errore I = numero soggetti (I = 4) K = numero livelli tratt. (K = 3) popolazione varianza dovuta ai soggetti trattamento

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "errore I = numero soggetti (I = 4) K = numero livelli tratt. (K = 3) popolazione varianza dovuta ai soggetti trattamento"

Transcript

1 Analisi della varianza a una via a misure ripetute (Anova con 1 fattore within) modello strutturale dell'analisi della varianza a misure ripetute con 1 fattore: y = μ ik 0 +π i +α k + ik ε ik interazione sogg. tratt. popolazione varianza dovuta ai soggetti trattamento errore I = numero soggetti (I = 4) K = numero livelli tratt. (K = 3) Nel disegno con 1 fattore ripetuto con 2 o più livelli (ossia gli stessi soggetti ripetuti due o più volte), il modello dell analisi della varianza è diverso rispetto a quello a una via per campioni indipendenti. Nel modello a una via a misure ripetute, la varianza del punteggio osservato è data non solo dall effetto della variabile indipendente, ma anche dalle differenze individuali (fattore soggetto) e dall interazione soggetto trattamento. La varianza d errore è data dall interazione oltre che dall errore casuale.

2 L interazione sogg. tratt. determina se l effetto della var. indip. è costante, oppure no per tutti i soggetti. effetto costante peri soggetti nel tempo: soggetto 1 soggetto 2 soggetto 2 effetto variabile per i soggetti nel tempo: soggetto 1 soggetto 2 soggetto 2

3 Esempio: Ricerca di Blanchard e coll. (1978) I ricercatori volevano stabilire se una data tecnica di rilassamento fosse in grado di ridurre il livello di emicrania nelle persone. sono stati selezionati 9 soggetti affetti da emicrania. Per 2 settimane, prima del trattamento (baseline), sono stati misurati (in ore per settimana) le durate delle emicranie. Nelle 3 settimane successive è stata applicata la tecnica di rilassamento. Soggetti I sett. II sett. III sett. IV sett. V sett. medie , , , , , , , ,2 medie 22, ,333 5,778 6,778 media globale: 13,244

4 inserimento dati per ANOVA con 1 fattore within: bisogna creare tante colonne, una per ciascun livello o fase di trattamento.

5 scelta del tipo di analisi: analisi da scegliere quando sia devono fare ANOVE e misure ripetute o miste

6 definizione dei fattori within e scelta delle variabili: fatt. within fatt. between

7

8 Fattori entro soggetticc Mis ura: MEASURE_1 settimana Variabile dipendente sett_1 sett_2 sett_3 sett_4 sett_5 num. livelli fatt. within e colonne variabili associate Effetto settimana Traccia di Pillai Lambda di Wilks Traccia di Hotelling Radice di Roy a. Statistica esatta b. Disegno: Intercetta Disegno entro s oggetti: s ettimana Test multivariati b Gradi di libertà Eta quadrato Valore F Ipotes i df dell'errore Sig. parziale a a a a indici di impatto della variabile indipendente sulla variabile dipendente

9 Il test della sfericità Se si calcolano le varianze dei punteggi dei soggetti per ciascun livello del fattore e le covarianze dei punteggi tra i livelli, si ottiene una matrice di varianze e covarianze. Nel nostro caso, la matrice di varianze e covarianze è: I sett. II sett. III sett. IV sett. V sett. I sett ,75 9,25 7,833 7,333 II sett. 11,75 28,5 13,75 16,375 13,375 III sett. 9,25 13,75 11,5 8,583 8,208 IV sett. 7,833 16,375 8,583 11,694 10,819 V sett. 7,333 13,375 8,208 10,819 16,945 Il test della sfericità valuta la simmetria composta della matrice di varianzecovarianze. Per sfericità composta si intende che le varianze (in rosso nella matrice) e le covarianze (i valori fuori dalla diagonale) siano tra loro omogenee. Se esiste una notevole disparità tra varianze o covarianze, allora l analisi della varianza deve essere corretta.

10 Test di Mauchly H 0 : sfericità non violata Misura: MEASURE_1 Test di sfericità di Mauchly b Effetto entro s oggetti settimana Appros s imaz Epsilon a ione Greenhous Limite W di Mauchly chi-quadrato df Sig. e-geis ser Huynh-Feldt inferiore Verifica l'ipotesi nulla per la quale la matrice di covarianza dell'errore della variabile dipendente tras formata ortonormalizzata è proporzionale a una matrice identità. a. È possibile utilizzarlo per regolare i gradi di libertà per i test di significatività mediati. I test corretti vengono visualizzati nella tabella dei tes t s ugli effetti entro soggetti. b. Disegno: Intercetta Disegno entro s oggetti: s ettimana Se il test di Mauchly non è significativo, allora si può tranquillamente eseguire l analisi di varianza. Se risulta, invece, significativo, occorre aggiustare i gradi di libertà della statistica F. Le procedure per aggiustare i gdl sono: 1. Procedura di Greenhouse e Geisser (più conservatore) 2. Procedura di Huyn e Feldt (meno conservatore) il Limite Inferiore fa riferimento alla massima deviazione dalla sfericità. Il test della sfericità è un test molto conservativo.,dato che riduce la probabilità della statistica F. Il rischio della violazione dell assunzione di sfericità potrebbe implicare, se l effetto della var. indip. è debole, un esito negativo (F risulta non significativo) dell analisi di varianza.

11 tabella dei valori F per il fattore within: Test degli effetti entro soggetti Misura: MEASURE_1 Sorgente settimana Errore(settimana) Assumendo la sfericità Greenhous e-geis ser Huynh-Feldt Limite inferiore Assumendo la sfericità Greenhous e-geis ser Huynh-Feldt Limite inferiore Somma dei quadrati Media dei Tipo III df quadrati F Sig valori da considerare in caso di violazione della sfericità (test di Mauchly significativo)

12 Analisi del trend o dei contrasti (Trend analysis) Tale analisi serve per stabilire come varia lungo i livelli della var. indip. l effetto. Tale analisi descrive la forma dell effetto per i vari livelli del fattore. Test dei contrasti entro soggetti Misura: MEASURE_1 Sorgente settimana Errore(settimana) settimana Lineare Quadratico Cubico Ordine 4 Lineare Quadratico Cubico Ordine 4 Somma dei quadrati Media dei Eta quadrato Tipo III df quadrati F Sig. parziale coefficienti: lin. -2,-1,0,1,2 quadr. -2,1,2,1,-2 cub. -1,1,0,-1,1 quart. 1,-2,2,-2,1 le somme dei coeff. danno sempre 0

13 finestra di output (grafico):

14 attacchi di emicrania grafico corretto: trattamento disegno quasisperimentale (disegno AB) baseline 0 sett. 1 sett. 2 sett. 3 sett. 4 sett. 5 numero settimane tabella dei fattori between: Test degli effetti fra soggetti Misura: MEASURE_1 Variabile trasformata: Media Sorgente Intercetta Errore Somma dei quadrati Media dei Eta quadrato Tipo III df quadrati F Sig. parziale

