errore I = numero soggetti (I = 4) K = numero livelli tratt. (K = 3) popolazione varianza dovuta ai soggetti trattamento

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "errore I = numero soggetti (I = 4) K = numero livelli tratt. (K = 3) popolazione varianza dovuta ai soggetti trattamento"

Transcript

1 Analisi della varianza a una via a misure ripetute (Anova con 1 fattore within) modello strutturale dell'analisi della varianza a misure ripetute con 1 fattore: y = μ ik 0 +π i +α k + ik ε ik interazione sogg. tratt. popolazione varianza dovuta ai soggetti trattamento errore I = numero soggetti (I = 4) K = numero livelli tratt. (K = 3) Nel disegno con 1 fattore ripetuto con 2 o più livelli (ossia gli stessi soggetti ripetuti due o più volte), il modello dell analisi della varianza è diverso rispetto a quello a una via per campioni indipendenti. Nel modello a una via a misure ripetute, la varianza del punteggio osservato è data non solo dall effetto della variabile indipendente, ma anche dalle differenze individuali (fattore soggetto) e dall interazione soggetto trattamento. La varianza d errore è data dall interazione oltre che dall errore casuale.

2 L interazione sogg. tratt. determina se l effetto della var. indip. è costante, oppure no per tutti i soggetti. effetto costante peri soggetti nel tempo: soggetto 1 soggetto 2 soggetto 2 effetto variabile per i soggetti nel tempo: soggetto 1 soggetto 2 soggetto 2

3 Esempio: Ricerca di Blanchard e coll. (1978) I ricercatori volevano stabilire se una data tecnica di rilassamento fosse in grado di ridurre il livello di emicrania nelle persone. sono stati selezionati 9 soggetti affetti da emicrania. Per 2 settimane, prima del trattamento (baseline), sono stati misurati (in ore per settimana) le durate delle emicranie. Nelle 3 settimane successive è stata applicata la tecnica di rilassamento. Soggetti I sett. II sett. III sett. IV sett. V sett. medie , , , , , , , ,2 medie 22, ,333 5,778 6,778 media globale: 13,244

4 inserimento dati per ANOVA con 1 fattore within: bisogna creare tante colonne, una per ciascun livello o fase di trattamento.

5 scelta del tipo di analisi: analisi da scegliere quando sia devono fare ANOVE e misure ripetute o miste

6 definizione dei fattori within e scelta delle variabili: fatt. within fatt. between

7

8 Fattori entro soggetticc Mis ura: MEASURE_1 settimana Variabile dipendente sett_1 sett_2 sett_3 sett_4 sett_5 num. livelli fatt. within e colonne variabili associate Effetto settimana Traccia di Pillai Lambda di Wilks Traccia di Hotelling Radice di Roy a. Statistica esatta b. Disegno: Intercetta Disegno entro s oggetti: s ettimana Test multivariati b Gradi di libertà Eta quadrato Valore F Ipotes i df dell'errore Sig. parziale a a a a indici di impatto della variabile indipendente sulla variabile dipendente

9 Il test della sfericità Se si calcolano le varianze dei punteggi dei soggetti per ciascun livello del fattore e le covarianze dei punteggi tra i livelli, si ottiene una matrice di varianze e covarianze. Nel nostro caso, la matrice di varianze e covarianze è: I sett. II sett. III sett. IV sett. V sett. I sett ,75 9,25 7,833 7,333 II sett. 11,75 28,5 13,75 16,375 13,375 III sett. 9,25 13,75 11,5 8,583 8,208 IV sett. 7,833 16,375 8,583 11,694 10,819 V sett. 7,333 13,375 8,208 10,819 16,945 Il test della sfericità valuta la simmetria composta della matrice di varianzecovarianze. Per sfericità composta si intende che le varianze (in rosso nella matrice) e le covarianze (i valori fuori dalla diagonale) siano tra loro omogenee. Se esiste una notevole disparità tra varianze o covarianze, allora l analisi della varianza deve essere corretta.

10 Test di Mauchly H 0 : sfericità non violata Misura: MEASURE_1 Test di sfericità di Mauchly b Effetto entro s oggetti settimana Appros s imaz Epsilon a ione Greenhous Limite W di Mauchly chi-quadrato df Sig. e-geis ser Huynh-Feldt inferiore Verifica l'ipotesi nulla per la quale la matrice di covarianza dell'errore della variabile dipendente tras formata ortonormalizzata è proporzionale a una matrice identità. a. È possibile utilizzarlo per regolare i gradi di libertà per i test di significatività mediati. I test corretti vengono visualizzati nella tabella dei tes t s ugli effetti entro soggetti. b. Disegno: Intercetta Disegno entro s oggetti: s ettimana Se il test di Mauchly non è significativo, allora si può tranquillamente eseguire l analisi di varianza. Se risulta, invece, significativo, occorre aggiustare i gradi di libertà della statistica F. Le procedure per aggiustare i gdl sono: 1. Procedura di Greenhouse e Geisser (più conservatore) 2. Procedura di Huyn e Feldt (meno conservatore) il Limite Inferiore fa riferimento alla massima deviazione dalla sfericità. Il test della sfericità è un test molto conservativo.,dato che riduce la probabilità della statistica F. Il rischio della violazione dell assunzione di sfericità potrebbe implicare, se l effetto della var. indip. è debole, un esito negativo (F risulta non significativo) dell analisi di varianza.

11 tabella dei valori F per il fattore within: Test degli effetti entro soggetti Misura: MEASURE_1 Sorgente settimana Errore(settimana) Assumendo la sfericità Greenhous e-geis ser Huynh-Feldt Limite inferiore Assumendo la sfericità Greenhous e-geis ser Huynh-Feldt Limite inferiore Somma dei quadrati Media dei Tipo III df quadrati F Sig valori da considerare in caso di violazione della sfericità (test di Mauchly significativo)

12 Analisi del trend o dei contrasti (Trend analysis) Tale analisi serve per stabilire come varia lungo i livelli della var. indip. l effetto. Tale analisi descrive la forma dell effetto per i vari livelli del fattore. Test dei contrasti entro soggetti Misura: MEASURE_1 Sorgente settimana Errore(settimana) settimana Lineare Quadratico Cubico Ordine 4 Lineare Quadratico Cubico Ordine 4 Somma dei quadrati Media dei Eta quadrato Tipo III df quadrati F Sig. parziale coefficienti: lin. -2,-1,0,1,2 quadr. -2,1,2,1,-2 cub. -1,1,0,-1,1 quart. 1,-2,2,-2,1 le somme dei coeff. danno sempre 0

13 finestra di output (grafico):

14 attacchi di emicrania grafico corretto: trattamento disegno quasisperimentale (disegno AB) baseline 0 sett. 1 sett. 2 sett. 3 sett. 4 sett. 5 numero settimane tabella dei fattori between: Test degli effetti fra soggetti Misura: MEASURE_1 Variabile trasformata: Media Sorgente Intercetta Errore Somma dei quadrati Media dei Eta quadrato Tipo III df quadrati F Sig. parziale

