Statistica 1. Esercitazioni. Dott. Luigi Augugliaro 1. Università di Palermo

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Statistica 1. Esercitazioni. Dott. Luigi Augugliaro 1. Università di Palermo"

Transcript

1 Statistica 1 Esercitazioni Dott. 1 1 Dipartimento di Scienze Statistiche e Matematiche S. Vianelli, Università di Palermo ricevimento: lunedì ore mercoledì ore (Dipartiment 1 / 41

2 Cenni di calcolo delle probabilità Il Calcolo delle probabilità è una disciplina che ci insegna a controllare la correttezza dei nostri ragionamenti allora che, per carenza d informazione, ci troviamo in condizioni di incertezza. In tal senso esse appare come una logica, e precisamente come la logica del possibile, che amplia, con l introduzione di una valutazione di probabilità basata sull informazione di cui si dispone, la logica del certo. (Dipartiment 2 / 41

3 Definizioni Un esperimento il cui esito non può essere previsto con certezza è definito esperimento casuale o aleatorio. L insieme di tutti i possibili esiti di un esperimento casuale viene definito spazio campionari ed è denotato con Ω. Esempi Si consideri l esperimento casuale lancio di una moneta. In questo caso lo spazio campionario Ω è l insieme dei possibili esiti Testa, Croce, formalmente Ω = {Testa, Croce}. (Dipartiment 3 / 41

4 Si consideri l esperimento casuale lancio di un dado. Definire lo spazio campionario Ω. Poiché lo spazio campionari è l insieme di tutti i possibili esiti, si ricava che Ω = {1, 2, 3, 4, 5, 6} Si consideri l esperimento casuale lancio di due dadi. Definire lo spazio campionario Ω. Poiché lo spazio campionari è l insieme di tutti i possibili esiti, si ricava che Ω = {(i, j) : i, j = 1,..., 6} ovvero Ω è l insieme di tutte le possibili coppie (i, j), dove il primo indice indica che il numero i compare nel primo dado mentre il secondo indice indica che il numero j compare nel secondo dado. (Dipartiment 4 / 41

5 Definizione Un qualsiasi sottoinsieme dello spazio campionario Ω è definito evento casuale o aleatorio. Nel seguito indicheremo con E un generico evento casuale. Si consideri l esperimento casuale lancio di una moneta. In questo caso lo spazio campionario è l insieme Ω = {Testa, Croce}, il quale è definito come unione degli eventi elementari E 1 = {Testa} e E 2 = {Croce}. Si consideri l esperimento casuale lancio di un dado. In questo caso lo spazio campionario è l insieme Ω = {1, 2, 3, 4, 5, 6} ed è definito come unione degli eventi elementari E 1 = {1}, E 2 = {2},..., E 6 = {6}. Si consideri l esperimento casuale consistente nel misurare il tempo di vita di un transistor. In questo caso lo spazio campionari è l insieme Ω = {x : 0 x < + }, ovvero l insieme di tutti i valori reali non negativi. (Dipartiment 5 / 41

6 Operazioni logiche sugli eventi Definizione Dato un evento E si definisce negato di un evento, denotato con Ē, l evento il cui valore logico è l opposto di quello di E. Esempio: Si consideri l esperimento casuale lancio di un dado e l evento E descritto dall enunciato uscita della faccia con il numero due. Il negato dell evento E, denotato con Ē, è l evento descritto dall enunciato uscita della faccia con un numero diverso da due. Esempio: Si consideri l esperimento casuale consistente nel misurare il tempo di vita di un transistor e l evento E descrito dall enunciato il tempo di vita di un transistor non è superiore a 5 ore. In questo caso E = { x : 0 x 5}. Dalla descrizione dell evento E si ricava che l evento negato Ē è descritto dall enunciato il tempo di vita di un transistor è superiore a 5 ore, ovvero E = { x : x > 5}. (Dipartiment 6 / 41

7 Unione o Somma logica Dati due eventi E 1, E 2, definiamo unione o somma logica degli eventi E 1, E 2, l evento, denotato con E 1 E 2, che è vero se almeno uno dei due eventi è vero. Si consideri l esperimento casuale lancio di un dado e i singoli eventi aleatori E 1 = { esce la faccia con il numero 1 }; E 2 = { esce la faccia con il numero 2 }. Definire l insieme unione E 1 E 2. Dalla descrizione degli eventi E 1 ed E 2 si deduce che l evento unione è descritto dall enunciato esce un numero inferiore o uguale a 2. uigi Augugliaro (Dipartiment 7 / 41

8 Si consideri l esperimento casuale lancio di un dado e i singoli eventi aleatori E 1 = { faccia 2 } E 2 = { faccia 4 } E 3 = { faccia 6 }. Definire l evento unione E 1 E 2 E 3. Dalla descrizione degli eventi E 1, E 2 ed E 3 si deduce che l evento unione è descritto dall enunciato esce un numero pari. Si consideri l esperimento casuale lancio di un dado e i singoli eventi aleatori E 1 = { faccia 1 } E 2 = { faccia 3 } E 3 = { faccia 5 }. Definire l evento unione E 1 E 2 E 3. Dalla descrizione degli eventi E 1, E 2 ed E 3 si deduce che l evento unione è descritto dall enunciato esce un numero dispari. (Dipartiment 8 / 41

9 Intersezione o Prodotto logico Dati due eventi E 1, E 2, definiamo intersezione o prodotto logico degli eventi E 1, E 2, l evento, denotato con E 1 E 2, che è vero se sono veri gli eventi E 1 ed E 2. Si consideri l esperimento casuale lancio di un dado e gli eventi aleatori descritti dagli enunciati E 1 = { uscita di un numero inferiore a 4 } E 2 = { uscita di un numero dispari } Definire l evento unione E 1 E 2. Dalla descrizione degli eventi si ricava che E 1 = {1, 2, 3}, E 2 = {1, 3, 5}. da cui discende che l evento intersezione è definito nel seguente modo E 1 E 2 = {1, 3} (Dipartiment 9 / 41

10 Con riferimento all esperimento casuale consistente nel misurare il tempo di vita di un transistor, si considerino gli eventi casuali descritti dagli enunciati E 1 = { il tempo di vita è inferiore a 4 ore } E 2 = { il tempo di vita è superiore a 5 ore } E 3 = { il tempo di vita è compreso tra 2 e 7 ore } Definire gli eventi E 1 E 2, E 2 E 3. Soluzione Dalla descrizione degli eventi si ricava che E 1 E 2 = (evento impossibile) E 2 E 3 = {x : 5 < x < 7} (Dipartiment 10 / 41

11 Le operazioni logiche tra gli eventi, introdotte in precedenza, possono essere rappresentate graficamente mediante l utilizzo dei diagrammi di Venn. L area ombreggiata identifica l evento A B (Dipartiment 11 / 41

12 L area ombreggiata identifica l evento A B (Dipartiment 12 / 41

13 L area ombreggiata identifica l evento Ē (Dipartiment 13 / 41

14 Le operazioni di unione logica ed intersezione logica soddisfano le seguenti proprietà Commutativa Associativa E 1 E 2 = E 2 E 1 E 1 E 2 = E 2 E 1 (E 1 E 2 ) E 3 = E 1 (E 2 E 3 ) = E 1 E 2 E 3 (E 1 E 2 ) E 3 = E 1 (E 2 E 3 ) = E 1 E 2 E 3 Distributiva E 1 (E 2 E 3 ) = (E 1 E 2 ) (E 1 E 3 ) E 1 (E 2 E 3 ) = (E 1 E 2 ) (E 1 E 3 ) (Dipartiment 14 / 41

15 Con riferimento ad un certo stato d informazione, un evento si dice certo, rispettivamente impossibile, quando dai dati è possibile dedurre logicamente la verità, rispettivamente la falsità dell evento. Diremo che un evento è possibile quando non è possiamo dedurre logicamente la verità o falsità dell evento. Due eventi si dicono incompatibili (compatibili nel caso opposto) quando la loro intersezione logica è uguale all evento impossibile. In altri termini, E 1 ed E 2 sono incompatibili quando il verificarsi di uno di essi implica il non verificarsi dell altro, formalmente E 1 E 2 =. Si considerino l esperimento casuale lancio di due dadi e gli eventi definiti dagli enunciati: E 1 = { al primo e al secondo lancio di un dado esce un punto pari }, E 2 = { la somma dei punti realizzati col primo e il secondo lancio di un dado è dispari }. (Dipartiment 15 / 41

