioni Tutti i possibili campioni y 1 y 2 µ 1 Le due distribuzioni hanno la stessa varianza δ = µ 2 - µ 1 µ 2 d = y 2 y 1 H 1 : δ = 0 MARTA BLANGIARDO CONFRONTO TRA MEDIE DI 2 CAMPIONI- 3.11

12 IN GENERALE δ = µ 1 - µ 2 µ 1 µ 2 POPOLAZIONE 1 POPOLAZIONE 2 n 1 = 12 y 1 = 60 s 1 = 4.24 n 2 = 13 y 2 = s 2 = 4.21 d = y 2 - y 1 = 3.77 La variabile di interesse non è più la media campionaria bensì la differenza tra medie campionarie MARTA BLANGIARDO CONFRONTO TRA MEDIE DI 2 CAMPIONI- 3.12

13 POPOLAZIONE BERSAGLIO (tutte le possibili differenze tra medie campionarie) Tutti i possibili campioni ignota d Differenze tra medie campionarie δ MARTA BLANGIARDO CONFRONTO TRA MEDIE DI 2 CAMPIONI- 3.13

14 Ipotesi nulla: H 0 : µ 1 = µ 2 δ = 0 Cosa succede sotto l ipotesi nulla? MARTA BLANGIARDO CONFRONTO TRA MEDIE DI 2 CAMPIONI- 3.14

15 POPOLAZIONE BERSAGLIO (tutte le possibili differenze tra medie campionarie) Tutti i possibili campioni Questa situazione è compatibile con l ipotesi nulla? d δ = 0 Differenze tra medie campionarie MARTA BLANGIARDO CONFRONTO TRA MEDIE DI 2 CAMPIONI- 3.15

16 Situazione possibile d δ = 0 Situazione meno probabile d δ = 0 MARTA BLANGIARDO CONFRONTO TRA MEDIE DI 2 CAMPIONI- 3.16

17 Ipotesi nulla: H 0 : µ 1 = µ 2 δ = 0 L ipotesi nulla non può essere mai rigettata con assoluta certezza! Dobbiamo agganciare alla stima d un livello di confidenza. P-Value: quanto estremo è il risultato che abbiamo ottenuto? d d δ = 0 MARTA BLANGIARDO CONFRONTO TRA MEDIE DI 2 CAMPIONI- 3.17

18 P-Value: probabilità di ottenere un risultato campionario altrettanto o più estremo di quello osservato, se H 0 è vera P-value = Pr ( D >d sotto H 0 ) Più piccolo è il valore del p-value, 1) più estremo è il valore d osservato 2) Più bassa l evidenza che i dati siano coerenti con la distribuzione sotto l ipotesi nulla P-value=0.25 P-value=0.03 d d δ = 0 MARTA BLANGIARDO CONFRONTO TRA MEDIE DI 2 CAMPIONI- 3.18

19 PROBLEMA: l ipotesi è bidirezionale H 0 : δ = 0 vs H 1 : δ = 0 Unidirezionale P-value = Pr ( D >d sotto H 0 ) Bidirezionale 2*P-value P-value=0.06 P-value=0.03 P-value=0.03 -d d δ = 0 MARTA BLANGIARDO CONFRONTO TRA MEDIE DI 2 CAMPIONI- 3.19

20 Tre procedure per saggiare l ipotesi nulla A. Stima intervallare B. Test basato sulla t di Student C. Analisi della varianza e test F MARTA BLANGIARDO CONFRONTO TRA MEDIE DI 2 CAMPIONI- 3.20

21 Ricordando la stima intervallare nel caso di una media campionaria: y ± t. es la si adatti al confronto tra due medie campionarie MARTA BLANGIARDO A. CONFRONTO Stima intervallare TRA MEDIE DI 2 CAMPIONI- 3.21

22 y ± t. es La variabile misurata di interesse non è più la media campionaria y, bensì la differenza tra medie campionarie d: d ± t. es A. Stima intervallare MARTA BLANGIARDO CONFRONTO TRA MEDIE DI 2 CAMPIONI- 3.22

23 n 1 = 12 y 1 = 60 s 11 = 4.24 n 2 = y 2 y= 2 = s 22 = 4.21 d ± t. es d = y 2 y 1 = 3.77 A. Stima intervallare MARTA BLANGIARDO CONFRONTO TRA MEDIE DI 2 CAMPIONI- 3.23

24 d ± t. es L errore standard non è più s / n visto che, essendo implicati due campioni, si dispone di due deviazioni standard (s 1 e s 2 ) e due numerosità campionarie (n 1 e n 2 ) s* = Pooled (n 1-1). s 12 + (n 2-1). s 2 2 (n 1-1) + (n 2-1) A. Stima intervallare MARTA BLANGIARDO CONFRONTO TRA MEDIE DI 2 CAMPIONI- 3.24

25 d ± t. es L errore standard non è più s / n visto che, essendo implicati due campioni, si dispone di due deviazioni standard (s 1 e s 2 ) e due numerosità campionarie (n 1 e n 2 ) 1 n* = 1 n n 2 = n 1 + n 2 n 1. n 2 A. Stima intervallare MARTA BLANGIARDO CONFRONTO TRA MEDIE DI 2 CAMPIONI- 3.25

26 n 1 = 12 y 1 = 60 s 1 = 4.24 n 2 = y 2 y 2 = = s 2 = ± t. es es d = s* 1 n* = (n 1-1). s 12 + (n 2-1). s 2 2 (n 1-1) + (n 2-1) n 1 + n 2 n 1. n 2 es d = (12-1) (13-1) (12-1) + (13-1) = 1.69 A. Stima intervallare MARTA BLANGIARDO CONFRONTO TRA MEDIE DI 2 CAMPIONI- 3.26

27 d ± t. es Valore critico della variabile casuale t di Student, caratterizzata da un certo numero di gradi di libertà g e da una probabilità (1-α). Quindi d ± t g ; (1-α). es A. Stima intervallare MARTA BLANGIARDO CONFRONTO TRA MEDIE DI 2 CAMPIONI- 3.27

28 d ± t g ; (1-α). es I gradi di libertà non sono più n - 1 visto che, essendo implicati due campioni, si dispone di due numerosità campionarie (n 1 e n 2 ): g = ( n 1 + n 2 ) - 2 A. Stima intervallare MARTA BLANGIARDO CONFRONTO TRA MEDIE DI 2 CAMPIONI- 3.28

29 d ± t g ; (1-α). es Dove 1 - α è il livello di confidenza dell intervallo (di solito definiamo 0.9, 0.95 o 0.99) A. Stima intervallare MARTA BLANGIARDO CONFRONTO TRA MEDIE DI 2 CAMPIONI- 3.29

30 n 1 = 12 y 1 = 60 s 1 = 4.23 n 2 = 13 y 2 = s 2 = ± t g;(1-α) Fissando (1-α) = 0.9 e avendo due code abbiamo /2 = ± t 23; Dalla tavola della distribuzione t: 3.77 ± A. Stima intervallare MARTA BLANGIARDO CONFRONTO TRA MEDIE DI 2 CAMPIONI- 3.30

31 MARTA BLANGIARDO CONFRONTO TRA MEDIE DI 2 CAMPIONI Distribuzione t gdl

32 n 1 = 12 y 1 = 60 s 1 = 4.23 n 2 = 13 y 2 = 64 s 2 = ± , valore atteso sotto l ipotesi nulla δ = 0 Ripetendo l esperimento 100 volte nelle stesse condizioni, ci si aspetta che in 90 casi le due diete differiscano A. Stima intervallare MARTA BLANGIARDO CONFRONTO TRA MEDIE DI 2 CAMPIONI- 3.32

