ANALISI DELLA VARIANZA A PIU CRITERI DI CLASSIFICAZIONE

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "ANALISI DELLA VARIANZA A PIU CRITERI DI CLASSIFICAZIONE"

Transcript

1 ANALISI DELLA VARIANZA A PIU CRITERI DI CLASSIFICAZIONE CON REPLICHE

2 INTRODUZIONE Lo studio di un fenomeno non si deve limitareit alla valutazione dei singoli fattori in studio ma molto spesso è importante valutare anche come tali fattori interagiscono tra di loro; lo studio delle interazioni è fondamentale per capire i diversi effetti di un fattore a seconda della modalità degli altri fattori in studio. Nella realtà molto spesso i comportamenti dei fenomeni cambiano a seconda di quali variabili vanno ad influire contemporaneamente sul fenomeno.

3 ESEMPIO ESEMPIO: Valutare l effetto di un farmaco su un certo outcome a seconda dell appartenenza a classi di età diverse o a seconda del sesso. L effetto del farmaco è diverso nei giovani rispetto agli anziani? L effetto del farmaco varia a seconda del sesso? Se non c è interazione allora il farmaco avrà un effetto uguale per tuttett le classi di età. L effetto sarà mediamente uguale tra le diverse classi di età. L efficacia sarà la stessa per tutti i soggetti in studio indipendentemente dallaloroetà. Se c è l interazione allora il farmaco avrà effetti diversi a seconda Se cè linterazioneallora il farmaco avrà effetti diversi a seconda della classe di età o del sesso, quindi non si può considerare un effetto medio uguale in tutte le classi ma si dovrà fornire i diversi profili di efficacia.

4 GLI EFFETTI E L INTERAZIONE L analisi della varianza a più criteri di classificazione (ANOVA) è il metodo per valutare: 1. Le interazioni tra più fattori per determinare l effetto congiunto 2. Gli effetti principali dei singoli fattori Nel caso più semplice di analisi della varianza a due criteri di classificazione con repliche, e, le interazioni sono o chiamate atedi primo ood ordine e( (A*B) Le interazioni possono avere un valore: Positivo (l effetto di un fattore migliora con la presenza dell altro fattore) Negativo (l effetto di un fattore peggiora con presenza dell altro fattore ) Nullo (l effetto dato dalla presenza di entrambi i fattori è determinato Nullo (l effetto dato dalla presenza di entrambi i fattori è determinato esclusivamente dalla somma dei singoli effetti principali)

5 GLI EFFETTI E L INTERAZIONE indifferenza I singoli fattori hanno degli effetti che non variano a seconda del livello degli altri fattori (INTERAZIONE NULLA: additività degli effetti) sinergismo La presenza contemporanea di determinati livelli dei fattori migliora il risultato rispetto alla semplice additività (INTERAZIONE POSITIVA) antagonismo La presenza contemporanea di determinati livelli dei fattori peggiora il risultato rispetto alla semplice additività (INTERAZIONE NEGATIVA )

6 INTERAZIONE TRA DUE FATTORI A DUE LIVELLI Med dia di X Effetto Basale Interazione non significativa Effetto A Effetto B A=0, B=0 A=1, B=0 A=0, B=1 A=1, B=1 B=1 B= Interazione non significativa A=0 A=1 A=0 A=1 Effetto A*B Presenza di interazione: i segmenti NON sono paralleli, l effetto di un fattore dipende dal livello dell altro B=1 B=0

7 INTERAZIONE TRA DUE FATTORI A DUE LIVELLI Tabella con le medie di cella: FATTORE A FATTORE B NO (1) SI (2) NO (1) SI (2) L effetto del fattore A è dato da μ 21 μ 11 o μ 22 μ 12. In generale esso dipende dal livello del fattore B. L effetto del fattore B è dato da μ 12 μ 11 o μ 22 μ 21. In generale esso dipende dal livello del fattore A. Se = oppure = allora si dice che non c è interazione i tra i due fattori. IL PARAMETRO DI INTERAZIONE è dunque: che nel caso di mancanza di interazione è uguale a 0.

8 STIME DELLE MEDIE CON I PARAMETRI DEGLI EFFETTI MODELLO ADDITIVO FATTORE A FATTORE B NO SI NO SI SE ALLORA e e FATTORE A FATTORE B NO SI NO SI

9 STIME DELLE MEDIE CON I PARAMETRI DEGLI EFFETTI MODELLO CON INTERAZIONE FATTORE A FATTORE B NO SI NO SI SE 22 μ 22 μ 12 μ 21 μ ALLORA e FATTORE A FATTORE B NO SI NO SI

10 STIME DELLE MEDIE CON I PARAMETRI DEGLI EFFETTI MODELLO ADDITIVO GENERALE Date le medie di cella, si dice che non c è interazione tra i due fattori, se: 11 per i 1..n e j 1..p dove e NOTARE CHE RISULTA 1 e 1 uguali a 0 perciò: gli effetti di colonna sono n 1 parametri che esprimono le differenze tra la i esima colonna e la prima. gli effetti di riga sono p 1 parametri che esprimono le differnze tra la j esima riga e la prima riga.

11 STIME DELLE MEDIE CON I PARAMETRI DEGLI EFFETTI MODELLO GENERALE CON INTERAZIONI Date le medie di cella, si dice che c èè interazione tra i due fattori, se: 11 dove 1 11 e 1 11 allora : NOTARE CHE RISULTA 1, 1 sono uguali a 0 perciò: perciò il termine di interazione è definito da n 1 * p 1 p parametri che possono essere espresse anche come le differenze tra le medie di cella e le medie :

12 ESEMPIO: VALUTARE L EFFETTO DI ANTIBIOTICI E VITAMINA SULL INCREMENTO DI PESO DI MAIALINI. Antibiotici Vitamina NO 0 SI 1 NO 0 1,30 1,19 1,08 1,26 1,21 1,08 SI 1 1,05 1,00 1,05 1,52 1,56 1,55 Antibiotici Vitamina NO 0 SI 1 NO Incr remento di pe eso SI NO (0) SI (1) Antibiotici Vitamine=NO Vitamine=SI Le differenza nella seconda riga e nella prima riga sono rispettivamente 0.51 e La differenza tra i due effetti mi da l interazione: μ 22 μ 21 μ 12 μ

13 INTERAZIONE TRA DUE FATTORI A PIU LIVELLI Con due ftt fattori econdati dtii riportati tiinunatabella tbll a due entrate, secondo le modalità già presentate nel caso di esperimenti a blocchi randomizzati, è possibile analizzare l interazione solo quando si dispone di più osservazioni in ognuna delle celle poste all'incrocio tra righe e colonne. NOTA: le repliche possono essere misure sia su soggetti diversi sia misure sullo stesso soggetto, tale scelta dipende dal tipo di modello sperimentale