16 Evoluzione storica della definizione di probabilità Come ottenere una valutazione di probabilità degli eventi? Per rispondere a questa domanda è necessario considerare lo sviluppo storico del concetto di probabilità. Storicamente il calcolo delle probabilità nasce con lo studio del gioco di azzardo. Le prime valutazioni di probabilità sono rivolte ad un ristretto campo di applicazione dove la schematizzazione dei fenomeni si ottiene con l enumerazione di un ridotto numero di casi, assunti tutti ugualmente possibili. Definizione classica di probabilità La probabilità di un evento E, denotata con P(E), è il rapporto tra il numero di casi favorevoli al verificarsi dell evento E e il numero di casi possibili, supposti tutti ugualmente possibili. (Dipartiment 16 / 41

17 Si consideri l esperimento casuale lancio di un dado. Calcolare la probabilità dei seguenti eventi casuali: Soluzione E 1 = {si ottiene la faccia con il numero 3}; E 2 = {si ottiene una faccia con un numero pari}; E 3 = {si ottiene un faccia con un valore inferiore o uguale a 4}. Lo spazio campionario Ω è l insieme Ω = {1, 2, 3, 4, 5, 6}. Applicando la definizione classica di probabilità si ricava che P(E 1 ) = 1 6 P(E 2 ) = 3 6 = 0, 5 P(E 3) = 4 6 0, 67 (Dipartiment 17 / 41

18 Si consideri l esperimento casuale lancio di due dadi. Determinare la probabilità che il punteggio ottenuto sia 9. Determinare il punteggio più probabile. Soluzione Tutte le possibili coppie sono 6 6 = 36, quindi la probabilità di estrarre una qualsiasi coppia è , 028. Il numero di casi favorevole è uguale al numero di coppie la cui somma è uguale a 9, ovvero (3, 6) (4, 5) (5, 4) (6, 3) da cui si ricava, applicando la definizione classica di probabilità, che la probabilità di ottenere una coppia la cui somma è uguale a 9 è 4 36 = 1 9. (Dipartiment 18 / 41

19 Analogamente a quanto fatto in precedenza si ricava x p 2 1/36 3 2/36 4 3/36 5 4/36 6 5/36 7 6/36 8 5/36 9 4/ / / /36 Da cui si ricava che 7 è il punteggio più probabile. (Dipartiment 19 / 41

20 Da un mazzo di 52 carte vengono estratte successivamente due carte, senza che la prima venga reinserita. Calcolare la probabilità che le due carte estratte siano due assi. Soluzione Gli eventi elementari sono tutti le possibili coppie estraibili da un mazzo di 52 carte in cui la prima carta estratta non e reinserita nel mazzo. Si deduce che il numero di eventi elementari è = La probabilità 1 di estrarre una data coppia è. Poiché esistono 4 3 = 12 possibili 2652 coppie ordinate di assi, la probabilità di estrarre una coppia di assi è uguale 0, 005. a Calcolare la probabilità richiesta in precedenza assumendo che la prima carta venga reinserita nel mazzo. (Dipartiment 20 / 41

21 Determinare: la probabilità di estrarre un 8 di picche da un mazzo di 52 carte, la probabilità di estrarre una figura (F,Q,P), la probabilità di estrarre un asso o una carta di fiori, la probabilità di estrarre una carta con un numero pari oppure una carta che non sia di fiori, (Dipartiment 21 / 41

22 La concezione frequentista di probabilità deriva dalla constatazione di un fatto sperimentale. Consideriamo un evento ripetibile E. Definiamo frequenza relativa di successo dell evento E il rapporto tra il numero di volte che si verifica un evento e il numero totale delle prove effettuate. Si osserva che al crescere del numero delle prove la frequenza relativa di successo tende a stabilizzarsi verso un valore costante. Sulla base di tale constatazione, nel 1918 si perviene con R. von Mises a quella che è nota come definizione frequentista di probabilità. Definizione frequentista di probabilità La probabilità di un evento ripetibile E è il limite cui tende la frequenza relativa di successo dell evento considerato, al divergere del numero delle prove (n + ). (Dipartiment 22 / 41

23 Sia la definizione classica che frequentista conferiscono alla probabilità un contenuto oggettivo. La concezione soggettiva di probabilità conduce invece ad una definizione di probabilità basata sulla valutazione soggettiva. La definizione che segue è dovuta a de Finetti, uno dei principali fautori della teoria soggettiva della probabilità. Definizione soggettivista di probabilità La probabilità di un evento E, secondo l opinione di un dato individuo, è il prezzo p che egli stima equo attribuire ad un importo unitario esigibile al verificarsi di E. Dalla definizione discende che la probabilità di un evento E è interpretabile come la quota di una scommessa che un individuo, sulla base delle sue esperienze passate ed opinioni, giuduca equo pagare per riscuotere l importo unitario dovuto se si verifica l evento E. (Dipartiment 23 / 41

24 L impostazione assiomatica si differenzia dalle precedenti definizioni dato che non fonda la definizione di probabilità ne sul significato di probabilità ne su quello di evento. Definizione assiomatica di probabilità Sia E l evento di cui si vuole determinare una valutazione di probabilità. La probabilità dell evento E, denotata con P(E), è quel numero reale che soddisfa i seguenti tre assiomi: P(E) 0 (non negatività) P(Ω) = 1 (normalizzazione) P(E 1 E 2 ) = P(E 1 ) + P(E 2 ) se e solo se E 1 ed E 2 sono incompatibili (additività). Il terzo assioma è noto come teorema delle probabilità totali per eventi incompatibili. (Dipartiment 24 / 41

25 Utilizzando i tre assiomi è possibile dimostrare i seguenti teoremi. Teorema 1. La probabilità dell evento impossibile è zero, in altri termini P( ) = 0. Dimostrazione Osserviamo che lo spazio degli eventi elementari può essere definito come Ω = Ω, da cui discende che 1 = P(Ω) = P(Ω ). Dato che Ω e sono incompatibili, per il terzo assioma si ricava 1 = P(Ω) = P(Ω ) = P(Ω) + P( ) = 1 + P( ), da cui si deduce che P( ) = 0. (Dipartiment 25 / 41

26 Teorema 2. Sia E un evento ed Ē il suo negato. La probabilità di Ē è il complemento ad uno della probabilità di E, in altri termini P(Ē) = 1 P(E). Dimostrazione Osserviamo che sono verificate le relazioni Ω = E Ē e E Ē =. Attraverso l utilizzo degli assiomi introdotti in precedenza si ricava 1 = P(Ω) = P(E Ē) = P(E) + P(Ē), da cui si ricava che P(Ē) = 1 P(E). (Dipartiment 26 / 41

27 Teorema 3. Siano E 1 ed E 2 due eventi. Si dimostra che P(E 1 E 2 ) = P(E 1 ) + P(E 2 ) P(E 1 E 2 ). Dal teorema 3 discende che in generale P(E 1 E 2 ) P(E 1 ) + P(E 2 ) con l uguaglianza che sussiste se e solo se gli eventi E 1 ed E 2 sono incompatibili. (Dipartiment 27 / 41

28 Uno studente ha programmato di sostenere gli esami A e B in una determinata sessione. In base alla sua preparazione ritiene che la probabilità di superare l esame A sia pari a 0.7, la probabilità di superare l esame B sia 0.5, mentre la probabilità di superarli entrambi sia 0.4. Qual è la probabilità che lo studente superi almeno uno dei due esami? (Dipartiment 28 / 41

29 Siano E 1 ed E 2 due eventi. La probabilità condizionata dell evento E 2 dato l evento E 1, denotata con P(E 2 E 1 ), è definita come analogamente Legge delle probabilità composte P(E 2 E 1 ) = P(E 1 E 2 ), P(E 1 ) P(E 1 E 2 ) = P(E 2 E 1 ). P(E 2 ) P(E 1 E 2 ) = P(E 2 E 1 )P(E 1 ). Definizione Diremo che due eventi sono indipendenti quando il verificarsi di un evento non modifica la probabilità di verificarsi del secondo P(E 2 E 1 ) = P(E 2 ). (1) (Dipartiment 29 / 41

30 Data una famiglia con due figli, calcolare la probabilità che entrambi siano maschi sapendo che almeno uno sia maschio. Soluzione Indicato con m il sesso maschio e con f il sesso femmina, l insieme degli eventi elementari è {(m, m), (m, f ), (f, m), (f, f )}, da cui si ricava, applicando la definizione classica di probabilità, che la probabilità richiesta è 1/3. (Dipartiment 30 / 41

