Esame scritto di Geometria 2

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Esame scritto di Geometria 2"

Transcript

1 Esame scritto di Geometria 2 Appello del 15 luglio 2016 Esercizio 1 Esercizio 1 Si consideri la funzione σ : R 2 R 3 definita da ) σ(u, v) = (u u3 3 + uv2, v v3 3 + vu2, u 2 v 2 1. Si dimostri che esiste ɛ 0 > 0 tale che la restrizione di σ all insieme {(u, v) u 2 + v 2 2ɛ 0 } è la parametrizzazione di una superficie S. 2. Si calcoli la prima forma fondamentale di S nella parametrizzazione data da σ. 3. Si calcoli la matrice rappresentante il differenziale della mappa di Gauss nel punto generico σ(u, v), rispetto al sistema {σ u, σ v }. 4. Sia α(t) = σ(ɛ 0 cos t, ɛ 0 sin t). Si determini la curvatura geodetica di α (in funzione di ɛ 0 ) nel punto α(0) Soluzione: 1. Per il teorema di raddrizzamento dell immagine è sufficiente controllare che rg dσ 0 = 2. Da un conto immediato e segue la tesi. 2. Si ha σ u (0) = (1, 0, 0) σ v (0) = (0, 1, 0) σ u (u, v) = (1 u 2 + v 2, 2uv, 2u) σ v (u, v) = (2uv, 1 v 2 + u 2, 2v) da cui calcolando i prodotti scalari otteniamo E = (1 + v 2 + u 2 ) 2 F = 0 G = (1 + v 2 + u 2 ) 2 1

2 3. La matrice rappresentativa A del differenziale della mappa di Gauss nel riferimento {σ u, σ v } è data da A = [I] 1 [II] dove [I] e [II] sono le matrici dei coefficienti della prima e della seconda forma fondamentale nel riferimento fissato. Osserviamo che dal punto precedente [I] = (1+u 2 +v 2 ) 2 Id. D altronde per calcolare II osserviamo che la normale è data da 1 N = (σ u σv) det[i] È immediato che det[i] = (1 + u 2 + v 2 ) 2. Del resto un conto esplicito mostra che e che σ u σ v = ( 2u(1 + v 2 + u 2 ), 2v(1 + u 2 + v 2 ), 1 (u 2 + v 2 )) da cui si deduce che σ uu = ( 2u, 2v, 2) σ uv = (2v, 2u, 0) σ vv = (2u, 2v, 2) (σ u σ v ) σ uu = 4u 2 (1 + v 2 + u 2 ) + 4v 2 (1 + u 2 + v 2 ) + 2 2(u 2 + v 2 ) 2 = 4(u 2 + v 2 ) + 4(u 2 + v 2 ) (u 2 + v 2 ) 2 = 2((u 2 + v 2 ) 2 + 2(u 2 + v 2 ) + 1) = 2(1 + u 2 + v 2 ) 2 Dato che σ vv = σ uu otteniamo che (σ u σ v ) σ vv = 2(1 + u 2 + v 2 ) 2 e infine un conto immediato mostra che Dunque (σ u σ v ) σ uv = 0. e = N σ uu = 2 f = N σ uv = 0 g = N σ vv = 2. Da cui deduciamo che 1 A = (1 + u 2 + v 2 ) 2 ( ). 2

3 4. Notiamo che α = ɛ sin tσ u (ɛ cos t, ɛ sin t) + ɛ cos tσ v (ɛ cos t, ɛ sin t). In particolare α ha velocità costante v = ɛ(1 + ɛ 2 ). Dunque la riparametrizzazione in parametro d arco è data da β(s) = α(s/v). Ora dato che β(0) = α(0), segue che la curvatura geodetica nel punto α(0) è data da κ = β(0) (N β(0)). Dato che β(0) = 1 v α(0) e β(0) = 1 v 2 α(0), abbiamo che κ = 1 ( α(0) (N α(0))) v3 Osserviamo che in 0 si ha α(0) = ɛσ v (ɛ, 0), dunque N α = ɛ(n σ v (ɛ, 0)). Ora i vettori N σ v e σ u sono entrambi ortogonali a N e a σ v e dunque giacciono sulla retta Span(N, σ v ). Del resto N σ v = σ v = (1+ɛ 2 ) = σ u, dunque tali vettori hanno la stessa norma. Poiché giacciono in un sottospazio di dimensione 1, segue che N σ v = ±σ u. Infine osserviamo che σ u, σ v, N è base positiva, mentre (N σ v ), σ v, N è base negativa. Concludiamo che N σ v = σ u In conclusione N α(0) = ɛσ u (ɛ, 0). Ora derivando l esressione di α(t) in t = 0 e sfruttando che sin t = 0 per t = 0 si deduce che α = ɛσ u (ɛ, 0) + ɛ 2 σ vv (ɛ, 0) Da cui deduciamo che in t = 0 (utilizzando le espressioni esplicite di σ u e σ vv già trovate) che α (N α) = ɛ 2 (1 + ɛ 2 ) ɛ 3 (2ɛ(1 ɛ 2 ) 4ɛ) = ɛ 2 (1 + ɛ 2 ) 2 + 2ɛ 4 (1 + ɛ 2 ). Segue che κ = 1 ɛ(1 + ɛ 2 ) + 2ɛ (1 + ɛ 2 ) 2 Soluzione alternativa punto 4. Osserviamo che i coefficienti della prima forma fondamentale dipendono solo da u 2 +v 2. Segue che le mappe f : S S che in coordinate sono rotazioni, sono isometrie per la prima forma fondamentale. Siccome tali isometrie preservano la curva α, si ottiene che la curvatura geodetica di α nel punto x è uguale alla curvatura geodetica di α nel punto f(x). Dato che data una coppia di punti su α esiste sempre una rotazione che porta il primo sul secondo deduciamo che la curvatura geodetica di α è una costante κ. 3

4 Per calcolarla possiamo allora notare che l integrale di κ lungo α è uguale a κl(α). Osserviamo che α 2 = I( ɛ sin tσ u +ɛ cos tσ v, ɛ sin tσ u +ɛ cos tσ v ) = (1 + ɛ 2 ) 2 ɛ 2. Dunque l(α) = 2πɛ(1 + ɛ 2 ). D altra parte, per la formula di Gauss-Bonnet, l intergale della curvatura geodetica lungo α è uguale 2π Kdα σ(d) dove K è la curvatura di Gauss, dα è la forma d area e D è il disco bordato da α. Per il Teorema Egregium, K = det A = 4 (1+u 2 +v 2 ) 4 del resto la forma d area è dα = det Idudv = (1 + u 2 + v 2 ) 2 4 dudv e dunque Kdα = dudv. (1+u 2 +v 2 ) 2 Segue che 4 Kdα = σ(d) D (1 + u 2 + v 2 ) dudv 2 Introducendo coordinate polari ρ, θ sul piano uv, l integrale sopra può essere riscritto come ɛ 2 4ρ Kdα = π (1 + ρ 2 ) dρdθ. 2 σ(d) Ponendo ξ = ρ 2 risulta σ(d) Dunque otteniamo che ovvero κ = 1 ɛ(1+ɛ 2 ) + ɛ 2 Kdα = 4π ξ dξ (1 + ξ) 2 = 4π 1 ɛ2 ɛ2 0 2πκɛ(1 + ɛ 2 ) = 2π + 4π 1 + ɛ 2 2ɛ. (1+ɛ) 2 = 4π ɛ2 1 + ɛ 2 Esercizio 2 Si consideri la semiretta sul piano Oxz parametrizzata in lunghezza d arco α(r) = ( r, 0, 35r), r > 0 e sia S il cono ottenuto ruotando il supporto di 6 6 α lungo l asse delle z. Identificando il piano Euclideo con il piano complesso C, si consideri la mappa F : C \ {0} S definita da z = ρe iθ (cos(6θ) ρ 35ρ 6, sin(6θ)ρ 6, ). 6 4