15 Disegni fattoriali I disegni fattoriali sono quei disegni in cui vengono manipolate o selezionate due o più var. indip. Il vantaggio dei disegni fattoriali consiste soprattutto: 1. possibilità di verificare contemporaneamente l effetto di più variabili e la loro interazione 2. economicità in termini di numero di soggetti per verificare le ipotesi tipi di disegni fattoriali: 1. disegno fattoriale tra i soggetti (disegno con fattori between) B 1 B 2 a d n = 12 A 1 b e c g f j A 2 h k i l

16 2. disegno fattoriale entro i soggetti (disegno con fattori within) n = 3 B 1 B 2 a a A 1 b b c a c a A 2 b b c c 3. disegno fattoriale misto (disegno con fattori between e within) B 1 B 2 n = 6 a a A 1 b b c d c d A 2 e e f f

17 Nei disegni fattoriali abbiamo: 1. Gli effetti principali. L effetto principale è l effetto medie di una variabile in tutti i valori di un altra variabile. 2. L interazione. Indica l esistenza di un interazione tra due variabili. Due variabili interagiscono se l effetto di una variabile dipende dal livello dell altra. In altri termini, se l interazione tra due variabili è significativa, allora l effetto di una variabile è modulato da quello dell altra.

18 Solo con i disegni fattoriali è possibile studiare l interazione tra le variabili, e solo con l analisi della varianza è possibile verificare se l interazione è significativa o no. L interazione, quando è significativa, riduce la generalizzabilità dell effetto principale.

19 Disegno fattoriale con 2 fattori between Ricerca di Eysenck (1974). Nella sua ricerca, Eysenck oltre all effetto dovuto al tipo di elaborazione del materiale verbale, voleva verificare anche l effetto dell età sulla capacità di memorizzazione. Perciò nel suo esperimento partecipavano 50 soggetti di età tra i 18 e i 30 anni (giovani) e 50 soggetti di età tra i 55 e i 65 anni (anziani) soggetti conta rima aggettivo immagine intenzionale Medie II fatt anziani anni Medie 7 6, , , giovani anni Medie 6,5 7,6 14,8 17,6 19,3 13,16 Medie I fatt. 6,75 7,25 12,9 15,5 15,65

20 inserimento dati: var. dip. (misura) secondo fattore: età dei soggetti (1=55-65 anni); 2= anni) primo fattore: metodo di elaborazione (1=conta; 2=rima;3=aggettivo; 4=immagine; 5=intenzionale)

21 tipo di analisi:

22 scelta della var. dip. e dei fattori between: grafico:

23 livelli dei fattori e numero di soggetti per livello: Fattori tra soggetti 1=conta;2=rima;3= aggettivo;4=immag ine;5=intenzionale 1=55-65 anni; 2=18-30 anni N tabella delle statistiche F degli effetti principali (metodo ed età) e dell interazione: Variabile dipendente: parole ricordate (0-27) Sorgente Modello corretto Intercetta metodo eta metodo * eta Errore Totale Totale corretto Test degli effetti fra soggetti Somma dei quadrati Media dei Eta quadrato Tipo III df quadrati F Sig. parziale a a. R quadrato =.729 (R quadrato corretto =.702) effetti principali interazione sia gli effetti principali che l interazione sono significativi

24 grafico:

25 medie delle risposte corrette interpretazione dei dati (disegno fattoriale tra i soggetti): effetti e interazione F p metodo 47,19 <.001 età 29,94 <.001 tipo x età 5,93 < anziani giovani cont rima agg imm int tipo di metodo elaborazione Combinando i risultati dell analisi di varianza con la rappresentazione grafica delle medie per i diversi livelli del primo fattore in relazione ai diversi gruppi, possiamo dire che il metodo di elaborazione influisce sulla capacità di memoria, tuttavia anche l età influisce, dato che, soprattutto per l elaborazione più profonda sono i giovani, rispetto agli anziani, a trarne maggior beneficio.

26 Disegno misto (1 fattore between e 1 fattore within) Un ricercatore vuole verificare l efficacia di tre metodi per smettere di fumare: 1. Il primo metodo consiste in una graduale diminuzione del numero di sigarette fumate 2. Il secondo metodo consiste nell immediata diminuzione del numero di sigarette 3. Il terzo metodo consiste nel seguire una terapia antifumo Il ricercatore divide un campione di 15 soggetti in 3 gruppi, uno per ciascun metodo, e poi chiede loro di valutare su una scala da 0 a 10 il desiderio di fumare propria ora sia quando stanno a casa, sia quando sono a lavoro. Il disegno è un disegno misto, perche abbiamo il tipo di metodo che implica soggetti diversi per ciascun livello (fattore metodo fattore between) e il luogo in cui i soggetti devono dichiarare il loro desiderio di fumare (fattore luogo fattore within).

27 Dati della ricerca: Casa Lavoro Medie I fatt. Metodo ,7 Metodo ,3 Metodo ,6 Medie II fatt. 5,47 3,6

28 inserimento dati: primo livello within secondo livello within I livello fattore between II livello III livello per ogni livello del fattore within va creata un apposita colonna di dati. I livelli del fattore between sono ripartiti per righe. La colonna del fattore between indica le righe che appartengono ad un dato livello del fattore between.

29 scelta del tipo di analisi:

30 definizione dei livelli del fattore within: scelta delle variabili (var. dip., fattore within e fattore between): forma grafico:

31 output dell analisi: Fattori tra soggetti N metodo numero livelli del fattore within e numerosità soggetti per livello effetto dei fattori within e dell interazione sulla var. dip. Test multivariati b Effetto luogo luogo * metodo a. Statistica esatta b. Traccia di Pillai Lambda di Wilks Traccia di Hotelling Radice di Roy Traccia di Pillai Lambda di Wilks Traccia di Hotelling Radice di Roy Gradi di libertà Eta quadrato Valore F Ipotes i df dell'errore Sig. parziale a a a a a a a a Disegno: Intercetta+metodo Disegno entro s oggetti: luogo

32 Test di sfericità di Mauchly b Misura: MEASURE_1 Effetto entro s oggetti luogo Appros s imaz Epsilon a ione Greenhous Limite W di Mauchly chi-quadrato df Sig. e-geis ser Huynh-Feldt inferiore Verifica l'ipotesi nulla per la quale la matrice di covarianza dell'errore della variabile dipendente tras formata ortonormalizzata è proporzionale a una matrice identità. a. È possibile utilizzarlo per regolare i gradi di libertà per i test di significatività mediati. I test corretti vengono visualizzati nella tabella dei tes t s ugli effetti entro soggetti. b. Disegno: Intercetta+metodo Disegno entro s oggetti: luogo tabella degli F per il fattore within e per l interazione: Test degli effetti entro soggetti il test di Mauchly è inutile in quanto il fattore within ha solo 2 livelli Misura: MEASURE_1 Sorgente luogo luogo * metodo Errore(luogo) Assumendo la sfericità Greenhous e-geis ser Huynh-Feldt Limite inferiore Assumendo la sfericità Greenhous e-geis ser Huynh-Feldt Limite inferiore Assumendo la sfericità Greenhous e-geis ser Huynh-Feldt Limite inferiore Somma dei quadrati Media dei Eta quadrato Tipo III df quadrati F Sig. parziale l effetto principale luogo è significativo l interazione non è significativa