31 Indichiamo con E 1, l evento condizionante ovvero E 1 = {almeno un figlio è maschio}. Poiché vi sono 3 casi favorevoli, si ricava che P(E 1 ) = 3 4. Indichiamo con E 2 l evento descritto dall asserzione {entrambi i figli sono maschi}. Poiché E 1 = {(m, m), (m, f ), (f, m)}, E 2 = {(m, m)} si deduce che E 1 E 2 = {(m, m)} quindi P(E 1 E 2 ) = 1 4. Applicando il teorema delle probabilità condizionate si ricava P(E 2 E 1 ) = P(E 1 E 2 ) P(E 1 ) = 1/4 3/4 = 1 3 (Dipartiment 31 / 41

32 Si consideri l esperimento casuale lancio di due dadi. Si calcoli la probabilità che la somma dei valore ottenuti sia uguale a 3 sapendo che il primo dado lanciato ha fornito il valore 1. Come cambia la probabilità calcolata in precedenza se al primo lancio si ottiene il valore 3? (Dipartiment 32 / 41

33 Da un mazzo di 52 carte vengono estratte 3 carte senza reinserimento. Calcolare la probabilità di estrarre tre assi. Soluzione Sebbene la probabilità richiesta possa essere calcolata mediante la nozione classica di probabilità, risulta più agevole il calcolo attraverso la nozione di probabilità condizionata. Consideriamo i tre eventi E 1 = {la prima carta estratta è un asso} E 2 = {la seconda carta estratta è un asso} E 2 = {la terza carta estratta è un asso} (Dipartiment 33 / 41

34 La probabilità richiesta può essere espressa come P(E 3 E 2 E 1 ), la quale, applicando le formule precedenti si ricava che P(E 3 E 2 E 1 ) = P(E 3 E 2 E 1 ) P(E 2 E 1 ) = = P(E 3 E 2 E 1 ) P(E 2 E 1 ) P(E 1 ) Applicando la nozione classica di probabilità si ricava P(E 1 ) = 4 52 P(E 2 E 1 ) = 3 51 P(E 3 E 2 E 1 ) = 2 50 quindi P(E 3 E 2 E 1 ) = (Dipartiment 34 / 41

35 Un risultato teorico legato alla probabilità condizionata di due eventi E 1 ed E 2 è il teorema di Bayes. Consideriamo la probabilità dell evento condizionato E 2 E 1, ovvero P(E 2 E 1 ) = P(E 1 E 2 ). P(E 1 ) Applicando la legge delle probabilità composte si racava P(E 1 E 2 ) = P(E 1 E 2 )P(E 2 ) P(E 2 E 1 ) = P(E 1 E 2 ) P(E 2) P(E 1 ). La relazione appena introdotta è nota in letteratura come regola di Bayes, la quale consente di calcolare la probabilità condizionata di due eventi nota la probabilità dei singoli eventi e la probabilità condizionata nella quale gli eventi scambiano i propri ruoli. (Dipartiment 35 / 41

36 Una azienda di credito deve decidere se concedere un finanziamento ad un proprio cliente. I clienti vengono ripartiti in due categorie: solvente e insolvente. Sulla base delle esperienze passate è noto che la probabilità che un soggetto appartenga alla categoria insolvente dato che ha ottenuto il finanziamento è dello 0.2. Supponendo che la probabilità che l azienda di credito conceda il finanziamento sia dello 0.4 e che la probabilità che un cliente appartenga alla categoria insolvente sia dello 0.1, calcolare la probabilità che l azienda di credito conceda erroneamente il finanziamento al proprio cliente ovvero la probabilità che venga concesso il finanziamento dato che il soggetto appartiene alla categoria insolvente. (Dipartiment 36 / 41

37 Soluzione Per calcolare la probabilità richiesta definiamo gli eventi E 1 = { il cliente è di tipo insolvente } E 2 = { l azienda di credito concede il finanziamento } Sulla base della descrizione si ricava che P(E 1 E 2 ) = 0.2 P(E 2 ) = 0.4 P(E 1 ) = 0.1. Per calcolare la probabilità richiesta, ovvero P(E 2 E 1 ), applicando il teorema di Bayes si ricava P(E 2 E 1 ) = P(E 1 E 2 ) P(E 2) 0.4 = 0.2 P(E 1 ) 0.1 = 0.8 (Dipartiment 37 / 41

38 Una compagnia assicurativa divide i clienti in due gruppi: il primo gruppo comprende i clienti che sono propensi agli incidenti mentre il secondo gruppo comprende quelli che non lo sono. Le statistiche della compagnia assicurativa mostrano che la probabilità che un assicurato abbia un incidente, dato che appartiene al primo gruppo, è 0,4 mentre la probabilità si riduce a 0,2 se il cliente appartiene al secondo gruppo. Si assuma che la probabilità che un nuovo cliente appartenga al primo gruppo sia 0,3. Calcolare la probabilità che un nuovo assicurato abbia un incidente. Assumendo che il nuovo cliente abbia un incidente, determinare la probabilità che si tratti di un cliente del primo gruppo. (Dipartiment 38 / 41

39 Soluzione Per calcolare le probabilità richieste, definiamo gli eventi E 1 = { il cliente ha un incidente } E 2 = { il cliente appartiene al primo gruppo } Ē 2 = { il cliente appartiene al secondo gruppo } Sulla base delle informazioni fornite è noto che P(E 1 E 2 ) = 0, 4 P(E 2 ) = 0, 3 P(E 1 Ē2) = 0, 2 P(Ē2) = 1 P(E 2 ) = 0, 7 Il primo quesito richiede il calcolo di P(E 1 ). (Dipartiment 39 / 41

40 Osservando che Ω = E 2 Ē 2 si ottiene E 1 = E 1 Ω = E 1 (E 2 Ē 2 ) = (E 1 E 2 ) (E 1 Ē 2 ) si ricava che la probabilità richiesta può essere espressa come ( ) P(E 1 ) = P (E 1 E 2 ) (E 1 Ē 2 ) Poiché gli eventi (E 1 E 2 ) e (E 1 Ē 2 ) sono incompatibili possiamo scrivere P(E 1 ) = P(E 1 E 2 ) + P(E 1 Ē 2 ). (Dipartiment 40 / 41

41 Utilizzando la legge delle probabilità composte si ricava P(E 1 E 2 ) = P(E 1 E 2 ) P(E 2 ) = 0, 4 0, 3 = 0, 12 P(E 1 Ē 2 ) = P(E 1 Ē 2 ) P(Ē 2 ) = 0, 2 0, 7 = 0, 14 quindi P(E 1 ) = 0, , 14 = 0, 26. Il secondo punto richiede il calcolo della probabilità P(E 2 E 1 ). Applicando il teorema di Bayes si ricava P(E 2 E 1 ) = P(E 1 E 2 ) P(E 2) 0, 3 = 0, 4 0, 462 P(E 1 ) 0.26 (Dipartiment 41 / 41

42 Esercizi Riepilogativi La roulette consiste in un disco diviso in 37 settori numerati da 0 a 36 e colorati alternativamente in rosso e nero, mentre lo zero è normalmente colorato di verde. 1 Supponendo che il croupier ripeta il lancio della pallina cinque volte, si calcoli la probabilità di ottenere la seguente sequenza di colori: rosso, verde, rosso, rosso, nero. 2 Supponendo che il croupier ripeta il lancio della pallina due volte, si calcoli la probabilità che la somma dei valori ottenuti sia uguale a tre. (Dipartiment 42 / 41

43 Esercizi Riepilogativi Una scatola contiene 200 dadi per giochi di società di diversa tipologia e ripartiti nel seguente modo. Il 20% dei dati ha 4 facce, il 40% ha 6 facce, il 30% ha 8 facce e la parte restante è costituita da dadi a 10 facce. 1 Il candidato calcoli la probabilità di estrarre un dado con 6 o 8 facce. 2 Si consideri l esperimento casuale consistente nell estrazione senza reinserimento di 5 dadi. Calcolare la probabilità di osservare la seguente sequenza: 8 facce, 8 facce, 6 facce, 4 facce, 6 facce. (Dipartiment 43 / 41

44 Esercizi Riepilogativi Si consideri una slot-machine costituita da cinque rulli i quali forniscono risultati stocasticamente indipendenti tra loro. Ogni rullo è costituito da dieci settori raffiguranti gli interi da uno a dieci. Utilizzando un volta soltanto la slot-machine, il candidato calcoli la probabilità che la slot-machine visualizzi la sequenza (Dipartiment 44 / 41