15 Disegni fattoriali I disegni fattoriali sono quei disegni in cui vengono manipolate o selezionate due o più var. indip. Il vantaggio dei disegni fattoriali consiste soprattutto: 1. possibilità di verificare contemporaneamente l effetto di più variabili e la loro interazione 2. economicità in termini di numero di soggetti per verificare le ipotesi tipi di disegni fattoriali: 1. disegno fattoriale tra i soggetti (disegno con fattori between) B 1 B 2 a d n = 12 A 1 b e c g f j A 2 h k i l

16 2. disegno fattoriale entro i soggetti (disegno con fattori within) n = 3 B 1 B 2 a a A 1 b b c a c a A 2 b b c c 3. disegno fattoriale misto (disegno con fattori between e within) B 1 B 2 n = 6 a a A 1 b b c d c d A 2 e e f f

17 Nei disegni fattoriali abbiamo: 1. Gli effetti principali. L effetto principale è l effetto medie di una variabile in tutti i valori di un altra variabile. 2. L interazione. Indica l esistenza di un interazione tra due variabili. Due variabili interagiscono se l effetto di una variabile dipende dal livello dell altra. In altri termini, se l interazione tra due variabili è significativa, allora l effetto di una variabile è modulato da quello dell altra.

18 Solo con i disegni fattoriali è possibile studiare l interazione tra le variabili, e solo con l analisi della varianza è possibile verificare se l interazione è significativa o no. L interazione, quando è significativa, riduce la generalizzabilità dell effetto principale.

19 Disegno fattoriale con 2 fattori between Ricerca di Eysenck (1974). Nella sua ricerca, Eysenck oltre all effetto dovuto al tipo di elaborazione del materiale verbale, voleva verificare anche l effetto dell età sulla capacità di memorizzazione. Perciò nel suo esperimento partecipavano 50 soggetti di età tra i 18 e i 30 anni (giovani) e 50 soggetti di età tra i 55 e i 65 anni (anziani) soggetti conta rima aggettivo immagine intenzionale Medie II fatt anziani anni Medie 7 6, , , giovani anni Medie 6,5 7,6 14,8 17,6 19,3 13,16 Medie I fatt. 6,75 7,25 12,9 15,5 15,65

20 inserimento dati: var. dip. (misura) secondo fattore: età dei soggetti (1=55-65 anni); 2= anni) primo fattore: metodo di elaborazione (1=conta; 2=rima;3=aggettivo; 4=immagine; 5=intenzionale)

21 tipo di analisi:

22 scelta della var. dip. e dei fattori between: grafico:

23 livelli dei fattori e numero di soggetti per livello: Fattori tra soggetti 1=conta;2=rima;3= aggettivo;4=immag ine;5=intenzionale 1=55-65 anni; 2=18-30 anni N tabella delle statistiche F degli effetti principali (metodo ed età) e dell interazione: Variabile dipendente: parole ricordate (0-27) Sorgente Modello corretto Intercetta metodo eta metodo * eta Errore Totale Totale corretto Test degli effetti fra soggetti Somma dei quadrati Media dei Eta quadrato Tipo III df quadrati F Sig. parziale a a. R quadrato =.729 (R quadrato corretto =.702) effetti principali interazione sia gli effetti principali che l interazione sono significativi

24 grafico:

25 medie delle risposte corrette interpretazione dei dati (disegno fattoriale tra i soggetti): effetti e interazione F p metodo 47,19 <.001 età 29,94 <.001 tipo x età 5,93 < anziani giovani cont rima agg imm int tipo di metodo elaborazione Combinando i risultati dell analisi di varianza con la rappresentazione grafica delle medie per i diversi livelli del primo fattore in relazione ai diversi gruppi, possiamo dire che il metodo di elaborazione influisce sulla capacità di memoria, tuttavia anche l età influisce, dato che, soprattutto per l elaborazione più profonda sono i giovani, rispetto agli anziani, a trarne maggior beneficio.

26 Disegno misto (1 fattore between e 1 fattore within) Un ricercatore vuole verificare l efficacia di tre metodi per smettere di fumare: 1. Il primo metodo consiste in una graduale diminuzione del numero di sigarette fumate 2. Il secondo metodo consiste nell immediata diminuzione del numero di sigarette 3. Il terzo metodo consiste nel seguire una terapia antifumo Il ricercatore divide un campione di 15 soggetti in 3 gruppi, uno per ciascun metodo, e poi chiede loro di valutare su una scala da 0 a 10 il desiderio di fumare propria ora sia quando stanno a casa, sia quando sono a lavoro. Il disegno è un disegno misto, perche abbiamo il tipo di metodo che implica soggetti diversi per ciascun livello (fattore metodo fattore between) e il luogo in cui i soggetti devono dichiarare il loro desiderio di fumare (fattore luogo fattore within).

27 Dati della ricerca: Casa Lavoro Medie I fatt. Metodo ,7 Metodo ,3 Metodo ,6 Medie II fatt. 5,47 3,6

28 inserimento dati: primo livello within secondo livello within I livello fattore between II livello III livello per ogni livello del fattore within va creata un apposita colonna di dati. I livelli del fattore between sono ripartiti per righe. La colonna del fattore between indica le righe che appartengono ad un dato livello del fattore between.

29 scelta del tipo di analisi:

30 definizione dei livelli del fattore within: scelta delle variabili (var. dip., fattore within e fattore between): forma grafico:

31 output dell analisi: Fattori tra soggetti N metodo numero livelli del fattore within e numerosità soggetti per livello effetto dei fattori within e dell interazione sulla var. dip. Test multivariati b Effetto luogo luogo * metodo a. Statistica esatta b. Traccia di Pillai Lambda di Wilks Traccia di Hotelling Radice di Roy Traccia di Pillai Lambda di Wilks Traccia di Hotelling Radice di Roy Gradi di libertà Eta quadrato Valore F Ipotes i df dell'errore Sig. parziale a a a a a a a a Disegno: Intercetta+metodo Disegno entro s oggetti: luogo

32 Test di sfericità di Mauchly b Misura: MEASURE_1 Effetto entro s oggetti luogo Appros s imaz Epsilon a ione Greenhous Limite W di Mauchly chi-quadrato df Sig. e-geis ser Huynh-Feldt inferiore Verifica l'ipotesi nulla per la quale la matrice di covarianza dell'errore della variabile dipendente tras formata ortonormalizzata è proporzionale a una matrice identità. a. È possibile utilizzarlo per regolare i gradi di libertà per i test di significatività mediati. I test corretti vengono visualizzati nella tabella dei tes t s ugli effetti entro soggetti. b. Disegno: Intercetta+metodo Disegno entro s oggetti: luogo tabella degli F per il fattore within e per l interazione: Test degli effetti entro soggetti il test di Mauchly è inutile in quanto il fattore within ha solo 2 livelli Misura: MEASURE_1 Sorgente luogo luogo * metodo Errore(luogo) Assumendo la sfericità Greenhous e-geis ser Huynh-Feldt Limite inferiore Assumendo la sfericità Greenhous e-geis ser Huynh-Feldt Limite inferiore Assumendo la sfericità Greenhous e-geis ser Huynh-Feldt Limite inferiore Somma dei quadrati Media dei Eta quadrato Tipo III df quadrati F Sig. parziale l effetto principale luogo è significativo l interazione non è significativa

