Lezione 14 Maggio 17

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Lezione 14 Maggio 17"

Transcript

1 PSC: Progettazione di sistemi di controllo III Trim Lezione 14 Maggio 17 Docente: Luca Schenato Stesori: Comin, Dal Bianco,Fabris, Parmeggiani 14.1 Controllo ottimo LQG Consideriamo il sistema lineare: x k+1 = Ax k + Bu k + w k y k = Cx k + v k (14.1) dove w k N(0, Q) e v k N(0, R) sono rispettivamente gli errori di modello e di uscita. Sia inoltre [ T 1 J T (x 0, u) = E (x T k W x k + u T k Uu k ) + x T T W T x T (14.2) k=0 la funzione costo, con W, U, W T matrici quadrate semidenite positive. Il problema consiste nella scelta degli ingressi u k per k = 0,..., T 1 che rendono minimo il funzionale J T, ovvero: J T (x 0 ) = min u k J T (x 0, u) Denendo la nuova funzione vale la relazione V k (x k ) min u E[x T k W x k + u T k Uu k + V k+1(x k+1 ) U k+1, Y k J T (x) = V 0 (x k ) Usando l'operatore duale per il tro Riccati S k denita in precedenza S k = Φ d (S k+1 ) si ottiene in cui si pone c k è uguale a V k (x k ) = E [ x T k S k x k U k 1, Y k + ck S T = W T, c T = 0 c k = c k+1 + tr (QS k+1 ) + tr ( P k k (A T S k A + W S k+1 ) ) 14-1

2 Sostituendo nella funzione costo si ricava: JT (x 0 ) = E [ T 1 x T 0 S 0 x 0 y 0 + tr (QS k+1 ) + tr ( P k k (A T S k A + W S k+1 ) ) L'equazione del controllore risulta u k = L kˆx k k dove ˆx k k è la stima del ltro di Kalman ˆx k k = Aˆx k 1 k 1 + Bu k 1 + K k k (y k CAˆx k 1 k 1 ) k=0 con K k k = f(p k k 1 ) P k+1 k = φ(p k k 1 ) Figura Si consideri ora il caso di avere un orizzonte. Per T : J (x 1 0 ) = lim T T J T (x 0 ) S k < M, P k k < Se S k S e se P k k P, la funzione costo esiste e vale J (x 0 ) 1 T E [ x T 0 S 0 x 0 y 0 + tr(qs ) + tr(p (A T S A + W S )) da cui visto che il primo termine tende a zero per T J (x 0 ) +tr(qs ) + tr(p (A T S A + W S )) 14-2

3 ovvero L k L LQ, K k k K klm Il regolatore LQG allora diventa tempo invariante ed è paragonabile a una funzione di trasferimento. Il prossimo passo è chiedersi cosa succede se non c'è un canale ideale tra l'uscita del processo y e l'ingresso del regolatore, per esempio se è presente una rete di comunicazione che introduce perdite di pacchetti e ritardi aleatori. u k Figura La funzione costo diventa: [ Vk (x k ) = min E x T k W x k + u T k Uu k + Vk+1(x k+1 ) U k 1, Ỹ k t, γ k In questa congurazione vale ancora il principio di separazione fra controllore e stimatore:la prestazione sicuramente degrada e il ltro di Kalman avrà memoria nita e sarà tempo variante anche a orizzonte innito. Ci mettiamo ora nel caso in cui ci sia una rete di comunicazioni anche tra il controllore e l'attuatore: 14-3

4 Figura Consideriamo per ora solo il caso con perdita di pacchetti deniamo { 1 se il pacchetto arriva ν k = 0 se il pacchetto non arriva Ovviamente se ν k = 1, u a k = uc k, ovvero l'ingresso all'attuatore è quello calcolato dal controllore. Se ν k = 0 ci sono varie possibilità di scelta: u a k = 0: l'attuatore fornisce un ingresso al processo nullo; u a k 1: viene mantenuto l'ingresso precedente; u a k = pua k 1 + (1 p)0, con p [0, 1: l'ingresso al processo è una combinazione lineare dei due casi precedenti. Esistono inoltre alcune strategie alternative per ovviare al problema: 1. Spostare il regolatore all'attuatore (non sempre possibile) 2. Implementare il predittore u c k all'attuatore e porre quindi u a k = ûc k k (congurazione particolarmente dicile e onerosa) 3. Mandare dal controllore un pacchetto con: u c k k, uc k+1 k,..., uc k+t k, con T orizzonte di predizione (l'attuatore utilizza poi l'ingresso predetto dal controllore all'istante corrispondente se il pacchetto viene perso) 14-4

5 Caso 1 É possibile usare una architettura del tipo di Figura 11.4 Figura dove c'è la possibilità di costruire il regolatore ottimo data l'architettura utilizzata. La soluzione migliore resta comunque quella di mandare le misure in uscita dal processo direttamente alla rete di comunicazione. Se vengono mandate invece le stime, riferendosi alla Figura 11.5 nel blocchetto Kalman tempo-variante con memoria nita l'equazione diventa: Figura ˆx a k k = A k hˆx s h h + A k h 1 Bu a h + A k h 2 Bu a h Bu a k 1 Fino all'istante h-esimo si hanno a disposizione le misure, che vengono quindi considerate come condizioni iniziali per la stima al sensore. Da queste si ricalcola la stima attuale ottima all'attuatore partendo da ˆx s h h e utilizzando gli ingressi no all'istante precedente. 14-5