33 H 0 : µ 1 = µ 2 δ = 0 Visto che l intervallo non contiene il valore atteso sotto l ipotesi nulla con: α = 0.1 allora concludiamo che non c è abbastanza evidenza che supporti che i dati siano coerenti con l ipotesi nulla e quindi H 1 : µ 1 µ 2 δ 0 Le E se due avessimo medie differiscono prefissato un errore di primo significativamente tipo più cautelativo (es. α = 0.01)? A. Stima intervallare MARTA BLANGIARDO CONFRONTO TRA MEDIE DI 2 CAMPIONI- 3.33

34 MARTA BLANGIARDO CONFRONTO TRA MEDIE DI 2 CAMPIONI Distribuzione t gdl

35 Se seguiamo un approcico più cautelativo e fissiamo 1-α = 0.99 n 1 = 12 y 1 = 60 s 1 = 4.23 n 2 = 13 y 2 = s 2 = ± , valore atteso sotto l ipotesi nulla δ = 0 Non c è più evidenza che le due diete differiscano A. Stima intervallare MARTA BLANGIARDO CONFRONTO TRA MEDIE DI 2 CAMPIONI- 3.35

36 Tre procedure per saggiare l ipotesi nulla A. Stima intervallare B. Test del t di Student C. Analisi della varianza e test F MARTA BLANGIARDO CONFRONTO TRA MEDIE DI 2 CAMPIONI- 3.36

37 Ricordando la variabile casuale t nel caso di una media campionaria è: t = y - µ s n la si adatti al confronto tra due medie campionarie B. Test del t di Student MARTA BLANGIARDO CONFRONTO TRA MEDIE DI 2 CAMPIONI- 3.37

38 t = y - µ s n È la differenza tra il valore osservato e quello atteso sotto l ipotesi nulla Nel caso della differenza tra due medie quindi: (y 2 - y 1 ) - 0 d B. Test del t di Student MARTA BLANGIARDO CONFRONTO TRA MEDIE DI 2 CAMPIONI- 3.38

39 t = y - µ s n È l errore standard di una media campionaria Nel caso della differenza tra due medie quindi: 1 es d = s* n* = (n 1-1). s 12 + (n 2-1). s 2 2 (n 1-1) + (n 2-1) n 1 + n 2 n 1. n 2 B. Test del t di Student MARTA BLANGIARDO CONFRONTO TRA MEDIE DI 2 CAMPIONI- 3.39

40 t = y - µ s n Il valore della variabile casuale t è caratterizzato dai gradi di libertà (g): Quindi dovrebbe essere scritta come: t g = (y 2 - y 1 ) - 0 es d che rappresenta il valore empirico (osservato) di t. La valutazione dell accettazione/rifiuto viene ottenuta tramite il P-value B. Test del t di Student MARTA BLANGIARDO CONFRONTO TRA MEDIE DI 2 CAMPIONI- 3.40

41 0.025 DISTRIBUZIONE 3. CONFRONTO TRA MEDIE DI DUE CAMPIONI t g -t g δ = 0 t g P-value< <P-value< <P-value<0.1 P-value>=0.1 Fortissima evidenza contro H 0 Forte evidenza contro H 0 Evidenza contro H 0 Non sufficiente evidenza contro H 0 B. Test del t di Student MARTA BLANGIARDO CONFRONTO TRA MEDIE DI 2 CAMPIONI- 3.41

42 n 1 = 12 y 1 = 60 s 1 = 4.23 n 2 = 13 y 2 = 64 s 2 = 4.21 t g = (y 2 - y 1 ) - 0 es d 3.77 t 23 = = è il valore empirico della statistica t. Il P-value corrispondente è P-value < Ipotesi bidirezionale 2*P-value < 0.05 <0.05: Forte evidenza contro H 0 B. Test del t di Student MARTA BLANGIARDO CONFRONTO TRA MEDIE DI 2 CAMPIONI- 3.42

43 Tre procedure per saggiare l ipotesi nulla A. Stima intervallare B. Test del t di Student C. Analisi della varianza e test F MARTA BLANGIARDO CONFRONTO TRA MEDIE DI 2 CAMPIONI- 3.43

44 CAMPIONE 1 CAMPIONE Media generale: y = 62 Devianza totale = Σ Σ (y ij - y) 2 j i = (56-62) 2 + (59-62) 2 + (63-62) (67-62) 2 + (64-62) 2 + (60-62) 2 = = 499 Da quali fonti dipende la variabilità (devianza) totale del fenomeno? C. Analisi della varianza e test F MARTA BLANGIARDO CONFRONTO TRA MEDIE DI 2 CAMPIONI- 3.44

45 CAMPIONE 1 CAMPIONE Media generale: y = 62 y 1 = 60 y 2 = 63.8 Devianza tra i livelli del fattore sperimentale Σ n j (y j - y) 2 j = 12. ( ) ( ) 2 = Una prima fonte di variabilità è dovuta al fatto che i due campioni sono stati sottoposti a diverse diete (fattore sperimentale) C. Analisi della varianza e test F MARTA BLANGIARDO CONFRONTO TRA MEDIE DI 2 CAMPIONI- 3.45

46 CAMPIONE 1 CAMPIONE y 1 = 60 y 2 = 63.8 Devianza entro i livelli del fattore sperimentale Σ Σ (y ij - y j ) 2 i j Una seconda fonte di variabilità è dovuta al fatto che ogni unità sperimentale tende a rispondere in modo diverso dalle altre allo stesso stimolo (livello del fattore sperimentale) = (56-60) 2 + (59-60) 2 + (63-60) ( ) 2 + ( ) 2 + ( ) 2 = = C. Analisi della varianza e test F MARTA BLANGIARDO CONFRONTO TRA MEDIE DI 2 CAMPIONI- 3.46

47 SISTEMATICA Fonti di variabilità devianza Tra gruppi Entro gruppi * = Totale CASUALE * Variabilità residua C. Analisi della varianza e test F MARTA BLANGIARDO CONFRONTO TRA MEDIE DI 2 CAMPIONI- 3.47

48 Fonti di variabilità devianza gradi di libertà Tra gruppi (N.gruppi-1) + Entro gruppi Totale = = 23 (N N.gruppi) = 24 (N-1) C. Analisi della varianza e test F MARTA BLANGIARDO CONFRONTO TRA MEDIE DI 2 CAMPIONI- 3.48

49 Fonti di variabilità devianza gradi di libertà varianza Tra gruppi Entro gruppi = = = + = 17.8 Totale = 24 F 1, 23 = Varianza tra gruppi Varianza entro gruppi = = C. Analisi della varianza e test F MARTA BLANGIARDO CONFRONTO TRA MEDIE DI 2 CAMPIONI- 3.49

50 DISTRIBUZIONE F g1;g2 Area = 1 1 Valore atteso sotto l ipotesi nulla In questo caso le tavole disponibili non permettono di calcolare il P-value. E possibile calcolare il P-value tramite software (excel, R, Matlab). =DISTRIB.F(4.97,1,23) = P-value<0.05 Funzione di Excel C. Analisi della varianza e test F Forte evidenza contro H 0 MARTA BLANGIARDO CONFRONTO TRA MEDIE DI 2 CAMPIONI- 3.50

51 Ci sono tavole tabulate che permettono di calcolare una soglia di accettazione/rifiuto per alcune prespecificate soglie 1-α (0.9,0.95) F (1-α),g1,g2 F g1,g2 F g1,g2 Non sufficiente evidenza contro H 0 Sufficiente evidenza contro H 0 MARTA BLANGIARDO CONFRONTO TRA MEDIE DI 2 CAMPIONI- 3.51

52 Distribuzione F g1;g2;0.95 F Gradi di libertà del denominatore Gradi di libertà del numeratore MARTA BLANGIARDO CONFRONTO TRA MEDIE DI 2 CAMPIONI- 3.52

53 Distribuzione F 1,23 Area di accettazione Area di rifiuto Valore tabulato 4.28 Valore empirico 4.97 allora dovremmo rifiutare l ipotesi nulla: p < 0.05 C. Analisi della varianza e test F MARTA BLANGIARDO CONFRONTO TRA MEDIE DI 2 CAMPIONI- 3.53