33 analisi del trend: Test dei contrasti entro soggetti Misura: MEASURE_1 Sorgente luogo luogo * metodo Errore(luogo) luogo Lineare Lineare Lineare Somma dei quadrati Media dei Eta quadrato Tipo III df quadrati F Sig. parziale tabella degli F per il fattore between: Misura: MEASURE_1 Variabile tras formata: Media Sorgente Intercetta metodo Errore Test degli effetti fra soggetti Somma dei quadrati Media dei Eta quadrato Tipo III df quadrati F Sig. parziale l effetto principale è significativo

34 grafico:

35 tabella riassuntiva degli effetti principali e dell interazione (disegno fattoriale misto): desiderio di fumare effetti e interazione F p fattori between metodo 4,33 <.05 fattori within e interazioni luogo 44,80 <.001 luogo x metodo 2, interpretazione dei dati: l effetto principale metodo è significativo, nel senso che, tra i vari metodi, il metodo 3 (terapia antifumo) è quello più efficace nel ridurre il bisogno di fumare 2 0 lavoro casa met. 1 met. 2 met. 3 metodo antifumo L effetto principale luogo è significativo, nel senso che nel luogo di lavoro i soggetti sentono meno l esigenza di fumare L interazione non è significativa, quindi c è indipendenza tra gli effetti delle due var. indip.

36 Alcune cose da tenere a mente sull analisi di varianza: 1.solo l analisi di varianza permette il test dell interazione 2. evitare disegni troppo complessi, ad es. A B C D. Se l interazione per 4 fattori è significativa, occorre spiegarla. 3. per interpretare i dati correttamente, è necessario anche osservare l andamento delle medie (grafico delle medie) 4. attenzione ai fattori entro (within) o tra (between) i soggetti. Occorre applicare il modello corretto di varianza a seconda del tipo di fattore.

Corso di laurea in Scienze Motorie Corso di Statistica Docente: Dott.ssa Immacolata Scancarello Lezione 14: Analisi della varianza (ANOVA)

Corso di laurea in Scienze Motorie Corso di Statistica Docente: Dott.ssa Immacolata Scancarello Lezione 14: Analisi della varianza (ANOVA) Corso di laurea in Scienze Motorie Corso di Statistica Docente: Dott.ssa Immacolata Scancarello Lezione 4: Analisi della varianza (ANOVA) Analisi della varianza Analisi della varianza (ANOVA) ANOVA ad

Dettagli

General Linear Model. Esercizio

General Linear Model. Esercizio Esercizio General Linear Model Una delle molteplici applicazioni del General Linear Model è la Trend Surface Analysis. Questa tecnica cerca di individuare, in un modello di superficie, quale tendenza segue

Dettagli

RELAZIONE TRA DUE VARIABILI QUANTITATIVE

RELAZIONE TRA DUE VARIABILI QUANTITATIVE RELAZIONE TRA DUE VARIABILI QUANTITATIVE Quando si considerano due o più caratteri (variabili) si possono esaminare anche il tipo e l'intensità delle relazioni che sussistono tra loro. Nel caso in cui

Dettagli

4.2. IL TEST F DI FISHER O ANALISI DELLA VARIANZA (ANOVA)

4.2. IL TEST F DI FISHER O ANALISI DELLA VARIANZA (ANOVA) 4.2. IL TEST F DI FISHER O ANALISI DELLA VARIANZA (ANOVA) L analisi della varianza è un metodo sviluppato da Fisher, che è fondamentale per l interpretazione statistica di molti dati biologici ed è alla

Dettagli

Confronto tra gruppi (campioni indipendenti)

Confronto tra gruppi (campioni indipendenti) Confronto tra gruppi (campioni indipendenti) Campioni provenienti da una popolazione Normale con medie che possono essere diverse ma varianze uguali campioni: Test z or t sulla differenza tra medie 3,

Dettagli

Elementi di Statistica

Elementi di Statistica Elementi di Statistica Contenuti Contenuti di Statistica nel corso di Data Base Elementi di statistica descrittiva: media, moda, mediana, indici di dispersione Introduzione alle variabili casuali e alle

Dettagli

Diaz - Appunti di Statistica - AA 2001/2002 - edizione 29/11/01 Cap. 3 - Pag. 1 = 1

Diaz - Appunti di Statistica - AA 2001/2002 - edizione 29/11/01 Cap. 3 - Pag. 1 = 1 Diaz - Appunti di Statistica - AA 2001/2002 - edizione 29/11/01 Cap. 3 - Pag. 1 Capitolo 3. L'analisi della varianza. Il problema dei confronti multipli. La soluzione drastica di Bonferroni ed il test

Dettagli

4. Confronto tra medie di tre o più campioni indipendenti

4. Confronto tra medie di tre o più campioni indipendenti BIOSTATISTICA 4. Confronto tra medie di tre o più campioni indipendenti Marta Blangiardo, Imperial College, London Department of Epidemiology and Public Health m.blangiardo@imperial.ac.uk MARTA BLANGIARDO

Dettagli

Statistica. Lezione 6

Statistica. Lezione 6 Università degli Studi del Piemonte Orientale Corso di Laurea in Infermieristica Corso integrato in Scienze della Prevenzione e dei Servizi sanitari Statistica Lezione 6 a.a 011-01 Dott.ssa Daniela Ferrante

Dettagli

ANALISI DELLA VARIANZA A PIU CRITERI DI CLASSIFICAZIONE

ANALISI DELLA VARIANZA A PIU CRITERI DI CLASSIFICAZIONE ANALISI DELLA VARIANZA A PIU CRITERI DI CLASSIFICAZIONE CON REPLICHE INTRODUZIONE Lo studio di un fenomeno non si deve limitareit alla valutazione dei singoli fattori in studio ma molto spesso è importante

Dettagli

ANALISI DEI DATI CON SPSS

ANALISI DEI DATI CON SPSS STRUMENTI E METODI PER LE SCIENZE SOCIALI Claudio Barbaranelli ANALISI DEI DATI CON SPSS II. LE ANALISI MULTIVARIATE ISBN 978-88-7916-315-9 Copyright 2006 Via Cervignano 4-20137 Milano Catalogo: www.lededizioni.com

Dettagli

Capitolo 9: PROPAGAZIONE DEGLI ERRORI

Capitolo 9: PROPAGAZIONE DEGLI ERRORI Capitolo 9: PROPAGAZIOE DEGLI ERRORI 9.1 Propagazione degli errori massimi ella maggior parte dei casi le grandezze fisiche vengono misurate per via indiretta. Il valore della grandezza viene cioè dedotto