6 Caso 2 In questo caso il problema è piuttosto complicato: non si riescono a progettare le matrici A, B, C, D del caso lineare tempo-invariante; per esempio c'è aleatorietà anche solo nella dimensione della matrice A. Caso 3 In questo caso inne non c'è nulla da progettare, in quanto l'architettura stessa fornisce già l'informazione necessaria su come adattare l'orizzonte temporale di predizione. Si suppone ora il caso semplice di realizzazione di Figura 11.6 Le stime sono date da Figura ˆx k k = E [x k y k,..., y 0, γ k,, γ 0, ν k 1,, ν 0 = Aˆx k 1 k 1 + Bu a k 1 + K k k (y k CAˆx k 1 k 1 ) Le matrici di varianza di errore di predizione P k+1 k e di aggiornamento P k k non cambiano. Se si ha a disposizione la sequenza ν k, si conosce esattamente l'ingresso al processo all'istante precedente k 1. Quest' informazione viene quindi utilizzata come ingresso al regolatore che è costituito da un ltro di Kalman tempo variante e il controllore ottimo LQ e la stima all'istante k risulta ˆx k k = Aˆx k 1 k 1 + Bν k 1 u c k 1 + K k k (y k CAˆx k 1 k 1 ) 14-6

7 Per il controllo LQG vale ancora [ T J T = E x T k W k x k + u a kt Uu a k k=0 con u k = f k (y k, y k 1,..., y 0, ν k 1,..., ν 0, u c k 1,..., uc 0). Vale ancora il principio di separazione, con l'unica dierenza che come si vede da Figura 11.7 Figura il vettore L dei guadagni del controllore è dato dalla funzione S = φ d, ν (S ), con ν = P[ν k = 1 e φ d, ν duale di φ λ. Nel caso non ci sia informazione sulla sequenza di ingressi no all'istante k 1, la cosa migliore da fare è realizzare lo stimatore come ˆx k k = Aˆx k 1 k 1 + B νu c k 1 + K k k (y k CAˆx k 1 k 1 ) ˆx k+1 k = Aˆx k k + νbu c k e k+1 k = x k+1 ˆx k+1 k = Ae k k + (ν k ν)bu c k + w k P k+1 k = f(p k k, u c k) In questo caso però non vale più il principio di separazione in quanto J T non è più lineare, e l'ottimizzazione di L e K non è più un problema di ottimizzazione convessa. 14-7

Lezione 13 Maggio Ricapitolazione del Controllo Ottimo LQ

Lezione 13 Maggio Ricapitolazione del Controllo Ottimo LQ PSC: Progettazione di sistemi di controllo III rim. 2007 Lezione 13 Maggio 16 Docente: Luca Schenato Stesori: Comin, Dal Bianco,Fabris, Parmeggiani 13.1 Ricapitolazione del Controllo Ottimo LQ Ripassiamo

Dettagli

Si consideri il seguente sistema lineare stocastico:

Si consideri il seguente sistema lineare stocastico: PSC: Progettazione di sistemi di controllo III Trim. 2006 Lezione 7 Maggio 4 Docente: Luca Schenato Stesore: Enrico Magon, Luca Parolini, Michele Nicetto 7.1 Stimatori in NCS soggetti a perdita di pacchetti

Dettagli

PSC: Progettazione di sistemi di controllo III Trim Lezione 4 Aprile 26

PSC: Progettazione di sistemi di controllo III Trim Lezione 4 Aprile 26 PSC: Progettazione di sistemi di controllo III Trim. 2007 Lezione 4 Aprile 26 Docente: Luca Schenato Stesori: L. Schenato 4.1 Denizioni e proposizioni generali Si consideri lo spazio delle matrici semidenite

Dettagli

Lezione 2 Aprile 19, Il filtro di Kalman: derivazione delle equazioni

Lezione 2 Aprile 19, Il filtro di Kalman: derivazione delle equazioni PSC: Progettazione di sistemi di controllo III Trim. 2007 Lezione 2 Aprile 19, 2007 Docente: Luca Schenato Stesori: Schenato 2.1 Il filtro di Kalman: derivazione delle equazioni Si consideri il modello

Dettagli

Lezione 6 3 Maggio Stimatori con guadagno costante soggetti a perdita di pacchetti

Lezione 6 3 Maggio Stimatori con guadagno costante soggetti a perdita di pacchetti PSC: Progettazione di sistemi di controllo III Trim. 2007 Lezione 6 3 Maggio 2007 Docente: Luca Schenato Stesori: L. Schenato 6.1 Stimatori con guadagno costante soggetti a perdita di pacchetti Si consideri

Dettagli

Lezione Febbraio Principio del modello interno (Generalizzazione regolazione integrale)

Lezione Febbraio Principio del modello interno (Generalizzazione regolazione integrale) LabCont1: Laboratorio di Controlli 1 II Trim 2007 Lezione 12 22 Febbraio Docente: Luca Schenato Stesori: Giulio Zuita Bottegal, Enrico Bonobo Lovisari, Riccardo Kako Fabbris 121 Principio del modello interno

Dettagli

Lezione 7 29 Ottobre

Lezione 7 29 Ottobre PSC: Progettazione di sistemi di controllo a.a. 2010-2011 Lezione 7 29 Ottobre Docente: Luca Schenato Stesori: L. Schenato 7.1 Definizioni e proposizioni generali Si consideri lo spazio delle matrici semidefinite

Dettagli

IDENTIFICAZIONE dei MODELLI e ANALISI dei DATI. Lezione 41: Filtro di Kalman - soluzione. Un problema di ottimo

IDENTIFICAZIONE dei MODELLI e ANALISI dei DATI. Lezione 41: Filtro di Kalman - soluzione. Un problema di ottimo IDENTIFICAZIONE dei MODELLI e ANALISI dei DATI Lezione 41: Filtro di Kalman - soluzione Soluzione Equazione di Riccati Filtro di Kalman e ricostruzione dello stato Un problema di ottimo 41-1 Soluzione

Dettagli

Lezione Novembre 2010

Lezione Novembre 2010 PSC: Progettazione di sistemi di controllo aa 2010-2011 Lezione 14 16 Novembre 2010 Docente: Luca Schenato Stesori: Guido Albertin, Elena Toffoli, Giancarlo Baldan 141 Algoritmi di Consensus Con il termine

Dettagli

PSC: Progettazione di sistemi di controllo III Trim Lezione 23 4 Giugno. Stesori: Bertinato Marco, Ortolan Giulia, Zambotto Patrizio

