Statistica 1. Esercitazioni. Dott. Luigi Augugliaro 1. Università di Palermo

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Statistica 1. Esercitazioni. Dott. Luigi Augugliaro 1. Università di Palermo"

Transcript

1 Statistica 1 Esercitazioni Dott. 1 1 Dipartimento di Scienze Statistiche e Matematiche S. Vianelli, Università di Palermo ricevimento: lunedì ore mercoledì ore (Dipartiment 1 / 41

2 Cenni di calcolo delle probabilità Il Calcolo delle probabilità è una disciplina che ci insegna a controllare la correttezza dei nostri ragionamenti allora che, per carenza d informazione, ci troviamo in condizioni di incertezza. In tal senso esse appare come una logica, e precisamente come la logica del possibile, che amplia, con l introduzione di una valutazione di probabilità basata sull informazione di cui si dispone, la logica del certo. (Dipartiment 2 / 41

3 Definizioni Un esperimento il cui esito non può essere previsto con certezza è definito esperimento casuale o aleatorio. L insieme di tutti i possibili esiti di un esperimento casuale viene definito spazio campionari ed è denotato con Ω. Esempi Si consideri l esperimento casuale lancio di una moneta. In questo caso lo spazio campionario Ω è l insieme dei possibili esiti Testa, Croce, formalmente Ω = {Testa, Croce}. (Dipartiment 3 / 41

4 Si consideri l esperimento casuale lancio di un dado. Definire lo spazio campionario Ω. Poiché lo spazio campionari è l insieme di tutti i possibili esiti, si ricava che Ω = {1, 2, 3, 4, 5, 6} Si consideri l esperimento casuale lancio di due dadi. Definire lo spazio campionario Ω. Poiché lo spazio campionari è l insieme di tutti i possibili esiti, si ricava che Ω = {(i, j) : i, j = 1,..., 6} ovvero Ω è l insieme di tutte le possibili coppie (i, j), dove il primo indice indica che il numero i compare nel primo dado mentre il secondo indice indica che il numero j compare nel secondo dado. (Dipartiment 4 / 41

5 Definizione Un qualsiasi sottoinsieme dello spazio campionario Ω è definito evento casuale o aleatorio. Nel seguito indicheremo con E un generico evento casuale. Si consideri l esperimento casuale lancio di una moneta. In questo caso lo spazio campionario è l insieme Ω = {Testa, Croce}, il quale è definito come unione degli eventi elementari E 1 = {Testa} e E 2 = {Croce}. Si consideri l esperimento casuale lancio di un dado. In questo caso lo spazio campionario è l insieme Ω = {1, 2, 3, 4, 5, 6} ed è definito come unione degli eventi elementari E 1 = {1}, E 2 = {2},..., E 6 = {6}. Si consideri l esperimento casuale consistente nel misurare il tempo di vita di un transistor. In questo caso lo spazio campionari è l insieme Ω = {x : 0 x < + }, ovvero l insieme di tutti i valori reali non negativi. (Dipartiment 5 / 41

6 Operazioni logiche sugli eventi Definizione Dato un evento E si definisce negato di un evento, denotato con Ē, l evento il cui valore logico è l opposto di quello di E. Esempio: Si consideri l esperimento casuale lancio di un dado e l evento E descritto dall enunciato uscita della faccia con il numero due. Il negato dell evento E, denotato con Ē, è l evento descritto dall enunciato uscita della faccia con un numero diverso da due. Esempio: Si consideri l esperimento casuale consistente nel misurare il tempo di vita di un transistor e l evento E descrito dall enunciato il tempo di vita di un transistor non è superiore a 5 ore. In questo caso E = { x : 0 x 5}. Dalla descrizione dell evento E si ricava che l evento negato Ē è descritto dall enunciato il tempo di vita di un transistor è superiore a 5 ore, ovvero E = { x : x > 5}. (Dipartiment 6 / 41

7 Unione o Somma logica Dati due eventi E 1, E 2, definiamo unione o somma logica degli eventi E 1, E 2, l evento, denotato con E 1 E 2, che è vero se almeno uno dei due eventi è vero. Si consideri l esperimento casuale lancio di un dado e i singoli eventi aleatori E 1 = { esce la faccia con il numero 1 }; E 2 = { esce la faccia con il numero 2 }. Definire l insieme unione E 1 E 2. Dalla descrizione degli eventi E 1 ed E 2 si deduce che l evento unione è descritto dall enunciato esce un numero inferiore o uguale a 2. uigi Augugliaro (Dipartiment 7 / 41

8 Si consideri l esperimento casuale lancio di un dado e i singoli eventi aleatori E 1 = { faccia 2 } E 2 = { faccia 4 } E 3 = { faccia 6 }. Definire l evento unione E 1 E 2 E 3. Dalla descrizione degli eventi E 1, E 2 ed E 3 si deduce che l evento unione è descritto dall enunciato esce un numero pari. Si consideri l esperimento casuale lancio di un dado e i singoli eventi aleatori E 1 = { faccia 1 } E 2 = { faccia 3 } E 3 = { faccia 5 }. Definire l evento unione E 1 E 2 E 3. Dalla descrizione degli eventi E 1, E 2 ed E 3 si deduce che l evento unione è descritto dall enunciato esce un numero dispari. (Dipartiment 8 / 41

9 Intersezione o Prodotto logico Dati due eventi E 1, E 2, definiamo intersezione o prodotto logico degli eventi E 1, E 2, l evento, denotato con E 1 E 2, che è vero se sono veri gli eventi E 1 ed E 2. Si consideri l esperimento casuale lancio di un dado e gli eventi aleatori descritti dagli enunciati E 1 = { uscita di un numero inferiore a 4 } E 2 = { uscita di un numero dispari } Definire l evento unione E 1 E 2. Dalla descrizione degli eventi si ricava che E 1 = {1, 2, 3}, E 2 = {1, 3, 5}. da cui discende che l evento intersezione è definito nel seguente modo E 1 E 2 = {1, 3} (Dipartiment 9 / 41

10 Con riferimento all esperimento casuale consistente nel misurare il tempo di vita di un transistor, si considerino gli eventi casuali descritti dagli enunciati E 1 = { il tempo di vita è inferiore a 4 ore } E 2 = { il tempo di vita è superiore a 5 ore } E 3 = { il tempo di vita è compreso tra 2 e 7 ore } Definire gli eventi E 1 E 2, E 2 E 3. Soluzione Dalla descrizione degli eventi si ricava che E 1 E 2 = (evento impossibile) E 2 E 3 = {x : 5 < x < 7} (Dipartiment 10 / 41

11 Le operazioni logiche tra gli eventi, introdotte in precedenza, possono essere rappresentate graficamente mediante l utilizzo dei diagrammi di Venn. L area ombreggiata identifica l evento A B (Dipartiment 11 / 41

12 L area ombreggiata identifica l evento A B (Dipartiment 12 / 41

13 L area ombreggiata identifica l evento Ē (Dipartiment 13 / 41

14 Le operazioni di unione logica ed intersezione logica soddisfano le seguenti proprietà Commutativa Associativa E 1 E 2 = E 2 E 1 E 1 E 2 = E 2 E 1 (E 1 E 2 ) E 3 = E 1 (E 2 E 3 ) = E 1 E 2 E 3 (E 1 E 2 ) E 3 = E 1 (E 2 E 3 ) = E 1 E 2 E 3 Distributiva E 1 (E 2 E 3 ) = (E 1 E 2 ) (E 1 E 3 ) E 1 (E 2 E 3 ) = (E 1 E 2 ) (E 1 E 3 ) (Dipartiment 14 / 41

15 Con riferimento ad un certo stato d informazione, un evento si dice certo, rispettivamente impossibile, quando dai dati è possibile dedurre logicamente la verità, rispettivamente la falsità dell evento. Diremo che un evento è possibile quando non è possiamo dedurre logicamente la verità o falsità dell evento. Due eventi si dicono incompatibili (compatibili nel caso opposto) quando la loro intersezione logica è uguale all evento impossibile. In altri termini, E 1 ed E 2 sono incompatibili quando il verificarsi di uno di essi implica il non verificarsi dell altro, formalmente E 1 E 2 =. Si considerino l esperimento casuale lancio di due dadi e gli eventi definiti dagli enunciati: E 1 = { al primo e al secondo lancio di un dado esce un punto pari }, E 2 = { la somma dei punti realizzati col primo e il secondo lancio di un dado è dispari }. (Dipartiment 15 / 41