54 Due vie equivalenti per saggiare l ipotesi nulla Test del t di Student t 23 = 2.23 Analisi della varianza F 1,23 = 4.97 t 2 = F 23 1,23 MARTA BLANGIARDO CONFRONTO TRA MEDIE DI 2 CAMPIONI- 3.54

55 APPAIATI Siamo interessati a valutare se il ph di un terreno acido sulla superficie è diversa da quella del sottosuolo UNIVERSO PARAMETRI PROGRAMMARE CAMPIONE STIMATORI Si estrae un campione di 13 zolle di terreno e su ognuna di esse si misura il ph in superficie e nel sottosuolo. Abbiamo due misurazioni per ogni zolla. I campioni sono appaiati MARTA BLANGIARDO CONFRONTO TRA MEDIE DI 2 CAMPIONI- 3.55

56 APPAIATI CAMPIONE 1 CAMPIONE 2 Superficie STATISTICHE Sottosuolo STATISTICHE n = 13 E lo stesso campione con due diverse misurazioni Per ogni zolla le due misurazioni non sono indipendenti MARTA BLANGIARDO CONFRONTO TRA MEDIE DI 2 CAMPIONI- 3.56

57 APPAIATI Calcoliamo la variabile differenza tra le due misurazioni Superficie Sottosuolo Differenza La nuova variabile Differenza è quella su cui vogliamo fare inferenza MARTA BLANGIARDO CONFRONTO TRA MEDIE DI 2 CAMPIONI- 3.57

58 APPAIATI IPOTESI: La differenza tra il ph in superficie e nel sottosuolo si distribuisce come una variabile casuale Normale D ~ N(µ d,σ 2 d ) µ Media campionaria Noi non conosciamo nè la media µ d nè la varianza σ 2 d, ma conosciamo i parametri campionari: d media s d Dev. standard n numerosità INFERENZA SU UN CAMPIONE MARTA BLANGIARDO CONFRONTO TRA MEDIE DI 2 CAMPIONI- 3.58

59 APPAIATI POPOLAZIONE BERSAGLIO Tutti i possibili campioni di differenze d µ d H 0 : µ d = 0 Media Medie campionaria campionarie Cosa succede sotto l ipotesi nulla? MARTA BLANGIARDO CONFRONTO TRA MEDIE DI 2 CAMPIONI- 3.59

60 APPAIATI POPOLAZIONE BERSAGLIO (tutte le possibili differenze) Tutti i possibili campioni È questa situazione compatibile con l ipotesi nulla? d Differenze tra medie campionarie MARTA BLANGIARDO CONFRONTO TRA MEDIE DI 2 CAMPIONI- 3.60

61 APPAIATI Situazione possibile d Situazione meno probabile d MARTA BLANGIARDO CONFRONTO TRA MEDIE DI 2 CAMPIONI- 3.61

62 APPAIATI Ipotesi nulla: H 0 : µ d =0 L ipotesi nulla non può essere mai rigettata con assoluta certezza! Dobbiamo agganciare alla stima d un livello di confidenza. P-Value: quanto estremo è il risultato che abbiamo ottenuto? d µ d = 0 MARTA BLANGIARDO CONFRONTO TRA MEDIE DI 2 CAMPIONI d 1

63 APPAIATI Tre procedure per saggiare l ipotesi nulla A. Stima intervallare B. Test basato sulla t di Student MARTA BLANGIARDO CONFRONTO TRA MEDIE DI 2 CAMPIONI- 3.63

64 APPAIATI Avendo un solo campione, in questo caso la stima intervallare da utilizzare è proprio quella introdotta precedentemente nel caso di una media campionaria: y ± t. es Che nel caso di campioni appaiati è d ± t. es n = 13 d = se = 1.15 sd/radq(n) MARTA BLANGIARDO A. CONFRONTO Stima intervallare TRA MEDIE DI 2 CAMPIONI- 3.64

65 APPAIATI Noi non conosciamo la varianza σ 2 T di Student t g ; (1-α) Valore critico della variabile casuale t di Student, caratterizzata da un certo numero di gradi di libertà g e da una probabilità (1-α). Quindi l intervallo di confidenza sarà d ± t g ; (1-α). es n-1 A. Stima intervallare livello di confidenza dell intervallo (di solito definiamo 0.9, 0.95 o 0.99) MARTA BLANGIARDO CONFRONTO TRA MEDIE DI 2 CAMPIONI- 3.65

66 APPAIATI n = 13 d = es = ± t g;(1-α) Fissando (1-α) = 0.95 e avendo due code abbiamo /2 = ± t 12; Dalla tavola della distribuzione t: ± A. Stima intervallare MARTA BLANGIARDO CONFRONTO TRA MEDIE DI 2 CAMPIONI- 3.66

67 MARTA BLANGIARDO CONFRONTO TRA MEDIE DI 2 CAMPIONI Distribuzione t gdl CONFRONTO TRA MEDIE DI DUE CAMPIONI APPAIATI

68 APPAIATI n = 13 d = es = ± , valore atteso sotto l ipotesi nulla µ d = Ripetendo l esperimento 100 volte nelle stesse condizioni, ci si aspetta che in 95 casi i due ph non siano diversi significativamente A. Stima intervallare MARTA BLANGIARDO CONFRONTO TRA MEDIE DI 2 CAMPIONI- 3.68

69 APPAIATI Tre procedure per saggiare l ipotesi nulla A. Stima intervallare B. Test del t di Student MARTA BLANGIARDO CONFRONTO TRA MEDIE DI 2 CAMPIONI- 3.69

70 APPAIATI Ricordando la variabile casuale t nel caso di una media campionaria è: t = d - µ s n È la differenza tra il valore osservato e quello atteso sotto l ipotesi nulla Nel caso di campioni appaiati abbiamo: d - 0 ph 1 ph d B. Test del t di Student d MARTA BLANGIARDO CONFRONTO TRA MEDIE DI 2 CAMPIONI- 3.70

71 APPAIATI t = y i - µ s n È l errore standard (es) di una media campionaria s = n Σ(y i - y) 2 i =1 n - 1 = 1.15 n n B. Test del t di Student MARTA BLANGIARDO CONFRONTO TRA MEDIE DI 2 CAMPIONI- 3.71

72 APPAIATI t = y i - µ s n Il valore della variabile casuale t è caratterizzato dai gradi di libertà (g): Quindi dovrebbe essere scritta come: t g = d - 0 es d che rappresenta il valore empirico (osservato) di t. La valutazione dell accettazione/rifiuto viene ottenuta tramite il P-value I gradi di libertà sono n-1 B. Test del t di Student MARTA BLANGIARDO CONFRONTO TRA MEDIE DI 2 CAMPIONI- 3.72

73 APPAIATI n = 13 d = es d = 1.15 t g = d - 0 se d t 12 = = è il valore empirico della statistica t. Il P-value corrispondente è B. Test del t di Student MARTA BLANGIARDO CONFRONTO TRA MEDIE DI 2 CAMPIONI- 3.73

74 APPAIATI Il valore è negativo Le tavole restituiscono la coda di destra solo per valori positivi, ma Pr(D<-0.37 sotto H 0 ) = Pr(D>0.37 sotto H 0 ) Dalle tavole otteniamo 0.3<P-value < < 2*P-value < Non c è evidenza di una differenza significativa dei ph MARTA BLANGIARDO CONFRONTO TRA MEDIE DI 2 CAMPIONI- 3.74

4. Confronto tra medie di tre o più campioni indipendenti

4. Confronto tra medie di tre o più campioni indipendenti BIOSTATISTICA 4. Confronto tra medie di tre o più campioni indipendenti Marta Blangiardo, Imperial College, London Department of Epidemiology and Public Health m.blangiardo@imperial.ac.uk MARTA BLANGIARDO