45 Esercizi Riepilogativi La roulette è un gioco d azzardo di origine italiana introdotto in Francia nel XVIII secolo consistente in un disco diviso in 37 settori numerati da 0 a Calcolare la probabilità che 3 palline lanciate consecutivamente cadano in un settore riportante un valore compreso tra 0 e 10, estremi compresi; 2 Calcolare la probabilità che 2 palline lanciate consecutivamente cadano in un settore riportante un valore compreso tra 10 e 20, estremi compresi. (Dipartiment 45 / 41

46 Esercizi Riepilogativi Un urna contiene 15 palline bianche, 20 palline nere, 35 palline rosse e 30 palline gialle. i. Calcolare la probabilità che, estraendo una pallina dall urna, la pallina estratta sia di colore rosso. ii. Calcolare la probabilità che, estraendo una pallina dall urna, la pallina estratta sia di un colore diverso dal bianco. iii. Considerando l estrazione senza reinserimento di cinque palline dall urna, calcolare la probabilità di ottenere la sequenza: bianca, bianca, nera, rossa, gialla. (Dipartiment 46 / 41

Calcolo delle probabilità

Calcolo delle probabilità Calcolo delle probabilità Laboratorio di Bioinformatica Corso A aa 2005-2006 Statistica Dai risultati di un esperimento si determinano alcune caratteristiche della popolazione Calcolo delle probabilità

Dettagli

(concetto classico di probabilità)

(concetto classico di probabilità) Probabilità matematica (concetto classico di probabilità) Teoria ed esempi Introduzione Il calcolo delle probabilità è la parte della matematica che si occupa di prevedere, sulla base di regole e leggi

Dettagli

TEORIA DELLA PROBABILITÀ I

TEORIA DELLA PROBABILITÀ I TEORIA DELLA PROBABILITÀ I Dipartimento di Matematica ITIS V.Volterra San Donà di Piave Versione [2015-16] Indice 1 Probabilità 1 1.1 Introduzione............................................ 1 1.2 Eventi...............................................

Dettagli

IL CALCOLO DELLE PROBABILITA

IL CALCOLO DELLE PROBABILITA IL CALCOLO DELLE PROBABILITA 0. Origini Il concetto di probabilità sembra che fosse del tutto ignoto agli antichi malgrado si sia voluto trovare qualche cenno di ragionamento in cui esso è implicitamente

Dettagli

Calcolo delle probabilità

Calcolo delle probabilità Calcolo delle probabilità Il calcolo delle probabilità ha avuto origine nel Seicento in riferimento a questioni legate al gioco d azzardo e alle scommesse. Oggi trova tante applicazioni in ambiti anche

Dettagli

Calcolo delle Probabilità

Calcolo delle Probabilità Calcolo delle Probabilità Il calcolo delle probabilità studia i modelli matematici delle cosidette situazioni di incertezza. Molte situazioni concrete sono caratterizzate a priori da incertezza su quello

Dettagli

E LE M E N T I D I P R O B A B I L I T A

E LE M E N T I D I P R O B A B I L I T A L M T I D I P R O B A B I L I T A CI STORICI Il calcolo delle probabilità si è andato sviluppando piuttosto di recente, intorno al 500 e per lungo tempo solo come una branca della matematica Solo dal secolo

Dettagli

CORSO DI CALCOLO DELLE PROBABILITÀ E STATISTICA. Esercizi su eventi, previsioni e probabilità condizionate

CORSO DI CALCOLO DELLE PROBABILITÀ E STATISTICA. Esercizi su eventi, previsioni e probabilità condizionate CORSO DI CALCOLO DELLE PROBABILITÀ E STATISTICA Esercizi su eventi, previsioni e probabilità condizionate Nota: Alcuni esercizi sono tradotti, più o meno fedelmente, dal libro A first course in probability

Dettagli

Test sul calcolo della probabilità

Test sul calcolo della probabilità Test sul calcolo della probabilità 2 Test sul calcolo della probabilità Test sul calcolo della probabilità. La probabilità p di un evento E, quando si indica con E il suo complementare, è : a) 0 se E è

Dettagli

PARTE PRIMA PROBABILITA

PARTE PRIMA PROBABILITA i PARTE PRIMA PROBABILITA CAPITOLO I - Gli assiomi della probabilità 1.1 Introduzione........................................................... pag. 1 1.2 Definizione assiomatica di probabilità.......................................

Dettagli

Caso e probabilità. Il caso. Il caso. Scommesse e probabilità Fenomeni aleatori Probabilità

Caso e probabilità. Il caso. Il caso. Scommesse e probabilità Fenomeni aleatori Probabilità Introduzione Il caso Il caso commesse e probabilità Il caso i chiama evento casuale quello che si verifica in una situazione in cui gli eventi possibili sono più d uno, ma non si sa a priori quale si verificherà.

Dettagli

Definizione 1.1 Un evento è un fatto fisico o concettuale descritto da un enunciato che ammette due soli valori logici: VERO (V) o FALSO (F).

Definizione 1.1 Un evento è un fatto fisico o concettuale descritto da un enunciato che ammette due soli valori logici: VERO (V) o FALSO (F). Capitolo 1 Basi del calcolo delle probabilità 11 Eventi Per avviare la nostra discussione dobbiamo preliminarmente delimitare il campo dei fatti (o delle situazioni o delle asserzioni) nel quale si possa

Dettagli

Appunti: elementi di Probabilità

Appunti: elementi di Probabilità Università di Udine, Facoltà di Scienze della Formazione Corso di Laurea in Scienze e Tecnologie Multimediali Corso di Matematica e Statistica (Giorgio T. Bagni) Appunti: elementi di Probabilità. LA PROBABILITÀ..

Dettagli

Caso e probabilità. Il caso. Il caso. Scommesse e probabilità Fenomeni aleatori Probabilità Variabili aleatorie

Caso e probabilità. Il caso. Il caso. Scommesse e probabilità Fenomeni aleatori Probabilità Variabili aleatorie Introduzione Il caso Il caso commesse e probabilità Il caso i chiama evento casuale quello che si verifica in una situazione in cui gli eventi possibili sono più d uno, ma non si sa a priori quale si verificherà.

Dettagli

La probabilità frequentista e la legge dei grandi numeri

La probabilità frequentista e la legge dei grandi numeri La probabilità frequentista e la legge dei grandi numeri La definizione di probabilità che abbiamo finora considerato è anche nota come probabilità a priori poiché permette di prevedere l'esito di un evento

Dettagli

Esercizi di Probabilità e Statistica

Esercizi di Probabilità e Statistica Esercizi di Probabilità e Statistica Samuel Rota Bulò 9 giugno 006 Spazi di probabilità finiti e uniformi Esercizio Un urna contiene 6 palline rosse, 4 nere, 8 bianche. Si estrae una pallina; calcolare

Dettagli

Esercizi sul calcolo delle probabilità

Esercizi sul calcolo delle probabilità Esercizi sul calcolo delle probabilità Svolti e da svolgere (per MAR 13 marzo) Dati due eventi A e B dello spazio campionario Ω. Si sappia che P(A c )=0,3 P(B)=0,4 e P(A B c )=0,5 si determinino le probabilità

Dettagli

Appunti di Probabilità

Appunti di Probabilità Appunti di Probabilità Bruno Betrò CNR-IMATI, Sezione di Milano bruno.betro@mi.imati.cnr.it www.mi.imati.cnr.it/ bruno Testi di riferimento: Dall Aglio G., Calcolo delle Probabilità, Zanichelli Scozzafava

Dettagli

Esercizi di Probabilità e Statistica

Esercizi di Probabilità e Statistica Esercizi di Probabilità e Statistica Samuel Rota Bulò 19 marzo 2007 Spazi di probabilità finiti e uniformi Esercizio 1 Un urna contiene due palle nere e una rossa. Una seconda urna ne contiene una bianca

Dettagli

Calcolo delle Probabilità

Calcolo delle Probabilità à 1. Introduzione Calcolo delle Probabilità Il Calcolo delle Probabilità nasce dagli studi matematici sui giochi d azzardo. Il Calcolo delle Probabilità è lo strumento che permette all uomo di assumere

Dettagli

PROBABILITA. Sono esempi di fenomeni la cui realizzazione non è certa a priori e vengono per questo detti eventi aleatori (dal latino alea, dado)