16 Evoluzione storica della definizione di probabilità Come ottenere una valutazione di probabilità degli eventi? Per rispondere a questa domanda è necessario considerare lo sviluppo storico del concetto di probabilità. Storicamente il calcolo delle probabilità nasce con lo studio del gioco di azzardo. Le prime valutazioni di probabilità sono rivolte ad un ristretto campo di applicazione dove la schematizzazione dei fenomeni si ottiene con l enumerazione di un ridotto numero di casi, assunti tutti ugualmente possibili. Definizione classica di probabilità La probabilità di un evento E, denotata con P(E), è il rapporto tra il numero di casi favorevoli al verificarsi dell evento E e il numero di casi possibili, supposti tutti ugualmente possibili. (Dipartiment 16 / 41

17 Si consideri l esperimento casuale lancio di un dado. Calcolare la probabilità dei seguenti eventi casuali: Soluzione E 1 = {si ottiene la faccia con il numero 3}; E 2 = {si ottiene una faccia con un numero pari}; E 3 = {si ottiene un faccia con un valore inferiore o uguale a 4}. Lo spazio campionario Ω è l insieme Ω = {1, 2, 3, 4, 5, 6}. Applicando la definizione classica di probabilità si ricava che P(E 1 ) = 1 6 P(E 2 ) = 3 6 = 0, 5 P(E 3) = 4 6 0, 67 (Dipartiment 17 / 41

18 Si consideri l esperimento casuale lancio di due dadi. Determinare la probabilità che il punteggio ottenuto sia 9. Determinare il punteggio più probabile. Soluzione Tutte le possibili coppie sono 6 6 = 36, quindi la probabilità di estrarre una qualsiasi coppia è , 028. Il numero di casi favorevole è uguale al numero di coppie la cui somma è uguale a 9, ovvero (3, 6) (4, 5) (5, 4) (6, 3) da cui si ricava, applicando la definizione classica di probabilità, che la probabilità di ottenere una coppia la cui somma è uguale a 9 è 4 36 = 1 9. (Dipartiment 18 / 41

19 Analogamente a quanto fatto in precedenza si ricava x p 2 1/36 3 2/36 4 3/36 5 4/36 6 5/36 7 6/36 8 5/36 9 4/ / / /36 Da cui si ricava che 7 è il punteggio più probabile. (Dipartiment 19 / 41

20 Da un mazzo di 52 carte vengono estratte successivamente due carte, senza che la prima venga reinserita. Calcolare la probabilità che le due carte estratte siano due assi. Soluzione Gli eventi elementari sono tutti le possibili coppie estraibili da un mazzo di 52 carte in cui la prima carta estratta non e reinserita nel mazzo. Si deduce che il numero di eventi elementari è = La probabilità 1 di estrarre una data coppia è. Poiché esistono 4 3 = 12 possibili 2652 coppie ordinate di assi, la probabilità di estrarre una coppia di assi è uguale 0, 005. a Calcolare la probabilità richiesta in precedenza assumendo che la prima carta venga reinserita nel mazzo. (Dipartiment 20 / 41

21 Determinare: la probabilità di estrarre un 8 di picche da un mazzo di 52 carte, la probabilità di estrarre una figura (F,Q,P), la probabilità di estrarre un asso o una carta di fiori, la probabilità di estrarre una carta con un numero pari oppure una carta che non sia di fiori, (Dipartiment 21 / 41

22 La concezione frequentista di probabilità deriva dalla constatazione di un fatto sperimentale. Consideriamo un evento ripetibile E. Definiamo frequenza relativa di successo dell evento E il rapporto tra il numero di volte che si verifica un evento e il numero totale delle prove effettuate. Si osserva che al crescere del numero delle prove la frequenza relativa di successo tende a stabilizzarsi verso un valore costante. Sulla base di tale constatazione, nel 1918 si perviene con R. von Mises a quella che è nota come definizione frequentista di probabilità. Definizione frequentista di probabilità La probabilità di un evento ripetibile E è il limite cui tende la frequenza relativa di successo dell evento considerato, al divergere del numero delle prove (n + ). (Dipartiment 22 / 41

23 Sia la definizione classica che frequentista conferiscono alla probabilità un contenuto oggettivo. La concezione soggettiva di probabilità conduce invece ad una definizione di probabilità basata sulla valutazione soggettiva. La definizione che segue è dovuta a de Finetti, uno dei principali fautori della teoria soggettiva della probabilità. Definizione soggettivista di probabilità La probabilità di un evento E, secondo l opinione di un dato individuo, è il prezzo p che egli stima equo attribuire ad un importo unitario esigibile al verificarsi di E. Dalla definizione discende che la probabilità di un evento E è interpretabile come la quota di una scommessa che un individuo, sulla base delle sue esperienze passate ed opinioni, giuduca equo pagare per riscuotere l importo unitario dovuto se si verifica l evento E. (Dipartiment 23 / 41

24 L impostazione assiomatica si differenzia dalle precedenti definizioni dato che non fonda la definizione di probabilità ne sul significato di probabilità ne su quello di evento. Definizione assiomatica di probabilità Sia E l evento di cui si vuole determinare una valutazione di probabilità. La probabilità dell evento E, denotata con P(E), è quel numero reale che soddisfa i seguenti tre assiomi: P(E) 0 (non negatività) P(Ω) = 1 (normalizzazione) P(E 1 E 2 ) = P(E 1 ) + P(E 2 ) se e solo se E 1 ed E 2 sono incompatibili (additività). Il terzo assioma è noto come teorema delle probabilità totali per eventi incompatibili. (Dipartiment 24 / 41

25 Utilizzando i tre assiomi è possibile dimostrare i seguenti teoremi. Teorema 1. La probabilità dell evento impossibile è zero, in altri termini P( ) = 0. Dimostrazione Osserviamo che lo spazio degli eventi elementari può essere definito come Ω = Ω, da cui discende che 1 = P(Ω) = P(Ω ). Dato che Ω e sono incompatibili, per il terzo assioma si ricava 1 = P(Ω) = P(Ω ) = P(Ω) + P( ) = 1 + P( ), da cui si deduce che P( ) = 0. (Dipartiment 25 / 41

26 Teorema 2. Sia E un evento ed Ē il suo negato. La probabilità di Ē è il complemento ad uno della probabilità di E, in altri termini P(Ē) = 1 P(E). Dimostrazione Osserviamo che sono verificate le relazioni Ω = E Ē e E Ē =. Attraverso l utilizzo degli assiomi introdotti in precedenza si ricava 1 = P(Ω) = P(E Ē) = P(E) + P(Ē), da cui si ricava che P(Ē) = 1 P(E). (Dipartiment 26 / 41

27 Teorema 3. Siano E 1 ed E 2 due eventi. Si dimostra che P(E 1 E 2 ) = P(E 1 ) + P(E 2 ) P(E 1 E 2 ). Dal teorema 3 discende che in generale P(E 1 E 2 ) P(E 1 ) + P(E 2 ) con l uguaglianza che sussiste se e solo se gli eventi E 1 ed E 2 sono incompatibili. (Dipartiment 27 / 41

28 Uno studente ha programmato di sostenere gli esami A e B in una determinata sessione. In base alla sua preparazione ritiene che la probabilità di superare l esame A sia pari a 0.7, la probabilità di superare l esame B sia 0.5, mentre la probabilità di superarli entrambi sia 0.4. Qual è la probabilità che lo studente superi almeno uno dei due esami? (Dipartiment 28 / 41

29 Siano E 1 ed E 2 due eventi. La probabilità condizionata dell evento E 2 dato l evento E 1, denotata con P(E 2 E 1 ), è definita come analogamente Legge delle probabilità composte P(E 2 E 1 ) = P(E 1 E 2 ), P(E 1 ) P(E 1 E 2 ) = P(E 2 E 1 ). P(E 2 ) P(E 1 E 2 ) = P(E 2 E 1 )P(E 1 ). Definizione Diremo che due eventi sono indipendenti quando il verificarsi di un evento non modifica la probabilità di verificarsi del secondo P(E 2 E 1 ) = P(E 2 ). (1) (Dipartiment 29 / 41

30 Data una famiglia con due figli, calcolare la probabilità che entrambi siano maschi sapendo che almeno uno sia maschio. Soluzione Indicato con m il sesso maschio e con f il sesso femmina, l insieme degli eventi elementari è {(m, m), (m, f ), (f, m), (f, f )}, da cui si ricava, applicando la definizione classica di probabilità, che la probabilità richiesta è 1/3. (Dipartiment 30 / 41