Dettagli

2. Un carattere misurato in un campione: elementi di statistica descrittiva e inferenziale

2. Un carattere misurato in un campione: elementi di statistica descrittiva e inferenziale BIOSTATISTICA 2. Un carattere misurato in un campione: elementi di statistica descrittiva e inferenziale Marta Blangiardo, Imperial College, London Department of Epidemiology and Public Health m.blangiardo@imperial.ac.uk

Dettagli

6. Modelli statistici: analisi della regressione lineare

6. Modelli statistici: analisi della regressione lineare BIOSTATISTICA 6. Modelli statistici: analisi della regressione lineare Marta Blangiardo, Imperial College, London Department of Epidemiology and Public Health m.blangiardo@imperial.ac.uk MARTA BLANGIARDO

Dettagli

Statistica. Lezione 6

Statistica. Lezione 6 Università degli Studi del Piemonte Orientale Corso di Laurea in Infermieristica Corso integrato in Scienze della Prevenzione e dei Servizi sanitari Statistica Lezione 6 a.a 011-01 Dott.ssa Daniela Ferrante

Dettagli

Statistiche campionarie

Statistiche campionarie Statistiche campionarie Sul campione si possono calcolare le statistiche campionarie (come media campionaria, mediana campionaria, varianza campionaria,.) Le statistiche campionarie sono stimatori delle

Dettagli

VERIFICA DELLE IPOTESI

VERIFICA DELLE IPOTESI VERIFICA DELLE IPOTESI Nella verifica delle ipotesi è necessario fissare alcune fasi prima di iniziare ad analizzare i dati. a) Si deve stabilire quale deve essere l'ipotesi nulla (H0) e quale l'ipotesi

Dettagli

Stima per intervalli Nei metodi di stima puntuale è sempre presente un ^ errore θ θ dovuto al fatto che la stima di θ in genere non coincide con il parametro θ. Sorge quindi l esigenza di determinare una

Dettagli

Statistica. Esercitazione 15. Alfonso Iodice D Enza iodicede@unicas.it. Università degli studi di Cassino. Statistica. A. Iodice

Statistica. Esercitazione 15. Alfonso Iodice D Enza iodicede@unicas.it. Università degli studi di Cassino. Statistica. A. Iodice Esercitazione 15 Alfonso Iodice D Enza iodicede@unicas.it Università degli studi di Cassino () 1 / 18 L importanza del gruppo di controllo In tutti i casi in cui si voglia studiare l effetto di un certo

Dettagli

Esercitazioni di Statistica

Esercitazioni di Statistica Esercitazioni di Statistica Test d ipotesi sul valor medio e test χ 2 di adattamento Prof. Livia De Giovanni statistica@dis.uniroma1.it Esercizio 1 Si supponga che il diametro degli anelli metallici prodotti

Dettagli

è decidere sulla verità o falsità

è decidere sulla verità o falsità I test di ipotesi I test di ipotesi Il test delle ipotesi consente di verificare se, e in quale misura, una determinata ipotesi (di carattere sociale, biologico, medico, economico, ecc.) è supportata dall

Dettagli

CORSO DI STATISTICA (parte 2) - ESERCITAZIONE 8

CORSO DI STATISTICA (parte 2) - ESERCITAZIONE 8 CORSO DI STATISTICA (parte 2) - ESERCITAZIONE 8 Dott.ssa Antonella Costanzo a.costanzo@unicas.it Esercizio 1. Test delle ipotesi sulla varianza In un azienda che produce componenti meccaniche, è stato

Dettagli

Problema pratico: Test statistico = regola di decisione

Problema pratico: Test statistico = regola di decisione La verifica delle ipotesi statistiche Problema pratico: Quale, tra diverse situazioni possibili, riferite alla popolazione, è quella meglio sostenuta dalle evidenze empiriche? Coerenza del risultato campionario

Dettagli

Metodi statistici per l economia (Prof. Capitanio) Slide n. 9. Materiale di supporto per le lezioni. Non sostituisce il libro di testo

Metodi statistici per l economia (Prof. Capitanio) Slide n. 9. Materiale di supporto per le lezioni. Non sostituisce il libro di testo Metodi statistici per l economia (Prof. Capitanio) Slide n. 9 Materiale di supporto per le lezioni. Non sostituisce il libro di testo 1 TEST D IPOTESI Partiamo da un esempio presente sul libro di testo.

Dettagli

Università del Piemonte Orientale. Corso di laurea in biotecnologia. Corso di Statistica Medica. Analisi dei dati quantitativi :

Università del Piemonte Orientale. Corso di laurea in biotecnologia. Corso di Statistica Medica. Analisi dei dati quantitativi : Università del Piemonte Orientale Corso di laurea in biotecnologia Corso di Statistica Medica Analisi dei dati quantitativi : Confronto tra due medie Università del Piemonte Orientale Corso di laurea in

Dettagli

Esercitazione n.2 Inferenza su medie

Esercitazione n.2 Inferenza su medie Esercitazione n.2 Esercizio L ufficio del personale di una grande società intende stimare le spese mediche familiari dei suoi impiegati per valutare la possibilità di attuare un programma di assicurazione

Dettagli

T DI STUDENT Quando si vogliono confrontare solo due medie, si può utilizzare il test t di Student La formula per calcolare il t è la seguente:

T DI STUDENT Quando si vogliono confrontare solo due medie, si può utilizzare il test t di Student La formula per calcolare il t è la seguente: T DI STUDENT Quando si vogliono confrontare solo due medie, si può utilizzare il test t di Student La formula per calcolare il t è la seguente: t = X i X j s 2 i (n i 1) + s 2 j (n j 1) n i + n j - 2 1

Dettagli

Facoltà di Psicologia Università di Padova Anno Accademico 2010-2011

Facoltà di Psicologia Università di Padova Anno Accademico 2010-2011 Facoltà di Psicologia Università di Padova Anno Accademico 010-011 Corso di Psicometria - Modulo B Dott. Marco Vicentini marco.vicentini@unipd.it Rev. 10/01/011 La distribuzione F di Fisher - Snedecor

Dettagli

Esercitazione n.4 Inferenza su varianza

Esercitazione n.4 Inferenza su varianza Esercizio 1 Un industria che produce lamiere metalliche ha ricevuto un ordine di acquisto di un grosso quantitativo di lamiere di un dato spessore. Per assicurare la qualità della propria fornitura, l

Dettagli

1a) Calcolare gli estremi dell intervallo di confidenza per µ al 90% in corrispondenza del campione osservato.

1a) Calcolare gli estremi dell intervallo di confidenza per µ al 90% in corrispondenza del campione osservato. Esercizio 1 Sia X 1,..., X un campione casuale estratto da una variabile aleatoria normale con media pari a µ e varianza pari a 1. Supponiamo che la media campionaria sia x = 2. 1a) Calcolare gli estremi

Dettagli

Politecnico di Milano - Anno Accademico 2010-2011 Statistica 086449 Docente: Alessandra Guglielmi Esercitatore: Stefano Baraldo

Politecnico di Milano - Anno Accademico 2010-2011 Statistica 086449 Docente: Alessandra Guglielmi Esercitatore: Stefano Baraldo Politecnico di Milano - Anno Accademico 200-20 Statistica 086449 Docente: Alessandra Guglielmi Esercitatore: Stefano Baraldo Esercitazione 9 2 Giugno 20 Esercizio. In un laboratorio per il test dei materiali,

Dettagli

CORSO DI STATISTICA (parte 2) - ESERCITAZIONE 6

CORSO DI STATISTICA (parte 2) - ESERCITAZIONE 6 CORSO DI STATISTICA (parte 2) - ESERCITAZIONE 6 Dott.ssa Antonella Costanzo a.costanzo@unicas.it Esercizio 1. Stima puntuale per la proporzione Da un lotto di arance se ne estraggono 400, e di queste 180

Dettagli

Inferenza statistica. Statistica medica 1

Inferenza statistica. Statistica medica 1 Inferenza statistica L inferenza statistica è un insieme di metodi con cui si cerca di trarre una conclusione sulla popolazione sulla base di alcune informazioni ricavate da un campione estratto da quella

