ESERCIZI DI CALCOLO COMBINATORIO

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "ESERCIZI DI CALCOLO COMBINATORIO"

Transcript

1 ESERCIZI DI CALCOLO COMBINATORIO 1. Calcolare il numero degli anagrammi che possono essere formati con le lettere della parola Amore. [120] 2. Quante partite di poker diverse possono essere giocate da sei giocatori? [15] 3. Un concessionario di automobili vuole esporre nella vetrina del suo salone quattro vetture tutte dello stesso tipo ma con 4 colori diversi (blu, grigio, rosso e nero). La vetrina però dispone di soli due posti: uno fisso e l altro fornito di una piattaforma rotante. Il concessionario desidera sapere in quanti modi diversi è possibile disporre le auto. Supponiamo che il concessionario abbia anche un terzo spazio d esposizione, quante possibilità ci sarebbero? [12,24] 4. In quanti modi possiamo far sedere tre persone su tre poltrone? [6] 5. Dato l insieme A = {1, 2, 5, 8}: determinare quanti numeri a due cifre si possono scrivere con gli elementi di A, considerando che sono ammesse le ripetizioni. [16] 6. L allenatore di una squadra di pallavolo deve scegliere due attaccanti e due difensori. Se nella squadra ci sono 5 attaccanti e 4 difensori, quante formazioni diverse si possono scegliere? [60] 7. In quanti modi diversi posso distribuire 12 penne in 5 cassetti? ( ogni cassetto può contenere da 0 a 12 penne e le 12 penne possono essere considerate indistinguibili). [1820] 8. Una partita di pallavolo tra la squadra A e B è finita 4 a 3. In quanti modi diversi possono essersi succedute le reti? [7] 9. Contare le terne ordinate formate con le lettere A,B,C,D. (Le ripetizioni sono ammesse) [64] 10. Una carta geografica contiene 5 paesi. La si vuole colorare (ogni paese con un colore diverso),avendo a disposizione sette diversi colori. In quanti modi si può fare? [2520] 11. In quanti modi diversi sette amici possono viaggiare su un auto che ha solo cinque posti? E se solo uno di essi ha la patente? [21,15] 12. Paolo ha sei amici : Chiara, Veronica, Giovanni, Marco, Anna, Francesco. Decide di visitarli tutti nei prossimi tre giorni, al ritmo di due al giorno. Quante possibilità ci sono? Se vuole visitare Chiara il primo giorno, a quante si riducono le possibilità? [90,30] 13. Quanti sono i numeri di 6 cifre con almeno una cifra dispari? E quelli con almeno una cifra pari? [887500, ]

2 14. Se si lancia 8 volte un dado, in quanti modi si possono ottenere 4 coppie diverse di numeri uguali? [37800] 15. Tre ragazze e due ragazzi si siedono a tavola in cinque posti consecutivi. In quanti modi possono sedersi se ogni femmina vuole avere a fianco almeno un maschio e viceversa? [36] 16. Si devono disporre su una fila di 10 sedie cinque coppie uomo-donna. In quanti modi la cosa si può fare se la disposizione può essere fatta alla rinfusa? E se le donne e gli uomini devono rimanere vicini tra loro. E se le coppie devono rimanere unite? [10!, 28800, 480] 17. Quanti menu diversi si possono fare se possiamo scegliere tra tre antipasti, 2 primi, 4 secondi, 3 dessert? [24] 18. Qual è il numero di anagrammi della parola scienze? [2520] 19. Una ragazza nel suo guardaroba ha 4 gonne, 5 camicie e 3 paia di pantaloni. Sceglie a caso una gonna, una camicia e un paio di pantaloni. In quanti modi diversi può vestirsi? [60] 20. Quante stringhe diverse di 10 lettere si possono costruire anagrammando la parola matematica? 21. In quanti modi diversi una commissione di 25 persone puo scegliere un presidente, un vicepresidente? [600] 22. Un test consiste in 12 domande con risposta vero-falso in quanti modi diversi uno studente puo svolgere l intero test con una risposta per ciascuna domanda? [4096] 23. Quante parole di 3 lettere ( anche senza significato) si possono scrivere con l alfabeto di 21 lettere? [9261] 24. Quante parole di 3 lettere ( anche senza significato)diverse si possono scrivere con l alfabeto di 21 lettere? [7980] 25. In una gara di 40 concorrenti quanti sono le possibile classifiche dei primi tre? [59280] 26. Dimostrare che, dato un gruppo di persone, ce ne sono almeno due che hanno, all interno del gruppo, lo stesso numero di amici. 27. Quanti oggetti possiamo differenziare con delle targhe di due simboli di cui il primo è una lettera dell alfabeto latino e il secondo è una cifra da 0 a 9? [260] 28. Supponiamo che il menu di un ristorante consista di 5 antipasti, 6 primi, 6 secondi e 4 dolci : quanti pasti completi ( di quattro piatti ) possiamo ordinare? [720] 29. Quanti numeri di sei cifre hanno almeno una cifra pari? [884375]

3 30. In una regione vi sono venti città, collegate a coppie da una strada comunale. Quante strade comunali possiede la regione in questione? [190] 31. Quante diagonali ha un poligono convesso di n lati? [n(n-3)/2] 32. Scrivete tutti i numeri formati dalle cifre 1, 2, 3 non ripetute. [6] 33. Uno studente deve sostenere 5 esami ogni anno per i quattro anni di durata del suo corso di studi, senza poter rimandare un esame da un anno all altro, nell ordine da lui preferito. Quante sono le possibili sequenze dei 20 esami? [5!5!5!5!] 34. In quanti modi si possono trovare disposte le carte in un mazzo da 40 elementi? 35. Quattro giocatori di tennis vogliono giocare un doppio. Quante coppie distinte possono formarsi? [6] 36. Nel gioco del Superenalotto bisogna indovinare 6 numeri scelti tra il numero 1 e il numero 90. Quanti sistemi di 6 numeri si possono formare? [ ] 37. Calcolare il numero di modi distinti in cui può essere servito un giocatore di scala quaranta in una singola mano. 38. Quanti insiemi di 5 carte si possono avere con un mazzo da poker di 52 carte? [ ] Quanti poker d assi si possono formare? [48] Quanti poker si possono formare? [624] 39. Sia T l insieme dei primi 100 numeri naturali. Calcolare: - Il numero di sottoinsiemi A di T che contengono esattamente 8 pari. - Il numero di coppie (A, B) con A, B sottoinsiemi di T. [2 200 ] - Il numero di coppie (A, B) con A, B sottoinsiemi di T tali che A B = 0 [3 100 ] - Il numero di coppie (A, B) con A, B sottoinsiemi di T tali che A B = Quante stringhe diverse di 10 lettere si possono costruire anagrammando la parola MATEMATICA? [ ] 41. Nel gioco del totocalcio sono inserite 13 partite e una colonna di tale gioco è la scelta di un simbolo tra questi tre: 1, X, 2 per ognuna delle partite. Ad ogni previsione corrisponde 1 punto se risulta corretta. - Quante sono le possibili colonne al totocalcio? [3 13 ] - In quanti modi si possono fare k punti? 42. L alfabeto italiano contiene 16 consonanti e 5 vocali. Quante stringhe di 5 lettere si possono formare che contengano: - Esattamente una vocale. - Almeno una vocale. - Almeno due vocali. - Esattamente due vocali.

