Soluzioni ottava gara Suole di Gauss

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Soluzioni ottava gara Suole di Gauss"

Transcript

1 Soluzioni ottava gara Suole di Gauss 25 Marzo Risposta: 6435 Per la soluzione di questo problema possiamo considerare le cifre da 1 a 9 come bambini a cui devono essere distribuite in totale 7 caramelle. Infatti il numero di caramelle rappresenta quante volte la cifra compare nella combinazione della cassaforte (ad esempio, 4 caramelle al bambino 1, 2 caramelle al bambino 5 e una caramella al bambino 8 equivale al codice ). In questo metodo di soluzione è inoltre intrinseco l ordine crescente delle cifre, infatti esse non vengono permutate, e ogni assegnazione di caramelle rappresenta univocamente un codice. 7 caramelle a 9 bambini si possono dare in ( 15 8 ) = 6435 modi. 2. Risposta: 0373 Ogni fattore è del tipo x = x Secondo l identità di Sophie Germain a 4 + 4b 4 = (a 2 + 2b 2 2ab)(a 2 + 2b 2 + 2ab). Possiamo usare questa scompisizione per ogni fattore e vedere che si semplifica la frazione: il primo fattore del numeratore della nuova frazione si semplifica con il secondo del denominatore, il secondo col terzo, e così via. Rimangono dunque l ultimo del numeratore e il primo del denominatore, ovvero: ( 2) + 18 = = Risposta: Tratto dalle Gare di febbraio 2001 Cinque numeri consecutivi possono essere scritti nella forma x 2, x 1, x, x + 1, x + 2 e la loro somma è 5x. D altra parte, se n = 5x, allora n è la somma dei cinque numeri consecutivi x 2, x 1, x, x + 1, x + 2. Analogamente, n è somma di 7 numeri consecutivi se e solo se n è della forma 7y (i 7 numeri consecutivi essendo y 3, y 2, y 1, y, y + 1, y + 2, y + 3). Infine, 6 numeri consecutivi possono essere scritti nella forma z 2, z 1, z, z + 1, z + 2, z + 3, e la loro somma fa 6z + 3. Dunque n è somma di 6 numeri consecutivi se e solo se è della forma n = 6z + 3, cioè se e solo se n è divisibile per 3 ma non per 6. I numeri divisibili contemporaneamente per 5, per 7 e per 3 sono i multipli 1

2 di = 105, e cioè 105, 210, 315, 420,... Tra essi, quelli non divisibili per 6 sono esattamente quelli dispari, e cioè 105, 315,... Il numero cercato è quindi Risposta: 0004 Tratto dalle Gare di febbraio 2000 Moltiplicando l equazione data per 10mn (ricordiamo che m e n sono diversi da zero). Si ottiene: ossia 4mn 10m 10n + 10 = 0 (2m 5)(2n 5) = 15 : Supponiamo dapprima che m n. Le uniche coppie di numeri interi che danno per prodotto 15, con il primo termine minore o uguale al secondo, sono (3; 5), (1; 15), ( 5; 3), ( 15; 1). Ponendo 2m 5 = 3; 2n 5 = 5, si ottiene (m; n) = (4; 5). Ponendo 2m 5 = 1; 2n 5 = 15, si ottiene (m; n) = (3; 10). Ponendo 2m 5 = 5; 2n 5 = 3, si ottiene m = 0, che non è accettabile. Ponendo 2m 5 = 15; 2n 5 = 1, si ottiene (m; n) = ( 5; 2), che non è accettabile in quanto m è negativo. Considerando poi le coppie (m; n) con n < m, si ottiene che le soluzioni sono: {(3; 10); (4; 5); (10; 3); (5; 4)} 5. Risposta: 0000 Studiando l equazione è facile accorgersi che f(x) = x è una soluzione. Continuando lo studio ci possiamo accorgere che f(x) = x/2 + a, per ogni a R, è una soluzione dell equazione. Allora la somma di tutte le f(1) è maggiore uguale a 0 1/2 + a =, da cui la soluzione. 6. Risposta: 0113 Tratto dal Giornalino Gruppo Tutor. Sia AB la Via delle Guardie, sia C il suo punto di tangenza con la cerchia delle mura interne e sia O il centro comune delle delle due cerchie di mura. Chiamiamo R ed r i raggi delle due cerchie (con r < R). Noi vogliamo calcolare S = π ( R 2 r 2) ; osserviamo che OA = OB = R e che OC AB in quanto AB è tangente. Da ciò deduciamo che OC è altezza e mediana di AOB e dunque AC = CB. Applicando il teorema di Pitagora ricaviamo la relazione OA 2 OC 2 = R 2 r 2 = CA 2 ; dai dati sappiamo che CA = AB/2 = 6 miglia. Quindi, mettendo tutto insieme S = π ( R 2 r 2) = CA 2 π = 36π miglia 2. 2

3 7. Risposta: 8020 Tratto dal Giornalino Gruppo Tutor. Definiamo a n = pn q n, e riscriviamo la ricorrenza così: a n = pn q n = pn 1+nqn 1 np n 1+q n 1. Cioè p n = p n 1 +nq n 1, q n = np n 1 +q n 1. Sommando le due equazioni, si ottiene: p n +q n = (n+1) (p n 1 + q n 1 ) e p n q n = (n 1) (p n 1 q n 1 ). Sapendo che p 3 + q 3 = 12 = 4! 2 e p 3 q 3 = 2! sviluppiamo la ricorrenza e otteniamo: p n + q n = (n+1)! 2, e p n q n = ( 1) n (n 1)!. Da questo si deduce che a n = pn q n Quindi, in particolare, a 2004 = = (n+1)!+2( 1)n (n 1)! (n+1)!+2( 1) n (n 1)! = n(n+1)+2( 1)n n(n+1) 2( 1) n. 8. Risposta: 1006 Notiamo che se poniamo x = 0 otteniamo P ( 1 ) = 0, mentre se poniamo x = 1 otteniamo P (1) = 0. Adesso poniamo allora x = 2010 e otteniamo P ( 2010 ) = p(1) = 0. Proviamo inoltre a porre x = abbiamo P ( 2010 ) = p( ) = 0 il ragionamento può allora essere ripetuto per 1 tutti i k [ ] quindi P (k) = 0 e quindi il risultato è:, k=1 k = Risposta: 0009 Per trovare il numero di cifre di 2002!, uso la considerazione, per esempio, che n! < n n. Dunque 2002! < < = , cioè il numero ha sicuramente meno di 8008 cifre. Quindi 2002! < (8008 cifre). La somma delle cifre di 2002! è minore od uguale a = Ma la somma delle cifre di è minore della somma delle cifre di che è 45. A sua volta, la somma delle cifre di 45 e minore di quella di 99, 3