Dettagli

LEZIONI DI STATISTCA APPLICATA. Parte 2. Statistica inferenziale. Variabili continue per categoriali. Alessandro Valbonesi

LEZIONI DI STATISTCA APPLICATA. Parte 2. Statistica inferenziale. Variabili continue per categoriali. Alessandro Valbonesi LEZIONI DI STATISTCA APPLICATA Parte 2 Statistica inferenziale Variabili continue per categoriali Alessandro Valbonesi SARRF di Scienze ambientali Anno accademico 2010-11 CAPITOLO 4 - TEST STATISTICI CHE

Dettagli

Facoltà di Psicologia Università di Padova Anno Accademico 2010-2011

Facoltà di Psicologia Università di Padova Anno Accademico 2010-2011 Facoltà di Psicologia Università di Padova Anno Accademico 2010-2011 L4, Corso Integrato di Psicometria - Modulo B Dr. Marco Vicentini marco.vicentini@unipd.it Rev. 18/04/2011 Inferenza statistica Formulazione

Dettagli

Inferenza statistica

Inferenza statistica Inferenza statistica L inferenza statistica è un insieme di metodi con cui si cerca di trarre una conclusione sulla popolazione in base ad informazioni ricavate da un campione. Inferenza statistica: indurre

Dettagli

Esercizio 1. Proprietà desiderabili degli stimatori (piccoli campioni)

Esercizio 1. Proprietà desiderabili degli stimatori (piccoli campioni) STATISTICA (2) ESERCITAZIONE 4 18.02.2013 Dott.ssa Antonella Costanzo Esercizio 1. Proprietà desiderabili degli stimatori (piccoli campioni) Sia X una popolazione distribuita secondo la legge Bernoulliana

Dettagli

Inferenza statistica I Alcuni esercizi. Stefano Tonellato

Inferenza statistica I Alcuni esercizi. Stefano Tonellato Inferenza statistica I Alcuni esercizi Stefano Tonellato Anno Accademico 2006-2007 Avvertenza Una parte del materiale è stato tratto da Grigoletto M. e Ventura L. (1998). Statistica per le scienze economiche,

Dettagli

L Analisi della Varianza ANOVA (ANalysis Of VAriance)

L Analisi della Varianza ANOVA (ANalysis Of VAriance) L Analisi della Varianza ANOVA (ANalysis Of VAriance) 1 CONCETTI GENERALI Finora abbiamo descritto test di ipotesi finalizzati alla verifica di ipotesi sulla differenza tra parametri di due popolazioni

Dettagli

Università del Piemonte Orientale. Corso di dottorato in medicina molecolare. a.a. 2002 2003. Corso di Statistica Medica. Inferenza sulle medie

Università del Piemonte Orientale. Corso di dottorato in medicina molecolare. a.a. 2002 2003. Corso di Statistica Medica. Inferenza sulle medie Università del Piemonte Orientale Corso di dottorato in medicina molecolare aa 2002 2003 Corso di Statistica Medica Inferenza sulle medie Statistica U Test z Test t campioni indipendenti con uguale varianza

Dettagli

Analisi statistica di dati biomedici Analysis of biologicalsignals

Analisi statistica di dati biomedici Analysis of biologicalsignals Analisi statistica di dati biomedici Analysis of biologicalsignals II Parte Verifica delle ipotesi (a) Agostino Accardo (accardo@units.it) Master in Ingegneria Clinica LM in Neuroscienze 2013-2014 e segg.

Dettagli

Matlab per applicazioni statistiche

Matlab per applicazioni statistiche Matlab per applicazioni statistiche Marco J. Lombardi 19 aprile 2005 1 Introduzione Il sistema Matlab è ormai uno standard per quanto riguarda le applicazioni ingegneristiche e scientifiche, ma non ha

Dettagli

Esercizio 1. Verifica di ipotesi sulla media (varianza nota), p-value del test

Esercizio 1. Verifica di ipotesi sulla media (varianza nota), p-value del test STATISTICA (2) ESERCITAZIONE 6 05.03.2014 Dott.ssa Antonella Costanzo Esercizio 1. Verifica di ipotesi sulla media (varianza nota), p-value del test Il preside della scuola elementare XYZ sospetta che

Dettagli

Test non parametrici. Test non parametrici. Test non parametrici. Test non parametrici

Test non parametrici. Test non parametrici. Test non parametrici. Test non parametrici Test non parametrici Test non parametrici Il test T di Student per uno o per due campioni, il test F di Fisher per l'analisi della varianza, la correlazione, la regressione, insieme ad altri test di statistica

Dettagli

La logica statistica della verifica (test) delle ipotesi

La logica statistica della verifica (test) delle ipotesi La logica statistica della verifica (test) delle ipotesi Come posso confrontare diverse ipotesi? Nella statistica inferenziale classica vengono sempre confrontate due ipotesi: l ipotesi nulla e l ipotesi

Dettagli

Test statistici non-parametrici

Test statistici non-parametrici Test statistici non-parametrici Il test t di Student e l ANOVA sono basati su alcune assunzioni. Variabili continue o almeno misurate in un intervallo (es. non conosco il valore assoluto, ma posso quantificare

Dettagli

Metodi statistici per le ricerche di mercato

Metodi statistici per le ricerche di mercato Metodi statistici per le ricerche di mercato Prof.ssa Isabella Mingo A.A. 2014-2015 Facoltà di Scienze Politiche, Sociologia, Comunicazione Corso di laurea Magistrale in «Organizzazione e marketing per

Dettagli

Università di Firenze - Corso di laurea in Statistica Seconda prova intermedia di Statistica. 18 dicembre 2008

Università di Firenze - Corso di laurea in Statistica Seconda prova intermedia di Statistica. 18 dicembre 2008 Università di Firenze - Corso di laurea in Statistica Seconda prova intermedia di Statistica 18 dicembre 008 Esame sull intero programma: esercizi da A a D Esame sulla seconda parte del programma: esercizi

Dettagli

decidiamo, sulla base di un campione, se l ipotesi formulata è plausibile oppure no.

decidiamo, sulla base di un campione, se l ipotesi formulata è plausibile oppure no. LA VERIFICA D IPOTESI Alla base dell inferenza statistica vi è l assunzione che i fenomeni collettivi possano essere descritti efficacemente mediante delle distribuzioni di probabilità. Abbiamo già considerato

Dettagli

Corso di laurea in Scienze Motorie Corso di Statistica Docente: Dott.ssa Immacolata Scancarello Lezione 14: Analisi della varianza (ANOVA)

Corso di laurea in Scienze Motorie Corso di Statistica Docente: Dott.ssa Immacolata Scancarello Lezione 14: Analisi della varianza (ANOVA) Corso di laurea in Scienze Motorie Corso di Statistica Docente: Dott.ssa Immacolata Scancarello Lezione 4: Analisi della varianza (ANOVA) Analisi della varianza Analisi della varianza (ANOVA) ANOVA ad

Dettagli

l insieme delle misure effettuate costituisce il campione statistico

l insieme delle misure effettuate costituisce il campione statistico Statistica negli esperimenti reali si effettuano sempre un numero finito di misure, ( spesso molto limitato ) l insieme delle misure effettuate costituisce il campione statistico Statistica descrittiva

Dettagli

Il controllo delle prestazioni del provider. IL CONTROLLO DELLE PRESTAZIONI DEL PROVIDER (riferimenti)

Il controllo delle prestazioni del provider. IL CONTROLLO DELLE PRESTAZIONI DEL PROVIDER (riferimenti) del provider IL CONTROLLO DELLE PRESTAZIONI DEL PROVIDER (riferimenti) 1 del provider - premessa (1) in merito alla fase di gestione ordinaria dell outsourcing sono state richiamate le prassi di miglioramento