4 43. L alfabeto italiano contiene 16 consonanti e 5 vocali. Quante stringhe di 6 lettere si possono formare che contengano: - La lettera a. - Le lettere a e b. - Le lettere a e b in posizioni consecutive, con a che precede b e tutte le lettere distinte. - Le lettere a e b con tutte le altre lettere distinte. - Le lettere a e b, con a che precede b (non è detto che le due lettere siano però in due caselle consecutive) e tutte le lettere distinte. 44. In quanti modi 7 buste numerate possono essere assegnate a 7 persone, se ognuna di esse riceve una busta? [7!] 45. In quanti modi 7 buste numerate possono essere assegnate a 7 persone? [7 7 ] 46. In quanti modi 7 buste identiche possono essere assegnate a 7 persone? giocatori di tennis decidono di giocare un doppio. - Quante coppie distinte si possono formare? - Una volta formate le 5 coppie, quante distinte partite (coppia vs. coppia) si possono giocare? 48. Si consideri un mazzo di 40 carte (10 carte distinte per ciascuno dei quattro semi). - Quanti insiemi di 5 carte si possono avere? - Quanti insiemi di 5 carte possono avere 4 assi? [36] - Quanti insiemi di 5 carte possono avere 4 carte di valore uguale? [10 36] - Quanti insiemi di 5 carte possono avere almeno 2 assi? - Quanti insiemi di 5 carte possono avere due coppie di carte di uguale valore ma distinte fra loro? copie di un libro vengono distribuite in 5 scuole. - In quanti modi possono essere distribuiti i libri fra le scuole? - E se ad ogni scuola viene assegnato almeno un libro? 50. Un urna contiene 20 palline bianche e 10 palline nere. - Eseguendo 5 estrazioni senza reimbussolamento, in quanti casi si ottiene come esito dell estrazione 3 palline bianche e 2 nere? - E se ad ogni estrazione segue il reimbussolamento? 51. Si consideri un mazzo di 40 carte (10 carte distinte per ciascuno dei 4 semi). Aldo, Giovanni e Giacomo estraggono dal mazzo rispettivamente 5, 4 e 3 carte. - Quante sono le possibili estrazioni in cui nessuno dei tre ha estratto coppe? - Quante sono le possibili estrazioni in cui Aldo e Giovanni non hanno estratto spade, mentre Giacomo ne ha estratte esattamente 2? - Quante sono le possibili estrazioni in cui Aldo e Giovanni non hanno estratto spade, mentre Giacomo ne ha estratte almeno 2? - Quante sono le possibili estrazioni in cui le carte di Aldo e Giovanni sono tutte carte di denari? - Quante sono le possibili estrazioni in cui Aldo ha estratto 2 carte di denari e 2 carte di coppe? 52. Si consideri un mazzo di 52 carte (13 carte distinte per ciascuno dei 4 semi). Vengono estratte 13 carte dal mazzo. - Quante sono le possibili estrazioni in cui le 13 carte hanno tutte valore diverso? [4 13 ] - Quante sono le possibili estrazioni in cui le 13 carte sono tutte dello stesso seme? [4] - Quante sono le possibili estrazioni in cui 8 delle 13 carte hanno lo stesso seme?

5 53. La biglietteria di un teatro dispone di 100 biglietti numerati. - Scegliendone 4 a caso, quante sono la possibilità di avere estratto dei biglietti con numeri consecutivi? [97] - E se si considera anche l ordine in cui i biglietti vengono scelti? [97 4!] 54. Una band composta da 4 musicisti possiede 4 strumenti musicali. - Se ognuno di essi sa suonare ogni strumento, in quanti modi possono ripartirsi gli strumenti? [4!] - E se 2 dei musicisti sanno suonare solo 2 strumenti (gli stessi per entrambi)? [2! 2!] 55. Un bambino possiede dei mattoncini lego della stessa forma e dimensione ma con diversi colori: ne ha 6 rossi, 4 gialli, 1 verde e 1 blu. In quanti modi il bambino può riarrangiarli in colonna a formare una torre? 56. In quanti modi le lettere delle parole seguenti possono essere riarrangiate per formare altre parole (non necessariamente con senso)? - PASTO [5!] - PANINO - PANNA - ANNA 57. Un gruppo di amici composto da 3 ragazzi e 3 ragazze si ritrovano al parco. - In quanti modi possono disporsi per ordine su una panchina? [6!] - In quanti modi se ragazzi e ragazze sono tutti vicini fra loro? [2 3! 3!] - In quanti modi se solo i ragazzi siedono tutti vicini fra loro? [4! 3!] - In quanti modi se non vi sono persone dello stesso sesso sedute fianco a fianco? [2 3! 3!] 58. Un gruppo di colleghi di lavoro composto da 8 persone va a pranzo. - In quanti modi possono sedersi per ordine attorno ad un tavolo? [8!] - In quanti modi se i colleghi A e B vogliono sedersi vicini? [2 7!] - In quanti modi se vi sono 4 uomini e 4 donne e non vi sono persone dello stesso sesso sedute a fianco? [2 4! 4!] - In quanti modi se vi sono 5 uomini tutti seduti vicini? [4!5!] - In quanti modi se vi sono 4 coppie sposate, e ciascuna coppia è seduta assieme? [2 4 4!] 59. Si dispone di 3 libri di letteratura, 2 libri di informatica ed 1 libro di matematica. - In quanti modi possono essere ordinati i libri su di uno scaffale? [6!] - In quanti modi se i libi di letteratura e i libri di matematica sono tutti vicini fra loro? [2 3!] - In quanti modi se i libri di letteratura sono tutti vicini? [4! 3!] 60. Uno studente ha deciso di vedere 2 libri fra i 6 di matematica, 7 di scienze, 4 di economia che possiede. Quante sono le scelte possibili se: - i libri devono trattare lo stesso argomento? - I libri devono trattare argomenti diversi? 61. Da un gruppo di 8 donne e 6 uomini deve essere scelta una commissione formata da 3 donne e 3 uomini. - Quante diverse commissioni si possono formare? - E se 2 degli uomini rifiutano di lavorare insieme? - E se 2 delle donne rifiutano di lavorare insieme? - E se 1 uomo ed 1 donna rifiutano di lavorare insieme? 62. Se 12 persone sono divise a formare 3 commissioni, rispettivamente di 3, 4 e 5 persone, quante sono le possibili divisioni?

6 63. È richiesto ad 8 professori di svolgere qualche supplenza. - In quanti modi 8 professori possono essere assegnati a 4 distinte scuole? [4 8 ] - E se ad ogni scuola viene assegnato almeno 1 professore? - E se ad ogni scuola vengono assegnati 2 professori? 64. Vi sono da investire su 4 possibili titoli azionari. Ogni investimento deve essere un multiplo di 1000, ma c è un investimento minimo che dipende dal titolo azionario. Gli investimenti minimi sono rispettivamente di 4, 3, 2 e 2 migliaia di. Quante differenti strategie di investimento sono possibili se: - Si vuol investire su ciascuno dei 4 titoli azionari? - Si vuole investire su almeno 3 dei 4 titoli azionari?