4 cioè minore di = 18. Dunque dopo 3 minuti il valore delle azioni è al massimo 18 euro. Denotata s(n) la somma delle cifre di n, poichè !, anche 9 s(2002!), e pure 9 s(s(2002!)), quindi anche 9 s(s(s(2002!))). Ma s(s(s(2002!))) 18, dunque i casi sono due s(s(s(2002!))) = 9,18. Comunque, s(s(s(s(2002!)))) = 9. Perciò, la somma delle cifre dopo quattro passaggi è sicuramente 9. Poichè s(9) = 9, il prezzo non cambia più fino alla chiusura. 10. Risposta: 4114 Il quadrato massimo deve avere i vertici sulle circonferenze. Si tracci il diametro che congiunge i due centri e si congiunga un vertice del quadrato con i due estremi del diametro. L altezza relativa all ipotenusa del triangolo rettangolo così ottenuto (iscritto in una semicirconferenza) è metà del lato del quadrato. Di conseguenza, per il secondo teorema di Euclide, l 2 = 5 l 2 (10 5 l 2 ) Prendendo la soluzione positiva l = 5 2 ( 7 1) e usando i valori approssimati, si trova che la risposta è Risposta: 0023 Chiaramente deve accadere che n 7 divida 252, quindi che n 7 sia uno dei divisori di 252. Allora scomponiamo 252 e vediamo a cosa si arriva: 252 = dunque 252 ha 18 divisori, vediamone alcuni per capire il ragionamento: n 7 = 1, n 7 = 2, n 7 = 2 2, n 7 = 2 3, n 7 = 2 3 2, n 7 = 2 7, ecc., da cui: n = 8, n = 9, n = 11, n = 13, n = 25, n = 21, ecc. Abbiamo così tutti i valori di n per cui n 7 è un divisore positivo di 252. In realtà questi non sono tutti i valori possibili, poiché 252 n 7 può risultare sia positiva che negativa, l importante è che n sia positivo. Vanno quindi considerati anche i divisori negativi: n 7 = 1, n 7 = 2, n 7 = 4, n 7 = 6, n 7 = 18, n 7 = 14, ecc. facendo i calcoli otteniamo: n = 6, n = 5, n = 3, n = 1, n = 11, n = 7, ecc. tra questi prendiamo solo i valori positivi di n, per un totale di 23 valori positivi di n. 12. Risposta: 0069 In effetti non si possono pagare 58 o 61 cent, mentre se ne possono pagare 87 = cdot5. D altra parte si possono pagare tutti i multipli di 8, tutti i numeri della forma 8k + 1 che siano maggiori o uguali a 33, tutti i numeri della forma 8k + 2 che siano maggiori o uguali a 66, tutti i numeri della forma 8k + 3 che siano maggiori o uguali a 11, tutti i numeri della forma 8k + 4 che siano maggiori o uguali a 44, tutti i numeri della forma 8k+5 che siano maggiori o uguali a 77, tutti i numeri della forma 8k+6 che siano maggiori o uguali a 22 e tutti i numeri della forma 8k + 7 che siano maggiori o uguali a 55. Quindi il massimo numero escluso è 69 = Risposta: 0000 Innanzitutto osserviamo che per le ipotesi del problema, il prodotto di 4

5 tutti e 6 i numeri è un quadrato perfetto. Inoltre, nessuno di essi può essere multiplo di 7. Infatti se ve ne fosse uno tra di essi, allora necessariamente per le ipotesi del problema ce ne dovrebbe essere anche un secondo. Ma allora anche la loro differenza sarebbe multipla di 7. Ma si vede immediatamente che le possibili differenze tra i numeri a disposizione sono 1,2,3,4,5, quindi nessun multiplo di 7. Ora consideriamo la classe di congruenza di n modulo 7. Si può osservare che se n fosse congruo ad un qualsiasi numero diverso da 1 (mod 7), allora necessariamente almeno uno tra i numeri presenti sarebbe congruo a 0 modulo 7. Ma abbiamo escluso la presenza di multipli di 7, quindi n congruo 1 modulo 7. Ma allora n(n + 1)(n + 2)(n + 3)(n + 4)(n + 5) congruo -1 modulo 7. Dal momento che -1 non è un residuo quadratico modulo 7 si ha un assurdo, quindi non vi sono soluzioni. 14. Risposta: 0010 La risposta è 10. Indichiamo con x il piano cercato. Se Guido ha le due uova e ha a disposizione k tentativi, non può effettuare il primo lancio da un piano superiore al k-esimo. Infatti, se effettua il primo lancio dal piano m > k e l uovo si rompe, Guido saprebbe x compreso tra 1 e m 1. Poiché avrebbe a disposizione un solo uovo, non potrebbe lanciarlo da un piano n con n > 1: infatti, se prova e l uovo si rompe, non avendo più uova non sarebbe in grado di trovare x. Quindi sarebbe costretto a lanciare il secondo uovo dal primo piano. Se questo si rompe, allora x = 1; ma se l uovo non si rompe, dovrebbe tentare da un piano più alto. Per lo stesso motivo, l unica scelta possibile sarebbe lanciarlo dal secondo piano e così via. Ciò implica che, per essere certo di risolvere il problema, Guido dovrebbe controllare tutti i piani dal primo al m 1. Ma ha a disposizione solo k 1 (< m 1) lanci e quindi sarebbe in grado di individuare x se e solo se x < k. Quindi, se Guido vuole essere certo di trovare x, deve effettuare il primo lancio da un piano s k. Se l uovo si rompe, potrebbe partire dal primo piano e salire controllandoli tutti fino a che il secondo uovo si rompe, e allora avrebbe trovato x. Se invece il primo uovo non si rompe, avrebbe ancora due uova a disposizione e k 1 lanci. Per la spiegazione precendente, non potrebbe effettuare il secondo lancio da un piano più alto del s + k 1-esimo, e così via. Questo ragionamento prova che, ne il grattacielo ha n piani e Guido ha k lanci a disposizione, può essere certo di risolvere il gioco se e solo se n < 1 / 2(k2 + k) + 1 (il +1 è necessario in quanto Guido sa che x è compresa tra 1 e n e quindi se il grattacielo ha n piani, gli basta verificare solo se x < n poiché, in caso contrario, saprebbe automaticamente che x = n). Poiché nel nostro caso n = 50, il minimo numero di tentativi che Guido deve avere a disposizione è k = Risposta: 0341 Tratto da Art of problem solving Riscrivendo α 4 + β 4 in funzione di p e usando la disguaglianza AM-GM si 5

6 ha: α 4 + β 4 = (α 2 + β 2 ) 2 2(αβ) 2 = ((α + β) 2 2αβ) 2 2(αβ) 2 = (p p 2 )2 1 2p 4 = 2 + p p p4 2p 4 = Il valore cercato è allora 100(2 + 2) = 341,... e si ottiene per p = 8» Risposta: 8038 Tratto da Art of problem solving Se x < 0, allora x 0 e tutto il resto è non negativo, quindi la disuguaglianza è verificata. Nel caso in cui x 0, scriviamo x = x +{x} e notiamo che gli addendi sono non negativi. Allora, per la disuguaglianza AM-GM: ( ( 2010 x x 2010 = ( x + {x}) 2010 = )) {x} ( ( x ) ) {x} = x {x}. Visto che l uguaglianza viene raggiunta se x = 2010 x ), allora il massimo valore di λ è proprio = {x} (per esempio se 6

1. Esistono numeri della forma , ottenuti cioè ripetendo le cifre 2006 un certo numero di volte, che siano quadrati perfetti?