Dettagli

STATISTICA INFERENZIALE PER VARIABILI QUALITATIVE

STATISTICA INFERENZIALE PER VARIABILI QUALITATIVE STATISTICA INFERENZIALE PER VARIABILI QUALITATIVE La presentazione dei dati per molte ricerche mediche fa comunemente riferimento a frequenze, assolute o percentuali. Osservazioni cliniche conducono sovente

Dettagli

ANALISI DELLE FREQUENZE: IL TEST CHI 2

ANALISI DELLE FREQUENZE: IL TEST CHI 2 ANALISI DELLE FREQUENZE: IL TEST CHI 2 Quando si hanno scale nominali o ordinali, non è possibile calcolare il t, poiché non abbiamo medie, ma solo frequenze. In questi casi, per verificare se un evento

Dettagli

Accuratezza di uno strumento

Accuratezza di uno strumento Accuratezza di uno strumento Come abbiamo già accennato la volta scora, il risultato della misurazione di una grandezza fisica, qualsiasi sia lo strumento utilizzato, non è mai un valore numerico X univocamente

Dettagli

Dott.ssa Caterina Gurrieri

Dott.ssa Caterina Gurrieri Dott.ssa Caterina Gurrieri Le relazioni tra caratteri Data una tabella a doppia entrata, grande importanza riveste il misurare se e in che misura le variabili in essa riportata sono in qualche modo

Dettagli

STUDIO DI SETTORE SM43U

STUDIO DI SETTORE SM43U ALLEGATO 3 NOTA TECNICA E METODOLOGICA STUDIO DI SETTORE SM43U NOTA TECNICA E METODOLOGICA CRITERI PER LA COSTRUZIONE DELLO STUDIO DI SETTORE Di seguito vengono esposti i criteri seguiti per la costruzione

Dettagli

ESERCIZI SVOLTI PER LA PROVA DI STATISTICA

ESERCIZI SVOLTI PER LA PROVA DI STATISTICA ESERCIZI SVOLTI PER LA PROVA DI STATISTICA Stefania Naddeo (anno accademico 4/5) INDICE PARTE PRIMA: STATISTICA DESCRITTIVA. DISTRIBUZIONI DI FREQUENZA E FUNZIONE DI RIPARTIZIONE. VALORI CARATTERISTICI

Dettagli

LA CORRELAZIONE LINEARE

LA CORRELAZIONE LINEARE LA CORRELAZIONE LINEARE La correlazione indica la tendenza che hanno due variabili (X e Y) a variare insieme, ovvero, a covariare. Ad esempio, si può supporre che vi sia una relazione tra l insoddisfazione

Dettagli

Università del Piemonte Orientale. Corso di laurea in biotecnologia. Corso di Statistica Medica. Analisi dei dati quantitativi :

Università del Piemonte Orientale. Corso di laurea in biotecnologia. Corso di Statistica Medica. Analisi dei dati quantitativi : Università del Piemonte Orientale Corso di laurea in biotecnologia Corso di Statistica Medica Analisi dei dati quantitativi : Confronto tra due medie Università del Piemonte Orientale Corso di laurea in

Dettagli

Le formule possono essere scritte utilizzando un insieme di funzioni predefinite che Excel mette a disposizione, raggruppate per argomento.

Le formule possono essere scritte utilizzando un insieme di funzioni predefinite che Excel mette a disposizione, raggruppate per argomento. Excel: le funzioni Le formule possono essere scritte utilizzando un insieme di funzioni predefinite che Excel mette a disposizione, raggruppate per argomento. DEFINIZIONE: Le funzioni sono dei procedimenti

Dettagli

Il simbolo. è è = = = In simboli: Sia un numero naturale diverso da zero, il radicale. Il radicale. esiste. esiste 0 Il radicale

Il simbolo. è è = = = In simboli: Sia un numero naturale diverso da zero, il radicale. Il radicale. esiste. esiste 0 Il radicale Radicali 1. Radice n-esima Terminologia Il simbolo è detto radicale. Il numero è detto radicando. Il numero è detto indice del radicale. Il numero è detto coefficiente del radicale. Definizione Sia un

Dettagli

Principal Component Analysis (PCA)

Principal Component Analysis (PCA) Principal Component Analysis (PCA) Come evidenziare l informazione contenuta nei dati S. Marsili-Libelli: Calibrazione di Modelli Dinamici pag. Perche PCA? E un semplice metodo non-parametrico per estrarre

Dettagli

Stima per intervalli Nei metodi di stima puntuale è sempre presente un ^ errore θ θ dovuto al fatto che la stima di θ in genere non coincide con il parametro θ. Sorge quindi l esigenza di determinare una

Dettagli

Matematica B - a.a 2006/07 p. 1

Matematica B - a.a 2006/07 p. 1 Matematica B - a.a 2006/07 p. 1 Definizione 1. Un sistema lineare di m equazioni in n incognite, in forma normale, è del tipo a 11 x 1 + + a 1n x n = b 1 a 21 x 1 + + a 2n x n = b 2 (1) = a m1 x 1 + +

Dettagli

Se si insiste non si vince

Se si insiste non si vince Se si insiste non si vince Livello scolare: 2 biennio Abilità interessate Valutare la probabilità in diversi contesti problematici. Distinguere tra eventi indipendenti e non. Valutare criticamente le informazioni

Dettagli

Modificazioni dello spazio affettivo nel ciclo di vita

Modificazioni dello spazio affettivo nel ciclo di vita Modificazioni dello spazio affettivo nel ciclo di vita di Francesca Battisti Come gestiamo le nostre emozioni? Assistiamo ad esse passivamente o le ignoriamo? Le incoraggiamo o le sopprimiamo? Ogni cultura

Dettagli

Analisi statistica di dati biomedici Analysis of biologicalsignals

Analisi statistica di dati biomedici Analysis of biologicalsignals Analisi statistica di dati biomedici Analysis of biologicalsignals II Parte Verifica delle ipotesi (a) Agostino Accardo (accardo@units.it) Master in Ingegneria Clinica LM in Neuroscienze 2013-2014 e segg.

Dettagli

x 1 + x 2 3x 4 = 0 x1 + x 2 + x 3 = 0 x 1 + x 2 3x 4 = 0.

x 1 + x 2 3x 4 = 0 x1 + x 2 + x 3 = 0 x 1 + x 2 3x 4 = 0. Problema. Sia W il sottospazio dello spazio vettoriale R 4 dato da tutte le soluzioni dell equazione x + x 2 + x = 0. (a. Sia U R 4 il sottospazio dato da tutte le soluzioni dell equazione Si determini

Dettagli

SCOMPOSIZIONE IN FATTORI DI UN POLINOMIO

SCOMPOSIZIONE IN FATTORI DI UN POLINOMIO SCOMPOSIZIONE IN FATTORI DI UN POLINOMIO Così come avviene per i numeri ( 180 = 5 ), la scomposizione in fattori di un polinomio è la trasformazione di un polinomio in un prodotto di più polinomi irriducibili

Dettagli

Principal Component Analysis

Principal Component Analysis Principal Component Analysis Alessandro Rezzani Abstract L articolo descrive una delle tecniche di riduzione della dimensionalità del data set: il metodo dell analisi delle componenti principali (Principal

Dettagli

1a) Calcolare gli estremi dell intervallo di confidenza per µ al 90% in corrispondenza del campione osservato.