Esercizi di calcolo combinatorio

Esercizi di calcolo combinatorio CORSO DI CALCOLO DELLE PROBABILITÀ E STATISTICA Esercizi di calcolo combinatorio Nota: Alcuni esercizi sono tradotti, più o meno fedelmente, dal libro A first course in probability di Sheldon Ross, quinta

Dettagli

Calcolo combinatorio

Calcolo combinatorio Probabilità e Statistica Esercitazioni a.a. 2009/2010 C.d.L.S.: Ingegneria Civile-Architettonico, Ingegneria Civile-Strutturistico Calcolo combinatorio Ines Campa e Marco Longhi Probabilità e Statistica

Dettagli

Cenni sul calcolo combinatorio

Cenni sul calcolo combinatorio Cenni sul calcolo combinatorio Disposizioni semplici Le disposizioni semplici di n elementi distinti di classe k con kn sono tutti i gruppi di k elementi scelti fra gli n, che differiscono per almeno un

Dettagli

Esercizi di consolidamento di probabilità e calcolo combinatorio parte 1

Esercizi di consolidamento di probabilità e calcolo combinatorio parte 1 Esercizi di consolidamento di probabilità e calcolo combinatorio parte 1 1. Si lancia una moneta 2 volte: qual è la probabilità che esca TESTA 0 volte? 1 volta? 2 volte? 2. Si lancia una moneta 3 volte:

Dettagli

CALCOLO COMBINATORIO

CALCOLO COMBINATORIO CALCOLO COMBINATORIO 1 Modi di formare gruppi di k oggetti presi da n dati 11 disposizioni semplici, permutazioni Dati n oggetti distinti a 1,, a n si chiamano disposizioni semplici di questi oggetti,

Dettagli

Ancora sull indipendenza. Se A e B sono indipendenti allora lo sono anche

Ancora sull indipendenza. Se A e B sono indipendenti allora lo sono anche Ancora sull indipendenza Se A e B sono indipendenti allora lo sono anche A e B Ā e B Ā e B Sfruttiamo le leggi di De Morgan Leggi di De Morgan A B = Ā B A B = Ā B P (Ā B) = P (A B) = 1 P (A B) = 1 (P (A)

Dettagli

CORSO DI CALCOLO DELLE PROBABILITÀ E STATISTICA. Esercizi su eventi, previsioni e probabilità condizionate

CORSO DI CALCOLO DELLE PROBABILITÀ E STATISTICA. Esercizi su eventi, previsioni e probabilità condizionate CORSO DI CALCOLO DELLE PROBABILITÀ E STATISTICA Esercizi su eventi, previsioni e probabilità condizionate Nota: Alcuni esercizi sono tradotti, più o meno fedelmente, dal libro A first course in probability

Dettagli

Introduzione alla probabilità

Introduzione alla probabilità Introduzione alla probabilità CAPITOLO TEORIA Il dilemma di Monty Hall In un popolare show televisivo americano il presentatore mostra al concorrente tre porte chiuse. Dietro a una di esse si cela il premio

Dettagli

8. Qual è la probabilità di estrarre da un mazzo di 40 carte napoletane una figura?

8. Qual è la probabilità di estrarre da un mazzo di 40 carte napoletane una figura? www.matematicamente.it Probabilità 1 Calcolo delle probabilità Cognome e nome: Classe Data 1. Quali affermazioni sono vere? A. Un evento impossibile ha probabilità 1 B. Un vento certo ha probabilità 0

Dettagli

Percorsi di matematica per il ripasso e il recupero

Percorsi di matematica per il ripasso e il recupero Giacomo Pagina Giovanna Patri Percorsi di matematica per il ripasso e il recupero 1 per la Scuola secondaria di secondo grado UNITÀ CMPIONE Edizioni del Quadrifoglio à t i n U 1 Insiemi La teoria degli

Dettagli

Rilevazione degli apprendimenti. Anno Scolastico 2006 2007 PROVA DI MATEMATICA. Scuola Secondaria di II grado. Classe Terza Tipo A. Codici. Scuola:...

Rilevazione degli apprendimenti. Anno Scolastico 2006 2007 PROVA DI MATEMATICA. Scuola Secondaria di II grado. Classe Terza Tipo A. Codici. Scuola:... Ministero della Pubblica Istruzione Rilevazione degli apprendimenti Anno Scolastico 2006 2007 PROVA DI MATEMATICA Scuola Secondaria di II grado Classe Terza Tipo A Codici Scuola:..... Classe:.. Studente:.

Dettagli

Kangourou Italia Gara del 19 marzo 2015 Categoria Student Per studenti di quarta e quinta della secondaria di secondo grado

Kangourou Italia Gara del 19 marzo 2015 Categoria Student Per studenti di quarta e quinta della secondaria di secondo grado Kangourou Italia Gara del 19 marzo 2015 Categoria Student Per studenti di quarta e quinta della secondaria di secondo grado I quesiti dal N. 1 al N. 10 valgono 3 punti ciascuno 1. Angela è nata nel 1997,

Dettagli

Rilevazione degli apprendimenti. Anno Scolastico 2006 2007 PROVA DI MATEMATICA. Scuola Secondaria di II grado. Classe Terza Tipo A. Codici. Scuola:...

Rilevazione degli apprendimenti. Anno Scolastico 2006 2007 PROVA DI MATEMATICA. Scuola Secondaria di II grado. Classe Terza Tipo A. Codici. Scuola:... Ministero della Pubblica Istruzione Rilevazione degli apprendimenti Anno Scolastico 2006 2007 PROVA DI MATEMATICA Scuola Secondaria di II grado Classe Terza Tipo A Codici Scuola:..... Classe:.. Studente:.

Dettagli

UNA LEZIONE SUI NUMERI PRIMI: NASCE LA RITABELLA

UNA LEZIONE SUI NUMERI PRIMI: NASCE LA RITABELLA UNA LEZIONE SUI NUMERI PRIMI: NASCE LA RITABELLA Tutti gli anni, affrontando l argomento della divisibilità, trovavo utile far lavorare gli alunni sul Crivello di Eratostene. Presentavo ai ragazzi una

Dettagli

Calcolo delle Probabilità

Calcolo delle Probabilità Calcolo delle Probabilità Il calcolo delle probabilità studia i modelli matematici delle cosidette situazioni di incertezza. Molte situazioni concrete sono caratterizzate a priori da incertezza su quello

Dettagli

186. Un gioco d incertezza: Forse che sì, forse che no Rosa Marincola rosamarincola@virgilio.it

186. Un gioco d incertezza: Forse che sì, forse che no Rosa Marincola rosamarincola@virgilio.it 186. Un gioco d incertezza: Forse che sì, forse che no Rosa Marincola rosamarincola@virgilio.it Premessa Durante una mia visita al Palazzo Ducale di Mantova, nell ammirare i tanti capolavori che custodisce,