14 I DATI Di seguito è riportata la tabella a doppia entrata (DUE FATTORI): i trattamenti sono indicati nelle colonne, i blocchi sono indicati nelle righe, le repliche sono riportate nelle caselle per ogni combinazione blocco trattamento è il valore della k esima replica (osservazione) nel livello i esimo del fattore A (trattamento) e nel livello j esimo del fattore B (blocco), sono rispettivamente la somma e la media dei valori (repliche) della casella, all'incrocio tra il trattamento i esimo ed il blocco j esimo

15 IL MODELLO Il modello additivo dell'anova diventa: Media generale Effetto del fattore A per la modalità i Effetto del fattore B per la modalità j Effetto dell interazione tra la modalità i di A e la modalità j di B DAL MODELLO ADDITIVO SI DIMOSTRA LA SCOMPOSIZIONE DELLA DEVIANZA TOTALE

16 LE DEVIANZE Ladevianzatotaleeledevianzetratrattamentietrablocchisono calcolate come nell anova a blocchi randomizzati La devianza d interazione è calcolata come la somma dei quadrati degli scarti tra media osservata e media stimata in ogni casella La devianza di errore SQ(e) è la somma dei quadratidegli scarti di ogni La devianza di errore SQ(e) è la somma dei quadrati degli scarti di ogni replica (osservazione) dalla sua media di casella

17 SCOMPOSIZIONE DELLA DEVIANZA Nell ANOVA con due fattori con misure ripetute, la devianza totale può essere calcolata come somma delle seguenti componenti di devianza: Devianza del fattore A Devianza del fattore B Devianza a dell interazione ione tra A e B Devianza d errore o residua ANCHE I GRADI DI LIBERTA SI SOMMANO

18 METODOLOGIA PER TESTARE La tabella riportata riporta schematicamente tutte le quantità utili al calcolo dei test che ci permettono di valutare sia la significatività delle interazioni sia la significatività dei fattori principali n è il numero di modalità (livelli) del fattore A; p è il numero di livelli del fattore B; r è il numero di repliche osservate entro ogni casella.

19 FORMULE La devianza totale SQ(T), è la somma dei quadrati degli scarti di ogni dato rispetto alla media generale La devianza tra trattamenti o del fattore A, SQ(A), è la somma dei quadrati degli scarti tra la media di ogni trattamento e la media generale: La devianza tra blocchi o del fattore B, SQ(B), è la somma dei quadrati degli scarti tra la media di ogni blocco e la media generale:

20 FORMULE La devianza dinterazione d'interazione tra i fattori A e B, SQ(AB), è la somma dei quadrati degli scarti di ogni media di casella rispetto al valore atteso : Il calcolo della devianza d'interazione e dei suoi gradi di libertà conviene farlo sottraendo alla devianza tra le medie di cella le devianze sia del fattore A che del fattore B: dove è la devianza tra le medie delle caselle che per definizione è la somma dei quadrati degli scarti di ogni media di casella dalla media generale La devianza d'errore SQ(e) è la somma dei quadrati degli scarti di ogni valore rispetto alla media della sua casella: Il calcolo della devianza d'errore può essere ottenuto più facilmente sottraendo dalla devianza totale la devianza tra le medie delle caselle:

21 TEST D IPOTESI L'analisi della varianza a due criteri di classificazione con repliche permette di verificare la significatività dell interazione e dei fattori principali 1. IPOTESI nulla: nessuna interazione i tra i ftt fattori ia e B ai vari livellilli Contro l ipotesi alternativa: 2. IPOTESI nulla: nessuna differenza tra le medie del fattore A Ipotesi nulla H0 di uguaglianza delle medie dei trattamenti, fattore A : Ipotesi alternativa H1 è : non tutte le medie dei trattamenti sono tra loro uguali 3. IPOTESI nulla: nessuna differenza tra le medie del fattore B ipotesi nulla H0 di uguaglianza delle medie dei blocchi o fattore secondario: ipotesi alternativa H1 : non tutte le medie dei blocchi sono tra loro uguali.

22 IL TEST F Per valutare le ipotesi formulate si utilizzano test F mediante il rapporto tra la varianza del fattore e la varianza d'errore. Per l ipotesi 1: Per l ipotesi i 2: Per l ipotesi 3:

23 REGOLE GERARCHICHE DI INTERPRETAZIONE Osservare innanzitutto la significatività dell interazione: se l effetto interattivo è significativo va considerata solo l interazione e NON E LECITA ALCUNA CONCLUSIONE SUGLI EFFETTI SEMPLICI. Infatti con interazione, l effetto di un fattore è condizionato dal livello dell altro.

Analisi della varianza (anova) a due vie

Analisi della varianza (anova) a due vie Analisi della varianza (anova) a due vie Andrea Onofri 27 marzo 2014 Indice 1 Il concetto di interazione 1 2 Tipi di interazione 2 3 Descrizione del caso studio 3 4 Analisi dei dati 4 Sommario Scopo di

Dettagli

4. Confronto tra medie di tre o più campioni indipendenti

4. Confronto tra medie di tre o più campioni indipendenti BIOSTATISTICA 4. Confronto tra medie di tre o più campioni indipendenti Marta Blangiardo, Imperial College, London Department of Epidemiology and Public Health m.blangiardo@imperial.ac.uk MARTA BLANGIARDO

Dettagli

Capitolo 11 Test chi-quadro

Capitolo 11 Test chi-quadro Levine, Krehbiel, Berenson Statistica II ed. 2006 Apogeo Capitolo 11 Test chi-quadro Insegnamento: Statistica Corso di Laurea Triennale in Ingegneria Gestionale Facoltà di Ingegneria, Università di Padova

Dettagli

ANALISI DELLE FREQUENZE: IL TEST CHI 2

ANALISI DELLE FREQUENZE: IL TEST CHI 2 ANALISI DELLE FREQUENZE: IL TEST CHI 2 Quando si hanno scale nominali o ordinali, non è possibile calcolare il t, poiché non abbiamo medie, ma solo frequenze. In questi casi, per verificare se un evento

Dettagli

L Analisi della Varianza ANOVA (ANalysis Of VAriance)

L Analisi della Varianza ANOVA (ANalysis Of VAriance) L Analisi della Varianza ANOVA (ANalysis Of VAriance) 1 CONCETTI GENERALI Finora abbiamo descritto test di ipotesi finalizzati alla verifica di ipotesi sulla differenza tra parametri di due popolazioni

Dettagli

Università del Piemonte Orientale. Corsi di Specialità. Corso di Statistica Medica. Analisi dei dati quantitativi : Analisi della varianza