31 Indichiamo con E 1, l evento condizionante ovvero E 1 = {almeno un figlio è maschio}. Poiché vi sono 3 casi favorevoli, si ricava che P(E 1 ) = 3 4. Indichiamo con E 2 l evento descritto dall asserzione {entrambi i figli sono maschi}. Poiché E 1 = {(m, m), (m, f ), (f, m)}, E 2 = {(m, m)} si deduce che E 1 E 2 = {(m, m)} quindi P(E 1 E 2 ) = 1 4. Applicando il teorema delle probabilità condizionate si ricava P(E 2 E 1 ) = P(E 1 E 2 ) P(E 1 ) = 1/4 3/4 = 1 3 (Dipartiment 31 / 41

32 Si consideri l esperimento casuale lancio di due dadi. Si calcoli la probabilità che la somma dei valore ottenuti sia uguale a 3 sapendo che il primo dado lanciato ha fornito il valore 1. Come cambia la probabilità calcolata in precedenza se al primo lancio si ottiene il valore 3? (Dipartiment 32 / 41

33 Da un mazzo di 52 carte vengono estratte 3 carte senza reinserimento. Calcolare la probabilità di estrarre tre assi. Soluzione Sebbene la probabilità richiesta possa essere calcolata mediante la nozione classica di probabilità, risulta più agevole il calcolo attraverso la nozione di probabilità condizionata. Consideriamo i tre eventi E 1 = {la prima carta estratta è un asso} E 2 = {la seconda carta estratta è un asso} E 2 = {la terza carta estratta è un asso} (Dipartiment 33 / 41

34 La probabilità richiesta può essere espressa come P(E 3 E 2 E 1 ), la quale, applicando le formule precedenti si ricava che P(E 3 E 2 E 1 ) = P(E 3 E 2 E 1 ) P(E 2 E 1 ) = = P(E 3 E 2 E 1 ) P(E 2 E 1 ) P(E 1 ) Applicando la nozione classica di probabilità si ricava P(E 1 ) = 4 52 P(E 2 E 1 ) = 3 51 P(E 3 E 2 E 1 ) = 2 50 quindi P(E 3 E 2 E 1 ) = (Dipartiment 34 / 41

35 Un risultato teorico legato alla probabilità condizionata di due eventi E 1 ed E 2 è il teorema di Bayes. Consideriamo la probabilità dell evento condizionato E 2 E 1, ovvero P(E 2 E 1 ) = P(E 1 E 2 ). P(E 1 ) Applicando la legge delle probabilità composte si racava P(E 1 E 2 ) = P(E 1 E 2 )P(E 2 ) P(E 2 E 1 ) = P(E 1 E 2 ) P(E 2) P(E 1 ). La relazione appena introdotta è nota in letteratura come regola di Bayes, la quale consente di calcolare la probabilità condizionata di due eventi nota la probabilità dei singoli eventi e la probabilità condizionata nella quale gli eventi scambiano i propri ruoli. (Dipartiment 35 / 41

36 Una azienda di credito deve decidere se concedere un finanziamento ad un proprio cliente. I clienti vengono ripartiti in due categorie: solvente e insolvente. Sulla base delle esperienze passate è noto che la probabilità che un soggetto appartenga alla categoria insolvente dato che ha ottenuto il finanziamento è dello 0.2. Supponendo che la probabilità che l azienda di credito conceda il finanziamento sia dello 0.4 e che la probabilità che un cliente appartenga alla categoria insolvente sia dello 0.1, calcolare la probabilità che l azienda di credito conceda erroneamente il finanziamento al proprio cliente ovvero la probabilità che venga concesso il finanziamento dato che il soggetto appartiene alla categoria insolvente. (Dipartiment 36 / 41

37 Soluzione Per calcolare la probabilità richiesta definiamo gli eventi E 1 = { il cliente è di tipo insolvente } E 2 = { l azienda di credito concede il finanziamento } Sulla base della descrizione si ricava che P(E 1 E 2 ) = 0.2 P(E 2 ) = 0.4 P(E 1 ) = 0.1. Per calcolare la probabilità richiesta, ovvero P(E 2 E 1 ), applicando il teorema di Bayes si ricava P(E 2 E 1 ) = P(E 1 E 2 ) P(E 2) 0.4 = 0.2 P(E 1 ) 0.1 = 0.8 (Dipartiment 37 / 41

38 Una compagnia assicurativa divide i clienti in due gruppi: il primo gruppo comprende i clienti che sono propensi agli incidenti mentre il secondo gruppo comprende quelli che non lo sono. Le statistiche della compagnia assicurativa mostrano che la probabilità che un assicurato abbia un incidente, dato che appartiene al primo gruppo, è 0,4 mentre la probabilità si riduce a 0,2 se il cliente appartiene al secondo gruppo. Si assuma che la probabilità che un nuovo cliente appartenga al primo gruppo sia 0,3. Calcolare la probabilità che un nuovo assicurato abbia un incidente. Assumendo che il nuovo cliente abbia un incidente, determinare la probabilità che si tratti di un cliente del primo gruppo. (Dipartiment 38 / 41

39 Soluzione Per calcolare le probabilità richieste, definiamo gli eventi E 1 = { il cliente ha un incidente } E 2 = { il cliente appartiene al primo gruppo } Ē 2 = { il cliente appartiene al secondo gruppo } Sulla base delle informazioni fornite è noto che P(E 1 E 2 ) = 0, 4 P(E 2 ) = 0, 3 P(E 1 Ē2) = 0, 2 P(Ē2) = 1 P(E 2 ) = 0, 7 Il primo quesito richiede il calcolo di P(E 1 ). (Dipartiment 39 / 41

40 Osservando che Ω = E 2 Ē 2 si ottiene E 1 = E 1 Ω = E 1 (E 2 Ē 2 ) = (E 1 E 2 ) (E 1 Ē 2 ) si ricava che la probabilità richiesta può essere espressa come ( ) P(E 1 ) = P (E 1 E 2 ) (E 1 Ē 2 ) Poiché gli eventi (E 1 E 2 ) e (E 1 Ē 2 ) sono incompatibili possiamo scrivere P(E 1 ) = P(E 1 E 2 ) + P(E 1 Ē 2 ). (Dipartiment 40 / 41

41 Utilizzando la legge delle probabilità composte si ricava P(E 1 E 2 ) = P(E 1 E 2 ) P(E 2 ) = 0, 4 0, 3 = 0, 12 P(E 1 Ē 2 ) = P(E 1 Ē 2 ) P(Ē 2 ) = 0, 2 0, 7 = 0, 14 quindi P(E 1 ) = 0, , 14 = 0, 26. Il secondo punto richiede il calcolo della probabilità P(E 2 E 1 ). Applicando il teorema di Bayes si ricava P(E 2 E 1 ) = P(E 1 E 2 ) P(E 2) 0, 3 = 0, 4 0, 462 P(E 1 ) 0.26 (Dipartiment 41 / 41

42 Esercizi Riepilogativi La roulette consiste in un disco diviso in 37 settori numerati da 0 a 36 e colorati alternativamente in rosso e nero, mentre lo zero è normalmente colorato di verde. 1 Supponendo che il croupier ripeta il lancio della pallina cinque volte, si calcoli la probabilità di ottenere la seguente sequenza di colori: rosso, verde, rosso, rosso, nero. 2 Supponendo che il croupier ripeta il lancio della pallina due volte, si calcoli la probabilità che la somma dei valori ottenuti sia uguale a tre. (Dipartiment 42 / 41

43 Esercizi Riepilogativi Una scatola contiene 200 dadi per giochi di società di diversa tipologia e ripartiti nel seguente modo. Il 20% dei dati ha 4 facce, il 40% ha 6 facce, il 30% ha 8 facce e la parte restante è costituita da dadi a 10 facce. 1 Il candidato calcoli la probabilità di estrarre un dado con 6 o 8 facce. 2 Si consideri l esperimento casuale consistente nell estrazione senza reinserimento di 5 dadi. Calcolare la probabilità di osservare la seguente sequenza: 8 facce, 8 facce, 6 facce, 4 facce, 6 facce. (Dipartiment 43 / 41