PROBABILITA. Sono esempi di fenomeni la cui realizzazione non è certa a priori e vengono per questo detti eventi aleatori (dal latino alea, dado) L esito della prossima estrazione del lotto L esito del lancio di una moneta o di un dado Il sesso di un nascituro, così come il suo peso alla nascita o la sua altezza.. Il tempo di attesa ad uno sportello

Dettagli

STATISTICA Lezioni ed esercizi

STATISTICA Lezioni ed esercizi Università di Torino QUADERNI DIDATTICI del Dipartimento di Matematica MARIA GARETTO STATISTICA Lezioni ed esercizi Corso di Laurea in Biotecnologie A.A. 00/00 Quaderno # Novembre 00 M. Garetto - Statistica

Dettagli

Introduzione al calcolo delle probabilità: concetti e risultati preliminari

Introduzione al calcolo delle probabilità: concetti e risultati preliminari Capitolo 1 Introduzione al calcolo delle probabilità: concetti e risultati preliminari 1.1 Il ragionamento probabilistico Il ragionamento probabilistico è un tipo di ragionamento di tipo induttivo, anzichè

Dettagli

Elementi di calcolo delle probabilità

Elementi di calcolo delle probabilità Elementi di calcolo delle probabilità Definizione di probabilità A) Qui davanti a me ho un urna contenente 2 palline bianche e 998 nere. Mi metto una benda sugli occhi, scuoto ripetutamente l urna ed estraggo

Dettagli

Matematica Applicata. Probabilità e statistica

Matematica Applicata. Probabilità e statistica Matematica Applicata Probabilità e statistica Fenomeni casuali Fenomeni che si verificano in modi non prevedibili a priori 1. Lancio di una moneta: non sono in grado di prevedere con certezza se il risultato

Dettagli

Introduzione alla probabilità

Introduzione alla probabilità Introduzione alla probabilità CAPITOLO TEORIA Il dilemma di Monty Hall In un popolare show televisivo americano il presentatore mostra al concorrente tre porte chiuse. Dietro a una di esse si cela il premio

Dettagli

MODULI DI LINEAMENTI DI MATEMATICA

MODULI DI LINEAMENTI DI MATEMATICA R. MANFREDI - E. FABBRI - C. GRASSI TRIENNIO licei scientifici MODULI DI LINEAMENTI DI MATEMATICA per il triennio della scuola secondaria di secondo grado L CALCOLO DELLE PROBABILITÀ E ELEMENTI DI STATISTICA

Dettagli

Corso di ELEMENTI DI STATISTICA Alcuni problemi di probabilità, con soluzioni

Corso di ELEMENTI DI STATISTICA Alcuni problemi di probabilità, con soluzioni Corso di ELEMENTI DI STATISTICA Alcuni problemi di probabilità, con soluzioni Si tratta di problemi elementari, formulati nel linguaggio ordinario Quindi, per ogni problema la suluzione proposta è sempre

Dettagli

matematica probabilmente

matematica probabilmente IS science centre immaginario scientifico Laboratorio dell'immaginario Scientifico - Trieste tel. 040224424 - fax 040224439 - e-mail: lis@lis.trieste.it - www.immaginarioscientifico.it indice Altezze e

Dettagli

Corso di Calcolo delle Probabilità e Statistica. Esercizi su variabili aleatorie discrete

Corso di Calcolo delle Probabilità e Statistica. Esercizi su variabili aleatorie discrete Corso di Calcolo delle Probabilità e Statistica Esercizi su variabili aleatorie discrete Es.1 Da un urna con 10 pallina bianche e 15 palline nere, si eseguono estrazioni con reimbussolamento fino all estrazione

Dettagli

CAPITOLO 12. Calcolo delle Probabilità. 12.1 Introduzione al Calcolo delle Probabilità

CAPITOLO 12. Calcolo delle Probabilità. 12.1 Introduzione al Calcolo delle Probabilità CAPITOLO 12 Calcolo delle Probabilità 12.1 Introduzione al Calcolo delle Probabilità Una storia d amore Luca abita a Lecco, Bianca a Brindisi. Lui è innamorato perso. Anche lei ama lui, ma, ultimamente,

Dettagli

Corso Integrato di Statistica Informatica e Analisi dei Dati Sperimentali Note A.A. 2009-10 C. Meneghini

Corso Integrato di Statistica Informatica e Analisi dei Dati Sperimentali Note A.A. 2009-10 C. Meneghini Corso Integrato di Statistica Informatica e Analisi dei Dati Sperimentali Note A.A. 2009-10 C. Meneghini 1 Elementi di calcolo delle probabilitá, teorema di Bayes e applicazioni 1.1 Definizione di probabilitá

Dettagli

1 Probabilità. 1.1 Primi esercizi di probabilità con l uso del calcolo combinatorio

1 Probabilità. 1.1 Primi esercizi di probabilità con l uso del calcolo combinatorio Indice 1 Probabilità 1 1.1 Primi esercizi di probabilità con l uso del calcolo combinatorio.. 1 1.2 Probabilità condizionata, indipendenza e teorema di Bayes.... 2 1 Probabilità 1.1 Primi esercizi di probabilità

Dettagli

CENNI DI CALCOLO COMBINATORIO E DELLE PROBABILITÀ Appunti delle lezioni del Prof. Giuseppe Puggioni a cura di M. Marras e B.

CENNI DI CALCOLO COMBINATORIO E DELLE PROBABILITÀ Appunti delle lezioni del Prof. Giuseppe Puggioni a cura di M. Marras e B. CENNI DI CALCOLO COMBINATORIO E DELLE PROBABILITÀ Appunti delle lezioni del Prof. Giuseppe Puggioni a cura di M. Marras e B. Pettinelli CALCOLO COMBINATORIO Disposizioni semplici Dati n elementi ( a 1,

Dettagli

Esercizi di Probabilità e statistica. Francesco Caravenna Paolo Dai Pra

Esercizi di Probabilità e statistica. Francesco Caravenna Paolo Dai Pra Esercizi di Probabilità e statistica Francesco Caravenna Paolo Dai Pra Capitolo 1 Spazi di probabilità discreti 1.1 Proprietà fondamentali Esercizio 1 Esprimere ciascuno dei seguenti eventi in termini

Dettagli

LINEAMENTI DI MATEMATICA

LINEAMENTI DI MATEMATICA P. BARONCINI - E. FABBRI - C. GRASSI IGEA Triennio LINEAMENTI DI MATEMATICA per il triennio degli istituti tecnici commerciali IGEA Probabilità e statistica Analisi numerica MODULO d P. Baroncini - E.

Dettagli

Calcolo delle Probabilità A.A. 2013/2014 Corso di Studi in Statistica per l Analisi dei dati Università degli Studi di Palermo

Calcolo delle Probabilità A.A. 2013/2014 Corso di Studi in Statistica per l Analisi dei dati Università degli Studi di Palermo Calcolo delle Probabilità A.A. 2013/2014 Corso di Studi in Statistica per l Analisi dei dati Università degli Studi di Palermo docente Giuseppe Sanfilippo http://www.unipa.it/sanfilippo giuseppe.sanfilippo@unipa.it

Dettagli

Ancora sull indipendenza. Se A e B sono indipendenti allora lo sono anche

Ancora sull indipendenza. Se A e B sono indipendenti allora lo sono anche Ancora sull indipendenza Se A e B sono indipendenti allora lo sono anche A e B Ā e B Ā e B Sfruttiamo le leggi di De Morgan Leggi di De Morgan A B = Ā B A B = Ā B P (Ā B) = P (A B) = 1 P (A B) = 1 (P (A)

Dettagli

A = { escono 2 teste e due croci (indipendentemente dall ordine) } B = { al primo tiro esce testa }.