33 analisi del trend: Test dei contrasti entro soggetti Misura: MEASURE_1 Sorgente luogo luogo * metodo Errore(luogo) luogo Lineare Lineare Lineare Somma dei quadrati Media dei Eta quadrato Tipo III df quadrati F Sig. parziale tabella degli F per il fattore between: Misura: MEASURE_1 Variabile tras formata: Media Sorgente Intercetta metodo Errore Test degli effetti fra soggetti Somma dei quadrati Media dei Eta quadrato Tipo III df quadrati F Sig. parziale l effetto principale è significativo

34 grafico:

35 tabella riassuntiva degli effetti principali e dell interazione (disegno fattoriale misto): desiderio di fumare effetti e interazione F p fattori between metodo 4,33 <.05 fattori within e interazioni luogo 44,80 <.001 luogo x metodo 2, interpretazione dei dati: l effetto principale metodo è significativo, nel senso che, tra i vari metodi, il metodo 3 (terapia antifumo) è quello più efficace nel ridurre il bisogno di fumare 2 0 lavoro casa met. 1 met. 2 met. 3 metodo antifumo L effetto principale luogo è significativo, nel senso che nel luogo di lavoro i soggetti sentono meno l esigenza di fumare L interazione non è significativa, quindi c è indipendenza tra gli effetti delle due var. indip.

36 Alcune cose da tenere a mente sull analisi di varianza: 1.solo l analisi di varianza permette il test dell interazione 2. evitare disegni troppo complessi, ad es. A B C D. Se l interazione per 4 fattori è significativa, occorre spiegarla. 3. per interpretare i dati correttamente, è necessario anche osservare l andamento delle medie (grafico delle medie) 4. attenzione ai fattori entro (within) o tra (between) i soggetti. Occorre applicare il modello corretto di varianza a seconda del tipo di fattore.

Corso di laurea in Scienze Motorie Corso di Statistica Docente: Dott.ssa Immacolata Scancarello Lezione 14: Analisi della varianza (ANOVA)

Corso di laurea in Scienze Motorie Corso di Statistica Docente: Dott.ssa Immacolata Scancarello Lezione 14: Analisi della varianza (ANOVA) Corso di laurea in Scienze Motorie Corso di Statistica Docente: Dott.ssa Immacolata Scancarello Lezione 4: Analisi della varianza (ANOVA) Analisi della varianza Analisi della varianza (ANOVA) ANOVA ad

Dettagli

Facoltà di Psicologia Università di Padova Anno Accademico 2010-2011

Facoltà di Psicologia Università di Padova Anno Accademico 2010-2011 Facoltà di Psicologia Università di Padova Anno Accademico 010-011 Corso di Psicometria - Modulo B Dott. Marco Vicentini marco.vicentini@unipd.it Rev. 10/01/011 La distribuzione F di Fisher - Snedecor

Dettagli

LE ASSUNZIONI DELL'ANOVA

LE ASSUNZIONI DELL'ANOVA LE ASSUNZIONI DELL'ANOVA Sono le assunzioni del test t, ma estese a tutti i gruppi: o La variabile deve avere una distribuzione normale in tutte le popolazioni corrispondenti ai gruppi campionati o Le

Dettagli

In una tabella 2 x 2 il valore del chiquadrato, che quantifica la differenza fra i numero osservati e quelli attesi, è la somma delle quattro celle

In una tabella 2 x 2 il valore del chiquadrato, che quantifica la differenza fra i numero osservati e quelli attesi, è la somma delle quattro celle Test statistici il chi quadrato Valutare la differenza tra due percentuali o proporzioni L'ipotesi zero (o ipotesi nulla) afferma che la differenza osservata - di qualsiasi entità essa sia - è dovuta al

Dettagli

IBM SPSS Advanced Statistics 20

IBM SPSS Advanced Statistics 20 IBM SPSS Advanced Statistics 20 Nota: Prima di utilizzare queste informazioni e il relativo prodotto, leggere le informazioni generali disponibili in Note legali a pag. 173. Questa versione si applica

Dettagli

1) Si consideri un esperimento che consiste nel lancio di 5 dadi. Lo spazio campionario:

1) Si consideri un esperimento che consiste nel lancio di 5 dadi. Lo spazio campionario: Esempi di domande risposta multipla (Modulo II) 1) Si consideri un esperimento che consiste nel lancio di 5 dadi. Lo spazio campionario: 1) ha un numero di elementi pari a 5; 2) ha un numero di elementi

Dettagli

Relazioni tra variabili

Relazioni tra variabili Università degli Studi di Padova Facoltà di Medicina e Chirurgia Corso di Laurea in Medicina e Chirurgia - A.A. 009-10 Scuole di specializzazione in: Medicina Legale, Medicina del Lavoro, Igiene e Medicina

Dettagli

Metodi statistici per le ricerche di mercato

Metodi statistici per le ricerche di mercato Metodi statistici per le ricerche di mercato Prof.ssa Isabella Mingo A.A. 2014-2015 Facoltà di Scienze Politiche, Sociologia, Comunicazione Corso di laurea Magistrale in «Organizzazione e marketing per

Dettagli

Strumenti informatici 13.1

Strumenti informatici 13.1 1 Strumenti informatici 1.1 I test post-hoc nel caso del confronto fra tre o più proporzioni dipendenti e la realizzazione del test Q di Cochran in SPSS Nel caso dei test post-hoc per il test Q di Cochran,

Dettagli

Elementi di Psicometria con Laboratorio di SPSS 1

Elementi di Psicometria con Laboratorio di SPSS 1 Elementi di Psicometria con Laboratorio di SPSS 1 5-Indici di variabilità (vers. 1.0c, 20 ottobre 2015) Germano Rossi 1 germano.rossi@unimib.it 1 Dipartimento di Psicologia, Università di Milano-Bicocca

Dettagli

General Linear Model. Esercizio

General Linear Model. Esercizio Esercizio General Linear Model Una delle molteplici applicazioni del General Linear Model è la Trend Surface Analysis. Questa tecnica cerca di individuare, in un modello di superficie, quale tendenza segue

Dettagli

Statistica Medica. Verranno presi in esame:

Statistica Medica. Verranno presi in esame: Statistica Medica Premessa: il seguente testo cerca di riassumere e rendere in forma comprensibile ai non esperti in matematica e statistica le nozioni e le procedure necessarie a svolgere gli esercizi

Dettagli

Microeconometria (Silvia Tiezzi) 01 aprile2011 Esercitazione

Microeconometria (Silvia Tiezzi) 01 aprile2011 Esercitazione Microeconometria (Silvia Tiezzi) 01 aprile2011 Esercitazione Esercizio 1 Si consideri il seguente modello ad effetti fissi con variabili binarie: + 1 2 a) supponete che N=3. Si mostri che i regressori