Dettagli

Università del Piemonte Orientale. Corsi di Specialità. Corso di Statistica Medica. Analisi dei dati quantitativi : Analisi della varianza

Università del Piemonte Orientale. Corsi di Specialità. Corso di Statistica Medica. Analisi dei dati quantitativi : Analisi della varianza Università del Piemonte Orientale Corsi di Specialità Corso di Statistica Medica Analisi dei dati quantitativi : Analisi della varianza Università del Piemonte Orientale Corso di laurea in biotecnologie

Dettagli

Corso di Psicometria Progredito

Corso di Psicometria Progredito Corso di Psicometria Progredito 3.1 Introduzione all inferenza statistica Prima Parte Gianmarco Altoè Dipartimento di Pedagogia, Psicologia e Filosofia Università di Cagliari, Anno Accademico 2013-2014

Dettagli

Esercitazione #5 di Statistica. Test ed Intervalli di Confidenza (per una popolazione)

Esercitazione #5 di Statistica. Test ed Intervalli di Confidenza (per una popolazione) Esercitazione #5 di Statistica Test ed Intervalli di Confidenza (per una popolazione) Dicembre 00 1 Esercizi 1.1 Test su media (con varianza nota) Esercizio n. 1 Il calore (in calorie per grammo) emesso

Dettagli

Metodi statistici per le ricerche di mercato

Metodi statistici per le ricerche di mercato Metodi statistici per le ricerche di mercato Prof.ssa Isabella Mingo A.A. 2013-2014 Facoltà di Scienze Politiche, Sociologia, Comunicazione Corso di laurea Magistrale in «Organizzazione e marketing per

Dettagli

CORSO DI STATISTICA (parte 2) - ESERCITAZIONE 7

CORSO DI STATISTICA (parte 2) - ESERCITAZIONE 7 CORSO DI STATISTICA (parte 2) - ESERCITAZIONE 7 Dott.ssa Antonella Costanzo a.costanzo@unicas.it Esercizio 1. Test delle ipotesi per la media (varianza nota), p-value del test Il manager di un fast-food

Dettagli

R - Esercitazione 5. Lorenzo Di Biagio dibiagio@mat.uniroma3.it. Lunedì 2 Dicembre 2013. Università Roma Tre

R - Esercitazione 5. Lorenzo Di Biagio dibiagio@mat.uniroma3.it. Lunedì 2 Dicembre 2013. Università Roma Tre R - Esercitazione 5 Lorenzo Di Biagio dibiagio@mat.uniroma3.it Università Roma Tre Lunedì 2 Dicembre 2013 Intervalli di confidenza (1) Sia X 1,..., X n un campione casuale estratto da un densità f (x,

Dettagli

Popolazione. Campione. I risultati di un esperimento sono variabili aleatorie. I valori stimati sono variabili aleatorie. Teorema del limite centrale

Popolazione. Campione. I risultati di un esperimento sono variabili aleatorie. I valori stimati sono variabili aleatorie. Teorema del limite centrale I risultati di un esperimento sono variabili aleatorie. Un esperimento non consente di esaminare ogni elemento di una popolazione o di effettuare tutte le misure possibili. campione , sx Stime Popolazion

Dettagli

La statistica nella ricerca scientifica

La statistica nella ricerca scientifica La statistica nella ricerca scientifica Pubblicazione dei risultati Presentazione dei dati e la loro elaborazione devono seguire criteri universalmente validi Impossibile verifica dei risultati da parte

Dettagli

Corso di Laurea in Ingegneria Informatica e Automatica (A-O) Università di Roma La Sapienza

Corso di Laurea in Ingegneria Informatica e Automatica (A-O) Università di Roma La Sapienza Corso di Laurea in Ingegneria Informatica e Automatica (A-O) Università di Roma La Sapienza CALCOLO DELLE PROBABILITÀ E STATISTICA ESAME DEL 17/06/2015 NOME: COGNOME: MATRICOLA: Esercizio 1 Un sistema

Dettagli

Facciamo qualche precisazione

Facciamo qualche precisazione Abbiamo introdotto alcuni indici statistici (di posizione, di variabilità e di forma) ottenibili da Excel con la funzione Riepilogo Statistiche Facciamo qualche precisazione Al fine della partecipazione

Dettagli

Analizza/Confronta medie. ELEMENTI DI PSICOMETRIA Esercitazione n. 7-8-9-107. Test t. Test t. t-test test e confronto tra medie chi quadrato

Analizza/Confronta medie. ELEMENTI DI PSICOMETRIA Esercitazione n. 7-8-9-107. Test t. Test t. t-test test e confronto tra medie chi quadrato Analizza/Confronta medie ELEMENTI DI PSICOMETRIA Esercitazione n. 7-8-9-107 t-test test e confronto tra medie chi quadrato C.d.L. Comunicazione e Psicologia a.a. 2008/09 Medie Calcola medie e altre statistiche

Dettagli

Statistica Medica. Verranno presi in esame:

Statistica Medica. Verranno presi in esame: Statistica Medica Premessa: il seguente testo cerca di riassumere e rendere in forma comprensibile ai non esperti in matematica e statistica le nozioni e le procedure necessarie a svolgere gli esercizi

Dettagli

Statistica descrittiva: prime informazioni dai dati sperimentali

Statistica descrittiva: prime informazioni dai dati sperimentali SECONDO APPUNTAMENTO CON LA SPERIMENTAZIONE IN AGRICOLTURA Statistica descrittiva: prime informazioni dai dati sperimentali La statistica descrittiva rappresenta la base di partenza per le applicazioni

Dettagli

Corso di Laurea in Ingegneria Informatica Anno Accademico 2014/2015 Calcolo delle Probabilità e Statistica Matematica

Corso di Laurea in Ingegneria Informatica Anno Accademico 2014/2015 Calcolo delle Probabilità e Statistica Matematica Corso di Laurea in Ingegneria Informatica Anno Accademico 2014/2015 Calcolo delle Probabilità e Statistica Matematica Nome N. Matricola Ancona, 14 luglio 2015 1. Tre macchine producono gli stessi pezzi

Dettagli

Controllo Statistico della Qualità. Qualità come primo obiettivo dell azienda produttrice di beni

Controllo Statistico della Qualità. Qualità come primo obiettivo dell azienda produttrice di beni Controllo Statistico della Qualità Qualità come primo obiettivo dell azienda produttrice di beni Qualità come costante aderenza del prodotto alle specifiche tecniche Qualità come controllo e riduzione

Dettagli

Diaz - Appunti di Statistica - AA 2001/2002 - edizione 29/11/01 Cap. 3 - Pag. 1 = 1

Diaz - Appunti di Statistica - AA 2001/2002 - edizione 29/11/01 Cap. 3 - Pag. 1 = 1 Diaz - Appunti di Statistica - AA 2001/2002 - edizione 29/11/01 Cap. 3 - Pag. 1 Capitolo 3. L'analisi della varianza. Il problema dei confronti multipli. La soluzione drastica di Bonferroni ed il test

Dettagli

iovanella@disp.uniroma2.it http://www.disp.uniroma2.it/users/iovanella Verifica di ipotesi

iovanella@disp.uniroma2.it http://www.disp.uniroma2.it/users/iovanella Verifica di ipotesi iovanella@disp.uniroma2.it http://www.disp.uniroma2.it/users/iovanella Verifica di ipotesi Idea di base Supponiamo di avere un idea del valore (incognito) di una media di un campione, magari attraverso

Dettagli

Il Controllo Interno di Qualità dalla teoria alla pratica: guida passo per passo IL MODELLO TEORICO. Pasquale Iandolo

Il Controllo Interno di Qualità dalla teoria alla pratica: guida passo per passo IL MODELLO TEORICO. Pasquale Iandolo Il Controllo Interno di Qualità dalla teoria alla pratica: guida passo per passo IL MODELLO TEORICO Pasquale Iandolo Laboratorio analisi ASL 4 Chiavarese, Lavagna (GE) 42 Congresso Nazionale SIBioC Roma