5 1. Dimostrare che F è ben definita e realizza un isometria locale non iniettiva tra C (con la distanza usuale) e S. 2. Determinare una regione del piano P tale che la restrizione di F a P realizzi un isometria tra P e S \ supp α. 3. Dimostrare che esistono esattamente 6 geodetiche distinte che congiungono il punto (1, 0, 35) al punto ( 1, 0, 35). 4. Mostrare che S non è isometrico a C \ {0}. Soluzioni: Osserviamo che poiché cos 6θ = cos 6(θ + 2π) e sin 6θ = sin 6(θ + 2π), la definizione di F non dipende dalla determinazione della fase θ e dunque F è una mappa ben definita (come mappa a valori in R 3 ). Inoltre F (ρe iθ ) si ottiene ruotando α(ρ) di angolo 6θ lungo l asse delle z. In simboli F (ρe iθ ) = R 6θ α(ρ), dove R 6θ è la matrice di rotazione intorno all asse delle z di angolo 6θ. Segue che F (ρe iθ ) S. Infine osserviamo che F (z) = F (z ) se e solo se z = z e 6 Arg(z) = 6 Arg(z ), (mod2π). La seconda condizione è equivalente a Arg(z) = Arg(z ), (modπ/3). Segue che F (z) = F (z ) se e solo se z = e ikπ/3 z per k = 0, 1,..., 5. In particolare F non è iniettiva. Per dimostrare che F è un isometria è sufficiente controllare che Ora noi sappiamo che Del resto si ha dove Ṙ = df ( ρ 2 = ρ 2 df ( θ ) 2 = θ 2 df ( ρ ) df ( ρ ) = ρ θ. Ora ρ 2 = 1 θ 2 = ρ 2 = 0 ρ θ df ( ) = R ρ 6θ α(ρ) df ( ) = 6R θ 6θṘα(ρ) ρ/6 0 Ṙ 0 = ρ/6. 35ρ/6 0 5

6 Da queste relazioni segue che e la tesi segue. df ( ρ 2 = 1 df ( θ 2 = ρ 2 df ( ρ ) df ( ρ ) = 0 Consideriamo la regione P = {z C \ {0} 0 < Arg(z) < π/3}. Osserviamo che la restrizione di F a P è iniettiva. Dunque F realizza un isometria tra S e la sua immagine. Ora da definizione si ha che l immagine di F è il sottoinsieme {R 6θ α(ρ) θ (0, π/3), ρ > 0} = {R φ (α(ρ) φ (0, 2π), ρ > 0}. Tale insieme è S \ supp α. Fissiamo un elemento z 0 nella preimmagine di (1, 0, 35) Le sei preimmagini del punto ( 1, 0, 35) sono allora w 0 = e iπ/6 z 0, w 1 = e iπ/3 w 0,..., w 5 = e i5π/3 w 0. Si noti che i segmenti α i (t) = (1 t)z 0 + tw i non passano mai per l origine e dunque si proiettano tramite F a curve ᾱ i che congiungono (1, 0, 35) a ( 1, 0, 35). Poiché F è un isometria tali segmenti sono geodetici. Per controllare che tali curve sono tutte distinte osserviamo che (ᾱ i ) (0) = df z0 (w i z 0 ) poichè df z0 è iniettivo, ricaviamo che (ᾱ i ) (0) (ᾱ j ) (0) per i j. Dimostriamo ora che non ci sono altri segmenti che congiungono (1, 0, 35) a ( 1, 0, 35). Sia β(t) una geodetica a velocità costante tale che β(0) = (1, 0, 35) e β(1) = ( 1, 0, 35). Sia v R 2 un vettore tale che df z0 (v) = β (0). Sia β(t) = z 0 + tv. Osserviamo che β è una geodetica a velocità costante, dunque poichè F è una locale isometria F β è una geodetica a velocità costante che parte da (1, 0, 35) con velocità df z0 (v) = β (0). Dunque F β(t) = β(t). Ciò implica che β(1) sia una controimmagine di ( 1, 0, 35), ovvero β è uno dei segmenti che congiungono z 0 a w i. Essendo β la proiezione di β su S, segue che coincide con uno degli ᾱ i. Esercizio 3 Si considerino i seguenti sottospazi di R 3 : B la palla aperta di raggio 1 centrata nell origine, L il segmento di estremi (0, 0, 1) e (0, 0, 1), S la sfera di bordo di B, X = (R 3 \B) L, e chiamiamo Y lo spazio topologico ottenuto da S identificando i due punti (0, 0, 1) e (0, 0, 1). 1. Descrivere una retrazione per deformazione di X su S L; 2. dimostrare che sia X è connesso per archi e calcolare il suo gruppo fondamentale; 6

7 3. dire se esiste un equivalenza omotopica tra S L e Y. Soluzioni: 1. Un modo per farlo è ad esempio il seguente: la retrazione ρ : X S L sia data da { x per x X\ Int(L) x ρ(x) = x per x L che è chiaramente continua a tratti e coincide sull intersezione dei due insiemi di definizione, che è L. La deformazione F : X I X possiamo allora definirla come F (x, t) = (1 t)i(ρ(x)) + tid X (x) dove i : S L X è l inclusione e Id X è l identità. 2. Dato il punto 1), è sufficiente dimostrare che S L è connesso per archi; ma ogni punto della sfera può essere unito al punto (0, 0, 1) da un arco di circonferenza massima, e ogni punto di L da un pezzo dello stesso segmento L. A questo punto è sufficiente calcolare il gruppo fondamentale π(s L) per rispondere alla domanda del testo. Un modo per farlo è usare il teorema di Van Kampen sui due aperti A = {p = (x, y, z) S L x < 1 10 } e B = {p = x, y, z S x > È facile vedere che il primo si retrae su un S 1, mentre il secondo è un disco. L intersezione è una striscia della sfera attorno a una circonferenza di raggio massimo, quindi si retrae a sua volta su un S 1. Se il gruppo fondamentale di A B è generato da α e quello di A da β, si ha che l immagine di β in π(a) è banale (infatti α è contenuto nel disco {p S x > 1 }) e π(b) = {e}, 10 quindi π(s L) = β e = e = Z. 3. Siano f : D I l applicazione (continua) tale che f(x) x ; p la proiezione ortogonale da R 3 sul piano di equazione z = 0, j : [ 1, 1] L l omeomorfismo che manda t in (0, 0, t), d l omotetia del piano di equazione z = 0 di ragione 2 e h : Z = S {z < 2/2} S la mappa che in 7