1. Esistono numeri della forma , ottenuti cioè ripetendo le cifre 2006 un certo numero di volte, che siano quadrati perfetti? 1 Congruenze 1. Esistono numeri della forma 200620062006...2006, ottenuti cioè ripetendo le cifre 2006 un certo numero di volte, che siano quadrati perfetti? No, in quanto tutti questi numeri sono congrui

Dettagli

Soluzioni ottava gara Suole di Gauss

Soluzioni ottava gara Suole di Gauss Soluzioni ottava gara Suole di Gauss 5 Marzo 09. Risposta: 000 Semplicemente un quadrato può essere scritto come somma di due triangolari consecutivi. Diamone una breve dimostrazione: n(n ) + (n + )n n(n

Dettagli

Soluzioni settima gara Suole di Gauss

Soluzioni settima gara Suole di Gauss Soluzioni settima gara Suole di Gauss Marzo 09. Risposta: 009 Osserviamo che i numeri di 3 cifre composti da, 6 e 7 sono 3! = 6. Adesso dobbiamo creare coppie di questi 6 numeri, tendendo di conto dell

Dettagli

IGiochidiArchimede-SoluzioniBiennio 23 novembre 2005

IGiochidiArchimede-SoluzioniBiennio 23 novembre 2005 PROGETTO OLIMPIADI DI MATEMATIA U.M.I. UNIONE MATEMATIA ITALIANA SUOLA NORMALE SUPERIORE IGiochidiArchimede-SoluzioniBiennio 3 novembre 00 1 Griglia delle risposte corrette Risoluzione dei problemi Problema

Dettagli

k l equazione diventa 2 x + 1 = 0 e ha unica soluzione

k l equazione diventa 2 x + 1 = 0 e ha unica soluzione a B 3 Compito del Q 8 maggio 009 A) Equazioni con parametro. Data l equazione ( k + k ) + k + 0 determinare il valore di k in ciascuno dei seguenti casi. L equazione si abbassa di grado (risolvere l equazione

Dettagli

Lezione 3 - Teoria dei Numeri

Lezione 3 - Teoria dei Numeri Lezione 3 - Teoria dei Numeri Problema 1 Nel cortile esterno di Villa San Saverio vivono molti animali fantastici. Tra unicorni, ippogri, sici, ed altre creature della cui esistenza il mondo non è a conoscenza,

Dettagli

PROBLEMI. 1) La media aritmetica di 35 numeri naturali è 102 e la media di 20 di questi. 7) Quanto vale la somma delle cifre del numero 111 1

PROBLEMI. 1) La media aritmetica di 35 numeri naturali è 102 e la media di 20 di questi. 7) Quanto vale la somma delle cifre del numero 111 1 PROBLEMI 1) La media aritmetica di 35 numeri naturali è 10 e la media di 0 di questi numeri è 93. Quanto vale la media dei 15 numeri rimanenti? ) La casa del professor Fibonacci è costruita su un terreno

Dettagli

Soluzioni prima gara - Suole di Gauss

Soluzioni prima gara - Suole di Gauss Soluzioni prima gara - Suole di Gauss. Coppa Fermat (7 Marzo 008, problema 4) Poiché il problema chiede di determinare il più grande quadrato perfetto di quattro cifre con penultima cifra 5, un idea potrebbe

Dettagli

Lezione 3 - Teoria dei Numeri

Lezione 3 - Teoria dei Numeri Lezione 3 - Teoria dei Numeri Problema 1 Trovare il più piccolo multiplo di 15 formato dalle sole cifre 0 e 8 (in base 10). Il numero cercato dev'essere divisibile per 3 e per 5 quindi l'ultima cifra deve

Dettagli

Lezione 3 - Teoria dei Numeri

Lezione 3 - Teoria dei Numeri Lezione 3 - Teoria dei Numeri Problema 1 Sia k un numero pari. È possibile scrivere 1 come la somma dei reciproci di k interi dispari? Soluzione: Siano n 1,..., n k interi dispari tali che 1 = 1 n 1 +

Dettagli

Triangolo rettangolo

Triangolo rettangolo Dato il triangolo rettangolo Possiamo perciò utilizzare angoli). Progetto Matematica in Rete Triangolo rettangolo OPA sappiamo che: PA cateto senα OP OA cateto cos α OP PA cateto tgα OA cateto opposto

Dettagli

2.1 Numeri naturali, interi relativi, razionali

2.1 Numeri naturali, interi relativi, razionali 2.1 Numeri naturali, interi relativi, razionali Definizione L insieme N = {0, 1, 2, 3,...} costituito dallo 0 e dai numeri interi positivi è l insieme dei numeri naturali. Se a, b 2 N, allora mentre non

Dettagli

CONGRUENZE. proprietà delle congruenze: la congruenza è una relazione di equivalenza inoltre: Criteri di divisibilità

CONGRUENZE. proprietà delle congruenze: la congruenza è una relazione di equivalenza inoltre: Criteri di divisibilità CONGRUENZE I) Definizione: due numeri naturali a e b si dicono congrui modulo un numero naturale p se hanno lo stesso resto nella divisione intera per p. Si scrive a b mod p oppure a b (p) proprietà delle

Dettagli

Soluzioni terza gara Suole di Gauss

Soluzioni terza gara Suole di Gauss Soluzioni terza gara Suole di Gauss 7 dicembre 208. Risposta: 26 Ramanujan si è accorto che il polinomio all interno della sommatoria poteva essere scomposto prima come 8n6 n 2 (n 2 ( 5 n. A questo punto

Dettagli

1 Funzioni trigonometriche

1 Funzioni trigonometriche 1 Funzioni trigonometriche 1 1 Funzioni trigonometriche Definizione 1.1. Si definisce circonferenza goniometrica la circonferenza centrata nell origine di un piano cartesiano e raggio unitario. L equazione

Dettagli

Lezione 3 - Teoria dei Numeri

Lezione 3 - Teoria dei Numeri Lezione 3 - Teoria dei Numeri Problema 1 Determinare il più piccolo numero primo p che divide Q(n) = n 2 + n + 23 per qualche n intero. Soluzione: Osserviamo che Q(1) = 25, quindi p può essere 2, 3 oppure

Dettagli

Triangolo rettangolo

Triangolo rettangolo Dato il triangolo rettangolo Possiamo perciò utilizzare angoli). Progetto Matematica in Rete Triangolo rettangolo OPA sappiamo che: PA cateto sen OP cos tg OA cateto OP PA cateto OA cateto opposto ad ipotenusa

Dettagli

Formule goniometriche

Formule goniometriche Appunti di Matematica Formule goniometriche Come possiamo calcolare ( + β )? E chiaro che non può risultare ( β ) + β + : se infatti fosse così e per esempio β avremo + + +! Dobbiamo ricavare delle relazioni

Dettagli

Congruenze. Alberto Abbondandolo Forte dei Marmi, 17 Novembre 2006

Congruenze. Alberto Abbondandolo Forte dei Marmi, 17 Novembre 2006 Congruenze Alberto Abbondandolo Forte dei Marmi, 17 Novembre 2006 1 Il resto nella divisione tra interi Consideriamo i numeri naturali 0, 1, 2, 3,... ed effettuiamone la divisione per 3, indicando il resto:

Dettagli

inferiore ai 180, ha area uguale al quadrato della corda AD che sottende un arco uguale alla somma dell arco AC e dell arco 180

inferiore ai 180, ha area uguale al quadrato della corda AD che sottende un arco uguale alla somma dell arco AC e dell arco 180 L approssimazione di π secondo al-kashi Al-Kashi calcola il π in modo tale che soddisfi una condizione, detta Condizione di Al-Kashi : La circonferenza di un cerchio deve essere espressa in funzione del

Dettagli

I Giochi di Archimede - Soluzioni Triennio 27 novembre 2013

I Giochi di Archimede - Soluzioni Triennio 27 novembre 2013 PROGETTO OLIMPIADI DI MATEMATICA U.M.I. UNIONE MATEMATICA ITALIANA MINISTERO DELLA PUBBLICA ISTRUZIONE I Giochi di Archimede - Soluzioni Triennio 7 novembre 013 Griglia delle risposte corrette Problema

Dettagli

Test sui teoremi di Euclide e di Pitagora

Test sui teoremi di Euclide e di Pitagora Test sui teoremi di Euclide e di Pitagora I test proposti in questa dispensa riguardano il teorema di Pitagora e i due teoremi di Euclide, con le applicazioni alle varie figure geometriche. Vengono presentate

Dettagli

Preparazione Olimpiadi della Matematica

Preparazione Olimpiadi della Matematica Preparazione Olimpiadi della Matematica Marco Vita Liceo Scientifico G. Galilei Ancona 18 novembre 2015 ( Liceo Scientifico G. Galilei Ancona) Preparazione Olimpiadi della Matematica 18 novembre 2015 1

Dettagli

Accertamento debito formativo logico matematico: compito A 1

Accertamento debito formativo logico matematico: compito A 1 Accertamento debito formativo logico matematico: compito A Università degli studi di Bologna Facoltà di Economia Tempo 60 minuti: ogni domanda ha una sola risposta esatta punto per ogni risposta esatta;

Dettagli

Insiemistica. Capitolo 1. Prerequisiti. Obiettivi. Gli insiemi numerici di base Divisibilità e fattorizzazione nei numeri interi

Insiemistica. Capitolo 1. Prerequisiti. Obiettivi. Gli insiemi numerici di base Divisibilità e fattorizzazione nei numeri interi Capitolo 1 Insiemistica Prerequisiti Gli insiemi numerici di base Divisibilità e fattorizzazione nei numeri interi Obiettivi Sapere utilizzare opportunamente le diverse rappresentazioni insiemistiche Sapere

Dettagli

IGiochidiArchimede--Soluzionibiennio

IGiochidiArchimede--Soluzionibiennio PROGETTO OLIMPIADI DI MATEMATICA U.M.I. UNIONE MATEMATICA ITALIANA MINISTERO DELLA PUBBLICA ISTRUZIONE SCUOLA NORMALE SUPERIORE IGiochidiArchimede--Soluzionibiennio 9 novembre 008 Griglia delle risposte

Dettagli

10 a GARA MATEMATICA CITTÀ DI PADOVA 25 MARZO 1995 SOLUZIONI

10 a GARA MATEMATICA CITTÀ DI PADOVA 25 MARZO 1995 SOLUZIONI 10 a GARA MATEMATICA CITTÀ DI PADOVA 2 MARZO 199 SOLUZIONI 1.- Nella somma 70 + + 40 gli studenti che studiano almeno una lingua contano una volta, quelli che ne studiano almeno due un altra volta, quelli

Dettagli

CONGRUENZE. 2 La formula risulta vera anche per n+1. Per induzione è allora vera per ogni n.

CONGRUENZE. 2 La formula risulta vera anche per n+1. Per induzione è allora vera per ogni n. CONGRUENZE 1. Cosa afferma il principio di induzione? Sia P(n) una proposizione definita per ogni n n 0 (n 0 =naturale) e siano dimostrate le seguenti proposizioni: a) P(n 0 ) è vera b) Se P(n) è vera

Dettagli

a p a (p) (a + 1) p = i=0 sono noti come coefficienti binomiali 2 e sono numeri interi (a + 1) p a p + 1 (p) (a + 1) p a + 1 (p)

a p a (p) (a + 1) p = i=0 sono noti come coefficienti binomiali 2 e sono numeri interi (a + 1) p a p + 1 (p) (a + 1) p a + 1 (p) Appunti quarta settimana Iniziamo con un risultato molto importante che ha svariate conseguenze e che3 sarà dimostrato in modi diversi durante il corso: Esercizio 1.[Piccolo teorema di Fermat] Dimostrare

Dettagli

Parte I. Incontro del 6 dicembre 2011

Parte I. Incontro del 6 dicembre 2011 Parte I Incontro del 6 dicembre 20 3 Notazioni Si suppone che il lettore sia familiare con le notazioni insiemistiche, in particolare con quelle che riguardano gli insiemi numerici: N = { 0,, 2, 3, } (numeri

Dettagli

ORDINAMENTO 2005 QUESITO 1

ORDINAMENTO 2005 QUESITO 1 www.matefilia.it ORDINAMENTO 2005 QUESITO 1 Consideriamo il lato AB del decagono regolare inscritto nella circonferenza e indichiamo con AC la bisettrice dell angolo alla base A. Essendo l angolo in O

Dettagli

Tutti i numeri qui considerati sono interi. Se si tratta in particolare di numeri Naturali (quindi non negativi) verrà specificato.

Tutti i numeri qui considerati sono interi. Se si tratta in particolare di numeri Naturali (quindi non negativi) verrà specificato. LICEO B. RUSSELL A.S. 2010/2011 DALLA TEORIA DEI NUMERI ALLE CONGRUENZE Tutti i numeri qui considerati sono interi. Se si tratta in particolare di numeri Naturali (quindi non negativi) verrà specificato.

Dettagli

I Giochi di Archimede - Soluzioni Biennio 27 novembre 2013

I Giochi di Archimede - Soluzioni Biennio 27 novembre 2013 PROGETTO OLIMPIADI DI MATEMATICA U.M.I. UNIONE MATEMATICA ITALIANA MINISTERO DELLA PUBBLICA ISTRUZIONE I Giochi di Archimede - Soluzioni Biennio 7 novembre 013 Griglia delle risposte corrette Problema

Dettagli

Applicazioni dei teoremi di Pitagora ed Euclide

Applicazioni dei teoremi di Pitagora ed Euclide Utilizzando le misure di segmenti e superfici si possono riscrivere i teoremi di Pitagora ed Euclide per il triangolo rettangolo: Teorema di Pitagora: 1 + c i c = 1 Teorema di Euclide: c p i 1 = 1 c =

Dettagli

Problema 1 Sia data la seguente successione: n 1. i=1. Riscriviamo la successione nel seguente modo

Problema 1 Sia data la seguente successione: n 1. i=1. Riscriviamo la successione nel seguente modo Lezione - Algebra Problema Sia data la seguente successione: n a = 9, a n = 9 + a i a n R n N, n Determinare a 000. i= Riscriviamo la successione nel seguente modo n a n = 9 + a n + a i = 9 + a n + (a

Dettagli

20 MARZO 2010 TESTO E SOLUZIONI

20 MARZO 2010 TESTO E SOLUZIONI 25 a GARA MATEMATICA CITTÀ DI PADOVA 20 MARZO 2010 TESTO E SOLUZIONI 1.- È dato un rettangolo ABCD. Si dimostri che per un qualunque punto P del piano vale : PD 2 + PB 2 = PA 2 + PC 2 con AC una diagonale.