Dettagli

Corso di Matematica e Statistica 4 Calcolo combinatorio e probabilità. Le disposizioni semplici di n elementi di classe k

Corso di Matematica e Statistica 4 Calcolo combinatorio e probabilità. Le disposizioni semplici di n elementi di classe k Pordenone Corso di Matematica e Statistica 4 Calcolo combinatorio e probabilità UNIVERSITAS STUDIORUM UTINENSIS Giorgio T. Bagni Facoltà di Scienze della Formazione Dipartimento di Matematica e Informatica

Dettagli

Le soluzioni dei quesiti sono in fondo alla prova

Le soluzioni dei quesiti sono in fondo alla prova SCUOLA MEDIA STATALE GIULIANO DA SANGALLO Via Giuliano da Sangallo,11-Corso Duca di Genova,135-00121 Roma Tel/fax 06/5691345-e.mail:scuola.sangallo@libero.it SELEZIONE INTERNA PER LA MARATONA DI MATEMATICA

Dettagli

1A ARITMETICA. I numeri naturali e le quattro operazioni. Esercizi supplementari di verifica

1A ARITMETICA. I numeri naturali e le quattro operazioni. Esercizi supplementari di verifica A ARITMETICA I numeri naturali e le quattro operazioni Esercizi supplementari di verifica Esercizio Rappresenta sulla retta orientata i seguenti numeri naturali. ; ; ; 0;. 0 Esercizio Metti una crocetta

Dettagli

UTILIZZO DELLA PSICOCINETICA NELLA SCUOLA PRIMARIA E IN AMBITO SPORTIVO

UTILIZZO DELLA PSICOCINETICA NELLA SCUOLA PRIMARIA E IN AMBITO SPORTIVO UTILIZZO DELLA PSICOCINETICA NELLA SCUOLA PRIMARIA E IN AMBITO SPORTIVO Le capacità cognitive richieste per far fronte alle infinite modalità di risoluzione dei problemi motori e di azioni di gioco soprattutto

Dettagli

Elementi di Statistica

Elementi di Statistica Elementi di Statistica Contenuti Contenuti di Statistica nel corso di Data Base Elementi di statistica descrittiva: media, moda, mediana, indici di dispersione Introduzione alle variabili casuali e alle

Dettagli

Probabilità e statistica. Veronica Gavagna

Probabilità e statistica. Veronica Gavagna Probabilità e statistica Veronica Gavagna Testa o croce? Immaginiamo di lanciare una moneta facendola cadere su un piano liscio chiunque dirà che la probabilità dell evento testa sarà del 50%, al pari

Dettagli

I numeri che si ottengono successivamente sono 98-2 = 96 4 = 92 8 = 84 16 = 68 32 = 36 e ci si ferma perché non possibile togliere 64

I numeri che si ottengono successivamente sono 98-2 = 96 4 = 92 8 = 84 16 = 68 32 = 36 e ci si ferma perché non possibile togliere 64 Problemini e indovinelli 2 Le palline da tennis In uno scatolone ci sono dei tubi che contengono ciascuno 4 palline da tennis.approfittando di una offerta speciale puoi acquistare 4 tubi spendendo 20.

Dettagli

SCUOLA DELL INFANZIA ANDERSEN SPINEA I CIRCOLO ANNO SCOLASTICO 2006/07. Documentazione a cura di Quaglietta Marica

SCUOLA DELL INFANZIA ANDERSEN SPINEA I CIRCOLO ANNO SCOLASTICO 2006/07. Documentazione a cura di Quaglietta Marica SCUOLA DELL INFANZIA ANDERSEN SPINEA I CIRCOLO ANNO SCOLASTICO 2006/07 GRUPPO ANNI 3 Novembre- maggio Documentazione a cura di Quaglietta Marica Per sviluppare Pensiero creativo e divergente Per divenire

Dettagli

Matematica Discreta PARTE II

Matematica Discreta PARTE II Matematica Discreta PARTE II Giuseppe Lancia Dipartimento di Matematica e Informatica Università di Udine Indice 1 Piccioni e buche 1 1.1 Il principio della piccionaia, forma semplice............................

Dettagli

Università per Stranieri di Siena. Centro. Certificazione CILS. Certificazione. di Italiano come Lingua Straniera. Sessione: Dicembre 2012 Livello: A1

Università per Stranieri di Siena. Centro. Certificazione CILS. Certificazione. di Italiano come Lingua Straniera. Sessione: Dicembre 2012 Livello: A1 Università per Stranieri di Siena Centro CILS Sessione: Dicembre 2012 Test di ascolto Numero delle prove 2 Ascolto - Prova n. 1 Ascolta i testi: sono brevi dialoghi e annunci. Poi completa le frasi.

Dettagli

Livello CILS A2. Test di ascolto

Livello CILS A2. Test di ascolto Livello CILS A2 GIUGNO 2012 Test di ascolto numero delle prove 2 Ascolto Prova n. 1 Ascolta i testi. Poi completa le frasi. Scegli una delle tre proposte di completamento. Alla fine del test di ascolto,

Dettagli

In base alla formula di torneo adottata i tornei possono pertanto prevedere lo svolgimento di una o più partite.

In base alla formula di torneo adottata i tornei possono pertanto prevedere lo svolgimento di una o più partite. Formule di gioco La successione di mani necessarie per l eliminazione del penultimo giocatore o per la determinazione dei giocatori che accedono ad un turno successivo costituisce una partita. In base

Dettagli

CALCOLO COMBINATORIO E PROBABILITA

CALCOLO COMBINATORIO E PROBABILITA CALCOLO COMBINATORIO E PROBABILITA Con calcolo combinatorio si indica quel settore della matematica che studia i possibili modi di raggruppare ed ordinare oggetti presi da un insieme assegnato, con l obiettivo

Dettagli

PROVA DI MATEMATICA - Scuola Primaria - Classe Quinta

PROVA DI MATEMATICA - Scuola Primaria - Classe Quinta Rilevazione degli apprendimenti PROVA DI MATEMATICA - Scuola Primaria - Classe Quinta Anno Scolastico 2011 2012 PROVA DI MATEMATICA Scuola Primaria Classe Quinta Spazio per l etichetta autoadesiva ISTRUZIONI

Dettagli

COMUNE DI CAMPIONE D ITALIA

COMUNE DI CAMPIONE D ITALIA COMUNE DI CAMPIONE D ITALIA REGOLAMENTO DI GIOCO DELLA ROULETTE (al Casino Municipale di Campione d Italia) adottato con delib. C.C. n. 83 del 2.12.1993 approvata dal CRC con atto n. 13 in data 4.1.1994

Dettagli

Scrivere uno script php che, dato un array associativo PERSONE le cui chiavi sono i

Scrivere uno script php che, dato un array associativo PERSONE le cui chiavi sono i Esercizi PHP 1. Scrivere uno script PHP che produca in output: 1. La tabellina del 5 2. La tavola Pitagorica contenuta in una tabella 3. La tabellina di un numero ricevuto in input tramite un modulo. Lo