8 coordinate sferiche (ρ, φ, θ) raddoppia l angolo θ. Sia poi π : S Y la proiezione al quoziente e siano Z + e Z i due sottospazi di S \ Int(Z) costituiti rispettivamente dai punti con coordinata z maggiore (minore) di 0. Chiamiamo F : S L Y la mappa che contrae L a un punto, e G : Y S L la mappa definita come { G(q) = h(q) se x π(z); j(f(d(p(q)))) se x π(z + ); j( f(d(p(q)))) se x π(z ). F è chiaramente continua. G lo è perchè definita come composizione di funzioni continue su chiusi e coincidente sulle intersezioni. La composizione F G : Y Y contrae un intorno del punto [(0, 0, 1), (0, 0 1)] sul punto stesso in modo radiale, ed è perciò facile definire (contraendo in modo radiale intorni di grandezza variabile) un omotopia tra essa e l identità; la composizione G F : S L S L contrae L a un punto e i due intorni Z + e Z (rispettivamente di (0, 0, 1) e di (0, 0, 1)) su due metà di L, estendendo il resto di S fino a coprire S intera (privata dei due poli). Anche G F puo pezzo per pezzo essere realizzata gradualmente (componendola con funzioni lineari del tempo) definendo così un omotopia tra essa e l identità, avendo cura che sulle intersezioni dei domini di definizione essa risulti coincidente, e perciò continua, per ogni tempo. 8

Esame scritto di Geometria 2

Esame scritto di Geometria 2 Esame scritto di Geometria Appello del primo luglio 016 Esercizio 1 Si consideri la curva dipendente dal parametro h R: α h : R R 3, α h (s) = ( 1 cos s, sin s + hs, sin s hs). 4 4 1. Si determini il valore

Dettagli

Corso di Laurea in Matematica Geometria 2. Foglio di esercizi n. 5 a.a Soluzioni

Corso di Laurea in Matematica Geometria 2. Foglio di esercizi n. 5 a.a Soluzioni Corso di Laurea in Matematica Geometria 2 Foglio di esercizi n. 5 a.a. 2015-16 Soluzioni Gli esercizi sono presi dal libro di Manetti. Per svolgere questi esercizi, studiare con cura i paragrafi 10.1,

Dettagli

GEOMETRIA B Esercizi

GEOMETRIA B Esercizi GEOMETRIA B 2016-17 BARBARA NELLI A.A. 2016-17 Alcuni degli esercizi sono presi dal libro DC [1]. 1. Esercizi Esercizio 1.1. Sia α : I R 3 una curva parametrizzata e sia v R 3 un vettore fissato. Assumiamo

Dettagli

Corso di Laurea in Matematica Geometria 2. Foglio di esercizi n. 4 a.a Soluzioni

Corso di Laurea in Matematica Geometria 2. Foglio di esercizi n. 4 a.a Soluzioni Corso di Laurea in Matematica Geometria 2 Foglio di esercizi n. 4 a.a. 2015-16 Soluzioni Gli esercizi sono presi dal libro di Manetti. Per svolgere questi esercizi, studiare con cura i paragrafi 5.2, 5.3

Dettagli

Geometria 3 A.A Esercizi

Geometria 3 A.A Esercizi Geometria 3 A.A. 2014 2015 Esercizi Equivalenza omo- Omotopia di applicazioni contiue. topica. Si dimostri che lo spazio X = {x R 2 : x 1} è connesso. Si dimostri che lo spazio topologico è connesso. X

Dettagli

4 Funzioni continue. Geometria I 27. Cfr: Sernesi vol II, cap I, 4 [1].

4 Funzioni continue. Geometria I 27. Cfr: Sernesi vol II, cap I, 4 [1]. Geometria I 27 4 Funzioni continue Cfr: Sernesi vol II, cap I, 4 [1]. Le funzioni continue tra spazi topologici si dicono anche mappe. Si può dimostrare, esattamente come in (2.10) e in (1.10), che vale

Dettagli

Geometria 3 A.A Esercizi

Geometria 3 A.A Esercizi Geometria 3 A.A. 2012 2013 Esercizi Omotopia di applicazioni contiue. Si dimostri che lo spazio X = {x R 2 : x 1} è connesso. Siano x, y punti di uno spazio topologico X. Si dimostri che le applicazioni

Dettagli

Gennaio 17. January 24, 2017

Gennaio 17. January 24, 2017 Gennaio 7 January 24, 207 Prova scritta di Geometria Differenziale 7.0.207 Ingegneria Meccanica, a.a. 206-207 Cognome...................................... Nome...................................... L

Dettagli

Geometria 3 A.A Esercizi. Irriducibilità di polinomi di più variabili. Discriminante.

Geometria 3 A.A Esercizi. Irriducibilità di polinomi di più variabili. Discriminante. Geometria 3 A.A. 2015 2016 Esercizi Irriducibilità di polinomi di più variabili. Discriminante. Risultante. Si dimostri che il polinomio di Fermat f(x 1,..., x n ) = x d 1 + + x d n è irriducibile in C[x

Dettagli

Esercizi tratti da temi d esame

Esercizi tratti da temi d esame Gianluca Occhetta Esercizi tratti da temi d esame Geometria IV e V unità didattica 00 11 0 1 0 1111111111 Università di Trento Dipartimento di Matematica Via Sommarive 14 38050 - ovo (TN) 1 Topologia

Dettagli

Prova scritta di Geometria differenziale - 27/2/2012

Prova scritta di Geometria differenziale - 27/2/2012 Prova scritta di Geometria differenziale - 27/2/2012 Tempo disponibile: 3 ore Non sono ammesse calcolatrici, appunti o libri di testo. Una copia degli appunti è disponibile per libera consultazione alla

Dettagli

Esercizi per il corso di Geometria IV

Esercizi per il corso di Geometria IV Esercizi per il corso di Geometria IV 6 giugno 2014 Esercizio 1. Sia E := R 4 \ {0} e si consideri l azione del gruppo (Z, +) su E definita nel modo seguente: m x := 2 m x. 1. Verificare che si tratta

Dettagli

Analisi Matematica II Corso di Ingegneria Gestionale Compito del (x y) log

Analisi Matematica II Corso di Ingegneria Gestionale Compito del (x y) log Analisi Matematica II Corso di Ingegneria Gestionale Compito del -6-4 Esercizio. punti Data la funzione { x y log +, fx, y = x +y 4 x, y,, x, y =, i dire in quali punti del dominio è continua; ii dire

Dettagli

Geometria 3 A.A Esercizi. Irriducibilità di polinomi di più variabili. Discriminante.

Geometria 3 A.A Esercizi. Irriducibilità di polinomi di più variabili. Discriminante. Geometria 3 A.A. 2016 2017 Esercizi Irriducibilità di polinomi di più variabili. Discriminante. Risultante. Si dimostri che il polinomio f(x, y) = x 2 y +x 5 +1 è irriducibile in C[x, y]. Sia K un campo.

Dettagli

Esercizi I : curve piane

Esercizi I : curve piane Esercizi I : curve piane. Esercizio Si consideri la curva parametrizzata sin t, t [, 2π]. cos(2t) a) Stabilire per quali valori di t la parametrizzazione è regolare. b) Sia Γ la traccia di α. Descrivere

Dettagli

Geometria 3 A.A Esercizi. Irriducibilità di polinomi di più variabili. Discriminante.