Dettagli

1. Sia ABC un triangolo, e siano D ed E le proiezioni di A sulle bisettrici uscenti da B e C. Dimostrare che DE è parallelo a BC.

1. Sia ABC un triangolo, e siano D ed E le proiezioni di A sulle bisettrici uscenti da B e C. Dimostrare che DE è parallelo a BC. 1. Sia ABC un triangolo, e siano D ed E le proiezioni di A sulle bisettrici uscenti da B e C. Dimostrare che DE è parallelo a BC. A K L E D I B F G C Soluzione: Siano F e G i punti d intersezione fra la

Dettagli

I Giochi di Archimede - Soluzioni Triennio 22 novembre 2012

I Giochi di Archimede - Soluzioni Triennio 22 novembre 2012 PROGETTO OLIMPIADI DI MATEMATICA U.M.I. UNIONE MATEMATICA ITALIANA MINISTERO DELLA PUBBLICA ISTRUZIONE I Giochi di Archimede - Soluzioni Triennio novembre 0 Griglia delle risposte corrette Problema Risposta

Dettagli

Collegio di Merito Bernardo Clesio Università di Trento

Collegio di Merito Bernardo Clesio Università di Trento Collegio di Merito Bernardo Clesio Università di Trento 23 luglio 2012 Prova per i candidati per le facoltà scientifiche Esercizio 1. Descrivere tutti i polinomi p(x) con coefficienti reali tali che per

Dettagli

1 Esercizi di ripasso Nel piano con un riferimento RC(Oxy) siano dati i punti O(0, 0) e A(2, 4).

1 Esercizi di ripasso Nel piano con un riferimento RC(Oxy) siano dati i punti O(0, 0) e A(2, 4). Esercizi di ripasso. Nel piano con un riferimento RC(Oxy) siano dati i punti O(0, 0) e A(2, 4). (a) Determinare le equazioni delle circonferenze che passano per O e A e aventi raggio 5. (b) Determinare

Dettagli

Esercitazione su equazioni, disequazioni e trigonometria

Esercitazione su equazioni, disequazioni e trigonometria Esercitazione su equazioni, disequazioni e trigonometria Davide Boscaini Queste sono le note da cui ho tratto le esercitazioni del giorno 6 Ottobre 20. Come tali sono ben lungi dall essere esenti da errori,

Dettagli

12 gennaio Commenti esame di geometria - Ing. gestionale - a.a

12 gennaio Commenti esame di geometria - Ing. gestionale - a.a Questo documento riporta commenti, approfondimenti o metodi di soluzione alternativi per alcuni esercizi dell esame Ovviamente alcuni esercizi potevano essere risolti utilizzando metodi ancora diversi

Dettagli

Prova del 3 Marzo, Traccia della soluzione. Problema n. 1

Prova del 3 Marzo, Traccia della soluzione. Problema n. 1 IIASS International Institute for Advanced Scientific Studies Eduardo R. Caianiello Circolo di Matematica e Fisica Dipartimento di Fisica E.R. Caianiello Università di Salerno Premio Eduardo R. Caianiello

Dettagli

Roma, 4 marzo 2015 PROGETTO OLIMPIADI DI MATEMATICA SEZIONE DI ROMA GARA A SQUADRE

Roma, 4 marzo 2015 PROGETTO OLIMPIADI DI MATEMATICA SEZIONE DI ROMA GARA A SQUADRE Roma, 4 marzo 015 PROGETTO OLIMPIADI DI MATEMATICA SEZIONE DI ROMA GARA A SQUADRE Dipartimenti di Matematica delle Università Sapienza, Tor Vergata, Roma Tre con il sostegno di: Unione Matematica Italiana,

Dettagli

Gara Matematica. Dipartimento di Matematica Ulisse Dini. Viale Morgagni 67/a Firenze. Soluzioni edizione 2010

Gara Matematica. Dipartimento di Matematica Ulisse Dini. Viale Morgagni 67/a Firenze. Soluzioni edizione 2010 Gara Matematica Dipartimento di Matematica Ulisse Dini Viale Morgagni 67/a - 50134 Firenze Soluzioni edizione 2010 Esercizio 1 Siano a, b e c tre numeri interi dispari. Dimostrare che l equazione ax 2

Dettagli

Istituzioni di Matematiche (V): Seconda Prova Parziale, 13 Gennaio 2015 (versione 1)

Istituzioni di Matematiche (V): Seconda Prova Parziale, 13 Gennaio 2015 (versione 1) Istituzioni di Matematiche (V): Seconda Prova Parziale, 13 Gennaio 015 (versione 1) Nome e Cognome: Numero di matricola: Esercizio 1 Esercizio Esercizio 3 Esercizio 4 Esercizio 5 Totale 4 6 6 8 6 Tutte

Dettagli

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( )( ) ( )( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( )( ) ( )( ) SOLUZIONI II ALLENAMENTO REGIONALE TEMATICO VENERDÌ 4 DICEMBRE 08 Quesito Siano due numeri interi primi tra loro tali che quanto vale? Sviluppando l espressione si ottiene quindi e e la soluzione è Quesito

Dettagli

Complementi di algebra

Complementi di algebra Complementi di algebra Equazioni di grado superiore al secondo Come per le equazioni di grado, esistono formule risolutive anche per le equazioni di e grado ma non le studieremo perché sono troppo complesse,mentre

Dettagli

Introduciamo ora un altro campo, formato da un numero finito di elementi; il campo delle classi resto modulo n, con n numero primo.

Introduciamo ora un altro campo, formato da un numero finito di elementi; il campo delle classi resto modulo n, con n numero primo. Capitolo 3 Il campo Z n 31 Introduzione Introduciamo ora un altro campo, formato da un numero finito di elementi; il campo delle classi resto modulo n, con n numero primo 32 Le classi resto Definizione

Dettagli

Liceo Scientifico Statale G. Stampacchia Tricase

Liceo Scientifico Statale G. Stampacchia Tricase Liceo Scientifico Statale G. Stampacchia Tricase Oggetto: Test di ingresso Conoscenze e competenze sul programma previsto nella classe seconda del Liceo Scientifico. Algebra Q) Ordinare in forma crescente

Dettagli

OLIMATO. OliMaTo1. Soluzioni

OLIMATO. OliMaTo1. Soluzioni OliMaTo1 Soluzioni ESERCIZIO 1: I punti N ed M si trovano rispettivamente su I lati CD e BC di un quadrato ABCD. Il perimetro del triangolo MCN è uguale al doppio della lunghezza del lato del quadrato

Dettagli

Verifica di Matematica sommativa durata della prova : 2 ore. Punt. attr. Problema

Verifica di Matematica sommativa durata della prova : 2 ore. Punt. attr. Problema Liceo Scientifico Statale M. Curie Classe D aprile Verifica di Matematica sommativa durata della prova : ore Nome Cognome Voto N.B. Il punteggio massimo viene attribuito in base alla correttezza e alla

Dettagli

Parte III. Incontro del 26 gennaio 2012

Parte III. Incontro del 26 gennaio 2012 Parte III Incontro del 6 gennaio 01 17 Alcuni esercizi Esercizio (Giochi di Archimede 011). Un canguro e una rana si trovano inizialmente sullo stesso vertice di un poligono regolare di 41 lati, e cominciano