44 Esercizi Riepilogativi Si consideri una slot-machine costituita da cinque rulli i quali forniscono risultati stocasticamente indipendenti tra loro. Ogni rullo è costituito da dieci settori raffiguranti gli interi da uno a dieci. Utilizzando un volta soltanto la slot-machine, il candidato calcoli la probabilità che la slot-machine visualizzi la sequenza (Dipartiment 44 / 41

45 Esercizi Riepilogativi La roulette è un gioco d azzardo di origine italiana introdotto in Francia nel XVIII secolo consistente in un disco diviso in 37 settori numerati da 0 a Calcolare la probabilità che 3 palline lanciate consecutivamente cadano in un settore riportante un valore compreso tra 0 e 10, estremi compresi; 2 Calcolare la probabilità che 2 palline lanciate consecutivamente cadano in un settore riportante un valore compreso tra 10 e 20, estremi compresi. (Dipartiment 45 / 41

46 Esercizi Riepilogativi Un urna contiene 15 palline bianche, 20 palline nere, 35 palline rosse e 30 palline gialle. i. Calcolare la probabilità che, estraendo una pallina dall urna, la pallina estratta sia di colore rosso. ii. Calcolare la probabilità che, estraendo una pallina dall urna, la pallina estratta sia di un colore diverso dal bianco. iii. Considerando l estrazione senza reinserimento di cinque palline dall urna, calcolare la probabilità di ottenere la sequenza: bianca, bianca, nera, rossa, gialla. (Dipartiment 46 / 41

Calcolo delle Probabilità

Calcolo delle Probabilità Calcolo delle Probabilità Il calcolo delle probabilità studia i modelli matematici delle cosidette situazioni di incertezza. Molte situazioni concrete sono caratterizzate a priori da incertezza su quello

Dettagli

CORSO DI CALCOLO DELLE PROBABILITÀ E STATISTICA. Esercizi su eventi, previsioni e probabilità condizionate

CORSO DI CALCOLO DELLE PROBABILITÀ E STATISTICA. Esercizi su eventi, previsioni e probabilità condizionate CORSO DI CALCOLO DELLE PROBABILITÀ E STATISTICA Esercizi su eventi, previsioni e probabilità condizionate Nota: Alcuni esercizi sono tradotti, più o meno fedelmente, dal libro A first course in probability

Dettagli

Introduzione alla probabilità

Introduzione alla probabilità Introduzione alla probabilità CAPITOLO TEORIA Il dilemma di Monty Hall In un popolare show televisivo americano il presentatore mostra al concorrente tre porte chiuse. Dietro a una di esse si cela il premio

Dettagli

Ancora sull indipendenza. Se A e B sono indipendenti allora lo sono anche

Ancora sull indipendenza. Se A e B sono indipendenti allora lo sono anche Ancora sull indipendenza Se A e B sono indipendenti allora lo sono anche A e B Ā e B Ā e B Sfruttiamo le leggi di De Morgan Leggi di De Morgan A B = Ā B A B = Ā B P (Ā B) = P (A B) = 1 P (A B) = 1 (P (A)

Dettagli

Corso di Matematica e Statistica 4 Calcolo combinatorio e probabilità. Le disposizioni semplici di n elementi di classe k

Corso di Matematica e Statistica 4 Calcolo combinatorio e probabilità. Le disposizioni semplici di n elementi di classe k Pordenone Corso di Matematica e Statistica 4 Calcolo combinatorio e probabilità UNIVERSITAS STUDIORUM UTINENSIS Giorgio T. Bagni Facoltà di Scienze della Formazione Dipartimento di Matematica e Informatica

Dettagli

Gli eventi sono stati definiti come i possibili risultati di un esperimento. Ogni evento ha una probabilità

Gli eventi sono stati definiti come i possibili risultati di un esperimento. Ogni evento ha una probabilità Probabilità Probabilità Gli eventi sono stati definiti come i possibili risultati di un esperimento. Ogni evento ha una probabilità Se tutti gli eventi fossero ugualmente possibili, la probabilità p(e)

Dettagli

ESERCIZI. x + 3 x 2 1. a) y = 4x2 + 3x 2x + 2 ; b) y = 6x2 x 1. (x + 2) 2 c) y =

ESERCIZI. x + 3 x 2 1. a) y = 4x2 + 3x 2x + 2 ; b) y = 6x2 x 1. (x + 2) 2 c) y = ESERCIZI Testi (1) Un urna contiene 20 palline di cui 8 rosse 3 bianche e 9 nere; calcolare la probabilità che: (a) tutte e tre siano rosse; (b) tutte e tre bianche; (c) 2 rosse e una nera; (d) almeno

Dettagli

8. Qual è la probabilità di estrarre da un mazzo di 40 carte napoletane una figura?

8. Qual è la probabilità di estrarre da un mazzo di 40 carte napoletane una figura? www.matematicamente.it Probabilità 1 Calcolo delle probabilità Cognome e nome: Classe Data 1. Quali affermazioni sono vere? A. Un evento impossibile ha probabilità 1 B. Un vento certo ha probabilità 0

Dettagli

Esercizi di consolidamento di probabilità e calcolo combinatorio parte 1

Esercizi di consolidamento di probabilità e calcolo combinatorio parte 1 Esercizi di consolidamento di probabilità e calcolo combinatorio parte 1 1. Si lancia una moneta 2 volte: qual è la probabilità che esca TESTA 0 volte? 1 volta? 2 volte? 2. Si lancia una moneta 3 volte:

Dettagli

Esercizio 1. Svolgimento

Esercizio 1. Svolgimento Esercizio 1 Vengono lanciate contemporaneamente 6 monete. Si calcoli: a) la probabilità che si presentino esattamente 2 testa ; b) la probabilità di ottenere almeno 4 testa ; c) la probabilità che l evento

Dettagli

FACOLTA DI INGEGNERIA SCHEDA DIDATTICA N 1

FACOLTA DI INGEGNERIA SCHEDA DIDATTICA N 1 FACOLTA DI INGEGNERIA CORSO DI LAUREA IN INGEGNERIA PER L AMBIENTE ED IL TERRITORIO CORSO DI STATISTICA E CALCOLO DELLE PROBABILITA PROF. PASQUALE VERSACE SCHEDA DIDATTICA N ARGOMENTO: CALCOLO DELLE PROBABILITA

Dettagli

Esercizi di calcolo combinatorio

Esercizi di calcolo combinatorio CORSO DI CALCOLO DELLE PROBABILITÀ E STATISTICA Esercizi di calcolo combinatorio Nota: Alcuni esercizi sono tradotti, più o meno fedelmente, dal libro A first course in probability di Sheldon Ross, quinta

Dettagli

Calcolo combinatorio

Calcolo combinatorio Probabilità e Statistica Esercitazioni a.a. 2009/2010 C.d.L.S.: Ingegneria Civile-Architettonico, Ingegneria Civile-Strutturistico Calcolo combinatorio Ines Campa e Marco Longhi Probabilità e Statistica

Dettagli

Stima per intervalli Nei metodi di stima puntuale è sempre presente un ^ errore θ θ dovuto al fatto che la stima di θ in genere non coincide con il parametro θ. Sorge quindi l esigenza di determinare una

Dettagli

Logica fuzzy e calcolo delle probabilità: due facce della stessa medaglia?