Geometria 3 A.A Esercizi. Irriducibilità di polinomi di più variabili. Discriminante. Geometria 3 A.A. 2017 2018 Esercizi Irriducibilità di polinomi di più variabili. Discriminante. Risultante. Sia K un campo. Si dimostri che un polinomio f(x) K[x] di grado d, dove 2 d 3, è riducibile se

Dettagli

Geometria e Topologia I - 15 lug 2008 (14:30 - U1-02) 1/10. Cognome:... Nome:... Matricola:...

Geometria e Topologia I - 15 lug 2008 (14:30 - U1-02) 1/10. Cognome:... Nome:... Matricola:... Geometria e Topologia I - 5 lug 2008 (4:0 - U-02) /0 Cognome:................ Nome:................ Matricola:................ (Dare una dimostrazione esauriente di tutte le risposte.) () Si determinino

Dettagli

LEZIONE 37. x 2 a 2 + y2. b 2 = 2z, x 2. a 2 y2. b 2 = 2z. Esempio Sia S il cilindro luogo dei punti P = (x, y, z) soddisfacenti l equazione

LEZIONE 37. x 2 a 2 + y2. b 2 = 2z, x 2. a 2 y2. b 2 = 2z. Esempio Sia S il cilindro luogo dei punti P = (x, y, z) soddisfacenti l equazione LEZIONE 37 37.1. Altri esempi di superfici. In questo paragrafo daremo altri esempi di superfici. Esempio 37.1.1. Sia D R 2 un aperto. Allora il grafico Γ ϕ di una funzione ϕ: D R 3 di classe C 1 è una

Dettagli

Esercizi 5 soluzioni

Esercizi 5 soluzioni Esercizi 5 soluzioni Alessandro Savo, Geometria Differenziale 27-8 Esercizi su geodetiche e curve su superfici. Esercizio Determinare l area della regione del paraboloide z = x 2 + y 2 compresa tra i piani

Dettagli

Analisi 2 Fisica e Astronomia

Analisi 2 Fisica e Astronomia Analisi Fisica e Astronomia Appello scritto del 8 Luglio 0. Soluzione Esercizio 7 pti Sia α > 0 un parametro e consideriamo la curva piana γ : [0, ] R γt = t cos, t sin, se t 0, ], e γ0 = 0, 0. t α t α

Dettagli

Geometria 2. Università degli Studi di Trento Corso di Laurea in Matematica A.A. 2011/ settembre 2012

Geometria 2. Università degli Studi di Trento Corso di Laurea in Matematica A.A. 2011/ settembre 2012 Geometria 2 Università degli Studi di Trento Corso di Laurea in Matematica A.A. 2011/2012 06 settembre 2012 Si svolgano i seguenti esercizi. Esercizio 1. Sia P 3 R il 3-spazio proiettivo reale dotato del

Dettagli

LEZIONE 36. si dice regolare se è. per ogni (u 0, v 0 ) D. Una superficie S R 3 is dice regolare se esiste una sua parametrizzazione regolare.

LEZIONE 36. si dice regolare se è. per ogni (u 0, v 0 ) D. Una superficie S R 3 is dice regolare se esiste una sua parametrizzazione regolare. LEZIONE 36 36.1. La definizione di superficie. In questo paragrafo iniziamo a dare alcuni esempi di superfici ed a definire alcuni oggetti ad esse naturalmente associati. Come già fatto per le curve, considereremo

Dettagli

Soluzione della Prova Scritta di Analisi Matematica III - 28/02/02. C.L. in Matematica e Matematica per le Applicazioni. Prof. Kevin R.

Soluzione della Prova Scritta di Analisi Matematica III - 28/02/02. C.L. in Matematica e Matematica per le Applicazioni. Prof. Kevin R. Soluzione della Prova Scritta di Analisi Matematica III - 28/2/2 C.L. in Matematica e Matematica per le Applicazioni Prof. Kevin R. Payne Esercizio 1. 1a. Teorema: (di ini) Sia Φ : A R n R R dove A è aperto.

Dettagli

Geometria Differenziale 2017/18 Esercizi I

Geometria Differenziale 2017/18 Esercizi I Geometria Differenziale 17/18 Esercizi I 1 Esercizi sulle curve piane 1.1 Esercizio Si consideri la curva parametrizzata sin t, t [, π]. cos(t) a) Stabilire per quali valori di t la parametrizzazione è

Dettagli

Esercizi su curve e integrali di linea. 1. Si forniscano almeno due parametrizzazioni per la semicirconferenza

Esercizi su curve e integrali di linea. 1. Si forniscano almeno due parametrizzazioni per la semicirconferenza Esercizi su curve e integrali di linea 1. Si forniscano almeno due parametrizzazioni per la semicirconferenza : {(x, y) R, x + y 4, y } Soluzione: possibili parametrizzazioni per la curva sono: α 1 (t)

Dettagli

Il Theorema Egregium di Gauss

Il Theorema Egregium di Gauss Università degli studi di Torino Corso di Studi in Matematica Geometria 3 Il Theorema Egregium di Gauss In queste note diamo una dimostrazione del Theorema Egregium di Gauss, che afferma che la curvatura

Dettagli

1 Distanza di un punto da una retta (nel piano)

1 Distanza di un punto da una retta (nel piano) Esercizi 26/10/2007 1 Distanza di un punto da una retta (nel piano) Sia r = {ax + by + c = 0} una retta. Sia P = (p 1, p 2 ) R 2 un punto che non sta sulla retta r. Vogliamo vedere se si può parlare di

Dettagli

Geometria Differenziale 2017/18 Esercizi 3

Geometria Differenziale 2017/18 Esercizi 3 Geometria Differenziale 217/18 Esercizi 3 1 Superfici I 1.1 Esercizio a) Verificare che l ellissoide Σ : x2 a 2 + y2 b 2 + z2 c 2 = 1 è una superficie regolare in tutti i suoi punti. b) Dare una parametrizzazione

Dettagli

Prima prova parziale di Geometria 3

Prima prova parziale di Geometria 3 Prima prova parziale di Geometria 3 17 Aprile 2019 Svolgere i seguenti esercizi argomentando ogni risposta. numero di matricola sui fogli consegnati. Indicare nome e Esercizio 1. Siano p 0,..., p 5 i punti

Dettagli

Geometria iperbolica - Primo foglio Andrea Petracci

Geometria iperbolica - Primo foglio Andrea Petracci Geometria iperbolica - Primo foglio Andrea Petracci Esercizio 1. Teorema (Hopf-Rinow). Se M è una varietà riemanniana connessa, allora le seguenti affermazioni sono equivalenti: (1) M è completa con la

Dettagli

Esame scritto di Geometria 2

Esame scritto di Geometria 2 Esame scritto di Geometria Università degli Studi di Trento Corso di laurea in Matematica A.A. 013/014 Settembre 014 Esercizio 1 Sia P 3 lo spazio proiettivo reale tridimensionale dotato del riferimento

Dettagli

Analisi Matematica III (Fisica) 07 Gennaio 2016

Analisi Matematica III (Fisica) 07 Gennaio 2016 Analisi Matematica III (Fisica 7 Gennaio 16 1. (1 punti Calcolare l area della sezione del cilindro x + y 4 determinata dal piano di equazione z x + y. (Possibilmente in due modi differenti Ci sono vari

Dettagli

Geometria Differenziale

Geometria Differenziale Geometria Differenziale Prova scritta di Geometria Differenziale 18.03.2016 Ingegneria Meccanica, a.a. 2015-2016 Cognome...................................... Nome......................................