PSC: Progettazione di sistemi di controllo III Trim Lezione 23 4 Giugno. Stesori: Bertinato Marco, Ortolan Giulia, Zambotto Patrizio PSC: Progettazione di sistemi di controllo III Trim. 2007 Lezione 23 4 Giugno Docente: Luca Schenato Stesori: Bertinato Marco, Ortolan Giulia, Zambotto Patrizio 23.1 Problema del consensus: analisi worst-case

Dettagli

TEORIA DEI SISTEMI E DEL CONTROLLO LM in Ingegneria Informatica e Ingegneria Elettronica

TEORIA DEI SISTEMI E DEL CONTROLLO LM in Ingegneria Informatica e Ingegneria Elettronica TEORIA DEI SISTEMI E DEL CONTROLLO LM in Ingegneria Informatica e Ingegneria Elettronica http://www.dii.unimore.it/~lbiagiotti/teoriasistemicontrollo.html Stima dello stato in presenza di disturbi: il

Dettagli

Lezione 16 7 Marzo Modello quantizzatore. LabCont1: Laboratorio di Controlli 1 II Trim Docente: Luca Schenato

Lezione 16 7 Marzo Modello quantizzatore. LabCont1: Laboratorio di Controlli 1 II Trim Docente: Luca Schenato LabCont1: Laboratorio di Controlli 1 II Trim. 2007 Lezione 16 7 Marzo Docente: Luca Schenato Stesori: C. Trinca, G. Gropuzzo, L. Antoniazzi, M. Favaro 16.1 Modello quantizzatore Come è ben noto il quantizzatore

Dettagli

ESAME di OTTIMIZZAZIONE Corso di Laurea Magistrale in Ingegneria Gestionale 1 o anno

ESAME di OTTIMIZZAZIONE Corso di Laurea Magistrale in Ingegneria Gestionale 1 o anno SIMULAZIONE ESAME di OTTIMIZZAZIONE 27 Gennaio 21 ESAME di OTTIMIZZAZIONE Corso di Laurea Magistrale in Ingegneria Gestionale 1 o anno Cognome : Nome : Esercizio 1. Si consideri il seguente problema: min

Dettagli

Slide del corso di. Controllo digitale

Slide del corso di. Controllo digitale Slide del corso di Controllo digitale Corso di Laurea in Ingegneria Informatica e dell Informazione Università di Siena, Dip. Ing. dell Informazione e Sc. Matematiche Parte IX Elementi di controllo ottimo

Dettagli

Cenni sul filtro di Kalman e il Recupero di Robustezza con la Tecnica LQG/LTR. Docente Prof. Francesco Amato

Cenni sul filtro di Kalman e il Recupero di Robustezza con la Tecnica LQG/LTR. Docente Prof. Francesco Amato Cenni sul filtro di Kalman e il Recupero di Robustezza con la ecnica LQG/LR Docente Prof. Francesco Amato Ingegneria dell'automazione Corso di Sistemi di Controllo Multivariabile - Prof. F. Amato Versione.

Dettagli

RICERCA OPERATIVA (9 cfu)

RICERCA OPERATIVA (9 cfu) a PROVA scritta di RICERCA OPERATIVA (9 cfu) gennaio Cognome Nome Ai fini della pubblicazione (cartacea e elettronica) del risultato ottenuto nella prova di esame, autorizzo al trattamento dei miei dati

Dettagli

ANALISI DELLE SERIE STORICHE

ANALISI DELLE SERIE STORICHE ANALISI DELLE SERIE STORICHE De Iaco S. s.deiaco@economia.unile.it UNIVERSITÀ del SALENTO DIP.TO DI SCIENZE ECONOMICHE E MATEMATICO-STATISTICHE FACOLTÀ DI ECONOMIA 24 settembre 2012 Indice 1 Funzione di

Dettagli

Esercizi di ottimizzazione vincolata

Esercizi di ottimizzazione vincolata Esercizi di ottimizzazione vincolata A. Agnetis, P. Detti Esercizi svolti 1 Dato il seguente problema di ottimizzazione vincolata max x 1 + x 2 x 1 4x 2 3 x 1 + x 2 2 0 x 1 0 studiare l esistenza di punti

Dettagli

Il filtro di Kalman stazionario e il regolatore LQG

Il filtro di Kalman stazionario e il regolatore LQG Il filtro di stazionario e il regolatore LQG P. Valigi Ottimizzazione e Controllo 30 Aprile 2014 L estensione di KF al caso stazionario/intervallo infinito Nell estensione del filtro di ad intervallo infinito

Dettagli

Teoria dei sistemi di controllo

Teoria dei sistemi di controllo di controllo Sommario Si vuole trattare la teoria dei sistemi di controllo, partendo dai risultati ricavati dalla trattazione della teoria del controllo ottimo. In più rispetto a prima si estende e si

Dettagli

IDENTIFICAZIONE DEI MODELLI E ANALISI DEI DATI (Prof. S. Bittanti) Ingegneria Informatica 10 CFU. Appello 11 Settembre 2014 Cognome Nome Matricola

IDENTIFICAZIONE DEI MODELLI E ANALISI DEI DATI (Prof. S. Bittanti) Ingegneria Informatica 10 CFU. Appello 11 Settembre 2014 Cognome Nome Matricola IDENTIFICAZIONE DEI MODELLI E ANALISI DEI DATI (Prof. S. Bittanti) Ingegneria Informatica 10 CFU. Appello 11 Settembre 2014 Cognome Nome Matricola......... Verificare che il fascicolo sia costituito da

Dettagli

Smith Predictor POLITECNICO DI BARI INGEGNERIA INFORMATICA L.M. METODI DI CONTROLLO PER I SISTEMI DI ELABORAZIONE E COMUNICAZIONE

Smith Predictor POLITECNICO DI BARI INGEGNERIA INFORMATICA L.M. METODI DI CONTROLLO PER I SISTEMI DI ELABORAZIONE E COMUNICAZIONE POLITECNICO DI BARI INGEGNERIA INFORMATICA L.M. METODI DI CONTROLLO PER I SISTEMI DI ELABORAZIONE E COMUNICAZIONE Smith Predictor A cura di: Angelo Antonio Salatino aas88ie@gmail.com Ultima revisione:

Dettagli

Lezione 5 01 Febbraio. 5.1 Richiami di controlli automatici

Lezione 5 01 Febbraio. 5.1 Richiami di controlli automatici LabCont1: Laboratorio di Controlli 1 II Trim. 2007 Lezione 5 01 Febbraio Docente: Luca Schenato Stesori: Lago Paolo, Maso GIulia, Segato Giordano 5.1 Richiami di controlli automatici 5.1.1 Progettazione

Dettagli

Sistemi Lineari. Andrea Galasso

Sistemi Lineari. Andrea Galasso Sistemi Lineari Andrea Galasso Esercizi svolti Teorema. (Rouché-Capelli. Un sistema lineare Ax = b ammette soluzioni se e solo se il rango della matrice dei coefficienti A è uguale al rango della matrice

Dettagli

Ricerca Operativa a.a : IV appello

Ricerca Operativa a.a : IV appello Ricerca Operativa a.a. 2015-2016: IV appello (Prof. Fasano Giovanni) Università Ca Foscari Venezia - Sede di via Torino 5 settembre 2016 Regole per l esame: la violazione delle seguenti regole comporta

Dettagli

Proposizione 2 Il polinomio minimo di t corrisponde all annullatore minimale di M V.

Proposizione 2 Il polinomio minimo di t corrisponde all annullatore minimale di M V. Fogli NON riletti. Grazie per ogni segnalazione di errori. L esempio qui sviluppato vuole mostrare in concreto il significato dei risultati trattati a lezione e qui velocemente riassunti. Si assume che

Dettagli

Controlli Automatici I

Controlli Automatici I Ingegneria Elettrica Politecnico di Torino Luca Carlone Controlli Automatici I LEZIONE V Sommario LEZIONE V Proprietà strutturali Controllabilità e raggiungibilità Raggiungibilità nei sistemi lineari Forma

Dettagli

Problema 1 Sia data la seguente successione: n 1. i=1. Riscriviamo la successione nel seguente modo

Problema 1 Sia data la seguente successione: n 1. i=1. Riscriviamo la successione nel seguente modo Lezione - Algebra Problema Sia data la seguente successione: n a = 9, a n = 9 + a i a n R n N, n Determinare a 000. i= Riscriviamo la successione nel seguente modo n a n = 9 + a n + a i = 9 + a n + (a

Dettagli

1) Data la seguente istanza di TSP (grafo completo con 5 nodi): c 12 = 52; c 13 = 51; c 14 = 40; c 15 = 53; c 23 = 44;

1) Data la seguente istanza di TSP (grafo completo con 5 nodi): c 12 = 52; c 13 = 51; c 14 = 40; c 15 = 53; c 23 = 44; 1) Data la seguente istanza di TSP (grafo completo con 5 nodi): c 12 = 52; c 13 = 51; c 14 = 40; c 15 = 53; c 23 = 44; c 24 = 15; c 25 = 12; c 34 = 32; c 35 = 55; c 45 = 24 Si calcoli l ottimo duale (formulazione

Dettagli

Introduzione ai filtri digitali

Introduzione ai filtri digitali ARSLAB - Autonomous and Robotic Systems Laboratory Dipartimento di Matematica e Informatica - Università di Catania, Italy santoro@dmi.unict.it Programmazione Sistemi Robotici Sistemi, misura e predizione

Dettagli

Nome, Cognome: punti corrispondono alla nota massima.

Nome, Cognome: punti corrispondono alla nota massima. Nome Cognome: Gli esercizi 11 e 12 sono obbligatori il terzo esercizio deve essere scelto tra 13 e 14 10 punti corrispondono alla nota massima 12 novembre 2016 ing Ivan Furlan 1 11 Sistema di controllo

Dettagli

Old Faithful, Yellowstone Park. Statistica e biometria. D. Bertacchi. Dati congiunti. Tabella. Scatterplot. Covarianza. Correlazione.

Old Faithful, Yellowstone Park. Statistica e biometria. D. Bertacchi. Dati congiunti. Tabella. Scatterplot. Covarianza. Correlazione. Coppie o vettori di dati Spesso i dati osservati sono di tipo vettoriale. Ad esempio studiamo 222 osservazioni relative alle eruzioni del geyser Old Faithful. Old Faithful, Yellowstone Park. Old Faithful

Dettagli

Lezione 17 Maggio 23

Lezione 17 Maggio 23 PSC: Progettazione di sistemi di controllo III rim. 2007 Lezione 17 Maggio 23 Docente: Luca Schenato Stesori: Comin, Dal Bianco, Fabris, Parmeggiani 17.1 Consensus 17.1.1 Nozioni preliminari L idea dell

Dettagli

Stimatori dello stato

Stimatori dello stato Capitolo 5. OSSERVABILITÀ E RICOSTRUIBILITÀ 5. Stimatori dello stato La retroazione statica dello stato u(k) = K x(k) richiede la conoscenza di tutte le componenti del vettore di stato. Tipicamente le

Dettagli

iii) uno stimatore il cui errore di stima converga a zero più rapidamente della successione ;

iii) uno stimatore il cui errore di stima converga a zero più rapidamente della successione ; Teoria dei Sistemi - 9 cfu - L.M. in Ingegneria dell Automazione Compito del 4//7 Esercizio Si consideri il sistema lineare discreto Σ = (F, G, H) con F = 3 4 5, G =, H = 4 6 6 Si stabilisca se esiste,

Dettagli

Lezione 6 7 Febbraio. 6.1 Progettazione nel dominio della frequenza

Lezione 6 7 Febbraio. 6.1 Progettazione nel dominio della frequenza LabCont: Laboratorio di Controlli II Trim. 2007 Lezione 6 7 Febbraio Docente: Luca Schenato Stesori: Fiorio Giordano e Guiotto Roberto 6. Progettazione nel dominio della frequenza Il metodo più usato per