Dettagli

Svolgimento della prova

Svolgimento della prova Svolgimento della prova D1. Il seguente grafico rappresenta la distribuzione dei lavoratori precari in Italia suddivisi per età nell anno 2012. a. Quanti sono in totale i precari? A. Circa due milioni

Dettagli

Indovinelli Algebrici

Indovinelli Algebrici OpenLab - Università degli Studi di Firenze - Alcuni semplici problemi 1. L EURO MANCANTE Tre amici vanno a cena in un ristorante. Mangiano le stesse portate e il conto è, in tutto, 25 Euro. Ciascuno di

Dettagli

Lezione 10. La Statistica Inferenziale

Lezione 10. La Statistica Inferenziale Lezione 10 La Statistica Inferenziale Filosofia della scienza Secondo Aristotele, vi sono due vie attraverso le quali riusciamo a formare le nostre conoscenze: (1) la deduzione (2) l induzione. Lezione

Dettagli

1 Configurazioni SOL per export SIBIB

1 Configurazioni SOL per export SIBIB Pag.1 di 7 1 Configurazioni SOL per export SIBIB Le configurazioni per l export dei dati verso SIBIB si trovano in: Amministrazione Sistema > Import-Export dati > Configurazioni. Tutte le configurazioni

Dettagli

Lezioni di STATISTICA MATEMATICA A

Lezioni di STATISTICA MATEMATICA A Università di Modena e Reggio Emilia Facoltà di Ingegneria Lezioni di STATISTICA MATEMATICA A Corso di Laurea in Ingegneria Meccanica Corso di Laurea in Ingegneria dei Materiali - Anno Accademico 010/11

Dettagli

Pasta per due. Capitolo 1. Una mattina, Libero si sveglia e accende il computer C È POSTA PER TE! e trova un nuovo messaggio della sua amica:

Pasta per due. Capitolo 1. Una mattina, Libero si sveglia e accende il computer C È POSTA PER TE! e trova un nuovo messaggio della sua amica: Pasta per due 5 Capitolo 1 Libero Belmondo è un uomo di 35 anni. Vive a Roma. Da qualche mese Libero accende il computer tutti i giorni e controlla le e-mail. Minni è una ragazza di 28 anni. Vive a Bangkok.

Dettagli

Esercizio 1. Svolgimento

Esercizio 1. Svolgimento Esercizio 1 Vengono lanciate contemporaneamente 6 monete. Si calcoli: a) la probabilità che si presentino esattamente 2 testa ; b) la probabilità di ottenere almeno 4 testa ; c) la probabilità che l evento

Dettagli

DELL UNO CONTRO UNO DIFENSIVO

DELL UNO CONTRO UNO DIFENSIVO M A G A Z I N E PRINCIPI BASE DELL UNO CONTRO UNO DIFENSIVO w w w. a l l f o1 o t b a l l. i t IL TUTOR MARIO BERETTA 1959 Milano, è ex calciatore e attuale allenatore professionista. Diplomato Isef e

Dettagli

Elementi di teoria degli insiemi

Elementi di teoria degli insiemi Elementi di teoria degli insiemi 1 Insiemi e loro elementi 11 Sottoinsiemi Insieme vuoto Abbiamo già osservato che ogni numero naturale è anche razionale assoluto o, in altre parole, che l insieme dei

Dettagli

INFORMATIVA FINANZIARIA

INFORMATIVA FINANZIARIA Capitolo 10 INFORMATIVA FINANZIARIA In questa sezione sono riportate le quotazioni e le informazioni relative ai titoli inseriti nella SELEZIONE PERSONALE attiva.tramite la funzione RICERCA TITOLI è possibile

Dettagli

A tu per tu con il Mister del Pavia Massimo Morgia: l allenamento di rifinitura del sabato pomeriggio.

A tu per tu con il Mister del Pavia Massimo Morgia: l allenamento di rifinitura del sabato pomeriggio. articolo N.40 MARZO 2007 RIVISTA ELETTRONICA DELLA CASA EDITRICE WWW.ALLENATORE.NET REG. TRIBUNALE DI LUCCA N 785 DEL 15/07/03 DIRETTORE RESPONSABILE: FERRARI FABRIZIO COORDINATORE TECNICO: LUCCHESI MASSIMO

Dettagli

ESERCIZI. x + 3 x 2 1. a) y = 4x2 + 3x 2x + 2 ; b) y = 6x2 x 1. (x + 2) 2 c) y =

ESERCIZI. x + 3 x 2 1. a) y = 4x2 + 3x 2x + 2 ; b) y = 6x2 x 1. (x + 2) 2 c) y = ESERCIZI Testi (1) Un urna contiene 20 palline di cui 8 rosse 3 bianche e 9 nere; calcolare la probabilità che: (a) tutte e tre siano rosse; (b) tutte e tre bianche; (c) 2 rosse e una nera; (d) almeno

Dettagli

APPUNTI DI MATEMATICA GLI INSIEMI NUMERICI

APPUNTI DI MATEMATICA GLI INSIEMI NUMERICI APPUNTI DI MATEMATICA GLI INSIEMI NUMERICI I numeri naturali I numeri interi I numeri razionali Teoria degli insiemi (cenni) ALESSANDRO BOCCONI Indice 1 L insieme N dei numeri naturali 4 1.1 Introduzione.........................................

Dettagli

IMPARARE GIOCANDO A 9/10 ANNI

IMPARARE GIOCANDO A 9/10 ANNI IMPARARE GIOCANDO A 9/10 ANNI appunti dalla lezione del 19 maggio 2002 al Clinic di Riccione relatore Maurizio Cremonini, Istruttore Federale Set. Scol. e Minibasket I BAMINI DEVONO SCOPRIRE CIO DI CUI

Dettagli

Bambini vecchiette signori e signore venite a giocare con tutti i colori (2 volte)

Bambini vecchiette signori e signore venite a giocare con tutti i colori (2 volte) La canzone dei colori Rosso rosso il cane che salta il fosso giallo giallo il gallo che va a cavallo blu blu la barca che va su e giù blu blu la barca che va su e giù Arancio arancio il grosso cappello

Dettagli

PROVA DI MATEMATICA - Scuola Secondaria di I grado - Classe Prima

PROVA DI MATEMATICA - Scuola Secondaria di I grado - Classe Prima PROVA DI MATEMATICA - Scuola Secondaria di I grado - Classe Prima Rilevazione degli apprendimenti Anno Scolastico 2011 2012 PROVA DI MATEMATICA Scuola Secondaria di I grado Classe Prima Spazio per l etichetta

Dettagli

Nel triangolo disegnato a lato, qual è la misura, in gradi e primi sessagesimali, di α?