Dettagli

INTRODUZIONE AL DESIGN OF EXPERIMENTS (Parte 1)

INTRODUZIONE AL DESIGN OF EXPERIMENTS (Parte 1) INTRODUZIONE AL DESIGN OF EXPERIMENTS (Parte 1) 151 Introduzione Un esperimento è una prova o una serie di prove. Gli esperimenti sono largamente utilizzati nel campo dell ingegneria. Tra le varie applicazioni;

Dettagli

FACOLTÀ DI ECONOMIA Soluzione della Prova di autovalutazione 2012 (primi 6 CFU) ANALISI STATISTICA PER L IMPRESA

FACOLTÀ DI ECONOMIA Soluzione della Prova di autovalutazione 2012 (primi 6 CFU) ANALISI STATISTICA PER L IMPRESA FACOLTÀ DI ECONOMIA Soluzione della Prova di autovalutazione 2012 (primi 6 CFU) ANALISI STATISTICA PER L IMPRESA NB Come potete vedere facendo la somma dei punteggi il numero di quesiti è superiore a quello

Dettagli

ANALISI DELLE FREQUENZE: IL TEST CHI 2

ANALISI DELLE FREQUENZE: IL TEST CHI 2 ANALISI DELLE FREQUENZE: IL TEST CHI 2 Quando si hanno scale nominali o ordinali, non è possibile calcolare il t, poiché non abbiamo medie, ma solo frequenze. In questi casi, per verificare se un evento

Dettagli

Statistica multivariata. Statistica multivariata. Analisi multivariata. Dati multivariati. x 11 x 21. x 12 x 22. x 1m x 2m. x nm. x n2.

Statistica multivariata. Statistica multivariata. Analisi multivariata. Dati multivariati. x 11 x 21. x 12 x 22. x 1m x 2m. x nm. x n2. Analisi multivariata Statistica multivariata Quando il numero delle variabili rilevate sullo stesso soggetto aumentano, il problema diventa gestirle tutte e capirne le relazioni. Cercare di capire le relazioni

Dettagli

RISCHIO E RENDIMENTO DEGLI STRUMENTI FINANZIARI. Docente: Prof. Massimo Mariani

RISCHIO E RENDIMENTO DEGLI STRUMENTI FINANZIARI. Docente: Prof. Massimo Mariani RISCHIO E RENDIMENTO DEGLI STRUMENTI FINANZIARI Docente: Prof. Massimo Mariani 1 SOMMARIO Il rendimento di un attività finanziaria: i parametri rilevanti Rendimento totale, periodale e medio Il market

Dettagli

Elaborazione dati in Analisi Sensoriale

Elaborazione dati in Analisi Sensoriale Elaborazione dati in Analisi Sensoriale Si è parlato di interpretazione corretta dei risultati ottenuti; a questo concorrono due fattori: affidabilità e validità. Se i test fossero stati ripetuti con lo

Dettagli

Elementi di Psicometria

Elementi di Psicometria Elementi di Psicometria 12-Correlazione vers. 1.1 (27 novembre 2012) Germano Rossi 1 germano.rossi@unimib.it 1 Dipartimento di Psicologia, Università di Milano-Bicocca 2011-2012 G. Rossi (Dip. Psicologia)

Dettagli

STATISTICA IX lezione

STATISTICA IX lezione Anno Accademico 013-014 STATISTICA IX lezione 1 Il problema della verifica di un ipotesi statistica In termini generali, si studia la distribuzione T(X) di un opportuna grandezza X legata ai parametri

Dettagli

Un po di statistica. Christian Ferrari. Laboratorio di Matematica

Un po di statistica. Christian Ferrari. Laboratorio di Matematica Un po di statistica Christian Ferrari Laboratorio di Matematica 1 Introduzione La statistica è una parte della matematica applicata che si occupa della raccolta, dell analisi e dell interpretazione di

Dettagli

Diaz - Appunti di Statistica - AA 2001/2002 - edizione 29/11/01 Cap. 3 - Pag. 1 = 1

Diaz - Appunti di Statistica - AA 2001/2002 - edizione 29/11/01 Cap. 3 - Pag. 1 = 1 Diaz - Appunti di Statistica - AA 2001/2002 - edizione 29/11/01 Cap. 3 - Pag. 1 Capitolo 3. L'analisi della varianza. Il problema dei confronti multipli. La soluzione drastica di Bonferroni ed il test

Dettagli

Appunti di Statistica Descrittiva

Appunti di Statistica Descrittiva Appunti di Statistica Descrittiva 30 dicembre 009 1 La tabella a doppia entrata Per studiare dei fenomeni con caratteristiche statistiche si utilizza l espediente della tabella a doppia entrata Per esempio

Dettagli

Test non parametrici. Test non parametrici. Test non parametrici. Test non parametrici

Test non parametrici. Test non parametrici. Test non parametrici. Test non parametrici Test non parametrici Test non parametrici Il test T di Student per uno o per due campioni, il test F di Fisher per l'analisi della varianza, la correlazione, la regressione, insieme ad altri test di statistica

Dettagli

è decidere sulla verità o falsità

è decidere sulla verità o falsità I test di ipotesi I test di ipotesi Il test delle ipotesi consente di verificare se, e in quale misura, una determinata ipotesi (di carattere sociale, biologico, medico, economico, ecc.) è supportata dall

Dettagli

STATISTICA INFERENZIALE PER VARIABILI QUALITATIVE

STATISTICA INFERENZIALE PER VARIABILI QUALITATIVE STATISTICA INFERENZIALE PER VARIABILI QUALITATIVE La presentazione dei dati per molte ricerche mediche fa comunemente riferimento a frequenze, assolute o percentuali. Osservazioni cliniche conducono sovente

Dettagli

Università del Piemonte Orientale. Corsi di Specialità. Corso di Statistica Medica. Analisi dei dati quantitativi : Analisi della varianza

Università del Piemonte Orientale. Corsi di Specialità. Corso di Statistica Medica. Analisi dei dati quantitativi : Analisi della varianza Università del Piemonte Orientale Corsi di Specialità Corso di Statistica Medica Analisi dei dati quantitativi : Analisi della varianza Università del Piemonte Orientale Corso di laurea in biotecnologie

Dettagli

Elaborazione dei dati su PC Regressione Multipla

Elaborazione dei dati su PC Regressione Multipla 21 Elaborazione dei dati su PC Regressione Multipla Analizza Regressione Statistiche Grafici Metodo di selezione Analisi dei dati 21.1 Introduzione 21.2 Regressione lineare multipla con SPSS 21.3 Regressione

Dettagli

STATISTICA DESCRITTIVA SCHEDA N. 5: REGRESSIONE LINEARE

STATISTICA DESCRITTIVA SCHEDA N. 5: REGRESSIONE LINEARE STATISTICA DESCRITTIVA SCHEDA N. : REGRESSIONE LINEARE Nella Scheda precedente abbiamo visto che il coefficiente di correlazione fra due variabili quantitative X e Y fornisce informazioni sull esistenza