Logica fuzzy e calcolo delle probabilità: due facce della stessa medaglia? Logica fuzzy e calcolo delle probabilità: due facce della stessa medaglia? Danilo Pelusi 1 Gianpiero Centorame 2 Sunto: Il seguente articolo illustra le possibili analogie e differenze tra il calcolo delle

Dettagli

Esempi introduttivi Variabili casuali Eventi casuali e probabilità

Esempi introduttivi Variabili casuali Eventi casuali e probabilità Esempi introduttivi Esempio tipico di problema della meccanica razionale: traiettoria di un proiettile. Esempio tipico di problema idraulico: altezza d'acqua corrispondente a una portata assegnata. Come

Dettagli

Lezione 10. La Statistica Inferenziale

Lezione 10. La Statistica Inferenziale Lezione 10 La Statistica Inferenziale Filosofia della scienza Secondo Aristotele, vi sono due vie attraverso le quali riusciamo a formare le nostre conoscenze: (1) la deduzione (2) l induzione. Lezione

Dettagli

Cenni sul calcolo combinatorio

Cenni sul calcolo combinatorio Cenni sul calcolo combinatorio Disposizioni semplici Le disposizioni semplici di n elementi distinti di classe k con kn sono tutti i gruppi di k elementi scelti fra gli n, che differiscono per almeno un

Dettagli

Percorsi di matematica per il ripasso e il recupero

Percorsi di matematica per il ripasso e il recupero Giacomo Pagina Giovanna Patri Percorsi di matematica per il ripasso e il recupero 1 per la Scuola secondaria di secondo grado UNITÀ CMPIONE Edizioni del Quadrifoglio à t i n U 1 Insiemi La teoria degli

Dettagli

Lezioni di STATISTICA MATEMATICA A

Lezioni di STATISTICA MATEMATICA A Università di Modena e Reggio Emilia Facoltà di Ingegneria Lezioni di STATISTICA MATEMATICA A Corso di Laurea in Ingegneria Meccanica Corso di Laurea in Ingegneria dei Materiali - Anno Accademico 010/11

Dettagli

19. Inclusioni tra spazi L p.

19. Inclusioni tra spazi L p. 19. Inclusioni tra spazi L p. Nel n. 15.1 abbiamo provato (Teorema 15.1.1) che, se la misura µ è finita, allora tra i corispondenti spazi L p (µ) si hanno le seguenti inclusioni: ( ) p, r ]0, + [ : p

Dettagli

MATEMATICA. { 2 x =12 y 3 y +8 x =0, si pone il problema di trovare, se esistono, un numero x ed un numero y che risolvano entrambe le equazioni.

MATEMATICA. { 2 x =12 y 3 y +8 x =0, si pone il problema di trovare, se esistono, un numero x ed un numero y che risolvano entrambe le equazioni. MATEMATICA. Sistemi lineari in due equazioni due incognite. Date due equazioni lineari nelle due incognite x, y come ad esempio { 2 x =12 y 3 y +8 x =0, si pone il problema di trovare, se esistono, un

Dettagli

Lezioni di Matematica 1 - I modulo

Lezioni di Matematica 1 - I modulo Lezioni di Matematica 1 - I modulo Luciano Battaia 16 ottobre 2008 Luciano Battaia - http://www.batmath.it Matematica 1 - I modulo. Lezione del 16/10/2008 1 / 13 L introduzione dei numeri reali si può

Dettagli

Capitolo 8 - Introduzione alla probabilità

Capitolo 8 - Introduzione alla probabilità Appunti di Teoria dei Segnali Capitolo 8 - Introduzione alla probabilità Concetti preliminari di probabilità... Introduzione alla probabilità... Deinizione di spazio degli eventi... Deinizione di evento...

Dettagli

PROBABILITA, VALORE ATTESO E VARIANZA DELLE QUANTITÁ ALEATORIE E LORO RELAZIONE CON I DATI OSSERVATI

PROBABILITA, VALORE ATTESO E VARIANZA DELLE QUANTITÁ ALEATORIE E LORO RELAZIONE CON I DATI OSSERVATI statistica, Università Cattaneo-Liuc, AA 006-007, lezione del 08.05.07 IDICE (lezione 08.05.07 PROBABILITA, VALORE ATTESO E VARIAZA DELLE QUATITÁ ALEATORIE E LORO RELAZIOE CO I DATI OSSERVATI 3.1 Valore

Dettagli

Lo schema di Bernoulli (o delle prove indipendenti): un esempio di modello probabilistico applicabile a diversi contesti

Lo schema di Bernoulli (o delle prove indipendenti): un esempio di modello probabilistico applicabile a diversi contesti Lo schema di Bernoulli (o delle prove indipendenti): un esempio di modello probabilistico applicabile a diversi contesti Rita Giuliano (Pisa) 0. Introduzione. È ormai acquisizione comune il fatto che uno

Dettagli

Probabilità e statistica. Veronica Gavagna

Probabilità e statistica. Veronica Gavagna Probabilità e statistica Veronica Gavagna Testa o croce? Immaginiamo di lanciare una moneta facendola cadere su un piano liscio chiunque dirà che la probabilità dell evento testa sarà del 50%, al pari

Dettagli

Sommario. Corso di Statistica Facoltà di Economia. L'Algebra degli Eventi

Sommario. Corso di Statistica Facoltà di Economia. L'Algebra degli Eventi ommario Corso di tatistica Facoltà di Economia a.a. 2006-2007 2007 francesco mola L algebra degli eventi Diagrammi di Venn Teoremi fondamentali Probabilità Condizionata ed Indipendenza tocastica Lezione

Dettagli

Introduzione alla Teoria degli Errori

Introduzione alla Teoria degli Errori Introduzione alla Teoria degli Errori 1 Gli errori di misura sono inevitabili Una misura non ha significato se non viene accompagnata da una ragionevole stima dell errore ( Una scienza si dice esatta non

Dettagli

1a) Calcolare gli estremi dell intervallo di confidenza per µ al 90% in corrispondenza del campione osservato.

1a) Calcolare gli estremi dell intervallo di confidenza per µ al 90% in corrispondenza del campione osservato. Esercizio 1 Sia X 1,..., X un campione casuale estratto da una variabile aleatoria normale con media pari a µ e varianza pari a 1. Supponiamo che la media campionaria sia x = 2. 1a) Calcolare gli estremi

Dettagli

Elementi di Statistica

Elementi di Statistica Elementi di Statistica Contenuti Contenuti di Statistica nel corso di Data Base Elementi di statistica descrittiva: media, moda, mediana, indici di dispersione Introduzione alle variabili casuali e alle

Dettagli

EQUAZIONI E DISEQUAZIONI POLINOMIALI E COLLEGAMENTI CON LA GEOMETRIA ELEMENTARE

EQUAZIONI E DISEQUAZIONI POLINOMIALI E COLLEGAMENTI CON LA GEOMETRIA ELEMENTARE EQUAZIONI E DISEQUAZIONI POLINOMIALI E COLLEGAMENTI CON LA GEOMETRIA ELEMENTARE 1. EQUAZIONI Definizione: un equazione è un uguaglianza tra due espressioni letterali (cioè in cui compaiono numeri, lettere

Dettagli

Rilevazione degli apprendimenti. Anno Scolastico 2006 2007 PROVA DI MATEMATICA. Scuola Secondaria di II grado. Classe Terza Tipo A. Codici. Scuola:...

Rilevazione degli apprendimenti. Anno Scolastico 2006 2007 PROVA DI MATEMATICA. Scuola Secondaria di II grado. Classe Terza Tipo A. Codici. Scuola:... Ministero della Pubblica Istruzione Rilevazione degli apprendimenti Anno Scolastico 2006 2007 PROVA DI MATEMATICA Scuola Secondaria di II grado Classe Terza Tipo A Codici Scuola:..... Classe:.. Studente:.

Dettagli

CALCOLO COMBINATORIO E PROBABILITA

CALCOLO COMBINATORIO E PROBABILITA CALCOLO COMBINATORIO E PROBABILITA Con calcolo combinatorio si indica quel settore della matematica che studia i possibili modi di raggruppare ed ordinare oggetti presi da un insieme assegnato, con l obiettivo

Dettagli

Se si insiste non si vince

Se si insiste non si vince Se si insiste non si vince Livello scolare: 2 biennio Abilità interessate Valutare la probabilità in diversi contesti problematici. Distinguere tra eventi indipendenti e non. Valutare criticamente le informazioni

Dettagli

Rilevazione degli apprendimenti. Anno Scolastico 2006 2007 PROVA DI MATEMATICA. Scuola Secondaria di II grado. Classe Terza Tipo A. Codici. Scuola:...

Rilevazione degli apprendimenti. Anno Scolastico 2006 2007 PROVA DI MATEMATICA. Scuola Secondaria di II grado. Classe Terza Tipo A. Codici. Scuola:... Ministero della Pubblica Istruzione Rilevazione degli apprendimenti Anno Scolastico 2006 2007 PROVA DI MATEMATICA Scuola Secondaria di II grado Classe Terza Tipo A Codici Scuola:..... Classe:.. Studente:.