Dettagli

Progetto Matematica in Rete - Geometria euclidea - La similitudine. La similitudine. Figure simili

Progetto Matematica in Rete - Geometria euclidea - La similitudine. La similitudine. Figure simili Figure simili Se consideriamo due triangoli equilateri di lato diverso, due quadrati di lato diverso intuitivamente diciamo che hanno la stessa forma. Ma cosa comporta avere la stessa forma? Se osserviamo

Dettagli

L1 L2 L3 L4. Esercizio. Infatti, osserviamo che p non può essere un multiplo di 3 perché è primo. Pertanto, abbiamo solo due casi

L1 L2 L3 L4. Esercizio. Infatti, osserviamo che p non può essere un multiplo di 3 perché è primo. Pertanto, abbiamo solo due casi Sia p 5 un numero primo. Allora, p è sempre divisibile per 4. Scriviamo p (p ) (p + ). Ora, p 5 è primo e, quindi, dispari. Dunque, p e p + sono entrambi pari. Facciamo vedere anche che uno tra p e p +

Dettagli

8 a GARA MATEMATICA CITTÀ DI PADOVA 27 MARZO 1993 SOLUZIONI

8 a GARA MATEMATICA CITTÀ DI PADOVA 27 MARZO 1993 SOLUZIONI 8 a GARA MATEMATICA CITTÀ DI PADOVA 7 MARZO 1993 SOLUZIONI 1.- Consideriamo gli ultimi elementi u n di ciascuna riga : se n > 5, u n = u n-1 + n u 5 = 5, u 6 = 5 + 6, u 7 = 11 + 7,, u n = 5 + 6 + 7 + +

Dettagli

Verifica di matematica, classe II liceo scientifico sistemi, problemi con sistemi, radicali, equiestensione. risolvere con il metodo di Cramer

Verifica di matematica, classe II liceo scientifico sistemi, problemi con sistemi, radicali, equiestensione. risolvere con il metodo di Cramer Verifica di matematica, classe II liceo scientifico sistemi, problemi con sistemi, radicali, equiestensione 1. 5 x y x 3y 1 risolvere con il metodo di Cramer. x 1 3 y y x 3 risolvere con il metodo di riduzione

Dettagli

GEOMETRIA EUCLIDEA I teoremi di Euclide e Pitagora

GEOMETRIA EUCLIDEA I teoremi di Euclide e Pitagora GEOMETRIA EUCLIDEA I teoremi di Euclide e Pitagora Vediamo tre importanti teoremi che riguardano i triangoli rettangoli e che si dimostrano utilizzando l equivalenza delle superfici piane. Primo teorema

Dettagli

INCONTRI OLIMPICI Gara a Squadre per Insegnanti. Montecatini Terme, 20 ottobre 2014

INCONTRI OLIMPICI Gara a Squadre per Insegnanti. Montecatini Terme, 20 ottobre 2014 INCONTRI OLIMPICI 014 Gara a Squadre per Insegnanti Montecatini Terme, 0 ottobre 014 Soluzioni scritte da Rosanna Tupitti ed Ercole Suppa Durata: 90 minuti 1. Il numero 006, aumentato della somma delle

Dettagli

CP210 Introduzione alla Probabilità: Esame 2

CP210 Introduzione alla Probabilità: Esame 2 Dipartimento di Matematica, Roma Tre Pietro Caputo 2018-19, II semestre 9 luglio, 2019 CP210 Introduzione alla Probabilità: Esame 2 Cognome Nome Matricola Firma Nota: 1. L unica cosa che si può usare durante

Dettagli

SOLUZIONI. questa è l area della parte restante : è più grande o più piccola dell area del cerchio?

SOLUZIONI. questa è l area della parte restante : è più grande o più piccola dell area del cerchio? IV a GARA MATEMATICA CITTÀ DI PADOVA 15 aprile 1989 SOLUZIONI 1.- Indichiamo con l il lato del triangolo rettangolo isoscele : Area del triangolo = Area del cerchio inscritto = che si ottiene dalla doppia

Dettagli

4. Determina le misure dei tre lati x, y, z di un triangolo sapendo che il perimetro è 53cm, inoltre

4. Determina le misure dei tre lati x, y, z di un triangolo sapendo che il perimetro è 53cm, inoltre www.matematicamente.it Verifica II liceo scientifico: Sistemi, Radicali, Equiestensione 1 Verifica di matematica, classe II liceo scientifico Sistemi, problemi con sistemi, radicali, equiestensione 1.

Dettagli

3x + x 5x = x = = 4 + 3x ; che equivale, moltiplicando entrambi i membri per 2, a risolvere. 4x + 6 x = 4 + 3x.

3x + x 5x = x = = 4 + 3x ; che equivale, moltiplicando entrambi i membri per 2, a risolvere. 4x + 6 x = 4 + 3x. 1 Soluzioni esercizi 1.1 Equazioni di 1 e grado Risolvere le seguenti equazioni di 1 grado: 1) 3x 5x = 1 x. Abbiamo: 3x + x 5x = 1 + x = 1 + 4 x = 5. ) x + 3 x = + 3x. Facciamo il m.c.m. : 4x + 6 x = 4

Dettagli

Kangourou Italia Gara del 18 marzo 2010 Categoria Student Per studenti di quarta o quinta della secondaria di secondo grado

Kangourou Italia Gara del 18 marzo 2010 Categoria Student Per studenti di quarta o quinta della secondaria di secondo grado Testi_10Mat.qxp 15-02-2010 7:17 Pagina 28 Kangourou Italia Gara del 18 marzo 2010 Categoria Per studenti di quarta o quinta della secondaria di secondo grado I quesiti dal N. 1 al N. 10 valgono punti ciascuno

Dettagli

nota 1. Aritmetica sui numeri interi.

nota 1. Aritmetica sui numeri interi. nota 1. Aritmetica sui numeri interi. Numeri interi. Numeri primi. L algoritmo di Euclide per il calcolo del mcd. Equazioni diofantee di primo grado. Congruenze. Il Teorema Cinese del Resto. 1 0. Numeri

Dettagli

Gara Matematica. Dipartimento di Matematica Ulisse Dini. Viale Morgagni 67/a Firenze. Soluzioni edizione 2011

Gara Matematica. Dipartimento di Matematica Ulisse Dini. Viale Morgagni 67/a Firenze. Soluzioni edizione 2011 Gara Matematica Dipartimento di Matematica Ulisse Dini Viale Morgagni 67/a - 50134 Firenze Soluzioni edizione 011 Esercizio 1. Determinare tutti gli interi positivi non nulli n che sono uguali alla somma

Dettagli

Problemi sui teoremi di Euclide e Pitagora

Problemi sui teoremi di Euclide e Pitagora Appunti di Matematica GEOMETRIA EUCLIDEA Problemi sui teoremi di Euclide e Pitagora Utilizzando le misure di segmenti e superfici si possono riscrivere i teoremi di Pitagora ed Euclide per il triangolo