Università del Piemonte Orientale. Corsi di Specialità. Corso di Statistica Medica. Analisi dei dati quantitativi : Analisi della varianza Università del Piemonte Orientale Corsi di Specialità Corso di Statistica Medica Analisi dei dati quantitativi : Analisi della varianza Università del Piemonte Orientale Corso di laurea in biotecnologie

Dettagli

Corso di laurea in Scienze Motorie Corso di Statistica Docente: Dott.ssa Immacolata Scancarello Lezione 14: Analisi della varianza (ANOVA)

Corso di laurea in Scienze Motorie Corso di Statistica Docente: Dott.ssa Immacolata Scancarello Lezione 14: Analisi della varianza (ANOVA) Corso di laurea in Scienze Motorie Corso di Statistica Docente: Dott.ssa Immacolata Scancarello Lezione 4: Analisi della varianza (ANOVA) Analisi della varianza Analisi della varianza (ANOVA) ANOVA ad

Dettagli

Statistica Medica. Verranno presi in esame:

Statistica Medica. Verranno presi in esame: Statistica Medica Premessa: il seguente testo cerca di riassumere e rendere in forma comprensibile ai non esperti in matematica e statistica le nozioni e le procedure necessarie a svolgere gli esercizi

Dettagli

Diaz - Appunti di Statistica - AA 2001/2002 - edizione 29/11/01 Cap. 3 - Pag. 1 = 1

Diaz - Appunti di Statistica - AA 2001/2002 - edizione 29/11/01 Cap. 3 - Pag. 1 = 1 Diaz - Appunti di Statistica - AA 2001/2002 - edizione 29/11/01 Cap. 3 - Pag. 1 Capitolo 3. L'analisi della varianza. Il problema dei confronti multipli. La soluzione drastica di Bonferroni ed il test

Dettagli

Confronto tra gruppi (campioni indipendenti)

Confronto tra gruppi (campioni indipendenti) Confronto tra gruppi (campioni indipendenti) Campioni provenienti da una popolazione Normale con medie che possono essere diverse ma varianze uguali campioni: Test z or t sulla differenza tra medie 3,

Dettagli

Esperimenti in vaso: disegni a randomizzazione completa

Esperimenti in vaso: disegni a randomizzazione completa Esperimenti in vaso: disegni a randomizzazione completa Andrea Onofri 10 marzo 2015 Indice 1 Disegno sperimentale 2 2 Analisi dei dati 3 2.1 Analisi della varianza (ANOVA).................. 4 2.2 Errore

Dettagli

LEZIONE n. 5 (a cura di Antonio Di Marco)

LEZIONE n. 5 (a cura di Antonio Di Marco) LEZIONE n. 5 (a cura di Antonio Di Marco) IL P-VALUE (α) Data un ipotesi nulla (H 0 ), questa la si può accettare o rifiutare in base al valore del p- value. In genere il suo valore è un numero molto piccolo,

Dettagli

LE ASSUNZIONI DELL'ANOVA

LE ASSUNZIONI DELL'ANOVA LE ASSUNZIONI DELL'ANOVA Sono le assunzioni del test t, ma estese a tutti i gruppi: o La variabile deve avere una distribuzione normale in tutte le popolazioni corrispondenti ai gruppi campionati o Le

Dettagli

Elaborazione dati in Analisi Sensoriale

Elaborazione dati in Analisi Sensoriale Elaborazione dati in Analisi Sensoriale Si è parlato di interpretazione corretta dei risultati ottenuti; a questo concorrono due fattori: affidabilità e validità. Se i test fossero stati ripetuti con lo

Dettagli

RELAZIONE TRA DUE VARIABILI QUANTITATIVE

RELAZIONE TRA DUE VARIABILI QUANTITATIVE RELAZIONE TRA DUE VARIABILI QUANTITATIVE Quando si considerano due o più caratteri (variabili) si possono esaminare anche il tipo e l'intensità delle relazioni che sussistono tra loro. Nel caso in cui

Dettagli

Abbiamo visto due definizioni del valore medio e della deviazione standard di una grandezza casuale, in funzione dalle informazioni disponibili:

Abbiamo visto due definizioni del valore medio e della deviazione standard di una grandezza casuale, in funzione dalle informazioni disponibili: Incertezze di misura Argomenti: classificazione delle incertezze; definizione di incertezza tipo e schemi di calcolo; schemi per il calcolo dell incertezza di grandezze combinate; confronto di misure affette

Dettagli

9. La distribuzione 2 e i test per dati su scala nominale

9. La distribuzione 2 e i test per dati su scala nominale 9. La distribuzione e i test per dati su scala nominale 9.1. La distribuzione 9. 1. 1. La statistica e la sua distribuzione In una popolazione distribuita normalmente con parametri e estraiamo un campione

Dettagli

Dott.ssa Caterina Gurrieri

Dott.ssa Caterina Gurrieri Dott.ssa Caterina Gurrieri Le relazioni tra caratteri Data una tabella a doppia entrata, grande importanza riveste il misurare se e in che misura le variabili in essa riportata sono in qualche modo

Dettagli

errore I = numero soggetti (I = 4) K = numero livelli tratt. (K = 3) popolazione varianza dovuta ai soggetti trattamento

errore I = numero soggetti (I = 4) K = numero livelli tratt. (K = 3) popolazione varianza dovuta ai soggetti trattamento Analisi della varianza a una via a misure ripetute (Anova con 1 fattore within) modello strutturale dell'analisi della varianza a misure ripetute con 1 fattore: y = μ ik 0 +π i +α k + ik ε ik interazione

Dettagli

Statistica. Esercitazione 15. Alfonso Iodice D Enza iodicede@unicas.it. Università degli studi di Cassino. Statistica. A. Iodice

Statistica. Esercitazione 15. Alfonso Iodice D Enza iodicede@unicas.it. Università degli studi di Cassino. Statistica. A. Iodice Esercitazione 15 Alfonso Iodice D Enza iodicede@unicas.it Università degli studi di Cassino () 1 / 18 L importanza del gruppo di controllo In tutti i casi in cui si voglia studiare l effetto di un certo

Dettagli

Metodi statistici per l economia (Prof. Capitanio) Slide n. 4. Materiale di supporto per le lezioni. Non sostituisce il libro di testo

Metodi statistici per l economia (Prof. Capitanio) Slide n. 4. Materiale di supporto per le lezioni. Non sostituisce il libro di testo Metodi statistici per l economia (Prof. Capitanio) Slide n. 4 Materiale di supporto per le lezioni. Non sostituisce il libro di testo Dipendenza di un carattere QUANTITATIVO da un carattere QUALITATIVO