Dettagli

Funzioni di n variabili a valori vettoriali

Funzioni di n variabili a valori vettoriali Funzioni di n variabili a valori vettoriali Ultimo aggiornamento: 22 maggio 2018 1 Differenziale per funzioni da R n in R k Una funzione F : A R n R k può essere vista come una k-upla di funzioni scalari

Dettagli

Corso di Laurea in Matematica Geometria 2. Foglio di esercizi n. 2 a.a Soluzioni

Corso di Laurea in Matematica Geometria 2. Foglio di esercizi n. 2 a.a Soluzioni Corso di Laurea in Matematica Geometria 2 Foglio di esercizi n. 2 a.a. 2015-16 Soluzioni Gli esercizi sono presi dal libro di Manetti. Per svolgere questi esercizi, studiare con cura i paragrafi 3.5, 3.6,

Dettagli

Vi prego di segnalare ogni inesattezza o errore tipografico a Spazi metrici, spazi topologici, applicazioni continue ed omeomorfismi

Vi prego di segnalare ogni inesattezza o errore tipografico a Spazi metrici, spazi topologici, applicazioni continue ed omeomorfismi ESERCIZI DI GEOMETRIA 3 Vi prego di segnalare ogni inesattezza o errore tipografico a mll@unife.it Spazi metrici, spazi topologici, applicazioni continue ed omeomorfismi Esercizio 1. Sia (X, d) uno spazio

Dettagli

Geometria e Topologia I 22 Giugno 2005 (U1-10, 9:00 11:00) [PROVA PARZIALE]1/8

Geometria e Topologia I 22 Giugno 2005 (U1-10, 9:00 11:00) [PROVA PARZIALE]1/8 Geometria e Topologia I 22 Giugno 2005 (U-0, 9:00 :00) [PROVA PARZIALE]/8 Correzione 0 () In A 3 (R) siano dati i tre punti A =, B = 0, C =. 0 (a) A B e C sono allineati? Dipendenti? (b) Dimostrare che

Dettagli

Esercizi 2: Curve dello spazio Soluzioni

Esercizi 2: Curve dello spazio Soluzioni Esercizi 2: Curve dello spazio Soluzioni. Esercizio Si consideri la curva (elica circolare): a α(t) = a sin t, t R, bt dove a >. a) Calcolare curvatura e torsione di α nel generico punto t. b) Determinare

Dettagli

Politecnico di Milano Ingegneria Industriale e dell Informazione Analisi e Geometria 2 Primo Appello 13 Luglio 2017

Politecnico di Milano Ingegneria Industriale e dell Informazione Analisi e Geometria 2 Primo Appello 13 Luglio 2017 Politecnico di Milano Ingegneria Industriale e dell Informazione Analisi e Geometria Primo Appello 13 Luglio 017 Cognome: Nome: Matricola: Es.1: 11 punti Es.: 6 punti Es.3: 7 punti Es.: 8 punti Totale

Dettagli

Osservazioni generali

Osservazioni generali Osservazioni generali Innanzitutto Non si può dividere per. Per i numeri complessi Quando si risolve z 3 = az con a dato, ricordarsi di stare attento per che cosa si divide. Infatti non si può dividere

Dettagli

Vi prego di segnalare ogni inesattezza o errore tipografico a

Vi prego di segnalare ogni inesattezza o errore tipografico a ESERCIZI DI GEOMETRIA 4 Vi prego di segnalare ogni inesattezza o errore tipografico a mll@unife.it Geometria proiettiva Esercizio 1. Dire quali tra le seguenti coordinate omogenee dei punti in P 2 rappresentano

Dettagli

Risoluzione del compito n. 5 (Luglio 2018/2)

Risoluzione del compito n. 5 (Luglio 2018/2) Risoluzione del compito n. 5 (Luglio 2018/2) PROBLEMA 1 Considerate il luogo di zeri S = {(x, y, z) R 3 : z 4+ x 2 + y 2 =0, 2x y + z =0}. a) Giustificando la risposta, dite se S è una curva liscia. b)

Dettagli

Corso di Metodi Matematici per l Ingegneria A.A. 2016/2017 Esercizi svolti sulle funzioni di variabile complessa (1)

Corso di Metodi Matematici per l Ingegneria A.A. 2016/2017 Esercizi svolti sulle funzioni di variabile complessa (1) Corso di Metodi Matematici per l Ingegneria A.A. 2016/2017 Esercizi svolti sulle funzioni di variabile complessa 1) Marco Bramanti Politecnico di Milano November 7, 2016 1 Funzioni olomorfe e campi di

Dettagli

Geometria Differenziale: soluzioni test

Geometria Differenziale: soluzioni test Geometria Differenziale: soluzioni test Esercizio. Sia α : I R 3 una curva biregolare dello spazio, parametrizzata dall ascissa curvilinea. a) Definire curvatura, torsione e riferimento di Frenet di α.

Dettagli

Foglio di esercizi di Istituzioni di Geometria

Foglio di esercizi di Istituzioni di Geometria Foglio di esercizi di Istituzioni di Geometria 11 ottobre 2017 Esercizio 1 Sia M varietà differenziabile, p M e si consideri un funzionale lineare D : C (M) R tale che D(fg) = f(p)d(g) + g(p)d(f). 1. Si

Dettagli

Esercizi di riepilogo sulle curve. 1. Si fornisca una parametrizzazione per le seguenti curve:

Esercizi di riepilogo sulle curve. 1. Si fornisca una parametrizzazione per le seguenti curve: Esercizi di riepilogo sulle curve. Si fornisca una parametrizzazione per le seguenti curve: (a) l ellisse = {(x, y) R x + y = } α(t) = (3 cost, sin t), t [, π]. (b) = {(x, y) R x + y =, x } α(t) = (3 cost,

Dettagli

Scuola Normale Superiore Ammissione al IV anno del corso ordinario Prova scritta di Algebra e Geometria per matematici

Scuola Normale Superiore Ammissione al IV anno del corso ordinario Prova scritta di Algebra e Geometria per matematici Scuola Normale Superiore Ammissione al IV anno del corso ordinario Prova scritta di Algebra e Geometria per matematici 27 agosto 2010 Esercizio 1. Siano n e d due interi positivi, e sia φ(x) C[x] un polinomio

Dettagli

Analisi Matematica II 14 Giugno 2019

Analisi Matematica II 14 Giugno 2019 Analisi Matematica II 14 Giugno 2019 Cognome: Nome: Matricola: 1. (10 punti) Si determinino i sottoinsiemi del piano in cui valgano, rispettivamente, continuità, derivabilità e differenziabilità della

Dettagli

sen n x( tan xn n n=1

sen n x( tan xn n n=1 8 Gennaio 2016 Nome (in stampatello): 1) (8 punti) Discutere la convergenza della serie di funzioni al variare di x in [ 1, 1]. n x( tan xn n ) xn sen n 2) (7 punti) Provare che la forma differenziale

Dettagli

Geometria BATR-BCVR Esercizi 9

Geometria BATR-BCVR Esercizi 9 Geometria BATR-BCVR 2015-16 Esercizi 9 Esercizio 1. Per ognuna delle matrici A i si trovi una matrice ortogonale M i tale che Mi ta im sia diagonale. ( ) 1 1 2 3 2 A 1 = A 2 1 2 = 1 1 0 2 0 1 Esercizio

Dettagli

Esercizi di Geometria e Algebra per Ingegneria Aerospaziale (nuovo ordinamento)