Dettagli

Controllo LQG/LTR di un Aereo. Corso di Controllo Multivariabile Prof. Francesco Amato

Controllo LQG/LTR di un Aereo. Corso di Controllo Multivariabile Prof. Francesco Amato Controllo LQG/LTR di un Aereo Corso di Controllo Multivariabile Prof. Francesco Amato Cenni di Dinamica del Volo: Variabili del Moto Cenni di Dinamica del Volo: Assi di Riferimento Superfici di Controllo

Dettagli

VETTORIALE E PRODOTTO MISTO. PIANI E RETTE DI

VETTORIALE E PRODOTTO MISTO. PIANI E RETTE DI Universita degli Studi di Roma - "Tor Vergata" - Facolta Ingegneria Esercizi GEOMETRIA (Edile-Architettura e dell Edilizia) PRODOTTO VETTORIALE E PRODOTTO MISTO. PIANI E RETTE DI R 3. FASCI E STELLE. FORMULE

Dettagli

Teoria degli Osservatori e Stabilizzazione con Retroazione di Uscita. Docente Prof. Francesco Amato

Teoria degli Osservatori e Stabilizzazione con Retroazione di Uscita. Docente Prof. Francesco Amato Teoria degli Osservatori e Stabilizzazione con Retroazione di Uscita Docente Prof. Francesco Amato Ingegneria dell'automazione Corso di Sistemi di Controllo Multivariabile - Prof. F. Amato Versione 1.3

Dettagli

IDENTIFICAZIONE DEI MODELLI E ANALISI DEI DATI 1 (Prof. S. Bittanti) Ingegneria Informatica 5 CFU. Appello 23 Luglio 2014 Cognome Nome Matricola

IDENTIFICAZIONE DEI MODELLI E ANALISI DEI DATI 1 (Prof. S. Bittanti) Ingegneria Informatica 5 CFU. Appello 23 Luglio 2014 Cognome Nome Matricola IDENTIFICAZIONE DEI MODELLI E ANALISI DEI DATI 1 (Prof. S. Bittanti) Ingegneria Informatica 5 CFU. Appello 23 Luglio 201 Cognome Nome Matricola............ Verificare che il fascicolo sia costituito da

Dettagli

APPUNTI SUL CONTROLLO PREDITTIVO

APPUNTI SUL CONTROLLO PREDITTIVO APPUNTI SUL CONTROLLO PREDITTIVO G. Picci a.a. 2007/2008 1 MPC per modelli I/O scalari Da scrivere... 2 MPC per modelli di stato Come visto in precedenza il calcolo del predittore dell uscita su cui basare

Dettagli

Sistemi sovradeterminati

Sistemi sovradeterminati Sistemi sovradeterminati Sia A una matrice m n ove m > n sia b R m trovare una soluzione del sistema sovradeterminato Ax = b significa cercare di esprimere un vettore di R m come combinazione lineare di

Dettagli

Esame di Controlli Automatici 4 Febbraio 2016

Esame di Controlli Automatici 4 Febbraio 2016 Esame di Controlli Automatici 4 Febbraio 26. (7) Si consideri il seguente sistema non lineare ẋ αx 3 2( + x 2 + x 2 2) ẋ 2 βx 3 ( + x 2 + x 2 2) () e si studi la stabilità dell equilibrio nell origine

Dettagli

ESERCIZI MATEMATICA GENERALE - Canale III

ESERCIZI MATEMATICA GENERALE - Canale III ESERCIZI MATEMATICA GENERALE - Canale III Vettori Prof. A. Fabretti 1 A.A. 009/010 1 Dati in R i vettori v = (1,,, u = (,, 1 e w = (,, calcolare: a la combinazione lineare u + v + 4 w b il prodotto scalare

Dettagli

COMPITO A: soluzione

COMPITO A: soluzione PROVA SCRITTA DI FONDAMENTI DI AUTOMATICA (PRIMA PARTE) A.A. 2005/2006 9 novembre 2005 nome e cognome: numero di matricola: Note: Scrivere le risposte negli spazi appositi. Non consegnare fogli aggiuntivi.

Dettagli

OTTIMIZZAZIONE LINEARE MULTICRITERIO

OTTIMIZZAZIONE LINEARE MULTICRITERIO OTTIMIZZAZIONE LINEARE MULTICRITERIO NOTAZIONE Siano x ed y vettori di R n indicati estesamente con x x x x 1 Μ i Μ n, y y1 Μ yi Μ y n e si ponga N = {1,2,, n}. Scriveremo allora: x y ( x è diverso da

Dettagli

Lezione 20: Stima dello stato di un sistema dinamico

Lezione 20: Stima dello stato di un sistema dinamico ELABORAZIONE dei SEGNALI nei SISTEMI di CONTROLLO Lezione 20: Stima dello stato di un sistema dinamico Motivazioni Formulazione del problema Osservazione dello stato Osservabilità Osservatore asintotico

Dettagli

Proprietà strutturali e leggi di controllo. Stima dello stato e regolatore dinamico

Proprietà strutturali e leggi di controllo. Stima dello stato e regolatore dinamico Proprietà strutturali e leggi di controllo Stima dello stato e regolatore dinamico Stima dello stato e regolatore dinamico Stimatore asintotico dello stato Esempi di progetto di stimatori asintotici dello

Dettagli

L analisi media-varianza

L analisi media-varianza L analisi media-varianza Pierpaolo Montana Università di Roma I Consideriamo un agente con preferenze di tipo VNM e funzione di utilità quadratica u(x) = x b x. La corrispondente espressione dell utilità

Dettagli

Esercitazione su Filtraggio Adattativo (17 Giugno 2008)

Esercitazione su Filtraggio Adattativo (17 Giugno 2008) Esercitazione su Filtraggio Adattativo 17 Giugno 008) D. Donno Esercizio 1: Stima adattativa in rumore colorato Una sequenza disturbante x n è ottenuta filtrando un processo bianco u n con un filtro FIR