Dettagli

T DI STUDENT Quando si vogliono confrontare solo due medie, si può utilizzare il test t di Student La formula per calcolare il t è la seguente:

T DI STUDENT Quando si vogliono confrontare solo due medie, si può utilizzare il test t di Student La formula per calcolare il t è la seguente: T DI STUDENT Quando si vogliono confrontare solo due medie, si può utilizzare il test t di Student La formula per calcolare il t è la seguente: t = X i X j s 2 i (n i 1) + s 2 j (n j 1) n i + n j - 2 1

Dettagli

LEZIONI DI STATISTCA APPLICATA. Parte 2. Statistica inferenziale. Variabili continue per continue. Alessandro Valbonesi. SARRF di Scienze ambientali

LEZIONI DI STATISTCA APPLICATA. Parte 2. Statistica inferenziale. Variabili continue per continue. Alessandro Valbonesi. SARRF di Scienze ambientali LEZIONI DI STATISTCA APPLICATA Parte 2 Statistica inferenziale Variabili continue per continue Alessandro Valbonesi SARRF di Scienze ambientali Anno accademico 2010-11 CAPITOLO 7 - RELAZIONI TRA DUE O

Dettagli

Corso di laurea in Scienze Motorie. Corso di Statistica. Docente: Dott.ssa Immacolata Scancarello Lezione 2: Misurazione, tabelle

Corso di laurea in Scienze Motorie. Corso di Statistica. Docente: Dott.ssa Immacolata Scancarello Lezione 2: Misurazione, tabelle Corso di laurea in Scienze Motorie Corso di Statistica Docente: Dott.ssa Immacolata Scancarello Lezione : Misurazione, tabelle 1 Misurazione Definizione: La misura è l attribuzione di un valore numerico

Dettagli

SISTEMI DI NUMERAZIONE E CODICI

SISTEMI DI NUMERAZIONE E CODICI SISTEMI DI NUMERAZIONE E CODICI Il Sistema di Numerazione Decimale Il sistema decimale o sistema di numerazione a base dieci usa dieci cifre, dette cifre decimali, da O a 9. Il sistema decimale è un sistema

Dettagli

Analisi dei residui. Test Esatto di Fisher. Differenza fra proporzioni

Analisi dei residui. Test Esatto di Fisher. Differenza fra proporzioni Statistica Economica Materiale didattico a cura del docente Analisi dei residui Test Esatto di Fisher Differenza fra proporzioni 1 Analisi dei residui Il test statistico ed il suo p-valore riassumono la

Dettagli

4. Operazioni elementari per righe e colonne

4. Operazioni elementari per righe e colonne 4. Operazioni elementari per righe e colonne Sia K un campo, e sia A una matrice m n a elementi in K. Una operazione elementare per righe sulla matrice A è una operazione di uno dei seguenti tre tipi:

Dettagli

Lezione 6: Forma di distribuzione Corso di Statistica Facoltà di Economia Università della Basilicata. Prof. Massimo Aria

Lezione 6: Forma di distribuzione Corso di Statistica Facoltà di Economia Università della Basilicata. Prof. Massimo Aria Lezione 6: Forma di distribuzione Corso di Statistica Facoltà di Economia Università della Basilicata Prof. Massimo Aria aria@unina.it Standardizzazione di una variabile Standardizzare una variabile statistica

Dettagli

STATISTICA IX lezione

STATISTICA IX lezione Anno Accademico 013-014 STATISTICA IX lezione 1 Il problema della verifica di un ipotesi statistica In termini generali, si studia la distribuzione T(X) di un opportuna grandezza X legata ai parametri

Dettagli

Capitolo 4 Probabilità

Capitolo 4 Probabilità Levine, Krehbiel, Berenson Statistica II ed. 2006 Apogeo Capitolo 4 Probabilità Insegnamento: Statistica Corso di Laurea Triennale in Economia Facoltà di Economia, Università di Ferrara Docenti: Dott.

Dettagli

INTRODUZIONE AL DESIGN OF EXPERIMENTS (Parte 1)

INTRODUZIONE AL DESIGN OF EXPERIMENTS (Parte 1) INTRODUZIONE AL DESIGN OF EXPERIMENTS (Parte 1) 151 Introduzione Un esperimento è una prova o una serie di prove. Gli esperimenti sono largamente utilizzati nel campo dell ingegneria. Tra le varie applicazioni;

Dettagli

La statistica nella ricerca scientifica

La statistica nella ricerca scientifica La statistica nella ricerca scientifica Pubblicazione dei risultati Presentazione dei dati e la loro elaborazione devono seguire criteri universalmente validi Impossibile verifica dei risultati da parte

Dettagli

Lezione n. 2 (a cura di Chiara Rossi)

Lezione n. 2 (a cura di Chiara Rossi) Lezione n. 2 (a cura di Chiara Rossi) QUANTILE Data una variabile casuale X, si definisce Quantile superiore x p : X P (X x p ) = p Quantile inferiore x p : X P (X x p ) = p p p=0.05 x p x p Graficamente,

Dettagli

3. Confronto tra medie di due campioni indipendenti o appaiati

3. Confronto tra medie di due campioni indipendenti o appaiati BIOSTATISTICA 3. Confronto tra medie di due campioni indipendenti o appaiati Marta Blangiardo, Imperial College, London Department of Epidemiology and Public Health m.blangiardo@imperial.ac.uk MARTA BLANGIARDO

Dettagli

ANALISI DEI DATI PER IL MARKETING 2014

ANALISI DEI DATI PER IL MARKETING 2014 ANALISI DEI DATI PER IL MARKETING 2014 Marco Riani mriani@unipr.it http://www.riani.it LA CLASSIFICAZIONE CAP IX, pp.367-457 Problema generale della scienza (Linneo, ) Analisi discriminante Cluster Analysis

Dettagli

Modulo 8. Elettronica Digitale. Contenuti: Obiettivi:

Modulo 8. Elettronica Digitale. Contenuti: Obiettivi: Modulo 8 Elettronica Digitale Contenuti: Introduzione Sistemi di numerazione posizionali Sistema binario Porte logiche fondamentali Porte logiche universali Metodo della forma canonica della somma per

Dettagli

Come descrivere un fenomeno in ambito sanitario fondamenti di statistica descrittiva. Brugnaro Luca

Come descrivere un fenomeno in ambito sanitario fondamenti di statistica descrittiva. Brugnaro Luca Come descrivere un fenomeno in ambito sanitario fondamenti di statistica descrittiva Brugnaro Luca Progetto formativo complessivo Obiettivo: incrementare le competenze degli operatori sanitari nelle metodiche