1a) Calcolare gli estremi dell intervallo di confidenza per µ al 90% in corrispondenza del campione osservato. Esercizio 1 Sia X 1,..., X un campione casuale estratto da una variabile aleatoria normale con media pari a µ e varianza pari a 1. Supponiamo che la media campionaria sia x = 2. 1a) Calcolare gli estremi

Dettagli

INCERTEZZA DI MISURA

INCERTEZZA DI MISURA L ERRORE DI MISURA Errore di misura = risultato valore vero Definizione inesatta o incompleta Errori casuali Errori sistematici L ERRORE DI MISURA Errori casuali on ne si conosce l origine poiche, appunto,

Dettagli

Introduzione alla Teoria degli Errori

Introduzione alla Teoria degli Errori Introduzione alla Teoria degli Errori 1 Gli errori di misura sono inevitabili Una misura non ha significato se non viene accompagnata da una ragionevole stima dell errore ( Una scienza si dice esatta non

Dettagli

Introduzione allo Scilab Parte 3: funzioni; vettori.

Introduzione allo Scilab Parte 3: funzioni; vettori. Introduzione allo Scilab Parte 3: funzioni; vettori. Felice Iavernaro Dipartimento di Matematica Università di Bari http://dm.uniba.it/ iavernaro felix@dm.uniba.it 13 Giugno 2007 Felice Iavernaro (Univ.

Dettagli

1 Medie. la loro media aritmetica è il numero x dato dalla formula: x = x 1 + x 2 +... + x n

1 Medie. la loro media aritmetica è il numero x dato dalla formula: x = x 1 + x 2 +... + x n 1 Medie La statistica consta di un insieme di metodi atti a elaborare e a sintetizzare i dati relativi alle caratteristiche di una fissata popolazione, rilevati mediante osservazioni o esperimenti. Col

Dettagli

Titolo della lezione. Analisi dell associazione tra due caratteri: indipendenza e dipendenza

Titolo della lezione. Analisi dell associazione tra due caratteri: indipendenza e dipendenza Titolo della lezione Analisi dell associazione tra due caratteri: indipendenza e dipendenza Introduzione Analisi univariata, bivariata, multivariata Analizzare le relazioni tra i caratteri, per cercare

Dettagli

Analisi delle Corrispondenze Multiple Prof. Roberto Fantaccione

Analisi delle Corrispondenze Multiple Prof. Roberto Fantaccione Analisi delle Corrispondenze Multiple Prof. Roberto Fantaccione Consideriamo il nostro dataset formato da 468 individui e 1 variabili nominali costituite dalle seguenti modalità : colonna D: Age of client

Dettagli

STATISTICA (A-K) a.a. 2007-08 Prof.ssa Mary Fraire Test di STATISTICA DESCRITTIVA Esonero del 2007

STATISTICA (A-K) a.a. 2007-08 Prof.ssa Mary Fraire Test di STATISTICA DESCRITTIVA Esonero del 2007 A STATISTICA (A-K) a.a. 007-08 Prof.ssa Mary Fraire Test di STATISTICA DESCRITTIVA Esonero del 007 STESS N.O. RD 00 GORU N.O. RD 006 ) La distribuzione del numero degli occupati (valori x 000) in una provincia

Dettagli

SCHEDA DI PROGRAMMAZIONE DELLE ATTIVITA EDUCATIVE DIDATTICHE. Disciplina: Matematica Classe: 5A sia A.S. 2014/15 Docente: Rosito Franco

SCHEDA DI PROGRAMMAZIONE DELLE ATTIVITA EDUCATIVE DIDATTICHE. Disciplina: Matematica Classe: 5A sia A.S. 2014/15 Docente: Rosito Franco Disciplina: Matematica Classe: 5A sia A.S. 2014/15 Docente: Rosito Franco ANALISI DI SITUAZIONE - LIVELLO COGNITIVO La classe ha dimostrato fin dal primo momento grande attenzione e interesse verso gli

Dettagli

Parte 2. Determinante e matrice inversa

Parte 2. Determinante e matrice inversa Parte. Determinante e matrice inversa A. Savo Appunti del Corso di Geometria 013-14 Indice delle sezioni 1 Determinante di una matrice, 1 Teorema di Cramer (caso particolare), 3 3 Determinante di una matrice

Dettagli

Compito di SISTEMI E MODELLI. 19 Febbraio 2015

Compito di SISTEMI E MODELLI. 19 Febbraio 2015 Compito di SISTEMI E MODELLI 9 Febbraio 5 Non é ammessa la consultazione di libri o quaderni. Le risposte vanno giustificate. Saranno rilevanti per la valutazione anche l ordine e la chiarezza di esposizione.

Dettagli

Dimensione di uno Spazio vettoriale

Dimensione di uno Spazio vettoriale Capitolo 4 Dimensione di uno Spazio vettoriale 4.1 Introduzione Dedichiamo questo capitolo ad un concetto fondamentale in algebra lineare: la dimensione di uno spazio vettoriale. Daremo una definizione

Dettagli

iovanella@disp.uniroma2.it http://www.disp.uniroma2.it/users/iovanella Verifica di ipotesi

iovanella@disp.uniroma2.it http://www.disp.uniroma2.it/users/iovanella Verifica di ipotesi iovanella@disp.uniroma2.it http://www.disp.uniroma2.it/users/iovanella Verifica di ipotesi Idea di base Supponiamo di avere un idea del valore (incognito) di una media di un campione, magari attraverso

Dettagli

MINIMI QUADRATI. REGRESSIONE LINEARE

MINIMI QUADRATI. REGRESSIONE LINEARE MINIMI QUADRATI. REGRESSIONE LINEARE Se il coefficiente di correlazione r è prossimo a 1 o a -1 e se il diagramma di dispersione suggerisce una relazione di tipo lineare, ha senso determinare l equazione

Dettagli

Da una a più variabili: derivate

Da una a più variabili: derivate Da una a più variabili: derivate ( ) 5 gennaio 2011 Scopo di questo articolo è di evidenziare le analogie e le differenze, relativamente al calcolo differenziale, fra le funzioni di una variabile reale

Dettagli

Parte 3. Rango e teorema di Rouché-Capelli

Parte 3. Rango e teorema di Rouché-Capelli Parte 3. Rango e teorema di Rouché-Capelli A. Savo Appunti del Corso di Geometria 203-4 Indice delle sezioni Rango di una matrice, 2 Teorema degli orlati, 3 3 Calcolo con l algoritmo di Gauss, 6 4 Matrici

Dettagli

Appunti di Statistica

Appunti di Statistica Appunti di Statistica Riccardo Ricci Università di Firenze, Facoltà di Psicologia Corso di Laurea in Scienze e Tecniche di Psicologia del Lavoro e delle Organizzazioni Anno Accademico 2002-2003 1 maggio