A = { escono 2 teste e due croci (indipendentemente dall ordine) } B = { al primo tiro esce testa }. ESERCIZI ELEMENTARI DI CALCOLO DELLE PROBABILITÀ Teorema della somma 1) Giocando alla roulette, calcolare la probabilità che su una estrazione esca: a) Un numero compreso tra 6 e 12 (compresi) oppure maggiore

Dettagli

Calcolo delle probabilità. 3. La probabiltà nella concezione frequentista. 4. La probabiltà nella concezione soggettiva

Calcolo delle probabilità. 3. La probabiltà nella concezione frequentista. 4. La probabiltà nella concezione soggettiva Calcolo delle probabilità. Gli eventi - definizioni propedeutiche 2. La probabiltà nella concezione classica. La probabiltà nella concezione frequentista 4. La probabiltà nella concezione soggettiva. La

Dettagli

Università degli Studi di Cassino, Anno accademico 2004-2005 Corso di Statistica 2, Prof. M. Furno

Università degli Studi di Cassino, Anno accademico 2004-2005 Corso di Statistica 2, Prof. M. Furno Università degli Studi di Cassino, Anno accademico 2004-2005 Corso di Statistica 2, Prof. M. Furno Esercitazione del 18/1/2005 Dott. Claudio Conversano Esercizio 1 (non svolto in aula) Vengono lanciati

Dettagli

COMPITO n. 1. 3. Siano X, Y due variabili aleatorie tali che il vettore (X, Y ) sia distribuito uniformemente

COMPITO n. 1. 3. Siano X, Y due variabili aleatorie tali che il vettore (X, Y ) sia distribuito uniformemente COMPITO n. 1 a) Nel gioco del poker ad ogni giocatore vengono distribuite cinque carte da un normale mazzo di 52. Quant è la probabilità che un giocatore riceva una scala di re (ovvero 9, 10, J, Q, K anche

Dettagli

GIOCO DEL LOTTO E CREDENZE POPOLARI: COSA È VERO? LA PAROLA AI MATEMATICI

GIOCO DEL LOTTO E CREDENZE POPOLARI: COSA È VERO? LA PAROLA AI MATEMATICI GIOCO DEL LOTTO E CREDENZE POPOLARI: COSA È VERO? LA PAROLA AI MATEMATICI LUCA LUSSARDI Sommario. Lo scopo di questo articolo è quello di illustrare il concetto di probabilità e di equità di un gioco a

Dettagli

Probabilità e Statistica Esercitazioni. a.a. 2009/2010. C.d.L.S.: Ingegneria Civile-Architettonico, Ingegneria Civile-Strutturistico.

Probabilità e Statistica Esercitazioni. a.a. 2009/2010. C.d.L.S.: Ingegneria Civile-Architettonico, Ingegneria Civile-Strutturistico. Probabilità e Statistica Esercitazioni a.a. 2009/2010 C.d.L.S.: Ingegneria Civile-Architettonico, Ingegneria Civile-Strutturistico Probabilità Ines Campa e Marco Longhi Probabilità e Statistica - Esercitazioni

Dettagli

Corso di Laurea Triennale in Matematica

Corso di Laurea Triennale in Matematica Università degli Studi di Roma La Sapienza Anno Accademico 2003-2004 Facoltà di Scienze Matematiche Fisiche e Naturali Corso di Laurea Triennale in Matematica INTRODUZIONE AL CALCOLO DELLE PROBABILITÀ

Dettagli

Probabilità e Statistica Esercitazioni. a.a. 2006/2007

Probabilità e Statistica Esercitazioni. a.a. 2006/2007 Probabilità e Statistica Esercitazioni a.a. 2006/2007 C.d.L.: Ingegneria per l Ambiente ed il Territorio, Ingegneria Civile, Ingegneria Gestionale, Ingegneria dell Informazione C.d.L.S.: Ingegneria Civile

Dettagli

Dispense di Matematica Applicata

Dispense di Matematica Applicata Dispense di Matematica Applicata Domenico Candeloro Introduzione. La nascita ufficiale del Calcolo delle Probabilita si fa risalire al XVII secolo (benché studi di tal genere fossero gia stati affrontati

Dettagli

Esercizi di probabilità discreta

Esercizi di probabilità discreta Di seguito, potete trovare i testi (con risposta) degli esercizi svolti (o proposti) nel corso di esercitazioni dell insegnamento di Matematica applicata. 1 Esercizi di probabilità discreta Algebra degli

Dettagli

CORSO DI STATISTICA (parte 1) - ESERCITAZIONE 6

CORSO DI STATISTICA (parte 1) - ESERCITAZIONE 6 CORSO DI STATISTICA (parte 1) - ESERCITAZIONE 6 Dott.ssa Antonella Costanzo a.costanzo@unicas.it Riepilogo: Postulati del calcolo della probabilità (Kolmogorov): Dato un evento A Ω, dove è lo spazio degli

Dettagli

Corso di Matematica e Statistica 4 Calcolo combinatorio e probabilità. Le disposizioni semplici di n elementi di classe k

Corso di Matematica e Statistica 4 Calcolo combinatorio e probabilità. Le disposizioni semplici di n elementi di classe k Pordenone Corso di Matematica e Statistica 4 Calcolo combinatorio e probabilità UNIVERSITAS STUDIORUM UTINENSIS Giorgio T. Bagni Facoltà di Scienze della Formazione Dipartimento di Matematica e Informatica

Dettagli

Il calcolo delle probabilità

Il calcolo delle probabilità Il calcolo delle probabilità Cenni storici Come in molti altri casi, anche l'individuazione di una data precisa per la collocazione della nascita della teoria della probabilità non ha soluzione univoca.

Dettagli

Gli eventi sono stati definiti come i possibili risultati di un esperimento. Ogni evento ha una probabilità

Gli eventi sono stati definiti come i possibili risultati di un esperimento. Ogni evento ha una probabilità Probabilità Probabilità Gli eventi sono stati definiti come i possibili risultati di un esperimento. Ogni evento ha una probabilità Se tutti gli eventi fossero ugualmente possibili, la probabilità p(e)

Dettagli

Dispense di Probabilità e Statistica. Francesco Caravenna Paolo Dai Pra

Dispense di Probabilità e Statistica. Francesco Caravenna Paolo Dai Pra Dispense di Probabilità e Statistica Francesco Caravenna Paolo Dai Pra Capitolo 1 Spazi di probabilità discreti 1.1 Generalità Nel corso di questo libro con la dicitura esperimento aleatorio indicheremo

Dettagli

PROBABILITA CONDIZIONALE

PROBABILITA CONDIZIONALE Riferendoci al lancio di un dado, indichiamo con A l evento esce un punteggio inferiore a 4 A ={1, 2, 3} B l evento esce un punteggio dispari B = {1, 3, 5} Non avendo motivo per ritenere il dado truccato,

Dettagli

UNA STORIA PROBABILE di Francesca D Iapico

UNA STORIA PROBABILE di Francesca D Iapico UNA STORIA PROBABILE di Francesca D Iapico Si mostrano qui alcune delle tappe attraverso le quali si è compiuto il cammino che ha portato al calcolo delle probabilità come lo usiamo oggi Un racconto pensato

Dettagli

Pubblicato sul n 36 di Rassegna, periodico dell Istituto Pedagogico, agosto 2008

Pubblicato sul n 36 di Rassegna, periodico dell Istituto Pedagogico, agosto 2008 LA PROBABILITÀ Margherita D Onofrio Pubblicato sul n 36 di Rassegna, periodico dell Istituto Pedagogico, agosto 2008 Perché Le ragioni per introdurre la matematica dell incerto nella scuola di base possono

Dettagli

Teoria della probabilità: eventi, proprietà additiva e moltiplicativa. L incertezza

Teoria della probabilità: eventi, proprietà additiva e moltiplicativa. L incertezza La probabilità Teoria della probabilità: eventi, proprietà additiva e moltiplicativa L incertezza Nella maggior parte delle situazioni la nostra condizione è caratterizzata dallincertezza Incertezza relativa

Dettagli

1 Calcolo delle probabilità

1 Calcolo delle probabilità 1 Calcolo delle probabilità Lo studio delle leggi del caso va sotto il nome di calcolo delle probabilità. Ci fu un vigoroso sviluppo di questa disciplina a cavallo tra il cinquecento e il seicento e lo

Dettagli

La probabilità nella vita quotidiana

La probabilità nella vita quotidiana La probabilità nella vita quotidiana Introduzione elementare ai modelli probabilistici Bruno Betrò bruno.betro@mi.imati.cnr.it CNR - IMATI San Pellegrino, 6/9/2011 p. 1/31 La probabilità fa parte della

Dettagli

Viene lanciata una moneta. Se esce testa vinco 100 euro, se esce croce non vinco niente. Quale è il valore della mia vincita?