Dettagli

Soluzioni dei quesiti della maturità scientifica A.S. 2009/2010

Soluzioni dei quesiti della maturità scientifica A.S. 2009/2010 Soluzioni dei quesiti della maturità scientifica AS 009/010 Nicola Gigli Sun-Ra Mosconi giugno 010 Quesito 1 Un generico polinomio di grado n si può scrivere nella forma p(x) a 0 + a 1 x + + a n x n dove

Dettagli

Esercizi di Algebra. 25 marzo Soluzione Si tratta di trovare una soluzione del sistema di equazioni congruenziali

Esercizi di Algebra. 25 marzo Soluzione Si tratta di trovare una soluzione del sistema di equazioni congruenziali Esercizi di Algebra 25 marzo 2010 1. Soluzione Si tratta di trovare una soluzione del sistema di equazioni congruenziali X 2 mod 5 X 3 mod 7 X 7 mod 9, che sia prossima a 1000. Dalla prima equazione abbiamo

Dettagli

Parte II. Incontro del 20 dicembre 2011

Parte II. Incontro del 20 dicembre 2011 Parte II Incontro del 20 dicembre 2011 12 I quadrati modulo 4 Cerchiamo di determinare i possibili resti nella divisione per 4 del quadrato x 2 di un numero intero x. Se x = 2h è un numero pari allora

Dettagli

nota 1. Aritmetica sui numeri interi.

nota 1. Aritmetica sui numeri interi. nota 1. Aritmetica sui numeri interi. Numeri interi. Numeri primi. L algoritmo di Euclide per il calcolo del mcd. Equazioni diofantee di primo grado. Congruenze. Il Teorema Cinese del Resto. 1 0. Numeri

Dettagli

Definizione. Siano a, b Z. Si dice che a divide b se esiste un intero c Z tale che. b = ac.

Definizione. Siano a, b Z. Si dice che a divide b se esiste un intero c Z tale che. b = ac. 0. Numeri interi. Sia Z = {..., 3, 2, 1, 0, 1, 2, 3,...} l insieme dei numeri interi e sia N = {1, 2, 3,...} il sottoinsieme dei numeri interi positivi. Sappiamo bene come addizionare, sottrarre e moltiplicare

Dettagli

Problemi di massimo e minimo

Problemi di massimo e minimo Problemi di massimo e minimo Supponiamo di avere una funzione continua in Per il teorema di Weierstrass esistono il massimo assoluto M e il minimo assoluto m I problemi di massimo e minimo sono problemi

Dettagli

Stabilire se il punto di coordinate (1,1) appartiene alla circonferenza centrata nell origine e di raggio 1.

Stabilire se il punto di coordinate (1,1) appartiene alla circonferenza centrata nell origine e di raggio 1. Definizione di circonferenza e cerchio. Equazione della circonferenza centrata in O e di raggio R. Esercizi. La circonferenza e il cerchio Definizioni: dato un punto C nel piano cartesiano e dato un numero

Dettagli

IGiochidiArchimede-SoluzioniTriennio 23 novembre 2005

IGiochidiArchimede-SoluzioniTriennio 23 novembre 2005 PROGETTO OLIMPIADI DI MATEMATICA U.M.I. UNIONE MATEMATICA ITALIANA SCUOLA NORMALE SUPERIORE IGiochidiArchimede-SoluzioniTriennio novembre 005 1 Griglia delle risposte corrette Risoluzione dei problemi

Dettagli

Soluzioni. Trieste, 20 Dicembre 2018

Soluzioni. Trieste, 20 Dicembre 2018 Soluzioni Trieste, 0 Dicembre 018 Esercizio 1. Se 1998 è un divisore di n! devono esserlo anche tutti i suoi fattori primi. Dal momento che 1998 = 3 3 37, si deduce che anche 37 deve dividere n!, quindi

Dettagli

Categoria Student Per studenti del quarto e quinto anno della scuola media superiore. I quesiti dal N.1 al N. 10 valgono 3 punti ciascuno

Categoria Student Per studenti del quarto e quinto anno della scuola media superiore. I quesiti dal N.1 al N. 10 valgono 3 punti ciascuno Categoria Student Per studenti del quarto e quinto anno della scuola media superiore I quesiti dal N. al N. 0 valgono 3 punti ciascuno. Risposta B) Per soddisfare le condizioni sulle righe, la coppia di

Dettagli

Prima prova in Itinere Ist. Mat. 1, Prima parte, Tema ALFA COGNOME: NOME: MATR.:

Prima prova in Itinere Ist. Mat. 1, Prima parte, Tema ALFA COGNOME: NOME: MATR.: Prima prova in Itinere Ist. Mat. 1, Prima parte, Tema ALFA 1) L applicazione lineare f : R 3 R 2 data da f(x, y, z) = (3x + 2y + z, kx + 2y + kz) è suriettiva A: sempre; B: mai; C: per k 1 D: per k 2;

Dettagli

LA DISTANZA DA CENTRO RAPPRESENTA IL RAGGIO CISCUNA DELLE DUE PARTI IN CUI E DIVISA UNA CIRCONFERENZA SI CHIAMA ARCO

LA DISTANZA DA CENTRO RAPPRESENTA IL RAGGIO CISCUNA DELLE DUE PARTI IN CUI E DIVISA UNA CIRCONFERENZA SI CHIAMA ARCO LA CIRCONFERENZA LA CIRCONFERENZA E IL LUOGO DEI PUNTI EQUIDISTANTI DA UN PUNTO FISSO DETTO CENTRO LA DISTANZA DA CENTRO RAPPRESENTA IL RAGGIO UN SEGMENTO CHE CONGIUNGE DUE PUNTI DELLA CIRCONFERENZA SI

Dettagli

Kangourou della Matematica 2019 Coppa Junior a squadre Semifinale turno A Cervia, 6 maggio Quesiti

Kangourou della Matematica 2019 Coppa Junior a squadre Semifinale turno A Cervia, 6 maggio Quesiti Kangourou della Matematica 2019 Coppa Junior a squadre Semifinale turno A Cervia, 6 maggio 2019 Quesiti 1. Ai minimi termini Riducete ai minimi termini la frazione (1 + 3 + 5 + + 51) / (4 + 6 + 8 + + 54)

Dettagli

Due numeri naturali non nulli a, b tali che MCD(a,b) = 1 si dicono coprimi o relativamente primi.

Due numeri naturali non nulli a, b tali che MCD(a,b) = 1 si dicono coprimi o relativamente primi. MASSIMO COMUNE DIVISORE E ALGORITMO DI EUCLIDE L algoritmo di Euclide permette di calcolare il massimo comun divisore tra due numeri, anche se questi sono molto grandi, senza aver bisogno di fattorizzarli

Dettagli

GARA DI MATEMATICA ON-LINE (17/10/2016) 1428+x a 1428

GARA DI MATEMATICA ON-LINE (17/10/2016) 1428+x a 1428 GR DI MTEMTIC ON-LINE (17/10/016) 1 UN PROBLEM PER BTTIST [9600] Se le ruote fossero state solo quattro, ciascuna avrebbe percorso 1000 km per un totale di 48000 km Dividendo questo totale per ciascuna

Dettagli

Allenamenti EGMO 2018 Teoria dei numeri

Allenamenti EGMO 2018 Teoria dei numeri Allenamenti EGMO 2018 Teoria dei numeri 1.1 Divisibilità Ricordiamo che, dati due numeri interi a, m, esistono unici q ed r interi con 0 r < m, tali che a = mq + r. Chiamiamo r il resto della divisione