Dettagli

Metodi statistici per le ricerche di mercato

Metodi statistici per le ricerche di mercato Metodi statistici per le ricerche di mercato Prof.ssa Isabella Mingo A.A. 2013-2014 Facoltà di Scienze Politiche, Sociologia, Comunicazione Corso di laurea Magistrale in «Organizzazione e marketing per

Dettagli

Il modello di regressione lineare multivariata

Il modello di regressione lineare multivariata Il modello di regressione lineare multivariata Eduardo Rossi 2 2 Università di Pavia (Italy) Aprile 2013 Rossi MRLM Econometria - 2013 1 / 39 Outline 1 Notazione 2 il MRLM 3 Il modello partizionato 4 Collinearità

Dettagli

3) ANALISI DEI RESIDUI

3) ANALISI DEI RESIDUI 3) ANALISI DEI RESIDUI Dopo l analisi di regressione si eseguono alcuni test sui residui per avere una ulteriore conferma della validità del modello e delle assunzioni (distribuzione normale degli errori,

Dettagli

PARTE TERZA. STATISTICA DESCRITTIVA MULTIDIMENSIONALE (Analisi delle Relazioni)

PARTE TERZA. STATISTICA DESCRITTIVA MULTIDIMENSIONALE (Analisi delle Relazioni) PARTE TERZA STATISTICA DESCRITTIVA MULTIDIMESIOALE (Analisi delle Relazioni) La notazione matriciale 3 III.. LA OTAZIOE MATRICIALE III... L analisi statistica dei fenomeni multivariati L intrinseca complessità

Dettagli

ANALISI DELLA VARIANZA A PIU CRITERI DI CLASSIFICAZIONE

ANALISI DELLA VARIANZA A PIU CRITERI DI CLASSIFICAZIONE ANALISI DELLA VARIANZA A PIU CRITERI DI CLASSIFICAZIONE CON REPLICHE INTRODUZIONE Lo studio di un fenomeno non si deve limitareit alla valutazione dei singoli fattori in studio ma molto spesso è importante

Dettagli

4.2. IL TEST F DI FISHER O ANALISI DELLA VARIANZA (ANOVA)

4.2. IL TEST F DI FISHER O ANALISI DELLA VARIANZA (ANOVA) 4.2. IL TEST F DI FISHER O ANALISI DELLA VARIANZA (ANOVA) L analisi della varianza è un metodo sviluppato da Fisher, che è fondamentale per l interpretazione statistica di molti dati biologici ed è alla

Dettagli

Brugnaro Luca Boscaro Gianni (2009) 1

Brugnaro Luca Boscaro Gianni (2009) 1 STATISTICA PER LE PROFESSIONI SANITARIE - LIVELLO BASE Brugnaro Luca Boscaro Gianni (2009) 1 Perché la statistica Prendere decisioni Bibliografia non soddisfacente Richieste nuove conoscenze Raccolta delle

Dettagli

ANALISI DEI DATI PER IL MARKETING 2014

ANALISI DEI DATI PER IL MARKETING 2014 ANALISI DEI DATI PER IL MARKETING 2014 Marco Riani mriani@unipr.it http://www.riani.it RIPASSO SULLE MATRICI 1 Addizione tra matrici Moltiplicazione Matrice diagonale Matrice identità Matrice trasposta

Dettagli

Cluster gerarchica. Capitolo

Cluster gerarchica. Capitolo Cluster gerarchica Capitolo 33 Questa procedura consente di identificare gruppi di casi relativamente omogenei in base alle caratteristiche selezionate, utilizzando un algoritmo che inizia con ciascun

Dettagli

VARIANZA CAMPIONARIA E DEVIAZIONE STANDARD. Si definisce scarto quadratico medio o deviazione standard la radice quadrata della varianza.

VARIANZA CAMPIONARIA E DEVIAZIONE STANDARD. Si definisce scarto quadratico medio o deviazione standard la radice quadrata della varianza. VARIANZA CAMPIONARIA E DEVIAZIONE STANDARD Si definisce varianza campionaria l indice s 2 = 1 (x i x) 2 = 1 ( xi 2 n x 2) Si definisce scarto quadratico medio o deviazione standard la radice quadrata della

Dettagli

4. Confronto tra medie di tre o più campioni indipendenti

4. Confronto tra medie di tre o più campioni indipendenti BIOSTATISTICA 4. Confronto tra medie di tre o più campioni indipendenti Marta Blangiardo, Imperial College, London Department of Epidemiology and Public Health m.blangiardo@imperial.ac.uk MARTA BLANGIARDO

Dettagli

CAPITOLO III CONFRONTI TRA DISTRIBUZIONI

CAPITOLO III CONFRONTI TRA DISTRIBUZIONI CAPITOLO III CONFRONTI TRA DISTRIBUZIONI 3.1 CONFRONTI TRA DISTRIBUZIONI OSSERVATE E DISTRIBUZIONI TEORICHE OD ATTESE. Nella teoria statistica e nella pratica sperimentale, è frequente la necessità di

Dettagli

RELAZIONE TRA DUE VARIABILI QUANTITATIVE

RELAZIONE TRA DUE VARIABILI QUANTITATIVE RELAZIONE TRA DUE VARIABILI QUANTITATIVE Quando si considerano due o più caratteri (variabili) si possono esaminare anche il tipo e l'intensità delle relazioni che sussistono tra loro. Nel caso in cui

Dettagli

Progettazione del processo produttivo

Progettazione del processo produttivo Progettazione del processo produttivo Il miglioramento della qualità e della produttività ha maggiore efficacia quando è parte integrante del processo di realizzazione del prodotto. In particolare l uso

Dettagli

LEZIONE n. 5 (a cura di Antonio Di Marco)

LEZIONE n. 5 (a cura di Antonio Di Marco) LEZIONE n. 5 (a cura di Antonio Di Marco) IL P-VALUE (α) Data un ipotesi nulla (H 0 ), questa la si può accettare o rifiutare in base al valore del p- value. In genere il suo valore è un numero molto piccolo,

Dettagli

Confronto tra gruppi (campioni indipendenti)

Confronto tra gruppi (campioni indipendenti) Confronto tra gruppi (campioni indipendenti) Campioni provenienti da una popolazione Normale con medie che possono essere diverse ma varianze uguali campioni: Test z or t sulla differenza tra medie 3,

Dettagli

Scheda n.5: variabili aleatorie e valori medi

Scheda n.5: variabili aleatorie e valori medi Scheda n.5: variabili aleatorie e valori medi October 26, 2008 1 Variabili aleatorie Per la definizione rigorosa di variabile aleatoria rimandiamo ai testi di probabilità; essa è non del tutto immediata

Dettagli

Piacenza, 10 marzo 2014 La preparazione della tesi di Laurea Magistrale

Piacenza, 10 marzo 2014 La preparazione della tesi di Laurea Magistrale Piacenza, 0 marzo 204 La preparazione della tesi di Laurea Magistrale ma questa statistica a che cosa serve? non vedo l ora di cominciare a lavorare per la tesi. e dimenticarmi la statistica!! il mio relatore