Viene lanciata una moneta. Se esce testa vinco 100 euro, se esce croce non vinco niente. Quale è il valore della mia vincita? Viene lanciata una moneta. Se esce testa vinco 00 euro, se esce croce non vinco niente. Quale è il valore della mia vincita? Osserviamo che il valore della vincita dipende dal risultato dell esperimento

Dettagli

Lezione 3 - Probabilità totale, Bayes -Alberi PROBABILITÀ TOTALE TEOREMA DI BAYES ALBERI E GRAFI

Lezione 3 - Probabilità totale, Bayes -Alberi PROBABILITÀ TOTALE TEOREMA DI BAYES ALBERI E GRAFI Lezione 3 - robabilità totale, ayes -lberi ROILITÀ TOTLE TEOREM DI YES LERI E GRFI GRUO MT06 Dip. Matematica, Università di Milano - robabilità e Statistica per le Scuole Medie -SILSIS - 2007 Lezione 3

Dettagli

STATISTICA MEDICA Prof. Tarcisio Niglio http://www.tarcisio.net tarcisio@mclink.it oppure su Facebook Anno Accademico 2011-2012

STATISTICA MEDICA Prof. Tarcisio Niglio http://www.tarcisio.net tarcisio@mclink.it oppure su Facebook Anno Accademico 2011-2012 STATISTICA MEDICA Prof. Tarcisio Niglio http://www.tarcisio.net tarcisio@mclink.it oppure su Facebook Anno Accademico 2011-2012 Calcolo delle Probabilità Teoria & Pratica La probabilità di un evento è

Dettagli

1 Breve introduzione alla probabilità elementare: approccio intuitivo

1 Breve introduzione alla probabilità elementare: approccio intuitivo Breve introduzione alla probabilità elementare: approccio intuitivo. È usuale che in molte situazioni che si presentano concretamente ci sia a priori incertezza su ciò che accadrà nel futuro: il calcolo

Dettagli

8. Qual è la probabilità di estrarre da un mazzo di 40 carte napoletane una figura?

8. Qual è la probabilità di estrarre da un mazzo di 40 carte napoletane una figura? www.matematicamente.it Probabilità 1 Calcolo delle probabilità Cognome e nome: Classe Data 1. Quali affermazioni sono vere? A. Un evento impossibile ha probabilità 1 B. Un vento certo ha probabilità 0

Dettagli

Esercizio 1. Svolgimento

Esercizio 1. Svolgimento Esercizio 1 Vengono lanciate contemporaneamente 6 monete. Si calcoli: a) la probabilità che si presentino esattamente 2 testa ; b) la probabilità di ottenere almeno 4 testa ; c) la probabilità che l evento

Dettagli

Probabilità e Statistica Esercitazioni. a.a. 2006/2007

Probabilità e Statistica Esercitazioni. a.a. 2006/2007 Probabilità e Statistica Esercitazioni a.a. 2006/2007 C.d.L.: Ingegneria per l Ambiente ed il Territorio, Ingegneria Civile, Ingegneria Gestionale, Ingegneria dell Informazione C.d.L.S.: Ingegneria Civile

Dettagli

Per poter affrontare il problema abbiamo bisogno di parlare di probabilità (almeno in maniera intuitiva). Analizziamo alcune situazioni concrete.

Per poter affrontare il problema abbiamo bisogno di parlare di probabilità (almeno in maniera intuitiva). Analizziamo alcune situazioni concrete. Parliamo di probabilità. Supponiamo di avere un sacchetto con dentro una pallina rossa; posso aggiungere tante palline bianche quante voglio, per ogni pallina bianca che aggiungo devo pagare però un prezzo

Dettagli

SCHEDA DIDATTICA N 1

SCHEDA DIDATTICA N 1 FACOLTA DI INGEGNERIA CORSO DI LAUREA IN INGEGNERIA PER L AMBIENTE ED IL TERRITORIO CORSO DI STATISTICA E CALCOLO DELLE PROBABILITA PROF. PASQUALE VERSACE SCHEDA DIDATTICA N ARGOMENTO: CALCOLO DELLE PROBABILITA

Dettagli

INTRODUZIONE ALLA PROBABILITA

INTRODUZIONE ALLA PROBABILITA INTRODUZIONE ALLA PROBABILITA Legacy Edition Copyright 25 ottobre 2012 Luca La Rocca luca.larocca@unimore.it UNIVERSITÀ DEGLI STUDI DI MODENA E REGGIO EMILIA Indice 2 Prologo Eventi Probabilità Epilogo

Dettagli

ESERCITAZIONE DI PROBABILITÀ 1

ESERCITAZIONE DI PROBABILITÀ 1 ESERCITAZIONE DI PROBABILITÀ 2/03/205 Primo foglio di esercizi Esercizio 0.. Una classe di studenti è costituita da 6 ragazzi e 4 ragazze. I risultati dell esame vengono esposti in una graduatoria in ordine

Dettagli

Teoria delle Decisioni. Lezioni 1 e 2 a.a. 2006 2007. J. Mortera, Università Roma Tre mortera@uniroma3.it

Teoria delle Decisioni. Lezioni 1 e 2 a.a. 2006 2007. J. Mortera, Università Roma Tre mortera@uniroma3.it Teoria delle Decisioni Lezioni 1 e 2 a.a. 2006 2007 J. Mortera, Università Roma Tre mortera@uniroma3.it Decisioni in Condizioni di Incertezza Sia singoli individui che gruppi di individui (società, governi,

Dettagli

Traccia della soluzione degli esercizi del Capitolo 1

Traccia della soluzione degli esercizi del Capitolo 1 Traccia della soluzione degli esercizi del Capitolo 1 Esercizio 1 Esprimere ciascuno dei seguenti eventi in termini degli eventi A, B, C. 1. Almeno un evento si verifica. 2. Al più un evento si verifica..

Dettagli

Metodi quantitativi per il trade marketing Modulo 1 Valutazione dei rischi per il marketing a.a. 2010/2011

Metodi quantitativi per il trade marketing Modulo 1 Valutazione dei rischi per il marketing a.a. 2010/2011 Metodi quantitativi per il trade marketing Modulo Valutazione dei rischi per il marketing a.a. 200/20 Problemi per esercitazione individuale (non svolti in aula NB: i problemi assegnati per esercitazione

Dettagli

Esercizi di Calcolo delle Probabilità (calcolo combinatorio)

Esercizi di Calcolo delle Probabilità (calcolo combinatorio) Esercizi di Calcolo delle Probabilità (calcolo combinatorio 1. Lanciamo due dadi regolari. Qual è la probabilità che la somma delle facce rivolte verso l alto sia pari a 7? 1/6 2. Due palline vengono estratte

Dettagli

6. I numeri reali e complessi ( R e C ). x2 = 2. 6.1 I numeri reali R.

6. I numeri reali e complessi ( R e C ). x2 = 2. 6.1 I numeri reali R. 6. I numeri reali e complessi ( R e C ). 6.1 I numeri reali R. Non tratteremo in modo molto approfondito gli ulteriori ampliamenti che dai numeri razionali ci portano a quelli reali, all insieme, e R d

Dettagli

MATEMATICA C3 -ALGEBRA 2 7. LA PROBABILITA'

MATEMATICA C3 -ALGEBRA 2 7. LA PROBABILITA' MATEMATICA C3 -ALGEBRA 2 7. LA PROBABILITA' Indice Dice foto di Matsuyuki http://www.flickr.com/photos/matsuyuki/201651074/ 1. Gli eventi...174 2. Definizioni di probabilità...177 3. Probabilità dell'evento

Dettagli

Capitolo IV : Calcolo delle Probabilità

Capitolo IV : Calcolo delle Probabilità Liceo Lugano, 0-0 3N (Luca Rovelli) Capitolo IV : Calcolo delle Probabilità Introduzione Il calcolo delle probabilità è una branca relativamente giovane della matematica, le cui motivazioni originarie

Dettagli

Politecnico di Milano Appunti di calcolo delle probabilità per il corso di Fondamenti di Statistica e Segnali Biomedici [Mod 1] 1

Politecnico di Milano Appunti di calcolo delle probabilità per il corso di Fondamenti di Statistica e Segnali Biomedici [Mod 1] 1 Politecnico di Milano Appunti di calcolo delle probabilità per il corso di Fondamenti di Statistica e Segnali Biomedici [Mod 1] 1 Ilenia Epifani 1 Il contenuto di queste dispense è protetto dalle leggi

Dettagli

Prove e sottoprove. Perché il calcolo combinatorio. La moltiplicazione combinatorica. Scelta con e senza ripetizione { } ( )