Dettagli

Corso di Geometria Meccanica, Elettrotecnica Esercizi 11: soluzioni

Corso di Geometria Meccanica, Elettrotecnica Esercizi 11: soluzioni Corso di Geometria 0- Meccanica Elettrotecnica Esercizi : soluzioni Esercizio Scrivere la matrice canonica di ciascuna delle seguenti trasformazioni lineari del piano: a) Rotazione di angolo π b) Rotazione

Dettagli

Controlli Automatici

Controlli Automatici Controlli Automatici (Prof. Casella) I Prova in Itinere - 21 Novembre 2005 Soluzioni Esercizio 1 Con riferimento al seguente sistema dinamico: ẋ 1 = x 1 x 2 2x 3 ẋ 2 = 2x 2 x 3 ẋ 3 =x 2 2x 3 u y=x 2 x

Dettagli

Corso di Geometria BIAR, BSIR Esercizi 3: soluzioni

Corso di Geometria BIAR, BSIR Esercizi 3: soluzioni Corso di Geometria - BIAR, BSIR Esercizi : soluzioni Rango e teorema di Rouché-Capelli Esercizio. Calcolare il rango di ciascuna delle seguenti matrici: ( ) ( ) ( ) A =, A =, A =, A 4 = ( ). a a a Soluzione.

Dettagli

Calcolo delle Probabilità e Statistica, Ing. Informatica e dell Automazione 22/2/2011

Calcolo delle Probabilità e Statistica, Ing. Informatica e dell Automazione 22/2/2011 Calcolo delle Probabilità e Statistica, Ing. Informatica e dell Automazione //0 Il seguente esercizio va svolto su questo foglio prestampato. Esercizio. In un urna ci sono 8 palline etichettate con numeri

Dettagli

Polinomio di Taylor del secondo ordine per funzioni di due variabili

Polinomio di Taylor del secondo ordine per funzioni di due variabili Esercitazioni del 15 aprile 2013 Polinomio di Taylor del secondo ordine per funzioni di due variabili Sia f : A R 2 R una funzione di classe C 2. Fissato un p unto (x 0, y 0 A consideriamo il seguente

Dettagli

COMPITO DI RICERCA OPERATIVA. min 2x 1 x 2 + x 3 x 4 x 1 x 2 + x 3 + x 4 = 5 x 1 + x 2 + x 3 3. x 1, x 2, x 3, x 4, x 5 I

COMPITO DI RICERCA OPERATIVA. min 2x 1 x 2 + x 3 x 4 x 1 x 2 + x 3 + x 4 = 5 x 1 + x 2 + x 3 3. x 1, x 2, x 3, x 4, x 5 I COMPITO DI RICERCA OPERATIVA ESERCIZIO. (8 punti) Sia dato il seguente problema di PL: min x x + x x 4 x x + x + x 4 = 5 x + x + x x, x, x, x 4 0 Lo si trasformi in forma standard ( punto). Si determini

Dettagli

Le condizioni di Karush-Kuhn-Tucker

Le condizioni di Karush-Kuhn-Tucker Capitolo 9 Le condizioni di Karush-Kuhn-Tucker 9. Introduzione In questo capitolo deriveremo le condizioni necessarie di Karush-Kuhn-Tucker (KKT) per problemi vincolati in cui S è descritto da vincoli

Dettagli

I. Foglio di esercizi su vettori linearmente dipendenti e linearmente indipendenti. , v 2 = α v 1 + β v 2 + γ v 3. α v 1 + β v 2 + γ v 3 = 0. + γ.

I. Foglio di esercizi su vettori linearmente dipendenti e linearmente indipendenti. , v 2 = α v 1 + β v 2 + γ v 3. α v 1 + β v 2 + γ v 3 = 0. + γ. ESERCIZI SVOLTI DI ALGEBRA LINEARE (Sono svolti alcune degli esercizi proposti nei fogli di esercizi su vettori linearmente dipendenti e vettori linearmente indipendenti e su sistemi lineari ) I. Foglio

Dettagli

{ 1 per t = 0 u(t) = 0 per t 0. 2) Quali sono la funzione di trasferimento e la dimensione di Σ 2? 2 = (F 2 + g 2 K, g 2, H 2 )?

{ 1 per t = 0 u(t) = 0 per t 0. 2) Quali sono la funzione di trasferimento e la dimensione di Σ 2? 2 = (F 2 + g 2 K, g 2, H 2 )? Teoria dei Sistemi - 9 cfu - L.M. in Ingegneria dell Automazione Compito del 4/2/26 Esercizio I sistemi discreti con un ingresso e un uscita Σ = (F, g, H ) e Σ 2 = (F 2, g 2, H 2 ) sono entrambi raggiungibili

Dettagli

Teoria dei Fenomeni Aleatori AA 2012/13. Il Modello Lognormale La funzione di densità di probabilità lognormale è data:

Teoria dei Fenomeni Aleatori AA 2012/13. Il Modello Lognormale La funzione di densità di probabilità lognormale è data: Il Modello Lognormale La funzione di densità di probabilità lognormale è data: ( ln x a) 1 f ( x ) = exp x > 0 X b x b π in cui a e b sono due costanti, con b> 0. Se X è una v.a. lognormale allora Y lnx

Dettagli

FACOLTA DI ECONOMIA ESAME SCRITTO DI RICERCA OPERATIVA. Verona, 5 Febbraio , : ; ;,, trovare il punto di

FACOLTA DI ECONOMIA ESAME SCRITTO DI RICERCA OPERATIVA. Verona, 5 Febbraio , : ; ;,, trovare il punto di Verona, Febbraio 99 ) Dato il problema min( cx + cx ) x+ x x = x + x x = ax + x x = x i 0 i =,... a) dire, giustificando, per quali valori di c, c ed a in una soluzione ammissibile si ha x =x =/; la soluzione

Dettagli

Raggiungibilità e controllabilità

Raggiungibilità e controllabilità Capitolo. TEORIA DEI SISTEMI 4. Raggiungibilità e controllabilità Raggiungibilità. Il problema della raggiungibilità consiste nel determinare l insieme di stati raggiungibili a partire da un dato stato

Dettagli

3. Trovare, se esiste, una funzione di ingresso che porti il sistema da x(0) = x allo stato 0.

3. Trovare, se esiste, una funzione di ingresso che porti il sistema da x(0) = x allo stato 0. Esempio Per il sistema a tempo discreto x(k + ) = Ax(k) + Bu(k) avente: A =, B =, si considerino i seguenti quesiti:. Il sistema è raggiungibile? è controllabile?. Lo stato x = [ ] è raggiungibile? è controllabile?.