Dettagli

Probabilità e Statistica ESERCIZI. EsercizioA3 Data la variabile aleatoria normale standard Z, si calcoli la probabilità

Probabilità e Statistica ESERCIZI. EsercizioA3 Data la variabile aleatoria normale standard Z, si calcoli la probabilità Probabilità e Statistica ESERCIZI EsercizioA1 Data la variabile aleatoria normale standard Z, si calcoli la probabilità che Z sia minore o uguale di 1,2. Soluzione La probabilità che una variabile aleatoria

Dettagli

LA STATISTICA E IL CALCOLO DELLE PROBABILITÀ

LA STATISTICA E IL CALCOLO DELLE PROBABILITÀ LA STATISTICA E IL CALCOLO DELLE PROBABILITÀ Prof. Francesco Tottoli Versione 3 del 20 febbraio 2012 DEFINIZIONE È una scienza giovane e rappresenta uno strumento essenziale per la scoperta di leggi e

Dettagli

è decidere sulla verità o falsità

è decidere sulla verità o falsità I test di ipotesi I test di ipotesi Il test delle ipotesi consente di verificare se, e in quale misura, una determinata ipotesi (di carattere sociale, biologico, medico, economico, ecc.) è supportata dall

Dettagli

Elementi di Psicometria con Laboratorio di SPSS 1

Elementi di Psicometria con Laboratorio di SPSS 1 Elementi di Psicometria con Laboratorio di SPSS 1 10-Il test t per un campione e la stima intervallare (vers. 1.1, 25 ottobre 2015) Germano Rossi 1 germano.rossi@unimib.it 1 Dipartimento di Psicologia,

Dettagli

Note a cura di M. Martellini e M. Zeni

Note a cura di M. Martellini e M. Zeni Università dell Insubria Corso di laurea Scienze Ambientali FISICA GENERALE Lezione 6 Energia e Lavoro Note a cura di M. Martellini e M. Zeni Queste note sono state in parte preparate con immagini tratte

Dettagli

Appunti di Statistica Descrittiva

Appunti di Statistica Descrittiva Appunti di Statistica Descrittiva 30 dicembre 009 1 La tabella a doppia entrata Per studiare dei fenomeni con caratteristiche statistiche si utilizza l espediente della tabella a doppia entrata Per esempio

Dettagli

Sommario. Addizione naturale

Sommario. Addizione naturale Sommario Introduzione Rappresentazione dei numeri interi positivi Rappresentazione dei numeri interi Operazioni aritmetiche Modulo e segno Addizione e sottrazione urale Addizione e sottrazione in complemento

Dettagli

Università del Piemonte Orientale. Corsi di Laurea Triennale. Corso di Statistica e Biometria. Introduzione e Statistica descrittiva

Università del Piemonte Orientale. Corsi di Laurea Triennale. Corso di Statistica e Biometria. Introduzione e Statistica descrittiva Università del Piemonte Orientale Corsi di Laurea Triennale Corso di Statistica e Biometria Introduzione e Statistica descrittiva Corsi di Laurea Triennale Corso di Statistica e Biometria: Introduzione

Dettagli

I ESERCITAZIONE. Gruppo I 100 individui. Trattamento I Nuovo Farmaco. Osservazione degli effetti sul raffreddore. Assegnazione casuale

I ESERCITAZIONE. Gruppo I 100 individui. Trattamento I Nuovo Farmaco. Osservazione degli effetti sul raffreddore. Assegnazione casuale I ESERCITAZIONE ESERCIZIO 1 Si vuole testare un nuovo farmaco contro il raffreddore. Allo studio partecipano 200 soggetti sani della stessa età e dello stesso sesso e con caratteristiche simili. i) Che

Dettagli

Piacenza, 10 marzo 2014 La preparazione della tesi di Laurea Magistrale

Piacenza, 10 marzo 2014 La preparazione della tesi di Laurea Magistrale Piacenza, 0 marzo 204 La preparazione della tesi di Laurea Magistrale ma questa statistica a che cosa serve? non vedo l ora di cominciare a lavorare per la tesi. e dimenticarmi la statistica!! il mio relatore

Dettagli

Scelte in condizioni di rischio e incertezza

Scelte in condizioni di rischio e incertezza CAPITOLO 5 Scelte in condizioni di rischio e incertezza Esercizio 5.1. Tizio ha risparmiato nel corso dell anno 500 euro; può investirli in obbligazioni che rendono, in modo certo, il 10% oppure in azioni

Dettagli

Luigi Piroddi piroddi@elet.polimi.it

Luigi Piroddi piroddi@elet.polimi.it Automazione industriale dispense del corso 10. Reti di Petri: analisi strutturale Luigi Piroddi piroddi@elet.polimi.it Analisi strutturale Un alternativa all analisi esaustiva basata sul grafo di raggiungibilità,

Dettagli

LEZIONE 3. Ing. Andrea Ghedi AA 2009/2010. Ing. Andrea Ghedi AA 2009/2010

LEZIONE 3. Ing. Andrea Ghedi AA 2009/2010. Ing. Andrea Ghedi AA 2009/2010 LEZIONE 3 "Educare significa aiutare l'animo dell'uomo ad entrare nella totalità della realtà. Non si può però educare se non rivolgendosi alla libertà, la quale definisce il singolo, l'io. Quando uno

Dettagli

22.03.07 In alcuni casi è possibile applicare sia l analisi log lineare che la regressione logistica. Analisi log lineare e regressione logistica:

22.03.07 In alcuni casi è possibile applicare sia l analisi log lineare che la regressione logistica. Analisi log lineare e regressione logistica: .03.07 In alcuni casi è possibile applicare sia l analisi log lineare che la regressione logistica. Analisi log lineare e regressione logistica: differenze Nella regressione logistica le variabili vengono

Dettagli

Statistica multivariata. Statistica multivariata. Analisi multivariata. Dati multivariati. x 11 x 21. x 12 x 22. x 1m x 2m. x nm. x n2.