Prove e sottoprove. Perché il calcolo combinatorio. La moltiplicazione combinatorica. Scelta con e senza ripetizione { } ( ) Perché il calcolo combinatorio Basato sulle idee primitive di distinzione e di classificazione, stabilisce in quanti modi diversi si possono combinare degli oggetti E molto utile nell enumerazione dei

Dettagli

ESERCIZI DI CALCOLO COMBINATORIO

ESERCIZI DI CALCOLO COMBINATORIO ESERCIZI DI CALCOLO COMBINATORIO 1. Calcolare il numero degli anagrammi che possono essere formati con le lettere della parola Amore. [120] 2. Quante partite di poker diverse possono essere giocate da

Dettagli

Calcolo combinatorio

Calcolo combinatorio Probabilità e Statistica Esercitazioni a.a. 2009/2010 C.d.L.S.: Ingegneria Civile-Architettonico, Ingegneria Civile-Strutturistico Calcolo combinatorio Ines Campa e Marco Longhi Probabilità e Statistica

Dettagli

7. LA PROBABILITA' Dice foto di Matsuyuki http://www.flickr.com/photos/matsuyuki/201651074/

7. LA PROBABILITA' Dice foto di Matsuyuki http://www.flickr.com/photos/matsuyuki/201651074/ MATEMATICA C 3 -ALGEBRA 2 7. LA PROBABILITA' Dice foto di Matsuyuki http://www.flickr.com/photos/matsuyuki/201651074/ 1. Gli eventi...2 2. Definizioni di probabilità...5 3. Probabilità dell'evento complementare...14

Dettagli

FACOLTA DI INGEGNERIA SCHEDA DIDATTICA N 1

FACOLTA DI INGEGNERIA SCHEDA DIDATTICA N 1 FACOLTA DI INGEGNERIA CORSO DI LAUREA IN INGEGNERIA PER L AMBIENTE ED IL TERRITORIO CORSO DI STATISTICA E CALCOLO DELLE PROBABILITA PROF. PASQUALE VERSACE SCHEDA DIDATTICA N ARGOMENTO: CALCOLO DELLE PROBABILITA

Dettagli

ESERCIZI. x + 3 x 2 1. a) y = 4x2 + 3x 2x + 2 ; b) y = 6x2 x 1. (x + 2) 2 c) y =

ESERCIZI. x + 3 x 2 1. a) y = 4x2 + 3x 2x + 2 ; b) y = 6x2 x 1. (x + 2) 2 c) y = ESERCIZI Testi (1) Un urna contiene 20 palline di cui 8 rosse 3 bianche e 9 nere; calcolare la probabilità che: (a) tutte e tre siano rosse; (b) tutte e tre bianche; (c) 2 rosse e una nera; (d) almeno

Dettagli

Esercizi di consolidamento di probabilità e calcolo combinatorio parte 1

Esercizi di consolidamento di probabilità e calcolo combinatorio parte 1 Esercizi di consolidamento di probabilità e calcolo combinatorio parte 1 1. Si lancia una moneta 2 volte: qual è la probabilità che esca TESTA 0 volte? 1 volta? 2 volte? 2. Si lancia una moneta 3 volte:

Dettagli

Aspetti probabilistici del gioco d azzardo

Aspetti probabilistici del gioco d azzardo Università degli Studi di Genova Scuola di Scienze Sociali Dipartimento di Economia Perché il banco vince sempre? Aspetti probabilistici del gioco d azzardo Enrico di Bella (edibella@economia.unige.it)

Dettagli

Algebra Booleana 1 ALGEBRA BOOLEANA: VARIABILI E FUNZIONI LOGICHE

Algebra Booleana 1 ALGEBRA BOOLEANA: VARIABILI E FUNZIONI LOGICHE Algebra Booleana 1 ALGEBRA BOOLEANA: VARIABILI E FUNZIONI LOGICHE Andrea Bobbio Anno Accademico 2000-2001 Algebra Booleana 2 Calcolatore come rete logica Il calcolatore può essere visto come una rete logica

Dettagli

Decisioni in condizioni di rischio. Roberto Cordone

Decisioni in condizioni di rischio. Roberto Cordone Decisioni in condizioni di rischio Roberto Cordone Decisioni in condizioni di rischio Rispetto ai problemi in condizioni di ignoranza, oltre all insieme Ω dei possibili scenari, è nota una funzione di

Dettagli

Probabilità discreta

Probabilità discreta Probabilità discreta Daniele A. Gewurz 1 Che probabilità c è che succeda...? Una delle applicazioni della combinatoria è nel calcolo di probabilità discrete. Quando abbiamo a che fare con un fenomeno che

Dettagli

Una sperimentazione. Probabilità. Una previsione. Calcolo delle probabilità. Nonostante ciò, è possibile dire qualcosa.

Una sperimentazione. Probabilità. Una previsione. Calcolo delle probabilità. Nonostante ciò, è possibile dire qualcosa. Una sperimentazione Probabilità Si sta sperimentando l efficacia di un nuovo farmaco per il morbo di Parkinson. Duemila pazienti partecipano alla sperimentazione: metà di essi vengono trattati con il nuovo

Dettagli

Esercitazione del 14/02/2012 Istituzioni di Calcolo delle Probabilità

Esercitazione del 14/02/2012 Istituzioni di Calcolo delle Probabilità Esercitazione del 14/02/2012 Istituzioni di Calcolo delle Probabilità David Barbato Questa raccolta comprende sia gli esercizi dell esercitazione del 14 febbraio sia gli esercizi di ricapitolazione sulle

Dettagli

PROBABILITÀ E DECISIONI IN MEDICINA: I TEST DIAGNOSTICI

PROBABILITÀ E DECISIONI IN MEDICINA: I TEST DIAGNOSTICI Università degli Studi di Padova CICLO DI LEZIONI SCIENZE DI BASE PER I DOTTORATI DI RICERCA DELL AREA MEDICA Anno accademico 2005-06 Temi di Statistica ed Epidemiologia PROBABILITÀ E DECISIONI IN MEDICINA:

Dettagli

Calcolo delle probabilità

Calcolo delle probabilità Calcolo delle probabilità Il problema di Monty Hill nel film 21 Elementare!! Statistiche, cambio di variabili. 1 Il coefficiente di correlazione tra Indicee Stipendio vale 0,94. E possibile asserire che

Dettagli

Corso di Probabilità e Statistica

Corso di Probabilità e Statistica Università degli Studi di Verona Facoltà di Scienze MM.FF.NN. Corso di Laurea in Informatica Corso di Probabilità e Statistica (Prof.ssa L.Morato) Esercizi a cura di: S.Poffe sara.poffe@stat.unipd.it A.A.

Dettagli

Laboratorio di dinamiche socio-economiche

Laboratorio di dinamiche socio-economiche Dipartimento di Matematica Università di Ferrara giacomo.albi@unife.it www.giacomoalbi.com 21 febbraio 2012 Seconda parte: Econofisica La probabilità e la statistica come strumento di analisi. Apparenti

Dettagli

Esercitazioni 2013/14

Esercitazioni 2013/14 Esercitazioni 2013/14 Esercizio 1 Due ditte V e W partecipano ad una gara di appalto per la costruzione di un tratto di autostrada che viene assegnato a seconda del prezzo. L offerta fatta dalla ditta

Dettagli

UNIVERSITÀ DEGLI STUDI DI FERRARA

UNIVERSITÀ DEGLI STUDI DI FERRARA UNIVERSITÀ DEGLI STUDI DI FERRARA Anno Accademico 2012/2013 REGISTRO DELL ATTIVITÀ DIDATTICA Docente: ANDREOTTI MIRCO Titolo del corso: MATEMATICA ED ELEMENTI DI STATISTICA Corso: CORSO UFFICIALE Corso

Dettagli

Statistica e Modelli Stocastici

Statistica e Modelli Stocastici Statistica e Modelli Stocastici Modulo n.1 - Statistica Prof. Alessandro Fassò alessandro.fasso@unibg.it CdL: Ing.Informatica aa 2011/12 Parte 1a - Probabilità generale p.1 Introduzione Decisioni in condizioni

Dettagli

Evento. Nella nota precedente si è parlato di probabilità del verificarsi di un evento casuale senza chiarire il significato dei termini introdotti.

Evento. Nella nota precedente si è parlato di probabilità del verificarsi di un evento casuale senza chiarire il significato dei termini introdotti. A Note storiche A Il calcolo delle probabilità nacque applicato ai giochi d azzardo, in epoca rinascimentale per studiare gli eventi causali, vale a dire gli eventi che, come i giochi d azzardo, hanno

Dettagli