Dettagli

Algoritmo di stima minimi quadrati ricorsivi per sistemi con ingressi e uscite vettoriali

Algoritmo di stima minimi quadrati ricorsivi per sistemi con ingressi e uscite vettoriali Algoritmo di stima minimi quadrati ricorsivi per sistemi con ingressi e uscite vettoriali Lorenzo Magliocchetti Arrigo Marchiori Michele Marino Ottobre 2006 Sommario Lo scopo di questo documento è ricavare

Dettagli

Corso di Laurea in Informatica Calcolo delle Probabilità e Statistica (269AA) A.A. 2016/17 - Prova del

Corso di Laurea in Informatica Calcolo delle Probabilità e Statistica (269AA) A.A. 2016/17 - Prova del Corso di Laurea in Informatica Calcolo delle Probabilità e Statistica (69AA) A.A. 06/7 - Prova del 07-07-07 La durata della prova è di tre ore. Le risposte devono essere adeguatamente giustificate. Problema

Dettagli

Geometria BAER Test di autovalutazione del 31/10/18

Geometria BAER Test di autovalutazione del 31/10/18 Geometria BAER Test di autovalutazione del 3//8 LEGGERE ATTENTAMENTE PRIMA DI ANDARE ALL INIZIO DEL TEST ALLA PAGINA SUCCESSIVA. NON LEGGERE LE DOMANDE PRIMA DI INIZIARE IL TEST Il test NON É VALUTATO

Dettagli

Sistemi lineari. Lorenzo Pareschi. Dipartimento di Matematica & Facoltá di Architettura Universitá di Ferrara

Sistemi lineari. Lorenzo Pareschi. Dipartimento di Matematica & Facoltá di Architettura Universitá di Ferrara Sistemi lineari Lorenzo Pareschi Dipartimento di Matematica & Facoltá di Architettura Universitá di Ferrara http://utenti.unife.it/lorenzo.pareschi/ lorenzo.pareschi@unife.it Lorenzo Pareschi (Univ. Ferrara)

Dettagli

Analisi Numerica. Debora Botturi ALTAIR. Debora Botturi. Laboratorio di Sistemi e Segnali

Analisi Numerica. Debora Botturi ALTAIR.  Debora Botturi. Laboratorio di Sistemi e Segnali Analisi Numerica ALTAIR http://metropolis.sci.univr.it Argomenti Argomenti Argomenti Rappresentazione di sistemi con variabili di stato; Tecniche di integrazione numerica Obiettivo: risolvere sistemi di

Dettagli

7.1. Esercizio. Assegnata l equazione differenziale lineare di primo

7.1. Esercizio. Assegnata l equazione differenziale lineare di primo ANALISI MATEMATICA I Soluzioni Foglio 7 14 maggio 2009 7.1. Esercizio. Assegnata l equazione differenziale lineare di primo ordine y + y = 1 determinarne tutte le soluzioni, determinare la soluzione y(x)

Dettagli

Corso di Identificazione dei Modelli e Analisi dei Dati

Corso di Identificazione dei Modelli e Analisi dei Dati Corso di Identificazione dei Modelli e Analisi dei Dati Prof. Sergio Bittanti Esercitazione di Laboratorio A.A. 2010-11 Sistemi dinamici lineari a tempo discreto 1. Si consideri il sistema dinamico a tempo

Dettagli

IDENTIFICAZIONE DEI MODELLI E ANALISI DEI DATI 1 (Prof. S. Bittanti) Ingegneria Informatica 5 CFU. Appello 27 Luglio 2016 Cognome Nome Matricola

IDENTIFICAZIONE DEI MODELLI E ANALISI DEI DATI 1 (Prof. S. Bittanti) Ingegneria Informatica 5 CFU. Appello 27 Luglio 2016 Cognome Nome Matricola IDENTIFICAZIONE DEI MODELLI E ANALISI DEI DATI 1 (Prof. S. Bittanti) Ingegneria Informatica 5 CFU. Appello 27 Luglio 2016 Cognome Nome Matricola............ Verificare che il fascicolo sia costituito da

Dettagli

Fondamenti di Data Processing

Fondamenti di Data Processing Fondamenti di Data Processing Vincenzo Suraci Automazione INTRODUZIONE AL DATA PROCESSING ACQUISIZIONE DATI SCHEMA COSTRUTTIVO SCHEDA INPUT OSCILLATORE A FREQUENZA COSTANTE BANDA PASSANTE ACCORDATA AL

Dettagli

Università degli Studi di Roma La Sapienza

Università degli Studi di Roma La Sapienza Università degli Studi di Roma La Sapienza Dipartimento di Informatica e Sistemistica A. Ruberti Proff. Gianni Di Pillo and Laura Palagi Note per il corso di OTTIMIZZAZIONE (a.a. 2007-08) Dipartimento

Dettagli

VETTORI E MATRICI. Ing. Nicola Cappuccio 2014 U.F.5 ELEMENTI SCIENTIFICI ED ELETTRONICI APPLICATI AI SISTEMI DI TELECOMUNICAZIONI

VETTORI E MATRICI. Ing. Nicola Cappuccio 2014 U.F.5 ELEMENTI SCIENTIFICI ED ELETTRONICI APPLICATI AI SISTEMI DI TELECOMUNICAZIONI 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 I VETTRORI E MATRICI (RICHIAMI) Ad ogni matrice quadrata a coefficienti reali è possibile associare un numero reale, detto determinante, calcolato