Esercizi di Geometria e Algebra per Ingegneria Aerospaziale (nuovo ordinamento) Esercizi di Geometria e Algebra per Ingegneria Aerospaziale (nuovo ordinamento) Relazioni 1) Quali delle seguenti relazioni sono di equivalenza? x, y R {0} xry x/y Q x, y Z xry x + y è divisibile per 17

Dettagli

Esercizi di Complementi di Matematica (L-Z) a.a. 2015/2016

Esercizi di Complementi di Matematica (L-Z) a.a. 2015/2016 Esercizi di Complementi di Matematica (L-Z) a.a. 2015/2016 Prodotti scalari e forme bilineari simmetriche (1) Sia F : R 2 R 2 R un applicazione definita da F (x, y) = x 1 y 1 + 3x 1 y 2 5x 2 y 1 + 2x 2

Dettagli

Capitolo III: Gruppo fondamentale Giulio Del Corso

Capitolo III: Gruppo fondamentale Giulio Del Corso Capitolo III: Gruppo fondamentale Giulio Del Corso Giulio Del Corso CIII 1 Questo volume contiene i teoremi e le proposizioni più utilizzate negli esercizi. Non riporto quindi né dimostrazioni né definizioni

Dettagli

Prova scritta di Geometria differenziale - 27/9/2012

Prova scritta di Geometria differenziale - 27/9/2012 Prova scritta di Geometria differenziale - 27/9/2012 Tempo disponibile: 3 ore Non sono ammesse calcolatrici, appunti o libri di testo. Una copia degli appunti è disponibile per libera consultazione alla

Dettagli

I numeri complessi. Richiami di teoria. AMA Ing.Edile - Prof. Colombo 1. Esercitazioni: Francesco Di Plinio -

I numeri complessi. Richiami di teoria. AMA Ing.Edile - Prof. Colombo 1. Esercitazioni: Francesco Di Plinio - AMA Ing.Edile - Prof. Colombo 1 Esercitazioni: Francesco Di Plinio - francesco.diplinio@libero.it I numeri complessi. Richiami di teoria. 1.1 Numeri complessi. Un numero complesso è un espressione della

Dettagli

Esercizi per il corso di Geometria 2

Esercizi per il corso di Geometria 2 Esercizi per il corso di Geometria 2 Davide Astesiano 2 giugno 209 Martedì 4/05/209 Exercise -: Si prenda una curva piana e si dimostri che la definizione di curvatura nella forma k(s) = σ, è equivalente

Dettagli

Analisi II, a.a Soluzioni 3

Analisi II, a.a Soluzioni 3 Analisi II, a.a. 2017-2018 Soluzioni 3 1) Consideriamo la funzione F : R 2 R 2 definita come F (x, y) = (x 2 + y 2, x 2 y 2 ). (i) Calcolare la matrice Jacobiana DF e determinare in quali punti F è localmente

Dettagli

Cognome Nome Matricola Codice ESEMPIO 1

Cognome Nome Matricola Codice ESEMPIO 1 Cognome Nome Matricola Codice ESEMPIO 1 [1]. (***) Definizione di forma differenziale chiusa. Sia A R N ; sia A aperto; sia ω = N i=1 ω i dx i una forma differenziale su A; sia ω di classe C 1 ; si dice

Dettagli

Cognome:... Nome:... Matricola:

Cognome:... Nome:... Matricola: Cognome:... Nome:... Matricola: Università di Milano - Bicocca Corso di laurea di primo livello in Scienze statistiche ed economiche Corso di laurea di primo livello in Statistica e gestione delle informazioni

Dettagli

12 gennaio Commenti esame di geometria - Ing. gestionale - a.a

12 gennaio Commenti esame di geometria - Ing. gestionale - a.a Questo documento riporta commenti, approfondimenti o metodi di soluzione alternativi per alcuni esercizi dell esame Ovviamente alcuni esercizi potevano essere risolti utilizzando metodi ancora diversi

Dettagli

13 febbraio Soluzione esame di geometria - Ing. gestionale - a.a COGNOME... NOME... N. MATRICOLA... ISTRUZIONI

13 febbraio Soluzione esame di geometria - Ing. gestionale - a.a COGNOME... NOME... N. MATRICOLA... ISTRUZIONI febbraio 0 - Soluzione esame di geometria - Ing. gestionale - a.a. 0-0 COGNOME.......................... NOME.......................... N. MATRICOLA............. La prova dura ore. ISTRUZIONI Ti sono stati

Dettagli

Analisi Matematica 3 (Fisica), , M. Peloso e L. Vesely Prova scritta del 14 luglio 2009 Breve svolgimento (con alcuni conti omessi)

Analisi Matematica 3 (Fisica), , M. Peloso e L. Vesely Prova scritta del 14 luglio 2009 Breve svolgimento (con alcuni conti omessi) Analisi Matematica 3 Fisica, 8-9, M. Peloso e L. Vesely Prova scritta del 4 luglio 9 Breve svolgimento con alcuni conti omessi. a Dimostrare che l insieme G = { x, y R : x + x + log y = ye x} coincide

Dettagli

I teoremi della funzione inversa e della funzione implicita

I teoremi della funzione inversa e della funzione implicita I teoremi della funzione inversa e della funzione implicita Appunti per il corso di Analisi Matematica 4 G. Mauceri Indice 1 Il teorema della funzione inversa 1 Il teorema della funzione implicita 3 1

Dettagli

Corso di Geometria, a.a Ing. Informatica e Automatica Esercizi VI: soluzioni

Corso di Geometria, a.a Ing. Informatica e Automatica Esercizi VI: soluzioni Corso di Geometria, a.a. 2009-2010 Ing. Informatica e Automatica Esercizi VI: soluzioni 5 novembre 2009 1 Geometria del piano e prodotto scalare Richiami. Il prodotto scalare di due vettori del piano v,

Dettagli

Politecnico di Milano Ingegneria Industriale Analisi e Geometria 1 Primo Appello 13 Febbraio 2018

Politecnico di Milano Ingegneria Industriale Analisi e Geometria 1 Primo Appello 13 Febbraio 2018 Politecnico di Milano Ingegneria Industriale Analisi e Geometria 1 Primo Appello 1 Febbraio 18 Cognome: Nome: Matricola: T.1: 4 punti T.: 4 punti Es.1: 4 punti Es.: 8 punti Es.: 5 punti Es.4: 7 punti Totale

Dettagli

GE220 Esercizi in preparazione dell esonero di Aprile Corretti i testi degli esercizi 2,5,7. Esercizio 1. Considerare le seguenti famiglie di insiemi:

GE220 Esercizi in preparazione dell esonero di Aprile Corretti i testi degli esercizi 2,5,7. Esercizio 1. Considerare le seguenti famiglie di insiemi: GE220 Esercizi in preparazione dell esonero di Aprile Corretti i testi degli esercizi 2,5,7. Esercizio 1. Considerare le seguenti famiglie di insiemi: F = {(a, b] : a, b Z} G = {(, a) : a Q} 1. F definisce

Dettagli

Analisi a più variabili: Integrazione sulle curve e superfici, forme differenziali

Analisi a più variabili: Integrazione sulle curve e superfici, forme differenziali Analisi a più variabili: Integrazione sulle curve e superfici, forme differenziali 1 Definizione (Parametrizzazione di T): T R n, una sua parametrizzazione è una coppia φ, con = a, b intervallo di R e