Dettagli

PROBABILITA, VALORE ATTESO E VARIANZA DELLE QUANTITÁ ALEATORIE E LORO RELAZIONE CON I DATI OSSERVATI

PROBABILITA, VALORE ATTESO E VARIANZA DELLE QUANTITÁ ALEATORIE E LORO RELAZIONE CON I DATI OSSERVATI statistica, Università Cattaneo-Liuc, AA 006-007, lezione del 08.05.07 IDICE (lezione 08.05.07 PROBABILITA, VALORE ATTESO E VARIAZA DELLE QUATITÁ ALEATORIE E LORO RELAZIOE CO I DATI OSSERVATI 3.1 Valore

Dettagli

3. Confronto tra medie di due campioni indipendenti o appaiati

3. Confronto tra medie di due campioni indipendenti o appaiati BIOSTATISTICA 3. Confronto tra medie di due campioni indipendenti o appaiati Marta Blangiardo, Imperial College, London Department of Epidemiology and Public Health m.blangiardo@imperial.ac.uk MARTA BLANGIARDO

Dettagli

METODO DEI MINIMI QUADRATI. Quest articolo discende soprattutto dai lavori di Deming, Press et al. (Numerical Recipes) e Jefferys.

METODO DEI MINIMI QUADRATI. Quest articolo discende soprattutto dai lavori di Deming, Press et al. (Numerical Recipes) e Jefferys. METODO DEI MINIMI QUADRATI GIUSEPPE GIUDICE Sommario Il metodo dei minimi quadrati è trattato in tutti i testi di statistica e di elaborazione dei dati sperimentali, ma non sempre col rigore necessario

Dettagli

a. 10 4 b. 10-15 c. 10 25 d. 10-4 a. 4,375 10-7 b. 3,625 10-6 c. 4,375 10 2 d. nessuno dei precedenti valori a. 10-5 b. 10 +5 c. 10 +15 d.

a. 10 4 b. 10-15 c. 10 25 d. 10-4 a. 4,375 10-7 b. 3,625 10-6 c. 4,375 10 2 d. nessuno dei precedenti valori a. 10-5 b. 10 +5 c. 10 +15 d. 1) Il valore di 5 10 20 è: a. 10 4 b. 10-15 c. 10 25 d. 10-4 2) Il valore del rapporto (2,8 10-4 ) / (6,4 10 2 ) è: a. 4,375 10-7 b. 3,625 10-6 c. 4,375 10 2 d. nessuno dei precedenti valori 3) La quantità

Dettagli

TITOLO X Tempo parziale (Part Time) Premessa

TITOLO X Tempo parziale (Part Time) Premessa TITOLO X Tempo parziale (Part Time) Premessa Le parti, nel ritenere che il rapporto di lavoro a tempo parziale possa essere mezzo idoneo ad agevolare l incontro fra domanda e offerta di lavoro, ne confermano

Dettagli

ESTRAZIONE DI RADICE

ESTRAZIONE DI RADICE ESTRAZIONE DI RADICE La radice è l operazione inversa dell elevamento a potenza. L esponente della potenza è l indice della radice che può essere: quadrata (); cubica (); quarta (4); ecc. La base della

Dettagli

Appunti di Algebra Lineare

Appunti di Algebra Lineare Appunti di Algebra Lineare Indice 1 I vettori geometrici. 1 1.1 Introduzione................................... 1 1. Somma e prodotto per uno scalare....................... 1 1.3 Combinazioni lineari e

Dettagli

Laboratorio di Statistica con Excel

Laboratorio di Statistica con Excel Università di Torino QUADERNI DIDATTICI del Dipartimento di Matematica G. Peano MARIA GARETTO Laboratorio di Statistica con Excel Soluzioni Corso di Laurea in Biotecnologie A.A. 2009/2010 Quaderno # 46

Dettagli

Potenza dello studio e dimensione campionaria. Laurea in Medicina e Chirurgia - Statistica medica 1

Potenza dello studio e dimensione campionaria. Laurea in Medicina e Chirurgia - Statistica medica 1 Potenza dello studio e dimensione campionaria Laurea in Medicina e Chirurgia - Statistica medica 1 Introduzione Nella pianificazione di uno studio clinico randomizzato è fondamentale determinare in modo

Dettagli

Ancora sull indipendenza. Se A e B sono indipendenti allora lo sono anche

Ancora sull indipendenza. Se A e B sono indipendenti allora lo sono anche Ancora sull indipendenza Se A e B sono indipendenti allora lo sono anche A e B Ā e B Ā e B Sfruttiamo le leggi di De Morgan Leggi di De Morgan A B = Ā B A B = Ā B P (Ā B) = P (A B) = 1 P (A B) = 1 (P (A)

Dettagli

TECNICHE DI SIMULAZIONE

TECNICHE DI SIMULAZIONE TECNICHE DI SIMULAZIONE MODELLI STATISTICI NELLA SIMULAZIONE Francesca Mazzia Dipartimento di Matematica Università di Bari a.a. 2004/2005 TECNICHE DI SIMULAZIONE p. 1 Modelli statistici nella simulazione

Dettagli

Scilab: I Polinomi - Input/Output - I file Script

Scilab: I Polinomi - Input/Output - I file Script Scilab: I Polinomi - Input/Output - I file Script Corso di Informatica CdL: Chimica Claudia d'amato claudia.damato@di.uniba.it Polinomi: Definizione... Un polinomio è un oggetto nativo in Scilab Si crea,

Dettagli

MATRICI E DETERMINANTI

MATRICI E DETERMINANTI MATRICI E DETERMINANTI 1. MATRICI Si ha la seguente Definizione 1: Un insieme di numeri, reali o complessi, ordinati secondo righe e colonne è detto matrice di ordine m x n, ove m è il numero delle righe

Dettagli

Cognition as an outcome measure in schizophrenia

Cognition as an outcome measure in schizophrenia Cognition as an outcome measure in schizophrenia Michael S. Kraus and Richard S. E. Keefe Sintesi di Anna Patrizia Guarino e Chiara Carrozzo La cognizione come risultato della misura in Schizofrenia Prima

Dettagli

Rapida Introduzione all uso del Matlab Ottobre 2002

Rapida Introduzione all uso del Matlab Ottobre 2002 Rapida Introduzione all uso del Matlab Ottobre 2002 Tutti i tipi di dato utilizzati dal Matlab sono in forma di array. I vettori sono array monodimensionali, e così possono essere viste le serie temporali,

Dettagli

Modal 2 Modulo Analisi modale Modulo per l Analisi della dinamica strutturale.

Modal 2 Modulo Analisi modale Modulo per l Analisi della dinamica strutturale. Modal 2 Modulo Analisi modale Modulo per l Analisi della dinamica strutturale. L analisi modale è un approccio molto efficace al comportamento dinamico delle strutture, alla verifica di modelli di calcolo

Dettagli

Funzioni di più variabili. Ottimizzazione libera e vincolata

Funzioni di più variabili. Ottimizzazione libera e vincolata libera e vincolata Generalità. Limiti e continuità per funzioni di 2 o Piano tangente. Derivate successive Formula di Taylor libera vincolata Lo ordinario è in corrispondenza biunivoca con i vettori di

Dettagli

(V) (FX) Z 6 è un campo rispetto alle usuali operazioni di somma e prodotto.