Dettagli

Analisi statistica degli errori

Analisi statistica degli errori Analisi statistica degli errori I valori numerici di misure ripetute risultano ogni volta diversi l operazione di misura può essere considerata un evento casuale a cui è associata una variabile casuale

Dettagli

INTRODUZIONE AL DESIGN OF EXPERIMENTS (Parte 1)

INTRODUZIONE AL DESIGN OF EXPERIMENTS (Parte 1) INTRODUZIONE AL DESIGN OF EXPERIMENTS (Parte 1) 151 Introduzione Un esperimento è una prova o una serie di prove. Gli esperimenti sono largamente utilizzati nel campo dell ingegneria. Tra le varie applicazioni;

Dettagli

Istituzioni di Statistica e Statistica Economica

Istituzioni di Statistica e Statistica Economica Istituzioni di Statistica e Statistica Economica Università degli Studi di Perugia Facoltà di Economia, Assisi, a.a. 2013/14 Esercitazione n. 4 A. Si supponga che la durata in giorni delle lampadine prodotte

Dettagli

Elementi di Psicometria con Laboratorio di SPSS 1

Elementi di Psicometria con Laboratorio di SPSS 1 Elementi di Psicometria con Laboratorio di SPSS 1 10-Il test t per un campione e la stima intervallare (vers. 1.1, 25 ottobre 2015) Germano Rossi 1 germano.rossi@unimib.it 1 Dipartimento di Psicologia,

Dettagli

Università del Piemonte Orientale. Corsi di Laurea Triennale di area tecnica. Corso di Statistica Medica

Università del Piemonte Orientale. Corsi di Laurea Triennale di area tecnica. Corso di Statistica Medica Università del Piemonte Orientale Corsi di Laurea Triennale di area tecnica Corso di Statistica Medica Campionamento e distribuzione campionaria della media Corsi di laurea triennale di area tecnica -

Dettagli

VERIFICA DELLE IPOTESI

VERIFICA DELLE IPOTESI VERIFICA DELLE IPOTESI Introduzione Livelli di significatività Verifica di ipotesi sulla media di una popolazione normale Verifica di ipotesi sulla varianza di una popolazione normale Verifica di ipotesi

Dettagli

Abbiamo visto due definizioni del valore medio e della deviazione standard di una grandezza casuale, in funzione dalle informazioni disponibili:

Abbiamo visto due definizioni del valore medio e della deviazione standard di una grandezza casuale, in funzione dalle informazioni disponibili: Incertezze di misura Argomenti: classificazione delle incertezze; definizione di incertezza tipo e schemi di calcolo; schemi per il calcolo dell incertezza di grandezze combinate; confronto di misure affette

Dettagli

Università del Piemonte Orientale. Corso di laurea in biotecnologia. Corso di Statistica Medica. Intervalli di confidenza

Università del Piemonte Orientale. Corso di laurea in biotecnologia. Corso di Statistica Medica. Intervalli di confidenza Università del Piemonte Orientale Corso di laurea in biotecnologia Corso di Statistica Medica Intervalli di confidenza Università del Piemonte Orientale Corso di laurea in biotecnologia Corso di Statistica

Dettagli

Temi di Esame a.a. 2012-2013. Statistica - CLEF

Temi di Esame a.a. 2012-2013. Statistica - CLEF Temi di Esame a.a. 2012-2013 Statistica - CLEF I Prova Parziale di Statistica (CLEF) 11 aprile 2013 Esercizio 1 Un computer è collegato a due stampanti, A e B. La stampante A è difettosa ed il 25% dei

Dettagli

Inferenza statistica. Inferenza statistica

Inferenza statistica. Inferenza statistica Spesso l informazione a disposizione deriva da un osservazione parziale del fenomeno studiato. In questo caso lo studio di un fenomeno mira solitamente a trarre, sulla base di ciò che si è osservato, considerazioni

Dettagli

La regressione lineare multipla

La regressione lineare multipla 13 La regressione lineare multipla Introduzione 2 13.1 Il modello di regressione multipla 2 13.2 L analisi dei residui nel modello di regressione multipla 9 13.3 Il test per la verifica della significatività

Dettagli

1) Si consideri un esperimento che consiste nel lancio di 5 dadi. Lo spazio campionario:

1) Si consideri un esperimento che consiste nel lancio di 5 dadi. Lo spazio campionario: Esempi di domande risposta multipla (Modulo II) 1) Si consideri un esperimento che consiste nel lancio di 5 dadi. Lo spazio campionario: 1) ha un numero di elementi pari a 5; 2) ha un numero di elementi

Dettagli

Confronto tra gruppi (campioni indipendenti)

Confronto tra gruppi (campioni indipendenti) Confronto tra gruppi (campioni indipendenti) Campioni provenienti da una popolazione Normale con medie che possono essere diverse ma varianze uguali campioni: Test z or t sulla differenza tra medie 3,

Dettagli

CAPITOLO III CONFRONTI TRA DISTRIBUZIONI

CAPITOLO III CONFRONTI TRA DISTRIBUZIONI CAPITOLO III CONFRONTI TRA DISTRIBUZIONI 3.1 CONFRONTI TRA DISTRIBUZIONI OSSERVATE E DISTRIBUZIONI TEORICHE OD ATTESE. Nella teoria statistica e nella pratica sperimentale, è frequente la necessità di

Dettagli

STATISTICA MEDICA STATISTICA PER LA RICERCA SPERIMENTALE E TECNOLOGICA INFORMATICA STATISTICA SOCIALE EPIDEMIOLOGIA

STATISTICA MEDICA STATISTICA PER LA RICERCA SPERIMENTALE E TECNOLOGICA INFORMATICA STATISTICA SOCIALE EPIDEMIOLOGIA Insegnamento: ANALISI SOCIO-SANITARIA Crediti Formativi (CFU) 9,5 Moduli STATISTICA MEDICA STATISTICA PER LA RICERCA SPERIMENTALE E TECNOLOGICA INFORMATICA STATISTICA SOCIALE EPIDEMIOLOGIA Coordinatore:

Dettagli

Il confronto fra proporzioni

Il confronto fra proporzioni L. Boni Il rapporto Un rapporto (ratio), attribuendo un ampio significato al termine, è il risultato della divisione di una certa quantità a per un altra quantità b Il rapporto Spesso, in maniera più specifica,

Dettagli

Soluzioni degli Esercizi del Parziale del 30/06/201 (Ippoliti-Fontanella-Valentini)

Soluzioni degli Esercizi del Parziale del 30/06/201 (Ippoliti-Fontanella-Valentini) Soluzioni degli Esercizi del Parziale del 30/06/201 (Ippoliti-Fontanella-Valentini) Esercizio 1 In uno studio sugli affitti mensili, condotto su un campione casuale di 14 monolocali nella città nella città

Dettagli

RELAZIONE TRA DUE VARIABILI QUANTITATIVE

RELAZIONE TRA DUE VARIABILI QUANTITATIVE RELAZIONE TRA DUE VARIABILI QUANTITATIVE Quando si considerano due o più caratteri (variabili) si possono esaminare anche il tipo e l'intensità delle relazioni che sussistono tra loro. Nel caso in cui

Dettagli

TEST DI AUTOVALUTAZIONE INTERVALLI DI CONFIDENZA E TEST

TEST DI AUTOVALUTAZIONE INTERVALLI DI CONFIDENZA E TEST TEST DI AUTOVALUTAZIONE INTERVALLI DI CONFIDENZA E TEST I diritti d autore sono riservati. Ogni sfruttamento commerciale non autorizzato sarà perseguito. Statistica 1 Parte A 1.1 La formula µ = x ± s n

Dettagli

Capitolo 11 Test chi-quadro

Capitolo 11 Test chi-quadro Levine, Krehbiel, Berenson Statistica II ed. 2006 Apogeo Capitolo 11 Test chi-quadro Insegnamento: Statistica Corso di Laurea Triennale in Ingegneria Gestionale Facoltà di Ingegneria, Università di Padova