Dettagli

Esercizi per Geometria II Geometria affine e euclidea

Esercizi per Geometria II Geometria affine e euclidea Esercizi per Geometria II Geometria affine e euclidea Filippo F. Favale 4 marzo 04 Esercizio Si dica, per ciascuno dei seguenti casi, se A ha la struttura di spazio affine o euclideo su V. A R 3 con coordinate

Dettagli

Esercitazioni di Geometria A: spazi euclidei

Esercitazioni di Geometria A: spazi euclidei Esercitazioni di Geometria A: spazi euclidei 9-10 marzo 2016 Esercizio 1 Sia V uno spazio vettoriale sul campo K = R e si consideri una base B = {e 1, e 2, e 3 }. Si consideri la matrice a coefficienti

Dettagli

Geometria I- Diario delle lezioni L. Stoppino, Università dell Insubria, a.a. 2015/2016

Geometria I- Diario delle lezioni L. Stoppino, Università dell Insubria, a.a. 2015/2016 Geometria I- Diario delle lezioni L. Stoppino, Università dell Insubria, a.a. 2015/2016 Martedì 29 settembre (2 ore). Introduzione del corso. Definizione di spazio topologico. Primi esempi: 1) topologia

Dettagli

I numeri complessi. Andrea Corli 31 agosto Motivazione 1. 2 Definizioni 1. 3 Forma trigonometrica di un numero complesso 3

I numeri complessi. Andrea Corli 31 agosto Motivazione 1. 2 Definizioni 1. 3 Forma trigonometrica di un numero complesso 3 I numeri complessi Andrea Corli 3 agosto 009 Indice Motivazione Definizioni 3 Forma trigonometrica di un numero complesso 3 4 Radici di un numero complesso 4 5 Equazioni di secondo grado e il teorema fondamentale

Dettagli

Analisi Matematica II (Fisica e Astronomia) Esercizi di ricapitolazione n. 2

Analisi Matematica II (Fisica e Astronomia) Esercizi di ricapitolazione n. 2 Analisi Matematica II (Fisica e Astronomia) Esercizi di ricapitolazione n. Università di Padova - Lauree in Fisica ed Astronomia - A.A. 8/9 mercoledì giugno 9 Questi esercizi, riassuntivi della seconda

Dettagli

IL GRUPPO SO(3) , b a a R 2φ g R 1. a 2 + b 2 e i2φ N. Valendo a 2 + b 2 = 1, abbiamo dunque tr(r 2φ g R 1. Se diagonalizziamo R 2φ g R 1.

IL GRUPPO SO(3) , b a a R 2φ g R 1. a 2 + b 2 e i2φ N. Valendo a 2 + b 2 = 1, abbiamo dunque tr(r 2φ g R 1. Se diagonalizziamo R 2φ g R 1. IL GRUPPO SO3). Semplicità di SO3) Usando l omomorfismo suriettivo ρ : SU2) SO3) che abbiamo già descritto, possiamo dimostrare che SO3) è un gruppo semplice. In effetti, per far questo ci basta mostrare

Dettagli

Geometria analitica: rette e piani

Geometria analitica: rette e piani Geometria analitica: rette e piani parametriche Allineamento nel piano nello spazio Angoli tra rette e distanza 2 2006 Politecnico di Torino 1 Esempio 2 Sia A = (1, 2). Per l interpretazione geometrica

Dettagli

1. Cambiamenti di coordinate affini Esempio 1.1. Si debba calcolare l integrale doppio. (x + y) dx dy =

1. Cambiamenti di coordinate affini Esempio 1.1. Si debba calcolare l integrale doppio. (x + y) dx dy = . Cambiamenti di coordinate affini Esempio.. Si debba calcolare l integrale doppio (x + y) dx dy essendo il parallelogramma di vertici (, ), (, ), (3, 3), (, 3) nel quale é possibile riconoscere, vedi

Dettagli

SPAZI EUCLIDEI, APPLICAZIONI SIMMETRICHE, FORME QUADRATICHE

SPAZI EUCLIDEI, APPLICAZIONI SIMMETRICHE, FORME QUADRATICHE SPAZI EUCLIDEI, APPLICAZIONI SIMMETRICHE, FORME QUADRATICHE. Esercizi Esercizio. In R calcolare il modulo dei vettori,, ),,, ) ed il loro angolo. Esercizio. Calcolare una base ortonormale del sottospazio

Dettagli

Soluzioni della prova scritta di Geometria 1 del 27 giugno 2019 (versione I)

Soluzioni della prova scritta di Geometria 1 del 27 giugno 2019 (versione I) Soluzioni della prova scritta di Geometria 1 del 7 giugno 019 (versione I) Esercizio 1. Sia R 4 lo spazio quadridimensionale standard munito del prodotto scalare standard con coordinate canoniche (x 1,

Dettagli

DEFINIZIONE. u (u; v); α 3. v (u; v); α 3. ha rango 2 in ogni punto della parametrizzazione. DEFINIZIONE

DEFINIZIONE. u (u; v); α 3. v (u; v); α 3. ha rango 2 in ogni punto della parametrizzazione. DEFINIZIONE DEFINIZIONE Una superficie in R 3 è un applicazione α : U R 3, di classe almeno C. In realtà, tratteremo solamente superfici di classe C. Inoltre, U R deve essere un aperto, e α deve essere iniettiva.

Dettagli

Cognome: Nome: Matricola: Prima parte Scrivere le risposte ai due seguenti quesiti A e B su questa facciata e sul retro di questo foglio.

Cognome: Nome: Matricola: Prima parte Scrivere le risposte ai due seguenti quesiti A e B su questa facciata e sul retro di questo foglio. Analisi e Geometria Terzo appello 4 settembre 207 Compito F Docente: Numero di iscrizione all appello: Cognome: Nome: Matricola: Prima parte Scrivere le risposte ai due seguenti quesiti A e B su questa

Dettagli

Analisi Matematica 2. Superfici e integrali superficiali. Superfici e integrali superficiali 1 / 27

Analisi Matematica 2. Superfici e integrali superficiali. Superfici e integrali superficiali 1 / 27 Analisi Matematica 2 Superfici e integrali superficiali Superfici e integrali superficiali 1 / 27 Superficie Sia D un dominio connesso di R 2 (per def. un dominio connesso é la chiusura di un aperto connesso).