Nel triangolo disegnato a lato, qual è la misura, in gradi e primi sessagesimali, di α? QUESITO 1 Nel triangolo disegnato a lato, qual è la misura, in gradi e primi sessagesimali, di α? Applicando il Teorema dei seni si può determinare il valore di senza indeterminazione, in quanto dalla

Dettagli

Lucca. Project contest 2015. Premio Giovanni Martinelli. XI concorso nazionale per nuovi autori di fumetto

Lucca. Project contest 2015. Premio Giovanni Martinelli. XI concorso nazionale per nuovi autori di fumetto art.1 Per favorire l inserimento di nuovi talenti nel panorama editoriale italiano, comics & Games, in collaborazione con edizioni BD, organizza il contest Premio Giovanni Martinelli, concorso per progetti

Dettagli

CAPITOLO 2 GLI AGGETTIVI A. LEGGETE IL SEGUENTE BRANO E SOTTOLINEATE GLI AGGETTIVI

CAPITOLO 2 GLI AGGETTIVI A. LEGGETE IL SEGUENTE BRANO E SOTTOLINEATE GLI AGGETTIVI CAPITOLO 2 GLI AGGETTIVI A. LEGGETE IL SEGUENTE BRANO E SOTTOLINEATE GLI AGGETTIVI La mia casa ideale è vicino al mare. Ha un salotto grande e luminoso con molte poltrone comode e un divano grande e comodo.

Dettagli

QUESTIONARIO SULLA COORDINAZIONE MOTORIA (The DCDQ 07 B.N. Wilson) Traduzione e adattamento a cura di Barbara Caravale e Silvia Baldi

QUESTIONARIO SULLA COORDINAZIONE MOTORIA (The DCDQ 07 B.N. Wilson) Traduzione e adattamento a cura di Barbara Caravale e Silvia Baldi QUESTIONARIO SULLA COORDINAZIONE MOTORIA (The DCDQ 07 B.N. Wilson) Traduzione e adattamento a cura di Barbara Caravale e Silvia Baldi Nome e Cognome del/la bambino/a Nome e Cognome della persona che compila

Dettagli

Analisi statistica di dati biomedici Analysis of biologicalsignals

Analisi statistica di dati biomedici Analysis of biologicalsignals Analisi statistica di dati biomedici Analysis of biologicalsignals II Parte Verifica delle ipotesi (a) Agostino Accardo (accardo@units.it) Master in Ingegneria Clinica LM in Neuroscienze 2013-2014 e segg.

Dettagli

Facoltà di Scienze della Formazione Cdl Scienze della Formazione Primaria Indirizzo Scuola Primaria

Facoltà di Scienze della Formazione Cdl Scienze della Formazione Primaria Indirizzo Scuola Primaria Facoltà di Scienze della Formazione Cdl Scienze della Formazione Primaria Indirizzo Scuola Primaria Laurent Lafforgue: il calcolo mentale e quello in colonna devono essere introdotti molto presto su numeri

Dettagli

ESTRAZIONE DI RADICE

ESTRAZIONE DI RADICE ESTRAZIONE DI RADICE La radice è l operazione inversa dell elevamento a potenza. L esponente della potenza è l indice della radice che può essere: quadrata (); cubica (); quarta (4); ecc. La base della

Dettagli

Test d ingresso per i curricula in lingua inglese Coloro che intendono iscriversi ai curricula in lingua inglese Economics of Financial and Insurance

Test d ingresso per i curricula in lingua inglese Coloro che intendono iscriversi ai curricula in lingua inglese Economics of Financial and Insurance Note e istruzioni per i test di ingresso ai Corsi di Studio del Dipartimento di Scienze Economiche, Aziendali, Matematiche e Statistiche (DEAMS) a.a. 2013/2014 Gli insegnamenti relativi ai Corsi di Laurea

Dettagli

La distribuzione Normale. La distribuzione Normale

La distribuzione Normale. La distribuzione Normale La Distribuzione Normale o Gaussiana è la distribuzione più importante ed utilizzata in tutta la statistica La curva delle frequenze della distribuzione Normale ha una forma caratteristica, simile ad una

Dettagli

Gli eventi sono stati definiti come i possibili risultati di un esperimento. Ogni evento ha una probabilità

Gli eventi sono stati definiti come i possibili risultati di un esperimento. Ogni evento ha una probabilità Probabilità Probabilità Gli eventi sono stati definiti come i possibili risultati di un esperimento. Ogni evento ha una probabilità Se tutti gli eventi fossero ugualmente possibili, la probabilità p(e)

Dettagli

Un ripasso di aritmetica: Conversione dalla base 10 alla base 16

Un ripasso di aritmetica: Conversione dalla base 10 alla base 16 Un ripasso di aritmetica: Conversione dalla base 1 alla base 16 Dato un numero N rappresentato in base dieci, la sua rappresentazione in base sedici sarà del tipo: c m c m-1... c 1 c (le c i sono cifre

Dettagli

La Bella Addormentata e altre illusioni probabilistiche. volcic@unical.it

La Bella Addormentata e altre illusioni probabilistiche. volcic@unical.it La Bella Addormentata e altre illusioni probabilistiche Aljoša Volčič volcic@unical.it Firenze, 25 novembre 2009 1 Che cosa è la probabilità? La probabilità di un evento A è la misura del grado di fiducia

Dettagli

L : L/2 = 1 : ½ = 2 : 1

L : L/2 = 1 : ½ = 2 : 1 LA SCALA PITAGORICA (e altre scale) 1 IL MONOCORDO I Greci, già circa 500 anni prima dell inizio dell era cristiana, utilizzavano un semplice strumento: il monocordo. Nel monocordo, un ponticello mobile

Dettagli

VERBALE DELLE OPERAZIONI

VERBALE DELLE OPERAZIONI MODELLO N. 15 (PARL. EUR.) Verbale delle operazioni dell ufficio elettorale di sezione per l elezione dei membri del Parlamento europeo spettanti all Italia ELEZIONE DEI MEMBRI DEL PARLAMENTO EUROPEO SPETTANTI

Dettagli

Introduzione ad Access

Introduzione ad Access Introduzione ad Access Luca Bortolussi Dipartimento di Matematica e Informatica Università degli studi di Trieste Access E un programma di gestione di database (DBMS) Access offre: un supporto transazionale

Dettagli

La scala musicale e le alterazioni

La scala musicale e le alterazioni La scala musicale e le alterazioni Unità didattica di Educazione Musicale classe seconda Obiettivi del nostro lavoro Acquisire il concetto di scala musicale e di intervallo. Conoscere la struttura della

Dettagli

Scuola dell Infanzia H. C. Andersen Anno Scolastico 2012-2013 Sezione 2 mista Insegnanti: Martinelli, Tenace

Scuola dell Infanzia H. C. Andersen Anno Scolastico 2012-2013 Sezione 2 mista Insegnanti: Martinelli, Tenace Scuola dell Infanzia H. C. Andersen Anno Scolastico 2012-2013 Sezione 2 mista Insegnanti: Martinelli, Tenace Ogni giorno abbiamo modo di osservare come i bambini possiedono intuizioni geometriche, logiche

Dettagli

Veniamo al dunque, per prima cosa recuperiamo il materiale necessario:

Veniamo al dunque, per prima cosa recuperiamo il materiale necessario: Probabilmente questo problema è stato già affrontato da altri, ma volevo portare la mia esperienza diretta, riguardo alla realizzazione di un alimentatore per il caricabatterie 12 volt, ottenuto trasformando

Dettagli

MASTERCOM. L indirizzo internet per accedere al registro elettronico è: https://82.185.224.202/mastercom/index.php.