Dettagli

La statistica multivariata

La statistica multivariata Cenni di Statistica Multivariata Dr Corrado Costa La statistica multivariata La statistica multivariata è quella parte della statistica in cui l'oggetto dell'analisi è per sua natura formato da almeno

Dettagli

Abbiamo visto due definizioni del valore medio e della deviazione standard di una grandezza casuale, in funzione dalle informazioni disponibili:

Abbiamo visto due definizioni del valore medio e della deviazione standard di una grandezza casuale, in funzione dalle informazioni disponibili: Incertezze di misura Argomenti: classificazione delle incertezze; definizione di incertezza tipo e schemi di calcolo; schemi per il calcolo dell incertezza di grandezze combinate; confronto di misure affette

Dettagli

FONDAMENTI DI PSICOMETRIA - 8 CFU

FONDAMENTI DI PSICOMETRIA - 8 CFU Ψ FONDAMENTI DI PSICOMETRIA - 8 CFU STIMA DELL ATTENDIBILITA STIMA DELL ATTENDIBILITA DEFINIZIONE DI ATTENDIBILITA (affidabilità, fedeltà) Grado di accordo tra diversi tentativi di misurare uno stesso

Dettagli

Università del Piemonte Orientale. Corsi di Laurea Triennale. Corso di Statistica e Biometria. Introduzione e Statistica descrittiva

Università del Piemonte Orientale. Corsi di Laurea Triennale. Corso di Statistica e Biometria. Introduzione e Statistica descrittiva Università del Piemonte Orientale Corsi di Laurea Triennale Corso di Statistica e Biometria Introduzione e Statistica descrittiva Corsi di Laurea Triennale Corso di Statistica e Biometria: Introduzione

Dettagli

Regressione Mario Guarracino Data Mining a.a. 2010/2011

Regressione Mario Guarracino Data Mining a.a. 2010/2011 Regressione Esempio Un azienda manifatturiera vuole analizzare il legame che intercorre tra il volume produttivo X per uno dei propri stabilimenti e il corrispondente costo mensile Y di produzione. Volume

Dettagli

Esperimenti in vaso: disegni a randomizzazione completa

Esperimenti in vaso: disegni a randomizzazione completa Esperimenti in vaso: disegni a randomizzazione completa Andrea Onofri 10 marzo 2015 Indice 1 Disegno sperimentale 2 2 Analisi dei dati 3 2.1 Analisi della varianza (ANOVA).................. 4 2.2 Errore

Dettagli

Tecniche statistiche di analisi del cambiamento

Tecniche statistiche di analisi del cambiamento Tecniche statistiche di analisi del cambiamento 06-Anova per misure ripetute (vers. 1.0a, 1 dicembre 2016) Germano Rossi 1 germano.rossi@unimib.it 1 Dipartimento di Psicologia, Università di Milano-Bicocca

Dettagli

L Analisi della Varianza ANOVA (ANalysis Of VAriance)

L Analisi della Varianza ANOVA (ANalysis Of VAriance) L Analisi della Varianza ANOVA (ANalysis Of VAriance) 1 CONCETTI GENERALI Finora abbiamo descritto test di ipotesi finalizzati alla verifica di ipotesi sulla differenza tra parametri di due popolazioni

Dettagli

Analisi dei residui. Test Esatto di Fisher. Differenza fra proporzioni

Analisi dei residui. Test Esatto di Fisher. Differenza fra proporzioni Statistica Economica Materiale didattico a cura del docente Analisi dei residui Test Esatto di Fisher Differenza fra proporzioni 1 Analisi dei residui Il test statistico ed il suo p-valore riassumono la

Dettagli

Parte 3. Rango e teorema di Rouché-Capelli

Parte 3. Rango e teorema di Rouché-Capelli Parte 3. Rango e teorema di Rouché-Capelli A. Savo Appunti del Corso di Geometria 203-4 Indice delle sezioni Rango di una matrice, 2 Teorema degli orlati, 3 3 Calcolo con l algoritmo di Gauss, 6 4 Matrici

Dettagli

Progettazione del processo

Progettazione del processo Progettazione del processo produttivo Il miglioramento della qualità e della produttività ha maggiore efficacia quando è parte integrante del processo di realizzazione del prodotto. In particolare l uso

Dettagli

LEZIONI DI STATISTCA APPLICATA. Parte 2. Statistica inferenziale. Variabili continue per continue. Alessandro Valbonesi. SARRF di Scienze ambientali

LEZIONI DI STATISTCA APPLICATA. Parte 2. Statistica inferenziale. Variabili continue per continue. Alessandro Valbonesi. SARRF di Scienze ambientali LEZIONI DI STATISTCA APPLICATA Parte 2 Statistica inferenziale Variabili continue per continue Alessandro Valbonesi SARRF di Scienze ambientali Anno accademico 2010-11 CAPITOLO 7 - RELAZIONI TRA DUE O

Dettagli

LA CORRELAZIONE LINEARE

LA CORRELAZIONE LINEARE LA CORRELAZIONE LINEARE La correlazione indica la tendenza che hanno due variabili (X e Y) a variare insieme, ovvero, a covariare. Ad esempio, si può supporre che vi sia una relazione tra l insoddisfazione

Dettagli

Statistica. Lezione 6

Statistica. Lezione 6 Università degli Studi del Piemonte Orientale Corso di Laurea in Infermieristica Corso integrato in Scienze della Prevenzione e dei Servizi sanitari Statistica Lezione 6 a.a 011-01 Dott.ssa Daniela Ferrante

Dettagli

Probabilità condizionata: p(a/b) che avvenga A, una volta accaduto B. Evento prodotto: Evento in cui si verifica sia A che B ; p(a&b) = p(a) x p(b/a)

Probabilità condizionata: p(a/b) che avvenga A, una volta accaduto B. Evento prodotto: Evento in cui si verifica sia A che B ; p(a&b) = p(a) x p(b/a) Probabilità condizionata: p(a/b) che avvenga A, una volta accaduto B Eventi indipendenti: un evento non influenza l altro Eventi disgiunti: il verificarsi di un evento esclude l altro Evento prodotto:

Dettagli

Excel Terza parte. Excel 2003

Excel Terza parte. Excel 2003 Excel Terza parte Excel 2003 TABELLA PIVOT Selezioniamo tutti i dati (con le relative etichette) Dati Rapporto tabella pivot e grafico pivot Fine 2 La tabella pivot viene messa di default in una pagina

Dettagli

T DI STUDENT Quando si vogliono confrontare solo due medie, si può utilizzare il test t di Student La formula per calcolare il t è la seguente:

T DI STUDENT Quando si vogliono confrontare solo due medie, si può utilizzare il test t di Student La formula per calcolare il t è la seguente: T DI STUDENT Quando si vogliono confrontare solo due medie, si può utilizzare il test t di Student La formula per calcolare il t è la seguente: t = X i X j s 2 i (n i 1) + s 2 j (n j 1) n i + n j - 2 1

Dettagli

Esercitazione di riepilogo 23 Aprile 2013

Esercitazione di riepilogo 23 Aprile 2013 Esercitazione di riepilogo 23 Aprile 2013 Grafici Grafico a barre Servono principalmente per rappresentare variabili (caratteri) qualitative, quantitative e discrete. Grafico a settori circolari (torta)