Dettagli

Analisi Matematica II Politecnico di Milano Ingegneria Industriale

Analisi Matematica II Politecnico di Milano Ingegneria Industriale Analisi Matematica II Politecnico di Milano Ingegneria Industriale Autovalutazione #5. Sia f : R R la funzione definita da f(x, y) x + x + y + x + y (x, y) R. (a) Determinare il segno di f. (b) Calcolare

Dettagli

Ω : 0 z x 2 y 2 + 5, x 2 + y 2 1. Soluzione: Tenuto conto che. 1 + f 2 x + f 2 y dx dy. riesce, servendosi delle coordinate polari,

Ω : 0 z x 2 y 2 + 5, x 2 + y 2 1. Soluzione: Tenuto conto che. 1 + f 2 x + f 2 y dx dy. riesce, servendosi delle coordinate polari, ANALISI VETTORIALE Soluzione scritto 19 settembre 11 4.1. Esercizio. Assegnata la superficie cartesiana S : z = x y + 5, x + y 1 calcolare l area di S calcolare il volume di Tenuto conto che Ω : z x y

Dettagli

Geometria Differenziale

Geometria Differenziale Geometria Differenziale Foglio 4 - Superfici Esercizio 1. Si considerino la curva α : R R 3 definita ponendo α(t) = (cos(t), sin(t), t) e la superficie elementare P : R (0, + ) R 3 di equazioni parametriche

Dettagli

Esercizi e complementi di Analisi Complessa - 2

Esercizi e complementi di Analisi Complessa - 2 Esercizi e complementi di Analisi Complessa - 2 Samuele Mongodi - s.mongodi@sns.it 16 maggio 2011 1 Varietà complesse Consideriamo uno spazio topologico X, che sia una varietà reale di dimensione 2, paracompatto

Dettagli

Prova scritta di Geometria 1 Docente: Giovanni Cerulli Irelli 20 Gennaio 2017

Prova scritta di Geometria 1 Docente: Giovanni Cerulli Irelli 20 Gennaio 2017 Prova scritta di Geometria Docente: Giovanni Cerulli Irelli Gennaio 7 Esercizio. Si considerino i seguenti tre punti dello spazio euclideo: P :=, Q :=, R :=.. Dimostrare che P, Q ed R non sono collineari.

Dettagli

PROGRAMMA DI ANALISI MATEMATICA 2 Corsi di Laurea in Ing. Informatica (Prof. Ravaglia) Anno Accademico 2015/16

PROGRAMMA DI ANALISI MATEMATICA 2 Corsi di Laurea in Ing. Informatica (Prof. Ravaglia) Anno Accademico 2015/16 PROGRAMMA DI ANALISI MATEMATICA 2 Corsi di Laurea in Ing. Informatica (Prof. Ravaglia) Anno Accademico 2015/16 Simboli: I= introduzione intuitiva, D = definizione, T = teorema C = criterio deduttivo, d

Dettagli

Prova Finale di Tipo B e Prova di Accesso alla Laurea Magistrale 12 Giugno 2008

Prova Finale di Tipo B e Prova di Accesso alla Laurea Magistrale 12 Giugno 2008 Prova Finale di Tipo B e Prova di Accesso alla Laurea Magistrale 12 Giugno 2008 Dipartimento di Matematica Università di Roma Tre U. Bessi, A. Bruno, S. Gabelli, G. Gentile Istruzioni (a) La sufficienza

Dettagli

Esercizi per Geometria II Geometria euclidea e proiettiva

Esercizi per Geometria II Geometria euclidea e proiettiva Esercizi per Geometria II Geometria euclidea e proiettiva Filippo F. Favale 10 aprile 01 Esercizio 1 Sia E 3 lo spazio euclideo tridimensionale dotato di un riferimento cartesiano ortonormale di coordinate

Dettagli

Università di Trieste Facoltà d Ingegneria. Esercitazioni per la preparazione della prova scritta di Matematica 3 Dott.

Università di Trieste Facoltà d Ingegneria. Esercitazioni per la preparazione della prova scritta di Matematica 3 Dott. Università di Trieste Facoltà d Ingegneria. Esercitazioni per la preparazione della prova scritta di Matematica 3 Dott. Franco Obersnel Lezione : struttura di IR n, prodotto scalare, distanza e topologia.

Dettagli

Analisi II. Foglio di esercizi n.1 30/09/ , tan 3) e w = ( 7, 2, e 2 )?

Analisi II. Foglio di esercizi n.1 30/09/ , tan 3) e w = ( 7, 2, e 2 )? Analisi II. Foglio di esercizi n.1 30/09/2016 Esercizi su prodotto scalare e sottoinsiemi di R n 1. Dati due punti A = 2 e B = e in R, calcolare la loro distanza euclidea. 2. Dati due punti A = (0, 1)

Dettagli

Algebra lineare Geometria 1 11 luglio 2008

Algebra lineare Geometria 1 11 luglio 2008 Algebra lineare Geometria 1 11 luglio 2008 Esercizio 1. Si considerino la funzione: { R f : 3 R 3 (α, β, γ) ( 2β α γ, (k 1)β + (1 k)γ α, 3β + (k 2)γ ) dove k è un parametro reale, e il sottospazio U =

Dettagli

viene detto il sostegno della curva. Se σ è iniettiva, diciamo che la superficie è semplice. Le equazioni

viene detto il sostegno della curva. Se σ è iniettiva, diciamo che la superficie è semplice. Le equazioni Fondamenti di Analisi Matematica 2 - a.a. 2010-11 (Canale 1) Corso di Laurea in Ingegneria Gestionale, Meccanica e Meccatronica Valentina Casarino Appunti sulle superfici 1. Superfici regolari Ricordiamo

Dettagli

Politecnico di Milano Ingegneria Industriale Analisi e Geometria 2 Secondo compito in itinere 30 Giugno 2016

Politecnico di Milano Ingegneria Industriale Analisi e Geometria 2 Secondo compito in itinere 30 Giugno 2016 Politecnico di Milano Ingegneria Industriale Analisi e Geometria Secondo compito in itinere Giugno 6 Cognome: Nome: Matricola: Es.: 9 punti Es.: 9 punti Es.: 6 punti Es.4: 9 punti Totale. Si consideri

Dettagli

(P x) (P y) = x P t (P y) = x (P t P )y = x y.

(P x) (P y) = x P t (P y) = x (P t P )y = x y. Matrici ortogonali Se P è una matrice reale n n, allora (P x) y x (P t y) per ogni x,y R n (colonne) Dim (P x) y (P x) t y (x t P t )y x t (P t y) x (P t y), CVD Ulteriori caratterizzazioni delle matrici

Dettagli

ATTENZIONE: : giustificate le vostre argomentazioni! Geometria Canale 3. Lettere J-PE (Prof P. Piazza) Esame scritto del 12/02/2014. Compito A.

ATTENZIONE: : giustificate le vostre argomentazioni! Geometria Canale 3. Lettere J-PE (Prof P. Piazza) Esame scritto del 12/02/2014. Compito A. Geometria Canale. Lettere J-PE (Prof P. Piazza) Esame scritto del 12/02/2014. Compito A. Nome e Cognome: Numero di Matricola: Esercizio Punti totali Punteggio 1 7 2 6 6 4 6+1 5 6+2 Totale 1+ ATTENZIONE:

Dettagli

Parte 12a. Trasformazioni del piano. Forme quadratiche

Parte 12a. Trasformazioni del piano. Forme quadratiche Parte 12a Trasformazioni del piano Forme quadratiche A Savo Appunti del Corso di Geometria 2013-14 Indice delle sezioni 1 Trasformazioni del piano, 1 2 Cambiamento di coordinate, 8 3 Forme quadratiche,

Dettagli

6 Funzioni continue. (6.1) Sia f una funzione f : X Y tra spazi topologici. Le quattro proposizioni seguenti sono equivalenti: (i) f è continua

6 Funzioni continue. (6.1) Sia f una funzione f : X Y tra spazi topologici. Le quattro proposizioni seguenti sono equivalenti: (i) f è continua 6 Funzioni continue Le funzioni continue tra spazi topologici si dicono anche mappe. Si può dimostrare, esattamente come in (4.9) e in (3.10), che vale la seguente proposizione. (6.1) Sia f una funzione

Dettagli