Statistica multivariata. Statistica multivariata. Analisi multivariata. Dati multivariati. x 11 x 21. x 12 x 22. x 1m x 2m. x nm. x n2. Analisi multivariata Statistica multivariata Quando il numero delle variabili rilevate sullo stesso soggetto aumentano, il problema diventa gestirle tutte e capirne le relazioni. Cercare di capire le relazioni

Dettagli

QUARTO INCONTRO LABORATORIO CORSO INDAGINI CAMPIONARIE. Laboratorio Stefania Porchia

QUARTO INCONTRO LABORATORIO CORSO INDAGINI CAMPIONARIE. Laboratorio Stefania Porchia QUARTO INCONTRO LABORATORIO CORSO INDAGINI CAMPIONARIE Laboratorio Stefania Porchia Incontri e argomenti trattati nel laboratorio 29 marzo 14.00 15.30 l indagine qualitativa come strategia di formulazione

Dettagli

4.2. IL TEST F DI FISHER O ANALISI DELLA VARIANZA (ANOVA)

4.2. IL TEST F DI FISHER O ANALISI DELLA VARIANZA (ANOVA) 4.2. IL TEST F DI FISHER O ANALISI DELLA VARIANZA (ANOVA) L analisi della varianza è un metodo sviluppato da Fisher, che è fondamentale per l interpretazione statistica di molti dati biologici ed è alla

Dettagli

RISCHIO E RENDIMENTO DEGLI STRUMENTI FINANZIARI. Docente: Prof. Massimo Mariani

RISCHIO E RENDIMENTO DEGLI STRUMENTI FINANZIARI. Docente: Prof. Massimo Mariani RISCHIO E RENDIMENTO DEGLI STRUMENTI FINANZIARI Docente: Prof. Massimo Mariani 1 SOMMARIO Il rendimento di un attività finanziaria: i parametri rilevanti Rendimento totale, periodale e medio Il market

Dettagli

VERIFICA DELLE IPOTESI

VERIFICA DELLE IPOTESI VERIFICA DELLE IPOTESI Nella verifica delle ipotesi è necessario fissare alcune fasi prima di iniziare ad analizzare i dati. a) Si deve stabilire quale deve essere l'ipotesi nulla (H0) e quale l'ipotesi

Dettagli

LEZIONI DI STATISTCA APPLICATA. Parte 2. Statistica inferenziale. Variabili continue per categoriali. Alessandro Valbonesi

LEZIONI DI STATISTCA APPLICATA. Parte 2. Statistica inferenziale. Variabili continue per categoriali. Alessandro Valbonesi LEZIONI DI STATISTCA APPLICATA Parte 2 Statistica inferenziale Variabili continue per categoriali Alessandro Valbonesi SARRF di Scienze ambientali Anno accademico 2010-11 CAPITOLO 4 - TEST STATISTICI CHE

Dettagli

STATISTICA DESCRITTIVA BIVARIATA

STATISTICA DESCRITTIVA BIVARIATA STATISTICA DESCRITTIVA BIVARIATA Si parla di Analisi Multivariata quando su ogni unità statistica, appartenente ad una determinata popolazione, si rileva un certo numero s di caratteri X 1, X 2,,X s. Si

Dettagli

Per forma di una distribuzione si intende il modo secondo il quale si dispongono i valori di un carattere intorno alla rispettiva media.

Per forma di una distribuzione si intende il modo secondo il quale si dispongono i valori di un carattere intorno alla rispettiva media. FORMA DI UNA DISTRIBUZIONE Per forma di una distribuzione si intende il modo secondo il quale si dispongono i valori di un carattere intorno alla rispettiva media. Le prime informazioni sulla forma di

Dettagli

Excel_2000 DataBase Capitolo 13. 13-1 - Introduzione

Excel_2000 DataBase Capitolo 13. 13-1 - Introduzione Capittol lo 13 DataBase 13-1 - Introduzione Il termine DATABASE è molto utilizzato, ma spesso in modo inappropriato; generalmente gli utenti hanno un idea di base di dati sbagliata: un database è una tabella

Dettagli

Capitolo 2 Distribuzioni di frequenza

Capitolo 2 Distribuzioni di frequenza Edizioni Simone - Vol. 43/1 Compendio di statistica Capitolo 2 Distribuzioni di frequenza Sommario 1. Distribuzioni semplici. - 2. Distribuzioni doppie. - 3. Distribuzioni parziali: condizionate e marginali.

Dettagli

OSSERVATORIO DEL TURISMO GUIDA AL SERVIZIO

OSSERVATORIO DEL TURISMO GUIDA AL SERVIZIO Pag. 1 di 10 Introduzione Per accedere alla consultazione dei report è necessario compilare i dati della scheda delle impostazioni personali, che comparirà al primo accesso, prima dell utilizzo del sistema.

Dettagli

STUDIO DI SETTORE TK16U

STUDIO DI SETTORE TK16U ALLEGATO 7 NOTA TECNICA E METODOLOGICA EVOLUZIONE STUDIO DI SETTORE TK16U NOTA TECNICA E METODOLOGICA CRITERI PER LA COSTRUZIONE DELLO STUDIO DI SETTORE L evoluzione dello Studio di Settore ha il fine

Dettagli

Elementi di Psicometria con Laboratorio di SPSS 1

Elementi di Psicometria con Laboratorio di SPSS 1 Elementi di Psicometria con Laboratorio di SPSS 1 5-Indici di variabilità (vers. 1.0c, 20 ottobre 2015) Germano Rossi 1 germano.rossi@unimib.it 1 Dipartimento di Psicologia, Università di Milano-Bicocca

Dettagli

LA MATRICE DEI CONTI NAZIONALI. ANNO 2009 1. Nota metodologica

LA MATRICE DEI CONTI NAZIONALI. ANNO 2009 1. Nota metodologica LA MATRICE DEI CONTI NAZIONALI. ANNO 2009 1 Nota metodologica I flussi monetari registrati nei Conti nazionali possono essere presentati in forma matriciale a vari livelli di dettaglio. Tale rappresentazione,

Dettagli

Metodologia per l analisi dei dati sperimentali L analisi di studi con variabili di risposta multiple: Regressione multipla

Metodologia per l analisi dei dati sperimentali L analisi di studi con variabili di risposta multiple: Regressione multipla Il metodo della regressione può essere esteso dal caso in cui si considera la variabilità della risposta della y in relazione ad una sola variabile indipendente X ad una situazione più generale in cui

Dettagli

LA MATRICE DEI CONTI NAZIONALI. ANNO 2011 1. Nota metodologica

LA MATRICE DEI CONTI NAZIONALI. ANNO 2011 1. Nota metodologica LA MATRICE DEI CONTI NAZIONALI. ANNO 2011 1 Nota metodologica I flussi monetari registrati nei Conti nazionali possono essere presentati in forma matriciale a vari livelli di dettaglio. Tale rappresentazione,

Dettagli

Cap. 5. Il progetto sperimentale

Cap. 5. Il progetto sperimentale Cap. 5 Il progetto sperimentale Introduzione La sperimentazione è l orizzonte entro cui genera e sviluppa ogni processo progettazione. Per questo motivo in questo capitolo introduce un metodo progettazione