Dettagli

VERIFICA DELLE IPOTESI

VERIFICA DELLE IPOTESI VERIFICA DELLE IPOTESI Nella verifica delle ipotesi è necessario fissare alcune fasi prima di iniziare ad analizzare i dati. a) Si deve stabilire quale deve essere l'ipotesi nulla (H0) e quale l'ipotesi

Dettagli

Elementi di Statistica

Elementi di Statistica Elementi di Statistica Contenuti Contenuti di Statistica nel corso di Data Base Elementi di statistica descrittiva: media, moda, mediana, indici di dispersione Introduzione alle variabili casuali e alle

Dettagli

Parte 2. Determinante e matrice inversa

Parte 2. Determinante e matrice inversa Parte. Determinante e matrice inversa A. Savo Appunti del Corso di Geometria 013-14 Indice delle sezioni 1 Determinante di una matrice, 1 Teorema di Cramer (caso particolare), 3 3 Determinante di una matrice

Dettagli

Facciamo qualche precisazione

Facciamo qualche precisazione Abbiamo introdotto alcuni indici statistici (di posizione, di variabilità e di forma) ottenibili da Excel con la funzione Riepilogo Statistiche Facciamo qualche precisazione Al fine della partecipazione

Dettagli

Università del Piemonte Orientale. Corso di laurea in biotecnologia. Corso di Statistica Medica. Analisi dei dati quantitativi :

Università del Piemonte Orientale. Corso di laurea in biotecnologia. Corso di Statistica Medica. Analisi dei dati quantitativi : Università del Piemonte Orientale Corso di laurea in biotecnologia Corso di Statistica Medica Analisi dei dati quantitativi : Confronto tra due medie Università del Piemonte Orientale Corso di laurea in

Dettagli

Dimensione di uno Spazio vettoriale

Dimensione di uno Spazio vettoriale Capitolo 4 Dimensione di uno Spazio vettoriale 4.1 Introduzione Dedichiamo questo capitolo ad un concetto fondamentale in algebra lineare: la dimensione di uno spazio vettoriale. Daremo una definizione

Dettagli

Elementi di Psicometria con Laboratorio di SPSS 1

Elementi di Psicometria con Laboratorio di SPSS 1 Elementi di Psicometria con Laboratorio di SPSS 1 12-Il t-test per campioni appaiati vers. 1.2 (7 novembre 2014) Germano Rossi 1 germano.rossi@unimib.it 1 Dipartimento di Psicologia, Università di Milano-Bicocca

Dettagli

STATISTICA GIUSEPPE DE NICOLAO. Dipartimento di Informatica e Sistemistica Università di Pavia

STATISTICA GIUSEPPE DE NICOLAO. Dipartimento di Informatica e Sistemistica Università di Pavia STATISTICA GIUSEPPE DE NICOLAO Dipartimento di Informatica e Sistemistica Università di Pavia SOMMARIO V.C. vettoriali Media e varianza campionarie Proprietà degli stimatori Intervalli di confidenza Statistica

Dettagli

Prof.ssa Paola Vicard

Prof.ssa Paola Vicard Questa nota consiste perlopiù nella traduzione (con alcune integrazioni) da Descriptive statistics di J. Shalliker e C. Ricketts, 2000, University of Plymouth Consideriamo i dati nel file esercizio10_dati.xls.

Dettagli

Facoltà di Psicologia Università di Padova Anno Accademico 2010-2011

Facoltà di Psicologia Università di Padova Anno Accademico 2010-2011 Facoltà di Psicologia Università di Padova Anno Accademico 2010-2011 L4, Corso Integrato di Psicometria - Modulo B Dr. Marco Vicentini marco.vicentini@unipd.it Rev. 18/04/2011 Inferenza statistica Formulazione

Dettagli

Statistica. Esercitazione 15. Alfonso Iodice D Enza iodicede@unicas.it. Università degli studi di Cassino. Statistica. A. Iodice

Statistica. Esercitazione 15. Alfonso Iodice D Enza iodicede@unicas.it. Università degli studi di Cassino. Statistica. A. Iodice Esercitazione 15 Alfonso Iodice D Enza iodicede@unicas.it Università degli studi di Cassino () 1 / 18 L importanza del gruppo di controllo In tutti i casi in cui si voglia studiare l effetto di un certo

Dettagli

ELEMENTI DI CALCOLO DELLE PROBABILITA

ELEMENTI DI CALCOLO DELLE PROBABILITA Statistica, CLEA p. 1/55 ELEMENTI DI CALCOLO DELLE PROBABILITA Premessa importante: il comportamento della popolazione rispetto una variabile casuale X viene descritto attraverso una funzione parametrica

Dettagli

MINIMI QUADRATI. REGRESSIONE LINEARE

MINIMI QUADRATI. REGRESSIONE LINEARE MINIMI QUADRATI. REGRESSIONE LINEARE Se il coefficiente di correlazione r è prossimo a 1 o a -1 e se il diagramma di dispersione suggerisce una relazione di tipo lineare, ha senso determinare l equazione

Dettagli

CORSO DI STATISTICA (parte 1) - ESERCITAZIONE 7

CORSO DI STATISTICA (parte 1) - ESERCITAZIONE 7 CORSO DI STATISTICA (parte 1) - ESERCITAZIONE 7 Dott.ssa Antonella Costanzo a.costanzo@unicas.it Esercizio 1. Calcolo delle probabilità Il Sig. Rossi abita nella città X e lavora nella città Y, poco distante.

Dettagli

Rischio e rendimento degli strumenti finanziari

Rischio e rendimento degli strumenti finanziari Finanza Aziendale Analisi e valutazioni per le decisioni aziendali Rischio e rendimento degli strumenti finanziari Capitolo 15 Indice degli argomenti 1. Analisi dei rendimenti delle principali attività

Dettagli

Metodi e tecniche di analisi dei dati nella ricerca psico-educativa Parte II

Metodi e tecniche di analisi dei dati nella ricerca psico-educativa Parte II Laboratorio Metodi e tecniche di analisi dei dati nella ricerca psico-educativa Parte II Laura Palmerio Università Tor Vergata A.A. 2005/2006 Ipotesi sperimentale o alternativa e Ipotesi zero o nulla Ipotesi

Dettagli

RAPPRESENTAZIONE GRAFICA E ANALISI DEI DATI SPERIMENTALI CON EXCEL

RAPPRESENTAZIONE GRAFICA E ANALISI DEI DATI SPERIMENTALI CON EXCEL RAPPRESENTAZIONE GRAFICA E ANALISI DEI DATI SPERIMENTALI CON EXCEL 1 RAPPRESENTAZIONE GRAFICA Per l analisi dati con Excel si fa riferimento alla versione 2007 di Office, le versioni successive non differiscono

Dettagli

Statistica descrittiva: prime informazioni dai dati sperimentali

Statistica descrittiva: prime informazioni dai dati sperimentali SECONDO APPUNTAMENTO CON LA SPERIMENTAZIONE IN AGRICOLTURA Statistica descrittiva: prime informazioni dai dati sperimentali La statistica descrittiva rappresenta la base di partenza per le applicazioni

Dettagli

EMBA PART TIME 2012 ROMA I ANNO

EMBA PART TIME 2012 ROMA I ANNO BUSINESS STATISTICS: ASSIGNMENT II: EMBA PART TIME 2012 ROMA I ANNO PROF. MOSCONI ESERCIZIO 1: USO DEL MODELLO DI REGRESSIONE PER DETERMINARE IL VALORE DEGLI IMMOBILI. ESERCIZIO 2: PREVISIONE DI VARIABILI

Dettagli

ESERCIZIO 1. Di seguito vengono riportati i risultati di un modello fattoriale di analisi della varianza con 3 fattori tra i soggetti.