Dettagli

10. Insiemi non misurabili secondo Lebesgue.

10. Insiemi non misurabili secondo Lebesgue. 10. Insiemi non misurabili secondo Lebesgue. Lo scopo principale di questo capitolo è quello di far vedere che esistono sottoinsiemi di R h che non sono misurabili secondo Lebesgue. La costruzione di insiemi

Dettagli

Parte 3. Rango e teorema di Rouché-Capelli

Parte 3. Rango e teorema di Rouché-Capelli Parte 3. Rango e teorema di Rouché-Capelli A. Savo Appunti del Corso di Geometria 203-4 Indice delle sezioni Rango di una matrice, 2 Teorema degli orlati, 3 3 Calcolo con l algoritmo di Gauss, 6 4 Matrici

Dettagli

DISTRIBUZIONE di PROBABILITA. Si dice variabile aleatoria (o casuale) discreta X una quantità variabile che può assumere i

DISTRIBUZIONE di PROBABILITA. Si dice variabile aleatoria (o casuale) discreta X una quantità variabile che può assumere i DISTRIBUZIONE di PROBABILITA Si dice variabile aleatoria (o casuale) discreta X una quantità variabile che uò assumere i valori: ; ;, n al verificarsi degli eventi incomatibili e comlementari: E ; E ;..;

Dettagli

Teoria degli insiemi

Teoria degli insiemi Teoria degli insiemi pag 1 Easy Matematica di dolfo Scimone Teoria degli insiemi Il concetto di insieme si assume come primitivo, cioè non riconducibile a concetti precedentemente definiti. Sinonimi di

Dettagli

1 n. Intero frazionato. Frazione

1 n. Intero frazionato. Frazione Consideriamo un intero, prendiamo un rettangolo e dividiamolo in sei parti uguali, ciascuna di queste parti rappresenta un sesto del rettangolo, cioè una sola delle sei parti uguali in cui è stato diviso.

Dettagli

Test d ingresso per i curricula in lingua inglese Coloro che intendono iscriversi ai curricula in lingua inglese Economics of Financial and Insurance

Test d ingresso per i curricula in lingua inglese Coloro che intendono iscriversi ai curricula in lingua inglese Economics of Financial and Insurance Note e istruzioni per i test di ingresso ai Corsi di Studio del Dipartimento di Scienze Economiche, Aziendali, Matematiche e Statistiche (DEAMS) a.a. 2013/2014 Gli insegnamenti relativi ai Corsi di Laurea

Dettagli

Esistenza di funzioni continue non differenziabili in alcun punto

Esistenza di funzioni continue non differenziabili in alcun punto UNIVERSITÀ DEGLI STUDI DI CAGLIARI FACOLTÀ DI SCIENZE MATEMATICHE, FISICHE E NATURALI CORSO DI LAUREA IN MATEMATICA Esistenza di funzioni continue non differenziabili in alcun punto Relatore Prof. Andrea

Dettagli

Università del Piemonte Orientale. Corso di laurea in biotecnologia. Corso di Statistica Medica. Analisi dei dati quantitativi :

Università del Piemonte Orientale. Corso di laurea in biotecnologia. Corso di Statistica Medica. Analisi dei dati quantitativi : Università del Piemonte Orientale Corso di laurea in biotecnologia Corso di Statistica Medica Analisi dei dati quantitativi : Confronto tra due medie Università del Piemonte Orientale Corso di laurea in

Dettagli

La Bella Addormentata e altre illusioni probabilistiche. volcic@unical.it

La Bella Addormentata e altre illusioni probabilistiche. volcic@unical.it La Bella Addormentata e altre illusioni probabilistiche Aljoša Volčič volcic@unical.it Firenze, 25 novembre 2009 1 Che cosa è la probabilità? La probabilità di un evento A è la misura del grado di fiducia

Dettagli

SCHEDA DI PROGRAMMAZIONE DELLE ATTIVITA EDUCATIVE DIDATTICHE. Disciplina: Matematica Classe: 5A sia A.S. 2014/15 Docente: Rosito Franco

SCHEDA DI PROGRAMMAZIONE DELLE ATTIVITA EDUCATIVE DIDATTICHE. Disciplina: Matematica Classe: 5A sia A.S. 2014/15 Docente: Rosito Franco Disciplina: Matematica Classe: 5A sia A.S. 2014/15 Docente: Rosito Franco ANALISI DI SITUAZIONE - LIVELLO COGNITIVO La classe ha dimostrato fin dal primo momento grande attenzione e interesse verso gli

Dettagli

MATRICI E DETERMINANTI

MATRICI E DETERMINANTI MATRICI E DETERMINANTI 1. MATRICI Si ha la seguente Definizione 1: Un insieme di numeri, reali o complessi, ordinati secondo righe e colonne è detto matrice di ordine m x n, ove m è il numero delle righe

Dettagli

DI D AGRA R MM M I M A BLOCC C H C I TEORI R A E D D E SERC R I C ZI 1 1

DI D AGRA R MM M I M A BLOCC C H C I TEORI R A E D D E SERC R I C ZI 1 1 DIAGRAMMI A BLOCCHI TEORIA ED ESERCIZI 1 1 Il linguaggio dei diagrammi a blocchi è un possibile formalismo per la descrizione di algoritmi Il diagramma a blocchi, o flowchart, è una rappresentazione grafica

Dettagli

TEORIA DELL UTILITÀ E DECISION PROCESS

TEORIA DELL UTILITÀ E DECISION PROCESS TEORIA DELL UTILITÀ E DECISION PROCESS 1 UTILITÀ Classicamente sinonimo di Desiderabilità Fisher (1930):... uno degli elementi che contribuiscono ad identificare la natura economica di un bene e sorge

Dettagli

DISTRIBUZIONI DI VARIABILI CASUALI DISCRETE

DISTRIBUZIONI DI VARIABILI CASUALI DISCRETE DISTRIBUZIONI DI VARIABILI CASUALI DISCRETE variabile casuale (rv): regola che associa un numero ad ogni evento di uno spazio E. variabile casuale di Bernoulli: rv che può assumere solo due valori (e.g.,

Dettagli

ORDINALI E NOMINALI LA PROBABILITÀ. Nell ambito della manifestazione di un fenomeno niente è certo, tutto è probabile.

ORDINALI E NOMINALI LA PROBABILITÀ. Nell ambito della manifestazione di un fenomeno niente è certo, tutto è probabile. ORDINALI E NOMINALI LA PROBABILITÀ Statistica5 23/10/13 Nell ambito della manifestazione di un fenomeno niente è certo, tutto è probabile. Se si afferma che un vitello di razza chianina pesa 780 kg a 18

Dettagli

RELAZIONE TRA DUE VARIABILI QUANTITATIVE

RELAZIONE TRA DUE VARIABILI QUANTITATIVE RELAZIONE TRA DUE VARIABILI QUANTITATIVE Quando si considerano due o più caratteri (variabili) si possono esaminare anche il tipo e l'intensità delle relazioni che sussistono tra loro. Nel caso in cui

Dettagli

Analisi statistica di dati biomedici Analysis of biologicalsignals

Analisi statistica di dati biomedici Analysis of biologicalsignals Analisi statistica di dati biomedici Analysis of biologicalsignals II Parte Verifica delle ipotesi (a) Agostino Accardo (accardo@units.it) Master in Ingegneria Clinica LM in Neuroscienze 2013-2014 e segg.

Dettagli

Consideriamo due polinomi

Consideriamo due polinomi Capitolo 3 Il luogo delle radici Consideriamo due polinomi N(z) = (z z 1 )(z z 2 )... (z z m ) D(z) = (z p 1 )(z p 2 )... (z p n ) della variabile complessa z con m < n. Nelle problematiche connesse al

Dettagli

ALGEBRA I: NUMERI INTERI, DIVISIBILITÀ E IL TEOREMA FONDAMENTALE DELL ARITMETICA

ALGEBRA I: NUMERI INTERI, DIVISIBILITÀ E IL TEOREMA FONDAMENTALE DELL ARITMETICA ALGEBRA I: NUMERI INTERI, DIVISIBILITÀ E IL TEOREMA FONDAMENTALE DELL ARITMETICA 1. RICHIAMI SULLE PROPRIETÀ DEI NUMERI NATURALI Ho mostrato in un altra dispensa come ricavare a partire dagli assiomi di

Dettagli

Statistica. Lezione 6

Statistica. Lezione 6 Università degli Studi del Piemonte Orientale Corso di Laurea in Infermieristica Corso integrato in Scienze della Prevenzione e dei Servizi sanitari Statistica Lezione 6 a.a 011-01 Dott.ssa Daniela Ferrante

Dettagli

I numeri relativi. Il calcolo letterale

I numeri relativi. Il calcolo letterale Indice Il numero unità I numeri relativi VIII Indice L insieme R Gli insiemi Z e Q Confronto di numeri relativi Le operazioni fondamentali in Z e Q 0 L addizione 0 La sottrazione La somma algebrica La