Dettagli

ESERCITAZIONE 13 : STATISTICA DESCRITTIVA E ANALISI DI REGRESSIONE

ESERCITAZIONE 13 : STATISTICA DESCRITTIVA E ANALISI DI REGRESSIONE ESERCITAZIONE 13 : STATISTICA DESCRITTIVA E ANALISI DI REGRESSIONE e-mail: tommei@dm.unipi.it web: www.dm.unipi.it/ tommei Ricevimento: su appuntamento Dipartimento di Matematica, piano terra, studio 114

Dettagli

RAPPRESENTAZIONE GRAFICA E ANALISI DEI DATI SPERIMENTALI CON EXCEL

RAPPRESENTAZIONE GRAFICA E ANALISI DEI DATI SPERIMENTALI CON EXCEL RAPPRESENTAZIONE GRAFICA E ANALISI DEI DATI SPERIMENTALI CON EXCEL 1 RAPPRESENTAZIONE GRAFICA Per l analisi dati con Excel si fa riferimento alla versione 2007 di Office, le versioni successive non differiscono

Dettagli

Università del Piemonte Orientale. Corsi di laurea triennale di area tecnica. Corso di Statistica Medica. Analisi dei dati in tabelle di contingenza

Università del Piemonte Orientale. Corsi di laurea triennale di area tecnica. Corso di Statistica Medica. Analisi dei dati in tabelle di contingenza Università del Piemonte Orientale Corsi di laurea triennale di area tecnica Corso di Statistica Medica Analisi dei dati in tabelle di contingenza Corsi di laurea triennale di area tecnica - Corso di Statistica

Dettagli

Capitolo 20: Scelta Intertemporale

Capitolo 20: Scelta Intertemporale Capitolo 20: Scelta Intertemporale 20.1: Introduzione Gli elementi di teoria economica trattati finora possono essere applicati a vari contesti. Tra questi, due rivestono particolare importanza: la scelta

Dettagli

Indice. pag. 15. Prefazione. Introduzione» 17

Indice. pag. 15. Prefazione. Introduzione» 17 Indice Prefazione 15 Introduzione 17 1. Pianificazione della qualità 1.1. Il concetto di 6 sigma 1.1.1. Le aree e le fasi del sei sigma 1.2. I processi produttivi e la variabilità 1.2.1. Cause comuni 1.2.2.

Dettagli

Parte 3. Rango e teorema di Rouché-Capelli

Parte 3. Rango e teorema di Rouché-Capelli Parte 3. Rango e teorema di Rouché-Capelli A. Savo Appunti del Corso di Geometria 203-4 Indice delle sezioni Rango di una matrice, 2 Teorema degli orlati, 3 3 Calcolo con l algoritmo di Gauss, 6 4 Matrici

Dettagli

Analisi sensitività. Strumenti per il supporto alle decisioni nel processo di Valutazione d azienda

Analisi sensitività. Strumenti per il supporto alle decisioni nel processo di Valutazione d azienda Analisi sensitività. Strumenti per il supporto alle decisioni nel processo di Valutazione d azienda Premessa Con l analisi di sensitività il perito valutatore elabora un range di valori invece di un dato

Dettagli

MICROECONOMIA La teoria del consumo: Alcuni Arricchimenti. Enrico Saltari Università di Roma La Sapienza

MICROECONOMIA La teoria del consumo: Alcuni Arricchimenti. Enrico Saltari Università di Roma La Sapienza MICROECONOMIA La teoria del consumo: Alcuni Arricchimenti Enrico Saltari Università di Roma La Sapienza 1 Dotazioni iniziali Il consumatore dispone ora non di un dato reddito monetario ma di un ammontare

Dettagli

3. Piano di lavoro: - applicazione di alcune semplici procedure, con il confronto tra le diverse soluzioni possibili nell ambito del programma SPSS

3. Piano di lavoro: - applicazione di alcune semplici procedure, con il confronto tra le diverse soluzioni possibili nell ambito del programma SPSS Per utilizzare SPSS sui PC dell aula informatica occorre accedere come: ID: SPSS Password: winidams Testo rapido di consultazione: Fideli R. Come analizzare i dati al computer. ed. Carocci, Urbino, 2002.

Dettagli

Gli indicatori socio-sanitari. sanitari

Gli indicatori socio-sanitari. sanitari Gli indicatori socio-sanitari sanitari 1 1 INDICATORI SOCIO-SANITARI Misurare: EFFICACIA (rispetto degli obiettivi prefissati) EFFICIENZA (rispetto delle azioni e risorse impegnate) del sistema ospedaliero

Dettagli

TRACCIA DI STUDIO. Concetto di misura. Variabilità biologica

TRACCIA DI STUDIO. Concetto di misura. Variabilità biologica TRACCIA DI STUDIO Variabilità biologica In natura si osservano differenze non solo tra soggetti, ma anche in uno stesso individuo per svariati fattori endocrini, metabolici, emozionali, patologici, da

Dettagli

CAPITOLO 8 LA VERIFICA D IPOTESI. I FONDAMENTI

CAPITOLO 8 LA VERIFICA D IPOTESI. I FONDAMENTI VERO FALSO CAPITOLO 8 LA VERIFICA D IPOTESI. I FONDAMENTI 1. V F Un ipotesi statistica è un assunzione sulle caratteristiche di una o più variabili in una o più popolazioni 2. V F L ipotesi nulla unita

Dettagli

SPECIFICHE E LIMITI DI EXCEL

SPECIFICHE E LIMITI DI EXCEL SPECIFICHE E LIMITI DI EXCEL Un "FOGLIO DI CALCOLO" è un oggetto di un programma per computer costituito da un insieme di celle, organizzate in righe e colonne, atte a memorizzare dati ed effettuare operazioni

Dettagli

STATISTICA DESCRITTIVA - SCHEDA N. 1 VARIABILI QUALITATIVE

STATISTICA DESCRITTIVA - SCHEDA N. 1 VARIABILI QUALITATIVE Matematica e statistica: dai dati ai modelli alle scelte www.dima.unige/pls_statistica Responsabili scientifici M.P. Rogantin e E. Sasso (Dipartimento di Matematica Università di Genova) STATISTICA DESCRITTIVA

Dettagli

GIOCHI A SQUADRE. 30 marzo 2012

GIOCHI A SQUADRE. 30 marzo 2012 Centro Pristem Università Bocconi GIOCHI A SQUADRE 30 marzo 2012 1. La campestre Carla, Milena, Anna, Fausta e Debora hanno partecipato alla corsa campestre della loro classe. Carla e Anna non hanno vinto.