MASTERCOM. L indirizzo internet per accedere al registro elettronico è: https://82.185.224.202/mastercom/index.php. MASTERCOM La piattaforma MASTERCOM funziona con Mozilla Firefox. L indirizzo internet per accedere al registro elettronico è: https://82.185.224.202/mastercom/index.php. Tramite l indirizzo https://82.185.224.202/registro/index.php

Dettagli

Progettazione di un DB....in breve

Progettazione di un DB....in breve Progettazione di un DB...in breve Cosa significa progettare un DB Definirne struttura,caratteristiche e contenuto. Per farlo è opportuno seguire delle metodologie che permettono di ottenere prodotti di

Dettagli

La guerra delle posizioni

La guerra delle posizioni www.maestrantonella.it La guerra delle posizioni Gioco di carte per il consolidamento del valore posizionale delle cifre e per il confronto di numeri con l uso dei simboli convenzionali > e < Da 2 a 4

Dettagli

Before the Wind By Torsten Landsvogt For 2-4 players, age 10+ Phalanx Games, 2007

Before the Wind By Torsten Landsvogt For 2-4 players, age 10+ Phalanx Games, 2007 Before the Wind By Torsten Landsvogt For 2-4 players, age 10+ Phalanx Games, 2007 IMPAGINAZIONE DELLE REGOLE 1.0 Introduzione 2.0 Contenuto del gioco 3.0 Preparazione 4.0 Come si gioca 5.0 Fine del gioco

Dettagli

Tesi per il Master Superformatori CNA

Tesi per il Master Superformatori CNA COME DAR VITA E FAR CRESCERE PICCOLE SOCIETA SPORTIVE di GIACOMO LEONETTI Scorrendo il titolo, due sono le parole chiave che saltano agli occhi: dar vita e far crescere. In questo mio intervento, voglio

Dettagli

Introduzione agli algoritmi e alla programmazione in VisualBasic.Net

Introduzione agli algoritmi e alla programmazione in VisualBasic.Net Lezione 1 Introduzione agli algoritmi e alla programmazione in VisualBasic.Net Definizione di utente e di programmatore L utente è qualsiasi persona che usa il computer anche se non è in grado di programmarlo

Dettagli

Teoria degli insiemi

Teoria degli insiemi Teoria degli insiemi pag 1 Easy Matematica di dolfo Scimone Teoria degli insiemi Il concetto di insieme si assume come primitivo, cioè non riconducibile a concetti precedentemente definiti. Sinonimi di

Dettagli

FUNZIONI AVANZATE DI EXCEL

FUNZIONI AVANZATE DI EXCEL FUNZIONI AVANZATE DI EXCEL Inserire una funzione dalla barra dei menu Clicca sulla scheda "Formule" e clicca su "Fx" (Inserisci Funzione). Dalla finestra di dialogo "Inserisci Funzione" clicca sulla categoria

Dettagli

Guida alle attività. Tutto sulle cellule staminali

Guida alle attività. Tutto sulle cellule staminali Guida alle attività è un attività da usare con studenti dagli 11 ai 14 anni o con più di 16 anni. Consiste in un set di carte riguardanti le conoscenze basilari sulle cellule staminali e sulle loro applicazioni

Dettagli

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΚΡΑΤΙΚΑ ΙΝΣΤΙΤΟΥΤΑ ΕΠΙΜΟΡΦΩΣΗΣ

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΚΡΑΤΙΚΑ ΙΝΣΤΙΤΟΥΤΑ ΕΠΙΜΟΡΦΩΣΗΣ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΚΡΑΤΙΚΑ ΙΝΣΤΙΤΟΥΤΑ ΕΠΙΜΟΡΦΩΣΗΣ ΤΕΛΙΚΕΣ ΕΝΙΑΙΕΣ ΓΡΑΠΤΕΣ ΕΞΕΤΑΣΕΙΣ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ: 2014-2015 Μάθημα: Ιταλικά Επίπεδο: Ε1 Διάρκεια: 2 ώρες Υπογραφή

Dettagli

CARIBBEAN POKER. Come si gioca

CARIBBEAN POKER. Come si gioca CARIBBEAN POKER INDICE Caribbean Poker 2 Il tavolo da gioco 3 Le carte da gioco 4 Il Gioco 5 Jackpot Progressive 13 Pagamenti 14 Pagamenti con Jackpot 16 Combinazioni 18 Regole generali 24 CARIBBEAN POKER

Dettagli

47 Anno Domini Triathlon Festival

47 Anno Domini Triathlon Festival 47 Anno Domini Triathlon Festival Campionati Italiani Assoluti di Triathlon Sprint Staffetta a squadre Coppa Crono a Squadre Sabato 05 ottobre 2013 Domenica 06 ottobre 2013 Parco Le Bandie, Lovadina (TV)

Dettagli

SCUOLA PRIMARIA DI MONTE VIDON COMBATTE CLASSE V INS. VIRGILI MARIA LETIZIA

SCUOLA PRIMARIA DI MONTE VIDON COMBATTE CLASSE V INS. VIRGILI MARIA LETIZIA SCUOLA PRIMARIA DI MONTE VIDON COMBATTE CLASSE V INS. VIRGILI MARIA LETIZIA Regoli di Nepero Moltiplicazioni In tabella Moltiplicazione a gelosia Moltiplicazioni Con i numeri arabi Regoli di Genaille Moltiplicazione

Dettagli

Svolgimento del gioco. Un gioco di Matthias Cramer per 2-5 persone dai 10 anni

Svolgimento del gioco. Un gioco di Matthias Cramer per 2-5 persone dai 10 anni Un gioco di Matthias Cramer per 2-5 persone dai 10 anni Anno 1413 Il nuovo re d'inghilterra, Enrico V di Lancaster persegue gli ambiziosi progetti di unificare l'inghilterra e di conquistare la corona

Dettagli

LAVORO, ENERGIA E POTENZA

LAVORO, ENERGIA E POTENZA LAVORO, ENERGIA E POTENZA Nel linguaggio comune, la parola lavoro è applicata a qualsiasi forma di attività, fisica o mentale, che sia in grado di produrre un risultato. In fisica la parola lavoro ha un

Dettagli

tanhαl + i tan(ωl/v) 1 + i tanh αl tan(ωl/v). (10.1)

tanhαl + i tan(ωl/v) 1 + i tanh αl tan(ωl/v). (10.1) 10 - La voce umana Lo strumento a fiato senz altro più importante è la voce, ma è anche il più difficile da trattare in modo esauriente in queste brevi note, a causa della sua complessità. Vediamo innanzitutto

Dettagli

Uno contro uno in movimento attacco

Uno contro uno in movimento attacco Uno contro uno in movimento attacco Utilizzando gli stessi postulati di spazio/tempo, collaborazioni, equilibrio analizziamo l uno contro uno in movimento. Esso va visto sempre all interno del gioco cinque