Dettagli

TELECOMUNICAZIONI (TLC) Generico sistema di telecomunicazione (TLC) Trasduttore. Attuatore CENNI DI TEORIA (MATEMATICA) DELL INFORMAZIONE

TELECOMUNICAZIONI (TLC) Generico sistema di telecomunicazione (TLC) Trasduttore. Attuatore CENNI DI TEORIA (MATEMATICA) DELL INFORMAZIONE TELECOMUNICAZIONI (TLC) Tele (lontano) Comunicare (inviare informazioni) Comunicare a distanza Generico sistema di telecomunicazione (TLC) Segnale non elettrico Segnale elettrico TRASMESSO s x (t) Sorgente

Dettagli

VARIABILI ALEATORIE CONTINUE

VARIABILI ALEATORIE CONTINUE VARIABILI ALEATORIE CONTINUE Se X è una variabile aleatoria continua, la probabilità che X assuma un certo valore x fissato è in generale zero, quindi non ha senso definire una distribuzione di probabilità

Dettagli

1. Intorni di un punto. Punti di accumulazione.

1. Intorni di un punto. Punti di accumulazione. 1. Intorni di un punto. Punti di accumulazione. 1.1. Intorni circolari. Assumiamo come distanza di due numeri reali x e y il numero non negativo x y (che, come sappiamo, esprime la distanza tra i punti

Dettagli

CALCOLO COMBINATORIO

CALCOLO COMBINATORIO CALCOLO COMBINATORIO 1 Modi di formare gruppi di k oggetti presi da n dati 11 disposizioni semplici, permutazioni Dati n oggetti distinti a 1,, a n si chiamano disposizioni semplici di questi oggetti,

Dettagli

Dimensione di uno Spazio vettoriale

Dimensione di uno Spazio vettoriale Capitolo 4 Dimensione di uno Spazio vettoriale 4.1 Introduzione Dedichiamo questo capitolo ad un concetto fondamentale in algebra lineare: la dimensione di uno spazio vettoriale. Daremo una definizione

Dettagli

Accuratezza di uno strumento

Accuratezza di uno strumento Accuratezza di uno strumento Come abbiamo già accennato la volta scora, il risultato della misurazione di una grandezza fisica, qualsiasi sia lo strumento utilizzato, non è mai un valore numerico X univocamente

Dettagli

E possibile costruire una mentalità matematica?

E possibile costruire una mentalità matematica? E possibile costruire una mentalità matematica? Prof. F. A. Costabile 1. Introduzione La matematica è più di una tecnica. Apprendere la matematica significa conquistare l attitudine ad un comportamento

Dettagli

TECNICHE DI SIMULAZIONE

TECNICHE DI SIMULAZIONE TECNICHE DI SIMULAZIONE MODELLI STATISTICI NELLA SIMULAZIONE Francesca Mazzia Dipartimento di Matematica Università di Bari a.a. 2004/2005 TECNICHE DI SIMULAZIONE p. 1 Modelli statistici nella simulazione

Dettagli

Algoritmo euclideo, massimo comun divisore ed equazioni diofantee

Algoritmo euclideo, massimo comun divisore ed equazioni diofantee Algoritmo euclideo, massimo comun divisore ed equazioni diofantee Se a e b sono numeri interi, si dice che a divide b, in simboli: a b, se e solo se esiste c Z tale che b = ac. Si può subito notare che:

Dettagli

La probabilità di avere non più di un maschio, significa la probabilità di averne 0 o 1: ( 0) P( 1)

La probabilità di avere non più di un maschio, significa la probabilità di averne 0 o 1: ( 0) P( 1) Esercizi sulle distribuzioni binoiale e poissoniana Esercizio n. Una coppia ha tre figli. Calcolare la probabilità che abbia non più di un aschio se la probabilità di avere un aschio od una feina è sepre

Dettagli

Esercitazioni di Statistica

Esercitazioni di Statistica Esercitazioni di Statistica Test d ipotesi sul valor medio e test χ 2 di adattamento Prof. Livia De Giovanni statistica@dis.uniroma1.it Esercizio 1 Si supponga che il diametro degli anelli metallici prodotti

Dettagli

Funzione reale di variabile reale

Funzione reale di variabile reale Funzione reale di variabile reale Siano A e B due sottoinsiemi non vuoti di. Si chiama funzione reale di variabile reale, di A in B, una qualsiasi legge che faccia corrispondere, a ogni elemento A x A

Dettagli

+ P a n n=1 + X. a n = a m 3. n=1. m=4. Per poter dare un significato alla somma (formale) di infiniti termini, ricorriamo al seguente procedimento:

+ P a n n=1 + X. a n = a m 3. n=1. m=4. Per poter dare un significato alla somma (formale) di infiniti termini, ricorriamo al seguente procedimento: Capitolo 3 Serie 3. Definizione Sia { } una successione di numeri reali. Ci proponiamo di dare significato, quando possibile, alla somma a + a 2 +... + +... di tutti i termini della successione. Questa

Dettagli

La ricerca operativa

La ricerca operativa S.S.I.S. PUGLIA Anno Accademico 2003/2004 Laboratorio di didattica della matematica per l economia e la finanza La ricerca operativa Prof. Palmira Ronchi (palmira.ronchi@ssis.uniba.it) Gli esercizi presenti

Dettagli

Nel triangolo disegnato a lato, qual è la misura, in gradi e primi sessagesimali, di α?

Nel triangolo disegnato a lato, qual è la misura, in gradi e primi sessagesimali, di α? QUESITO 1 Nel triangolo disegnato a lato, qual è la misura, in gradi e primi sessagesimali, di α? Applicando il Teorema dei seni si può determinare il valore di senza indeterminazione, in quanto dalla

Dettagli

La variabile casuale Binomiale

La variabile casuale Binomiale La variabile casuale Binomiale Si costruisce a partire dalla nozione di esperimento casuale Bernoulliano che consiste in un insieme di prove ripetute con le seguenti caratteristiche: i) ad ogni singola

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO 2006 Indirizzo Scientifico Tecnologico Progetto Brocca

ESAME DI STATO DI LICEO SCIENTIFICO 2006 Indirizzo Scientifico Tecnologico Progetto Brocca ESAME DI STATO DI LICEO SCIENTIFICO 2006 Indirizzo Scientifico Tecnologico Progetto Brocca Trascrizione del testo e redazione delle soluzioni di Paolo Cavallo. La prova Il candidato svolga una relazione

Dettagli

Compito di SISTEMI E MODELLI. 19 Febbraio 2015

Compito di SISTEMI E MODELLI. 19 Febbraio 2015 Compito di SISTEMI E MODELLI 9 Febbraio 5 Non é ammessa la consultazione di libri o quaderni. Le risposte vanno giustificate. Saranno rilevanti per la valutazione anche l ordine e la chiarezza di esposizione.

Dettagli

Anello commutativo. Un anello è commutativo se il prodotto è commutativo.

Anello commutativo. Un anello è commutativo se il prodotto è commutativo. Anello. Un anello (A, +, ) è un insieme A con due operazioni + e, dette somma e prodotto, tali che (A, +) è un gruppo abeliano, (A, ) è un monoide, e valgono le proprietà di distributività (a destra e

Dettagli

UN NUOVO ASSETTO DELLE APERTURE A LIVELLO 2

UN NUOVO ASSETTO DELLE APERTURE A LIVELLO 2 Lezione 14 LE APERTURE A LIVELLO 2 UN NUOVO ASSETTO DELLE APERTURE A LIVELLO 2 Tutto parte da una considerazione statistica: 4 aperture (da a ) per descrivere mani di 21+ Punti rappresenta uno spreco in

Dettagli

TIMSS 2007 Quadro di riferimento di matematica. dal volume: "TIMSS 2007 Assessment Frameworks"

TIMSS 2007 Quadro di riferimento di matematica. dal volume: TIMSS 2007 Assessment Frameworks Capitolo Uno TIMSS 2007 Quadro di riferimento di matematica dal volume: "TIMSS 2007 Assessment Frameworks" a cura di Anna Maria Caputo, Cristiano Zicchi Copyright 2005 IEA International Association for

Dettagli

Appunti di Logica Matematica

Appunti di Logica Matematica Appunti di Logica Matematica Francesco Bottacin 1 Logica Proposizionale Una proposizione è un affermazione che esprime un valore di verità, cioè una affermazione che è VERA oppure FALSA. Ad esempio: 5

Dettagli

Il luogo delle radici (ver. 1.0)

Il luogo delle radici (ver. 1.0) Il luogo delle radici (ver. 1.0) 1 Sia dato il sistema in retroazione riportato in Fig. 1.1. Il luogo delle radici è uno strumento mediante il quale è possibile valutare la posizione dei poli della funzione

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2004

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2004 ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 004 Il candidato risolva uno dei due problemi e 5 dei 10 quesiti in cui si articola il questionario. PROBLEMA 1 Sia f la funzione definita da: f

Dettagli

La funzione è continua nel suo dominio perchè y = f(x) è composizione di funzioni continue. Il punto x = 0 è un punto isolato per D f.