Dettagli

Microeconometria (Silvia Tiezzi) 01 aprile2011 Esercitazione

Microeconometria (Silvia Tiezzi) 01 aprile2011 Esercitazione Microeconometria (Silvia Tiezzi) 01 aprile2011 Esercitazione Esercizio 1 Si consideri il seguente modello ad effetti fissi con variabili binarie: + 1 2 a) supponete che N=3. Si mostri che i regressori

Dettagli

METODOLOGIA CLINICA Necessita di: Quantificazione Formalizzazione matematica

METODOLOGIA CLINICA Necessita di: Quantificazione Formalizzazione matematica METODOLOGIA CLINICA Necessita di: Quantificazione Formalizzazione matematica EPIDEMIOLOGIA Ha come oggetto lo studio della distribuzione delle malattie in un popolazione e dei fattori che la influenzano

Dettagli

Istituzioni di Statistica e Statistica Economica

Istituzioni di Statistica e Statistica Economica Istituzioni di Statistica e Statistica Economica Università degli Studi di Perugia Facoltà di Economia, Assisi, a.a. 2013/14 Esercitazione n. 3 A. Sia una variabile casuale che si distribuisce secondo

Dettagli

Analisi dei residui. Test Esatto di Fisher. Differenza fra proporzioni

Analisi dei residui. Test Esatto di Fisher. Differenza fra proporzioni Statistica Economica Materiale didattico a cura del docente Analisi dei residui Test Esatto di Fisher Differenza fra proporzioni 1 Analisi dei residui Il test statistico ed il suo p-valore riassumono la

Dettagli

Elaborazione dei dati su PC Regressione Multipla

Elaborazione dei dati su PC Regressione Multipla 21 Elaborazione dei dati su PC Regressione Multipla Analizza Regressione Statistiche Grafici Metodo di selezione Analisi dei dati 21.1 Introduzione 21.2 Regressione lineare multipla con SPSS 21.3 Regressione

Dettagli

Regressione Lineare con un Singolo Regressore

Regressione Lineare con un Singolo Regressore Regressione Lineare con un Singolo Regressore Quali sono gli effetti dell introduzione di pene severe per gli automobilisti ubriachi? Quali sono gli effetti della riduzione della dimensione delle classi

Dettagli

Riassunto 24 Parole chiave 24 Commenti e curiosità 25 Esercizi 27 Appendice

Riassunto 24 Parole chiave 24 Commenti e curiosità 25 Esercizi 27 Appendice cap 0 Romane - def_layout 1 12/06/12 07.51 Pagina V Prefazione xiii Capitolo 1 Nozioni introduttive 1 1.1 Introduzione 1 1.2 Cenni storici sullo sviluppo della Statistica 2 1.3 La Statistica nelle scienze

Dettagli

PRINCìPI DI SPERIMENTAZIONE CLINICA

PRINCìPI DI SPERIMENTAZIONE CLINICA università degli studi di padova CICLO DI LEZIONI SCIENZE DI BASE PER I DOTTORATI DI RICERCA DELL AREA MEDICA anno accademico 2005/2006 PRINCìPI DI SPERIMENTAZIONE CLINICA Francesco Grigoletto Lo sviluppo

Dettagli

Verità ed esperienza: come la natura genera le osservazioni sperimentali

Verità ed esperienza: come la natura genera le osservazioni sperimentali Verità ed esperienza: come la natura genera le osservazioni sperimentali Andrea Onofri Dipartimento di Scienze Agrarie ed Ambientali Universitá degli Studi di Perugia 10 gennaio 2012 Indice 1 Presupposti

Dettagli

Servizi di consulenza specialistica per IGRUE 2009 2012

Servizi di consulenza specialistica per IGRUE 2009 2012 Allegato 9A Metodo della stima delle differenze Descrizione della procedura Il metodo della stima delle differenze è indicato qualora il controllore ritenga che la popolazione sia affetta da un tasso di

Dettagli

Richiami di inferenza statistica

Richiami di inferenza statistica C Richiami di inferenza statistica SOMMARIO C.1. Un campione di osservazioni C.2. Un modello econometrico C.3. Stima della media di una popolazione C.4. Stima della varianza e di altri momenti della popolazione

Dettagli

come nasce una ricerca

come nasce una ricerca PSICOLOGIA SOCIALE lez. 2 RICERCA SCIENTIFICA O SENSO COMUNE? Paola Magnano paola.magnano@unikore.it ricevimento: martedì ore 10-11 c/o Studio 16, piano -1 PSICOLOGIA SOCIALE COME SCIENZA EMPIRICA le sue

Dettagli

Tema A. 1.2. Se due eventi A e B sono indipendenti e tali che P (A) = 1/2 e P (B) = 2/3, si può certamente concludere che

Tema A. 1.2. Se due eventi A e B sono indipendenti e tali che P (A) = 1/2 e P (B) = 2/3, si può certamente concludere che Statistica Cognome: Laurea Triennale in Biologia Nome: 26 luglio 2012 Matricola: Tema A 1. Parte A 1.1. Sia x 1, x 2,..., x n un campione di n dati con media campionaria x e varianza campionaria s 2 x

Dettagli

LE ASSUNZIONI DELL'ANOVA

LE ASSUNZIONI DELL'ANOVA LE ASSUNZIONI DELL'ANOVA Sono le assunzioni del test t, ma estese a tutti i gruppi: o La variabile deve avere una distribuzione normale in tutte le popolazioni corrispondenti ai gruppi campionati o Le

Dettagli

Esercitazioni-aula-parte-III

Esercitazioni-aula-parte-III Esercitazioni-aula-parte-III Esempio par.7.2) Ross Sia (X 1,..., X n ) un campione aleatorio estratto da una popolazione esponenziale di parametro θ incognito. Determinare l espressione dello stimatore

Dettagli

Elaborazione dati in Analisi Sensoriale

Elaborazione dati in Analisi Sensoriale Elaborazione dati in Analisi Sensoriale Si è parlato di interpretazione corretta dei risultati ottenuti; a questo concorrono due fattori: affidabilità e validità. Se i test fossero stati ripetuti con lo

Dettagli

Corso di Laurea in Ingegneria Informatica e Automatica (A-O) Università di Roma La Sapienza

Corso di Laurea in Ingegneria Informatica e Automatica (A-O) Università di Roma La Sapienza Corso di Laurea in Ingegneria Informatica e Automatica (A-O) Università di Roma La Sapienza CALCOLO DELLE PROBABILITÀ E STATISTICA ESAME DEL 28/05/2015 NOME: COGNOME: MATRICOLA: Esercizio 1 Nel gico del

Dettagli

Elementi di Calcolo delle Probabilità e Statistica per il corso di Analisi Matematica B

Elementi di Calcolo delle Probabilità e Statistica per il corso di Analisi Matematica B Elementi di Calcolo delle Probabilità e Statistica per il corso di Analisi Matematica B Laurea in Ingegneria Meccatronica A.A. 2010 2011 n-dimensionali Riepilogo. Gli esiti di un esperimento aleatorio

Dettagli

4.2. IL TEST F DI FISHER O ANALISI DELLA VARIANZA (ANOVA)

4.2. IL TEST F DI FISHER O ANALISI DELLA VARIANZA (ANOVA) 4.2. IL TEST F DI FISHER O ANALISI DELLA VARIANZA (ANOVA) L analisi della varianza è un metodo sviluppato da Fisher, che è fondamentale per l interpretazione statistica di molti dati biologici ed è alla

Dettagli

Esercizi riassuntivi di probabilità

Esercizi riassuntivi di probabilità Esercizi riassuntivi di probabilità Esercizio 1 Una ditta produttrice di fotocopiatrici sa che la durata di una macchina (in migliaia di copie) si distribuisce come una normale con µ = 1600 e 2 = 3600.

Dettagli