(V) (FX) Z 6 è un campo rispetto alle usuali operazioni di somma e prodotto. 29 giugno 2009 - PROVA D ESAME - Geometria e Algebra T NOME: MATRICOLA: a=, b=, c= Sostituire ai parametri a, b, c rispettivamente la terzultima, penultima e ultima cifra del proprio numero di matricola

Dettagli

Matrice rappresent. Base ker e img. Rappresentazione cartesiana ker(f) + im(f).

Matrice rappresent. Base ker e img. Rappresentazione cartesiana ker(f) + im(f). Due Matrici A,B. Ker f = ker g. 1- Ridurre a scala A e B e faccio il sistema. 2 Se Vengono gli stessi valori allora, i ker sono uguali. Cauchy 1 autovalore, 1- Metto a matrice x1(0),x2(0),x3(0) e la chiamo

Dettagli

TRAVE SU SUOLO ELASTICO

TRAVE SU SUOLO ELASTICO Capitolo 3 TRAVE SU SUOLO ELASTICO (3.1) Combinando la (3.1) con la (3.2) si ottiene: (3.2) L equazione differenziale può essere così riscritta: (3.3) La soluzione dell equazione differenziale di ordine

Dettagli

Consideriamo due polinomi

Consideriamo due polinomi Capitolo 3 Il luogo delle radici Consideriamo due polinomi N(z) = (z z 1 )(z z 2 )... (z z m ) D(z) = (z p 1 )(z p 2 )... (z p n ) della variabile complessa z con m < n. Nelle problematiche connesse al

Dettagli

IV-1 Funzioni reali di più variabili

IV-1 Funzioni reali di più variabili IV- FUNZIONI REALI DI PIÙ VARIABILI INSIEMI IN R N IV- Funzioni reali di più variabili Indice Insiemi in R n. Simmetrie degli insiemi............................................ 4 2 Funzioni da R n a R

Dettagli

(accuratezza) ovvero (esattezza)

(accuratezza) ovvero (esattezza) Capitolo n 2 2.1 - Misure ed errori In un analisi chimica si misurano dei valori chimico-fisici di svariate grandezze; tuttavia ogni misura comporta sempre una incertezza, dovuta alla presenza non eliminabile

Dettagli

Conduzione di uno studio epidemiologico (osservazionale)

Conduzione di uno studio epidemiologico (osservazionale) Conduzione di uno studio epidemiologico (osservazionale) 1. Definisco l obiettivo e la relazione epidemiologica che voglio studiare 2. Definisco la base dello studio in modo che vi sia massimo contrasto

Dettagli

APPLICAZIONI LINEARI

APPLICAZIONI LINEARI APPLICAZIONI LINEARI 1. Esercizi Esercizio 1. Date le seguenti applicazioni lineari (1) f : R 2 R 3 definita da f(x, y) = (x 2y, x + y, x + y); (2) g : R 3 R 2 definita da g(x, y, z) = (x + y, x y); (3)

Dettagli

Lezione XII: La differenziazione del prodotto

Lezione XII: La differenziazione del prodotto Lezione XII: La differenziazione del prodotto Ci sono mercati che per la natura del loro prodotto, la numerosità dei soggetti coinvolti su entrambi i lati del mercato (e in particolare, la bassa concentrazione

Dettagli

Il Dipartimento per le Comunicazioni: uno studio dell età del personale. Miriam Tagliavia Marzo 2011

Il Dipartimento per le Comunicazioni: uno studio dell età del personale. Miriam Tagliavia Marzo 2011 Il Dipartimento per le Comunicazioni: uno studio dell età del personale Marzo 2011 2 Il Dipartimento per le Comunicazioni: uno studio dell età del personale Il Dipartimento per le Comunicazioni, uno dei

Dettagli

Analisi Costi e Benefici Laura Vici laura.vici@unibo.it LEZIONE 5

Analisi Costi e Benefici Laura Vici laura.vici@unibo.it LEZIONE 5 Analisi Costi e Benefici Laura Vici laura.vici@unibo.it LEZIONE 5 Rimini, 26 aprile 2006 1 The Inter temporal Effects of International Trade Valore in $ del consumo di beni oggi G D F H 1/(1+r) G Valore

Dettagli

Guida di Riferimento

Guida di Riferimento Guida di Riferimento Capitoli 1: STATISTICA: Panoramica Generale 1 2: Esempi Passo-Passo 9 Analitici 11 Gestione dei Dati 79 Installazioni Enterprise 107 3: Interfaccia Utente 139 4: Output delle Analisi

Dettagli

VALUTAZIONE DINAMICA DEL POTENZIALE DI APPRENDIMENTO IN UN BAMBINO CON DISTURBO DELLO SPETTRO AUTISTICO

VALUTAZIONE DINAMICA DEL POTENZIALE DI APPRENDIMENTO IN UN BAMBINO CON DISTURBO DELLO SPETTRO AUTISTICO Fondamenti teorici Vygotskji Zona di Sviluppo Prossimale Feuerstein VALUTAZIONE DINAMICA DEL POTENZIALE DI APPRENDIMENTO IN UN BAMBINO CON DISTURBO DELLO SPETTRO AUTISTICO Esperienza di Apprendimento Mediato

Dettagli

Allegato A Documentazione introduttiva all utilizzo della SAM regionale nel periodo di cantiere

Allegato A Documentazione introduttiva all utilizzo della SAM regionale nel periodo di cantiere 1 La matrice di contabilità sociale (SAM): uno strumento per la valutazione. Appendice A Documentazione introduttiva all utilizzo della SAM regionale nel periodo di cantiere IPI, 2009 Sono vietate le riproduzioni

Dettagli

STATISTICA 1 ESERCITAZIONE 1 CLASSIFICAZIONE DELLE VARIABILI CASUALI

STATISTICA 1 ESERCITAZIONE 1 CLASSIFICAZIONE DELLE VARIABILI CASUALI STATISTICA 1 ESERCITAZIONE 1 Dott. Giuseppe Pandolfo 30 Settembre 2013 Popolazione statistica: insieme degli elementi oggetto dell indagine statistica. Unità statistica: ogni elemento della popolazione

Dettagli

Statistical Process Control

Statistical Process Control Statistical Process Control 1 Introduzione SPC si occupa del miglioramento della qualità. I metodi per il miglioramento della qualità possono essere applicati a qualsiasi area in una fabbrica o organizzazione

Dettagli

Scrivere uno script php che, dato un array associativo PERSONE le cui chiavi sono i

Scrivere uno script php che, dato un array associativo PERSONE le cui chiavi sono i Esercizi PHP 1. Scrivere uno script PHP che produca in output: 1. La tabellina del 5 2. La tavola Pitagorica contenuta in una tabella 3. La tabellina di un numero ricevuto in input tramite un modulo. Lo