La funzione è continua nel suo dominio perchè y = f(x) è composizione di funzioni continue. Il punto x = 0 è un punto isolato per D f. FUNZIONI CONTINUE - ALCUNI ESERCIZI SVOLTI SIMONE ALGHISI 1. Continuità di una funzione Dati un insieme D R, una funzione f : D R e x 0 R, si è detto che f è continua in x 0 se sono soddisfatte le seguenti

Dettagli

Calcolo differenziale Test di autovalutazione

Calcolo differenziale Test di autovalutazione Test di autovalutazione 1. Sia f : R R iniettiva, derivabile e tale che f(1) = 3, f (1) = 2, f (3) = 5. Allora (a) (f 1 ) (3) = 1 5 (b) (f 1 ) (3) = 1 2 (c) (f 1 ) (1) = 1 2 (d) (f 1 ) (1) = 1 3 2. Sia

Dettagli

ALGEBRA: LEZIONI DAL 13 OTTOBRE AL 3 NOVEMBRE

ALGEBRA: LEZIONI DAL 13 OTTOBRE AL 3 NOVEMBRE ALGEBRA: LEZIONI DAL 13 OTTOBRE AL 3 NOVEMBRE 1 DIPENDENZA E INDIPENDENZA LINEARE Se ho alcuni vettori v 1, v 2,, v n in uno spazio vettoriale V, il sottospazio 1 W = v 1,, v n di V da loro generato è

Dettagli

Elementi di teoria degli insiemi

Elementi di teoria degli insiemi Elementi di teoria degli insiemi 1 Insiemi e loro elementi 11 Sottoinsiemi Insieme vuoto Abbiamo già osservato che ogni numero naturale è anche razionale assoluto o, in altre parole, che l insieme dei

Dettagli

186. Un gioco d incertezza: Forse che sì, forse che no Rosa Marincola rosamarincola@virgilio.it

186. Un gioco d incertezza: Forse che sì, forse che no Rosa Marincola rosamarincola@virgilio.it 186. Un gioco d incertezza: Forse che sì, forse che no Rosa Marincola rosamarincola@virgilio.it Premessa Durante una mia visita al Palazzo Ducale di Mantova, nell ammirare i tanti capolavori che custodisce,

Dettagli

Appunti di Algebra Lineare

Appunti di Algebra Lineare Appunti di Algebra Lineare Indice 1 I vettori geometrici. 1 1.1 Introduzione................................... 1 1. Somma e prodotto per uno scalare....................... 1 1.3 Combinazioni lineari e

Dettagli

Geometria nel piano complesso

Geometria nel piano complesso Geometria nel piano complesso Giorgio Ottaviani Contents Un introduzione formale del piano complesso 2 Il teorema di Napoleone 5 L inversione circolare 6 4 Le trasformazioni di Möbius 7 5 Il birapporto

Dettagli

Logica Numerica Approfondimento 1. Minimo Comune Multiplo e Massimo Comun Divisore. Il concetto di multiplo e di divisore. Il Minimo Comune Multiplo

Logica Numerica Approfondimento 1. Minimo Comune Multiplo e Massimo Comun Divisore. Il concetto di multiplo e di divisore. Il Minimo Comune Multiplo Logica Numerica Approfondimento E. Barbuto Minimo Comune Multiplo e Massimo Comun Divisore Il concetto di multiplo e di divisore Considerato un numero intero n, se esso viene moltiplicato per un numero

Dettagli

Funzioni in più variabili

Funzioni in più variabili Funzioni in più variabili Corso di Analisi 1 di Andrea Centomo 27 gennaio 2011 Indichiamo con R n, n 1, l insieme delle n-uple ordinate di numeri reali R n4{(x 1, x 2,,x n ), x i R, i =1,,n}. Dato X R

Dettagli

esame di stato 2014 seconda prova scritta per i licei scientifici di ordinamento

esame di stato 2014 seconda prova scritta per i licei scientifici di ordinamento ARTICOLO Archimede 4 4 esame di stato 4 seconda prova scritta per i licei scientifici di ordinamento Il candidato risolva uno dei due problemi e risponda a 5 quesiti del questionario. PROBLEMA Nella figura

Dettagli

ALGEBRA I: CARDINALITÀ DI INSIEMI

ALGEBRA I: CARDINALITÀ DI INSIEMI ALGEBRA I: CARDINALITÀ DI INSIEMI 1. CONFRONTO DI CARDINALITÀ E chiaro a tutti che esistono insiemi finiti cioè con un numero finito di elementi) ed insiemi infiniti. E anche chiaro che ogni insieme infinito

Dettagli

Esempi di algoritmi. Lezione III

Esempi di algoritmi. Lezione III Esempi di algoritmi Lezione III Scopo della lezione Implementare da zero algoritmi di media complessità. Verificare la correttezza di un algoritmo eseguendolo a mano. Imparare a valutare le prestazioni

Dettagli

In base alla formula di torneo adottata i tornei possono pertanto prevedere lo svolgimento di una o più partite.

In base alla formula di torneo adottata i tornei possono pertanto prevedere lo svolgimento di una o più partite. Formule di gioco La successione di mani necessarie per l eliminazione del penultimo giocatore o per la determinazione dei giocatori che accedono ad un turno successivo costituisce una partita. In base

Dettagli

I numeri che si ottengono successivamente sono 98-2 = 96 4 = 92 8 = 84 16 = 68 32 = 36 e ci si ferma perché non possibile togliere 64

I numeri che si ottengono successivamente sono 98-2 = 96 4 = 92 8 = 84 16 = 68 32 = 36 e ci si ferma perché non possibile togliere 64 Problemini e indovinelli 2 Le palline da tennis In uno scatolone ci sono dei tubi che contengono ciascuno 4 palline da tennis.approfittando di una offerta speciale puoi acquistare 4 tubi spendendo 20.

Dettagli

Kangourou Italia Gara del 19 marzo 2015 Categoria Student Per studenti di quarta e quinta della secondaria di secondo grado

Kangourou Italia Gara del 19 marzo 2015 Categoria Student Per studenti di quarta e quinta della secondaria di secondo grado Kangourou Italia Gara del 19 marzo 2015 Categoria Student Per studenti di quarta e quinta della secondaria di secondo grado I quesiti dal N. 1 al N. 10 valgono 3 punti ciascuno 1. Angela è nata nel 1997,

Dettagli

Progettazione di un DB....in breve

Progettazione di un DB....in breve Progettazione di un DB...in breve Cosa significa progettare un DB Definirne struttura,caratteristiche e contenuto. Per farlo è opportuno seguire delle metodologie che permettono di ottenere prodotti di

Dettagli

24 : 3 = 8 con resto 0 26 : 4 = 6 con resto 2

24 : 3 = 8 con resto 0 26 : 4 = 6 con resto 2 Dati due numeri naturali a e b, diremo che a è divisibile per b se la divisione a : b è esatta, cioè con resto 0. In questo caso diremo anche che b è un divisore di a. 24 : 3 = 8 con resto 0 26 : 4 = 6

Dettagli

((e ita e itb )h(t)/it)dt. z k p(dz) + r n (t),

((e ita e itb )h(t)/it)dt. z k p(dz) + r n (t), SINTESI. Una classe importante di problemi probabilistici e statistici é quella della stima di caratteristiche relative ad un certo processo aleatorio. Esistono svariate tecniche di stima dei parametri

Dettagli

1 Valore atteso o media

1 Valore atteso o media 1 Valore atteso o media Definizione 1.1. Sia X una v.a., si chiama valore atteso (o media o speranza matematica) il numero, che indicheremo con E[X] o con µ X, definito come E[X] = i x i f(x i ) se X è

Dettagli