Dettagli

1. Lo sport mens sana in corpore sano

1. Lo sport mens sana in corpore sano 1. Lo sport mens sana in corpore sano Mens sana in corpore sano è latino e vuol dire che lo sport non fa bene soltanto al corpo ma anche alla mente. E già ai tempi dei romani si apprezzavano le attività

Dettagli

CAPITOLO PRIMO IL CONCETTO DI ALGORITMO 1

CAPITOLO PRIMO IL CONCETTO DI ALGORITMO 1 1.1 Che cos è un algoritmo CAPITOLO PRIMO IL CONCETTO DI ALGORITMO 1 Gli algoritmi sono metodi per la soluzione di problemi. Possiamo caratterizzare un problema mediante i dati di cui si dispone all inizio

Dettagli

+ / operatori di confronto (espressioni logiche/predicati) / + 5 3 9 = > < Pseudo codice. Pseudo codice

+ / operatori di confronto (espressioni logiche/predicati) / + 5 3 9 = > < Pseudo codice. Pseudo codice Pseudo codice Pseudo codice Paolo Bison Fondamenti di Informatica A.A. 2006/07 Università di Padova linguaggio testuale mix di linguaggio naturale ed elementi linguistici con sintassi ben definita e semantica

Dettagli

Quante sono le matricole?

Quante sono le matricole? Matricole fuori corso laureati i numeri dell Universita Quante sono le matricole? Sono poco più di 307 mila i giovani che nell'anno accademico 2007/08 si sono iscritti per la prima volta all università,

Dettagli

Giovanna Mayer. Ordinamento dei numeri e retta numerica. Nucleo: Numeri

Giovanna Mayer. Ordinamento dei numeri e retta numerica. Nucleo: Numeri Giovanna Mayer Nucleo: Numeri Introduzione Tematica: Si propongono attività e giochi per sviluppare in modo più consapevole la capacità di confrontare frazioni, confrontare numeri decimali e successivamente

Dettagli

PROVA DI MATEMATICA - Scuola Primaria - Classe Seconda

PROVA DI MATEMATICA - Scuola Primaria - Classe Seconda PROVA DI MATEMATICA - Scuola Primaria - Classe Seconda Rilevazione degli apprendimenti Anno Scolastico 2011 2012 PROVA DI MATEMATICA Scuola Primaria Classe Seconda Spazio per l etichetta autoadesiva ISTRUZIONI

Dettagli

I.Stat Guida utente Versione 1.7 Dicembre 2010

I.Stat Guida utente Versione 1.7 Dicembre 2010 I.Stat Guida utente Versione 1.7 Dicembre 2010 1 Sommario INTRODUZIONE 3 I concetti principali di I.Stat 4 Organizzazione dei dati 4 Ricerca 5 GUIDA UTENTE 6 Per iniziare 6 Selezione della lingua 7 Individuazione

Dettagli

giuseppestablum.it LE PERCENTUALI

giuseppestablum.it LE PERCENTUALI LE PERCENTUALI 1 Nella scuola Villa 54 alunni su 180 hanno avuto "ottimo" come valutazione finale, mentre nella scuola Oggioni hanno avuto "ottimo" 65 alunni su 240. Quale scuola è stata "migliore"? 2

Dettagli

Le leggi di Mendel esposte in modo ragionato e critico di Luciano Porta

Le leggi di Mendel esposte in modo ragionato e critico di Luciano Porta Le leggi di Mendel esposte in modo ragionato e critico di Luciano Porta Le tre leggi di Mendel, che descrivono la trasmissione dei caratteri ereditari da una generazione all altra, segnano l inizio della

Dettagli

Hotel Parco dei Principi Lungomare Zara - Giulianova (TE) - Tel. 085 8008935 - Fax 085 8008773 www.giulianovaparcodeiprincipi.it -

Hotel Parco dei Principi Lungomare Zara - Giulianova (TE) - Tel. 085 8008935 - Fax 085 8008773 www.giulianovaparcodeiprincipi.it - Hotel Parco dei Principi Lungomare Zara - Giulianova (TE) - Tel. 085 8008935 - Fax 085 8008773 www.giulianovaparcodeiprincipi.it - info@giulianovaparcodeiprincipi.it La Vostra Vacanza Benvenuti La Famiglia

Dettagli

Destinatari: adulti/giovani adulti di diversa provenienza linguistica e culturale che imparano l italiano in contesto L2 o LS

Destinatari: adulti/giovani adulti di diversa provenienza linguistica e culturale che imparano l italiano in contesto L2 o LS MA IL CIELO È SEMPRE PIÙ BLU di Rino Gaetano Didattizzazione di Greta Mazzocato Univerisità Ca Foscari di Venezia Destinatari: adulti/giovani adulti di diversa provenienza linguistica e culturale che imparano

Dettagli

Una Grande Famiglia per il Volley

Una Grande Famiglia per il Volley Una Grande Famiglia per il Volley il Notiziario della Settimana n.30 di lunedì 18 Maggio 2015 SOMMARIO : : Campionato Nazionale: Terminato!! : Campionato Regionale: 30a giornata pag.2,3 : Campionato Provinciale:

Dettagli

1.Il Ristorante/La Trattoria

1.Il Ristorante/La Trattoria Agli italiani piace andare a mangiare in trattoria. Ma che cos è la trattoria? È un locale tipicamente italiano, che rispecchia il gusto e la mentalità degli italiani. Agli italiani piace mangiare bene,

Dettagli

Roma 2020: valori e opinioni I valori economici dei Giochi Olimpici e Paralimpici di Roma 2020

Roma 2020: valori e opinioni I valori economici dei Giochi Olimpici e Paralimpici di Roma 2020 Roma 2020: valori e opinioni I valori economici dei Giochi Olimpici e Paralimpici di Roma 2020 Roma 2020: valori e opinioni I valori economici dei Giochi Olimpici e Paralimpici di Roma 2020 La spesa complessiva

Dettagli

Progetto Baseball per tutti Crescere insieme in modo sano

Progetto Baseball per tutti Crescere insieme in modo sano Progetto Baseball per tutti Crescere insieme in modo sano Il baseball, uno sport. Il baseball, uno sport di squadra. Il baseball, uno sport che non ha età. Il baseball, molto di più di uno sport, un MODO

Dettagli

a) Nel disegno contrassegnato con il numero uno. RSB0002 a) 20. b) 18. c) 16. d) 22. c

a) Nel disegno contrassegnato con il numero uno. RSB0002 a) 20. b) 18. c) 16. d) 22. c RSB0001 In quale/i dei disegni proposti l area tratteggiata é maggiore dell area lasciata invece bianca? a) Nel disegno contrassegnato con il numero uno. b) In nessuno dei due. c) Nel disegno contrassegnato

Dettagli

SOGEAS - Manuale operatore

SOGEAS - Manuale operatore SOGEAS - Manuale operatore Accesso La home page del programma si trova all indirizzo: http://www.sogeas.net Per accedere, l operatore dovrà cliccare sulla voce Accedi in alto a destra ed apparirà la seguente

Dettagli