Dettagli

Corrente elettrica (regime stazionario)

Corrente elettrica (regime stazionario) Corrente elettrica (regime stazionario) Metalli Corrente elettrica Legge di Ohm Resistori Collegamento di resistori Generatori di forza elettromotrice Metalli Struttura cristallina: ripetizione di unita`

Dettagli

Errori di misura. è ragionevole assumere che una buona stima del valore vero sia la media

Errori di misura. è ragionevole assumere che una buona stima del valore vero sia la media Errori di miura Se lo trumento di miura è abbatanza enibile, la miura rietuta della tea grandezza fiica darà riultati diveri fra loro e fluttuanti in modo caratteritico. E l effetto di errori cauali, o

Dettagli

1 Valore atteso o media

1 Valore atteso o media 1 Valore atteso o media Definizione 1.1. Sia X una v.a., si chiama valore atteso (o media o speranza matematica) il numero, che indicheremo con E[X] o con µ X, definito come E[X] = i x i f(x i ) se X è

Dettagli

DISTRIBUZIONI DI VARIABILI CASUALI DISCRETE

DISTRIBUZIONI DI VARIABILI CASUALI DISCRETE DISTRIBUZIONI DI VARIABILI CASUALI DISCRETE variabile casuale (rv): regola che associa un numero ad ogni evento di uno spazio E. variabile casuale di Bernoulli: rv che può assumere solo due valori (e.g.,

Dettagli

Flusso a costo minimo e simplesso su reti

Flusso a costo minimo e simplesso su reti Flusso a costo minimo e simplesso su reti La particolare struttura di alcuni problemi di PL può essere talvolta utilizzata per la progettazione di tecniche risolutive molto più efficienti dell algoritmo

Dettagli

LA VALUTAZIONE COGNITIVA NELL AUTISMO

LA VALUTAZIONE COGNITIVA NELL AUTISMO LA VALUTAZIONE COGNITIVA NELL AUTISMO Risultati di una ricerca su un campione di 135 bambini Massimiliano Petrillo Magda Di Renzo CAMPIONE DI RICERCA 135 bambini (106 M / 29 F) Età compresa tra 2,5-16,5

Dettagli

Esercitazioni di Statistica

Esercitazioni di Statistica Esercitazioni di Statistica Test d ipotesi sul valor medio e test χ 2 di adattamento Prof. Livia De Giovanni statistica@dis.uniroma1.it Esercizio 1 Si supponga che il diametro degli anelli metallici prodotti

Dettagli

QUEST. Quebec User Evaluation of Satisfaction with assistive Technology

QUEST. Quebec User Evaluation of Satisfaction with assistive Technology QUEST Quebec User Evaluation of Satisfaction with assistive Technology versione 2.0 L. Demers, R. Weiss-Lambrou & B. Ska, 2000 Traduzione italiana a cura di Fucelli P e Andrich R, 2004 Introduzione Il

Dettagli

Risposta: L area del triangolo è dove sono le misure di due lati e è l ampiezza dell angolo tra essi compreso ;

Risposta: L area del triangolo è dove sono le misure di due lati e è l ampiezza dell angolo tra essi compreso ; 1. Un triangolo ha area 3 e due lati che misurano 2 e 3. Qual è la misura del terzo lato? : L area del triangolo è dove sono le misure di due lati e è l ampiezza dell angolo tra essi compreso ; nel nostro

Dettagli

Numeri reali. Funzioni e loro grafici

Numeri reali. Funzioni e loro grafici Argomento Numeri reali. Funzioni e loro grafici Parte B - Funzioni e loro grafici Funzioni reali di variabile reale Definizioni. Supponiamo che A sia un sottoinsieme di R e che esista una legge che ad

Dettagli

LEZIONE 14. a 1,1 v 1 + a 1,2 v 2 + a 1,3 v 3 + + a 1,n 1 v n 1 + a 1,n v n = w 1

LEZIONE 14. a 1,1 v 1 + a 1,2 v 2 + a 1,3 v 3 + + a 1,n 1 v n 1 + a 1,n v n = w 1 LEZIONE 14 141 Dimensione di uno spazio vettoriale Abbiamo visto come l esistenza di una base in uno spazio vettoriale V su k = R, C, permetta di sostituire a V, che può essere complicato da trattare,

Dettagli

Inizializzazione degli Host. BOOTP e DHCP

Inizializzazione degli Host. BOOTP e DHCP BOOTP e DHCP a.a. 2002/03 Prof. Vincenzo Auletta auletta@dia.unisa.it http://www.dia.unisa.it/~auletta/ Università degli studi di Salerno Laurea e Diploma in Informatica 1 Inizializzazione degli Host Un

Dettagli

Dati importati/esportati

Dati importati/esportati Dati importati/esportati Dati importati Al workspace MATLAB script Dati esportati file 1 File di testo (.txt) Spreadsheet Database Altro Elaborazione dati Grafici File di testo Relazioni Codice Database

Dettagli

ALGEBRA: LEZIONI DAL 13 OTTOBRE AL 3 NOVEMBRE

ALGEBRA: LEZIONI DAL 13 OTTOBRE AL 3 NOVEMBRE ALGEBRA: LEZIONI DAL 13 OTTOBRE AL 3 NOVEMBRE 1 DIPENDENZA E INDIPENDENZA LINEARE Se ho alcuni vettori v 1, v 2,, v n in uno spazio vettoriale V, il sottospazio 1 W = v 1,, v n di V da loro generato è

Dettagli

Legge del Raffreddamento di Newton

Legge del Raffreddamento di Newton Legge del Raffreddamento di Newton www.lepla.eu Obiettivo L'obiettivo di questo esperimento è studiare l'andamento temporale della temperatura di un oggetto che si raffredda e trovare un modello matematico

Dettagli

Notizie generali sul Resilience Process Questionnaire

Notizie generali sul Resilience Process Questionnaire 12 Notizie generali sul Resilience Process Questionnaire Il modello teorico di riferimento Oltre ai modelli descritti da Fergus e Zimmerman (2005) esiste un quarto approccio che, partendo dall approccio

Dettagli

RETTE, PIANI, SFERE, CIRCONFERENZE

RETTE, PIANI, SFERE, CIRCONFERENZE RETTE, PIANI, SFERE, CIRCONFERENZE 1. Esercizi Esercizio 1. Dati i punti A(1, 0, 1) e B(, 1, 1) trovare (1) la loro distanza; () il punto medio del segmento AB; (3) la retta AB sia in forma parametrica,

Dettagli

LA NOTAZIONE SCIENTIFICA

LA NOTAZIONE SCIENTIFICA LA NOTAZIONE SCIENTIFICA Definizioni Ricordiamo, a proposito delle potenze del, che = =.000 =.000.000.000.000 ovvero n è uguale ad seguito da n zeri. Nel caso di potenze con esponente negativo ricordiamo

Dettagli