Dettagli

IGiochidiArchimede--Soluzionibiennio

IGiochidiArchimede--Soluzionibiennio PROGETTO OLIMPIADI DI MATEMATICA U.M.I. UNIONE MATEMATICA ITALIANA MINISTERO DELLA PUBBLICA ISTRUZIONE SCUOLA NORMALE SUPERIORE IGiochidiArchimede--Soluzionibiennio novembre 011 Griglia delle risposte

Dettagli

Esercizi geometria analitica nello spazio. Corso di Laurea in Informatica. Docente: Andrea Loi. Correzione

Esercizi geometria analitica nello spazio. Corso di Laurea in Informatica. Docente: Andrea Loi. Correzione Esercizi geometria analitica nello spazio Corso di Laurea in Informatica Docente: Andrea Loi Correzione 1. Denotiamo con P 1, P 13, P 3, P 1, P, P 3, P i simmetrici di un punto P rispetto ai piani coordinati

Dettagli

PNI 2004 QUESITO 1. Il grado sessagesimale è definito come la novantesima parte dell angolo retto.

PNI 2004 QUESITO 1. Il grado sessagesimale è definito come la novantesima parte dell angolo retto. www.matefilia.it PNI 2004 QUEITO 1 Il grado sessagesimale è definito come la novantesima parte dell angolo retto. Il grado centesimale è definito come la centesima parte dell angolo retto. La misura in

Dettagli

Esercizi svolti di aritmetica

Esercizi svolti di aritmetica 1 Liceo Carducci Volterra - Classi 1A, 1B Scientifico - Francesco Daddi - 15 gennaio 29 Esercizi svolti di aritmetica Esercizio 1. Dimostrare che il quadrato di un numero intero che finisce per 25 finisce

Dettagli

La prima è la parte positiva (al di sopra dell asse y) della circonferenza di equazione. e raggio r = 2 ; la seconda è una retta (vedi figura).

La prima è la parte positiva (al di sopra dell asse y) della circonferenza di equazione. e raggio r = 2 ; la seconda è una retta (vedi figura). Macerata 3 febbraio 0 classe 3M COMPITO DI MATEMATICA SOLUZIONE QUESITO a) Rappresenta graficamente la curva descritta dalla seguente equazione: y y + + = 0 Per la presenza del valore assoluto dobbiamo

Dettagli

PROBLEMI DI SECONDO GRADO: ESEMPI

PROBLEMI DI SECONDO GRADO: ESEMPI PROBLEMI DI SECONDO GRADO: ESEMPI Problema 1 Sommando al triplo di un numero intero il quadrato del suo consecutivo si ottiene il numero 9. Qual è il numero? Il campo di accettabilità delle soluzioni è,

Dettagli

GARA DI MATEMATICA ON-LINE (9/11/2015)

GARA DI MATEMATICA ON-LINE (9/11/2015) GR I MTEMTI ON-LINE (9//0) LE ZUHE I HLLOWEEN [] Riscriviamo la prima equazione costruendo a secondo termine un quadrato di binomio: c a b c a ab b ab c ( a b) ab alla prima equazione ricaviamo a b c :

Dettagli

Scomposizione di un numero primo come somma di due quadrati

Scomposizione di un numero primo come somma di due quadrati Scomposizione di un numero primo come somma di due quadrati M. Alessandra De Angelis Relatore : Prof. Andrea Loi Università degli studi di Cagliari Corso di laurea triennale in Matematica 31 Marzo 2015

Dettagli

Scuola Normale Superiore, ammissione al I anno del corso ordinario Prova di Matematica per Matematica, Fisica, Informatica 27 agosto 2015

Scuola Normale Superiore, ammissione al I anno del corso ordinario Prova di Matematica per Matematica, Fisica, Informatica 27 agosto 2015 Scuola Normale Superiore ammissione al I anno del corso ordinario Prova di Matematica per Matematica Fisica Informatica 7 agosto 015 Esercizio 1. Siano I J insiemi non vuoti con un numero finito di elementi

Dettagli

LIMITI - ESERCIZI SVOLTI

LIMITI - ESERCIZI SVOLTI LIMITI - ESERCIZI SVOLTI ) Verificare mediante la definizione di ite che a) 3 5) = b) = + ) c) 3n n + n+ = + d) 3+ = 3. ) Calcolare utilizzando i teoremi sull algebra dei iti a) 3 + ) b) + c) 0 + d) ±

Dettagli

www.matematicamente.it Verifica classe II liceo scientifico: equazioni, disequazioni, problemi di 2 grado 1

www.matematicamente.it Verifica classe II liceo scientifico: equazioni, disequazioni, problemi di 2 grado 1 www.matematicamente.it Verifica classe II liceo scientifico: equazioni, disequazioni, problemi di grado 1 Verifica di matematica, classe II liceo scientifico Equazioni di secondo grado, equazioni frazionarie,

Dettagli

IGiochidiArchimede--Soluzionitriennio

IGiochidiArchimede--Soluzionitriennio PROGETTO OLIMPIADI DI MATEMATICA U.M.I. UNIONE MATEMATICA ITALIANA MINISTERO DELLA PUBBLICA ISTRUZIONE SCUOLA NORMALE SUPERIORE IGiochidiArchimede--Soluzionitriennio 19 novembre 2008 Griglia delle risposte

Dettagli

Lezione 6 Richiami di Geometria Analitica

Lezione 6 Richiami di Geometria Analitica 1 Piano cartesiano Lezione 6 Richiami di Geometria Analitica Consideriamo nel piano due rette perpendicolari che si intersecano in un punto O Consideriamo ciascuna di queste rette come retta orientata

Dettagli

Stage di preparazione olimpica - Lucca

Stage di preparazione olimpica - Lucca Stage di preparazione olimpica - Lucca Esercizi di Aritmetica - docente Luca Ghidelli - luca.ghidelli@sns.it 18 gennaio 2013 1 Diofantea risolubile Trovare tutti gli interi (relativi) x e y tali che xy

Dettagli

Disequazioni - ulteriori esercizi proposti 1

Disequazioni - ulteriori esercizi proposti 1 Disequazioni - ulteriori esercizi proposti Trovare le soluzioni delle seguenti disequazioni o sistemi di disequazioni:. 5 4 >. 4. < 4. 4 9 5. 9 > 6. > 7. < 8. 5 4 9. > > 4. < 4. < > 9 4 Non esitate a comunicarmi

Dettagli

Problemi di massimo e minimo

Problemi di massimo e minimo Problemi di massimo e minimo Supponiamo di avere una funzione continua in. Per il teorema di Weierstrass esistono il massimo assoluto M e il minimo assoluto m. I problemi di massimo e minimo sono problemi

Dettagli

Soluzioni Gara di matematica (28/03/2018) Memorial Vincenzo Spadaro

Soluzioni Gara di matematica (28/03/2018) Memorial Vincenzo Spadaro Soluzioni Gara di matematica (8/03/018) Memorial Vincenzo Spadaro 1. STUZZICHINO DI GEOMETRIA SOLIDA Le facce di un parallelepipedo rettangolo misurano 4, 3 e 48 cm. Qual è il suo volume in cm 3? [19]

Dettagli