Dettagli

Facciamo qualche precisazione

Facciamo qualche precisazione Abbiamo introdotto alcuni indici statistici (di posizione, di variabilità e di forma) ottenibili da Excel con la funzione Riepilogo Statistiche Facciamo qualche precisazione Al fine della partecipazione

Dettagli

Probabilità condizionata: p(a/b) che avvenga A, una volta accaduto B. Evento prodotto: Evento in cui si verifica sia A che B ; p(a&b) = p(a) x p(b/a)

Probabilità condizionata: p(a/b) che avvenga A, una volta accaduto B. Evento prodotto: Evento in cui si verifica sia A che B ; p(a&b) = p(a) x p(b/a) Probabilità condizionata: p(a/b) che avvenga A, una volta accaduto B Eventi indipendenti: un evento non influenza l altro Eventi disgiunti: il verificarsi di un evento esclude l altro Evento prodotto:

Dettagli

Excel Whatisand whatisnot. Introduzione Funzioni Formule Riferimenti a celle Grafici I problemi ed excel

Excel Whatisand whatisnot. Introduzione Funzioni Formule Riferimenti a celle Grafici I problemi ed excel Excel Whatisand whatisnot Introduzione Funzioni Formule Riferimenti a celle Grafici I problemi ed excel Prima di stampare pensa all ambiente think to environment before printing Introduzione ai primi concetti

Dettagli

Test non parametrici. Test non parametrici. Test non parametrici. Test non parametrici

Test non parametrici. Test non parametrici. Test non parametrici. Test non parametrici Test non parametrici Test non parametrici Il test T di Student per uno o per due campioni, il test F di Fisher per l'analisi della varianza, la correlazione, la regressione, insieme ad altri test di statistica

Dettagli

ORIENTAMENTO E COMUNICAZIONE. Analisi del territorio. Definizione di alternative. Analisi e rappresentazione degli effetti. Scelta tra alternative

ORIENTAMENTO E COMUNICAZIONE. Analisi del territorio. Definizione di alternative. Analisi e rappresentazione degli effetti. Scelta tra alternative SOFTWARE ORIENTAMENTO E COMUNICAZIONE Diario del processo Mappa degli attori Trasparenza delle procedure Analisi del territorio Catalogo dati e indicatori Sistema informativo leggero Definizione di Generazione

Dettagli

Statistica descrittiva: prime informazioni dai dati sperimentali

Statistica descrittiva: prime informazioni dai dati sperimentali SECONDO APPUNTAMENTO CON LA SPERIMENTAZIONE IN AGRICOLTURA Statistica descrittiva: prime informazioni dai dati sperimentali La statistica descrittiva rappresenta la base di partenza per le applicazioni

Dettagli

Differenziazione del Prodotto (DP)

Differenziazione del Prodotto (DP) Differenziazione del Prodotto (DP) DP significa che le imprese vendono beni che il consumatore percepisce come differenti In caso contrario beni omogenei DP è molto diffusa, anche in presenza di beni apparentemente

Dettagli

COVERSIONE DEL CAPITALE IN UNA RENDITA VITALIZIA RITARDATA A cura di Luca Buratto

COVERSIONE DEL CAPITALE IN UNA RENDITA VITALIZIA RITARDATA A cura di Luca Buratto Introduzione COVERSIONE DEL CAPITALE IN UNA RENDITA VITALIZIA RITARDATA A cura di Luca Buratto L art. 1882 del Codice Civile stabilisce che «L assicurazione è il contratto con il quale l assicuratore,

Dettagli

Analisi di scenario File Nr. 10

Analisi di scenario File Nr. 10 1 Analisi di scenario File Nr. 10 Giorgio Calcagnini Università di Urbino Dip. Economia, Società, Politica giorgio.calcagnini@uniurb.it http://www.econ.uniurb.it/calcagnini/ http://www.econ.uniurb.it/calcagnini/forecasting.html

Dettagli

Servizio INFORMATIVA 730

Servizio INFORMATIVA 730 SEAC S.p.A. - 38100 TRENTO - Via Solteri, 74 Internet: www.seac.it - E-mail: info@seac.it Tel. 0461/805111 - Fax 0461/805161 Servizio INFORMATIVA 730 14 MARZO 2008 Informativa n. 25 QUADRO C: MODALITÀ

Dettagli

Test statistici non-parametrici

Test statistici non-parametrici Test statistici non-parametrici Il test t di Student e l ANOVA sono basati su alcune assunzioni. Variabili continue o almeno misurate in un intervallo (es. non conosco il valore assoluto, ma posso quantificare

Dettagli

Utilizzo I mintermini si usano quando si considererà la funzione di uscita Q come Somma di Prodotti (S. P.) ossia OR di AND.

Utilizzo I mintermini si usano quando si considererà la funzione di uscita Q come Somma di Prodotti (S. P.) ossia OR di AND. IPSI G. Plana Via Parenzo 46, Torino efinizione di Mintermine onsiderata una qualunque riga della tabella di verità in cui la funzione booleana di uscita Q vale, si definisce mintermine il prodotto logico

Dettagli

Esercizi su. Funzioni

Esercizi su. Funzioni Esercizi su Funzioni ๒ Varie Tracce extra Sul sito del corso ๓ Esercizi funz_max.cc funz_fattoriale.cc ๔ Documentazione Il codice va documentato (commentato) Leggibilità Riduzione degli errori Manutenibilità

Dettagli

ESERCIZI APPLICAZIONI LINEARI

ESERCIZI APPLICAZIONI LINEARI ESERCIZI APPLICAZIONI LINEARI PAOLO FACCIN 1. Esercizi sulle applicazioni lineari 1.1. Definizioni sulle applicazioni lineari. Siano V, e W spazi vettoriali, con rispettive basi B V := (v 1 v n) e B W

Dettagli

Statistica. Lezione 6

Statistica. Lezione 6 Università degli Studi del Piemonte Orientale Corso di Laurea in Infermieristica Corso integrato in Scienze della Prevenzione e dei Servizi sanitari Statistica Lezione 6 a.a 011-01 Dott.ssa Daniela Ferrante

Dettagli

ANALISI DI CORRELAZIONE

ANALISI DI CORRELAZIONE ANALISI DI CORRELAZIONE Esempio: Dati raccolti da n = 129 studenti di Pavia (A.A. 21/2) Altezza (cm) Peso (Kg) Voto Algebra e Geometria Voto Fisica I Valutare la correlazione delle seguenti coppie: Peso

Dettagli

Esame e Interpretazione di Certificati di Taratura SIT e EA Propagazione delle Incertezze

Esame e Interpretazione di Certificati di Taratura SIT e EA Propagazione delle Incertezze Esame e Interpretazione di Certificati di Taratura SIT e EA Propagazione delle Incertezze PROPAGAZIONE INCERTEZZE 1di 22 INDICE 1. Introduzione 2. Caratteristiche Campioni I^ linea Aziendali 3. Taratura

Dettagli