ESERCIZIO 1. Di seguito vengono riportati i risultati di un modello fattoriale di analisi della varianza con 3 fattori tra i soggetti. ESERCIZIO. Di seguito vengono riportati i risultati di un modello fattoriale di analisi della varianza con fattori tra i soggetti. Variabile dipendente: PERF Sorgente Modello corretto Intercept SEX_96

Dettagli

VARIABILI ALEATORIE MULTIPLE E TEOREMI ASSOCIATI. Dopo aver trattato delle distribuzioni di probabilità di una variabile aleatoria, che

VARIABILI ALEATORIE MULTIPLE E TEOREMI ASSOCIATI. Dopo aver trattato delle distribuzioni di probabilità di una variabile aleatoria, che VARIABILI ALATORI MULTIPL TORMI ASSOCIATI Fonti: Cicchitelli Dall Aglio Mood-Grabill. Moduli 6 9 0 del programma. VARIABILI ALATORI DOPPI Dopo aver trattato delle distribuzioni di probabilità di una variabile

Dettagli

LEZIONE 23. Esempio 23.1.3. Si consideri la matrice (si veda l Esempio 22.2.5) A = 1 2 2 3 3 0

LEZIONE 23. Esempio 23.1.3. Si consideri la matrice (si veda l Esempio 22.2.5) A = 1 2 2 3 3 0 LEZIONE 23 231 Diagonalizzazione di matrici Abbiamo visto nella precedente lezione che, in generale, non è immediato che, data una matrice A k n,n con k = R, C, esista sempre una base costituita da suoi

Dettagli

Istituzioni di Statistica e Statistica Economica

Istituzioni di Statistica e Statistica Economica Istituzioni di Statistica e Statistica Economica Università degli Studi di Perugia Facoltà di Economia, Assisi, a.a. 2013/14 Esercitazione n. 3 A. Sia una variabile casuale che si distribuisce secondo

Dettagli

1. Richiami di Statistica. Stefano Di Colli

1. Richiami di Statistica. Stefano Di Colli 1. Richiami di Statistica Metodi Statistici per il Credito e la Finanza Stefano Di Colli Dati: Fonti e Tipi I dati sperimentali sono provenienti da un contesto delimitato, definito per rispettare le caratteristiche

Dettagli

LA STATISTICA E IL CALCOLO DELLE PROBABILITÀ

LA STATISTICA E IL CALCOLO DELLE PROBABILITÀ LA STATISTICA E IL CALCOLO DELLE PROBABILITÀ Prof. Francesco Tottoli Versione 3 del 20 febbraio 2012 DEFINIZIONE È una scienza giovane e rappresenta uno strumento essenziale per la scoperta di leggi e

Dettagli

STUDIO DI SETTORE SG42U

STUDIO DI SETTORE SG42U ALLEGATO 2 NOTA TECNICA E METODOLOGICA STUDIO DI SETTORE SG42U NOTA TECNICA E METODOLOGICA CRITERI PER LA COSTRUZIONE DELLO STUDIO DI SETTORE Di seguito vengono esposti i criteri seguiti per la costruzione

Dettagli

6. Modelli statistici: analisi della regressione lineare

6. Modelli statistici: analisi della regressione lineare BIOSTATISTICA 6. Modelli statistici: analisi della regressione lineare Marta Blangiardo, Imperial College, London Department of Epidemiology and Public Health m.blangiardo@imperial.ac.uk MARTA BLANGIARDO

Dettagli

Concetto di potenza statistica

Concetto di potenza statistica Calcolo della numerosità campionaria Prof. Giuseppe Verlato Sezione di Epidemiologia e Statistica Medica, Università di Verona Concetto di potenza statistica 1 Accetto H 0 Rifiuto H 0 Ipotesi Nulla (H

Dettagli

Elaborazione delle Immagini Digitali

Elaborazione delle Immagini Digitali Elaborazione delle Immagini Digitali Parte I Prof. Edoardo Ardizzone A.A. 2-22 La trasformata di Hotelling o di Karhunen-Loeve KLT discreta Questa trasformata detta anche analisi delle componenti principali

Dettagli

Metodologia per l analisi dei dati sperimentali L analisi di studi con variabili di risposta multiple: Regressione multipla

Metodologia per l analisi dei dati sperimentali L analisi di studi con variabili di risposta multiple: Regressione multipla Il metodo della regressione può essere esteso dal caso in cui si considera la variabilità della risposta della y in relazione ad una sola variabile indipendente X ad una situazione più generale in cui

Dettagli

Nella prima parte del corso l attenzione è venuta appuntandosi sui problemi inerenti la valutazione di investimenti aziendali e di strumenti

Nella prima parte del corso l attenzione è venuta appuntandosi sui problemi inerenti la valutazione di investimenti aziendali e di strumenti Nella prima parte del corso l attenzione è venuta appuntandosi sui problemi inerenti la valutazione di investimenti aziendali e di strumenti finanziari in un contesto di flussi finanziari certi, tuttavia

Dettagli

lezione 18 AA 2015-2016 Paolo Brunori

lezione 18 AA 2015-2016 Paolo Brunori AA 2015-2016 Paolo Brunori Previsioni - spesso come economisti siamo interessati a prevedere quale sarà il valore di una certa variabile nel futuro - quando osserviamo una variabile nel tempo possiamo

Dettagli

La categoria «ES» presenta (di solito) gli stessi comandi

La categoria «ES» presenta (di solito) gli stessi comandi Utilizzo delle calcolatrici FX 991 ES+ Parte II PARMA, 11 Marzo 2014 Prof. Francesco Bologna bolfra@gmail.com ARGOMENTI DELLA LEZIONE 1. Richiami lezione precedente 2.Calcolo delle statistiche di regressione:

Dettagli

ESERCITAZIONE 13 : STATISTICA DESCRITTIVA E ANALISI DI REGRESSIONE

ESERCITAZIONE 13 : STATISTICA DESCRITTIVA E ANALISI DI REGRESSIONE ESERCITAZIONE 13 : STATISTICA DESCRITTIVA E ANALISI DI REGRESSIONE e-mail: tommei@dm.unipi.it web: www.dm.unipi.it/ tommei Ricevimento: su appuntamento Dipartimento di Matematica, piano terra, studio 114

Dettagli