Dettagli

Metodi di identificazione

Metodi di identificazione Metodi di identificazione Metodo di identificazione LS per sistemi ARX Sia yt un processo ARX generico con parametri ignoti: S: yt= B z A z ut 1 1 A z et ota: scegliere ut 1 è la scelta più generica possibile,

Dettagli

Esercizi di Formulazione e di calcolo dell'equilibrio

Esercizi di Formulazione e di calcolo dell'equilibrio Politecnico di Milano, Corso di Modellistica e Simulazione Esercizi di Formulazione e di calcolo dell'equilibrio 1 La scuola 1.1 il problema Una scuola permette agli studenti di diplomarsi dopo 3 anni

Dettagli

Analisi Numerica. Debora Botturi ALTAIR. Debora Botturi. Laboratorio di Sistemi e Segnali

Analisi Numerica. Debora Botturi ALTAIR.   Debora Botturi. Laboratorio di Sistemi e Segnali Analisi Numerica ALTAIR http://metropolis.sci.univr.it Argomenti Rappresentazione di sistemi con variabili di stato; Tecniche di integrazione numerica Obiettivo: risolvere sistemi di equazioni differenziali

Dettagli

Esercitazione del

Esercitazione del Esercizi sulla regressione lineare. Esercitazione del 21.05.2013 Esercizio dal tema d esame del 13.06.2011. Si consideri il seguente campione di n = 9 osservazioni relative ai caratteri ed Y: 7 17 8 36

Dettagli

3) Stimatore dello stato di ordine ridotto :

3) Stimatore dello stato di ordine ridotto : Capitolo. TEORIA DEI SISTEMI 5. 3) Stimatore dello stato di ordine ridotto : Gli stimatori asintotici dello stato di ordine intero forniscono una informazione ridondante, in quanto non tengono conto che

Dettagli

Per esempio, una matrice 4 4 triangolare alta ha la forma. 0 a. mentre una matrice di ordine 4 triangolare bassa è del tipo

Per esempio, una matrice 4 4 triangolare alta ha la forma. 0 a. mentre una matrice di ordine 4 triangolare bassa è del tipo Matrici triangolari Prima di esporre il metodo LU per la risoluzione di sistemi lineari, introduciamo la nozione di matrice triangolare Ci limiteremo al caso di matrici quadrate anche se l estensione a

Dettagli

Nome, Cognome: punti corrispondono alla nota massima.

Nome, Cognome: punti corrispondono alla nota massima. Nome ognome: Gli esercizi 11 e 12 sono obbligatori il terzo esercizio deve essere scelto tra 13 e 14 10 punti corrispondono alla nota massima 6 dicembre 2012 ing Ivan Furlan 1 11 Sistema per sollevare

Dettagli

Raggiungibilità, Controllabilità, Osservabilità e Determinabilità

Raggiungibilità, Controllabilità, Osservabilità e Determinabilità Raggiungibilità, Controllabilità, Osservabilità e Determinabilità Si determini se i sistemi lineari tempo invarianti ẋ(t) = Ax(t) + Bu(t), Σ c : y(t) = Cx(t) + Du(t). x(k + ) = Ax(k) + Bu(k), Σ d : y(k)

Dettagli

w 1 (z) = z2 z + 1 z 3 z 2 + z 1, w 2(z) = z2

w 1 (z) = z2 z + 1 z 3 z 2 + z 1, w 2(z) = z2 Teoria dei Sistemi - 9 cfu - L.M. in Ingegneria dell Automazione Compito del 3///7 Esercizio Si considerino le funzioni di trasferimento (a tempo discreto) w (z) = z z + z 3 z + z, w (z) = z z 3 (.) (i)

Dettagli

IDENTIFICAZIONE DEI MODELLI E ANALISI DEI DATI (Prof. S. Bittanti) Ingegneria Informatica 10 CFU. Appello 07 Luglio 2014 Cognome Nome Matricola

IDENTIFICAZIONE DEI MODELLI E ANALISI DEI DATI (Prof. S. Bittanti) Ingegneria Informatica 10 CFU. Appello 07 Luglio 2014 Cognome Nome Matricola IDENTIFICAZIONE DEI MODELLI E ANALISI DEI DATI (Prof. S. Bittanti) Ingegneria Informatica 10 CFU. Appello 07 Luglio 2014 Cognome Nome Matricola............ Verificare che il fascicolo sia costituito da

Dettagli

Controlli Automatici

Controlli Automatici Controlli Automatici (Prof. Casella) I Prova in Itinere - 21 Novembre 2008 Soluzioni Domanda 1 Con riferimento al seguente sistema: ẋ 1 = x 1 ẋ 2 = 2 x 1 x 2 u ẋ 3 =x 1 5 x 2 x 3 y=3 x 1 2 x 2 1.1 Valutare

Dettagli

7.9 Il caso vincolato: vincoli di disuguaglianza

7.9 Il caso vincolato: vincoli di disuguaglianza 7.9 Il caso vincolato: vincoli di disuguaglianza Il problema con vincoli di disuguaglianza: g i (x) 0, i = 1,..., p, (51) o, in forma vettoriale: g(x) 0, può essere trattato basandosi largamente su quanto

Dettagli

Esercizi di Programmazione Lineare - Dualità

Esercizi di Programmazione Lineare - Dualità Esercizi di Programmazione Lineare - Dualità Esercizio n1 Dato il seguente problema 3 + 3 2 2 + a scriverne il duale; b risolvere il duale (anche geometricamente indicando cosa da esso si può dedurre sul

Dettagli

PROVA SCRITTA DI FONDAMENTI DI AUTOMATICA A.A. 2003/ luglio Soluzione

PROVA SCRITTA DI FONDAMENTI DI AUTOMATICA A.A. 2003/ luglio Soluzione PROVA SCRITTA DI FONDAMENTI DI AUTOMATICA A.A. 23/24 2 luglio 24 Esercizio In riferimento allo schema a blocchi in figura. s r y 2 s y K s2 Domanda.. Determinare una realizzazione in equazioni di stato

Dettagli

Lezione Novembre 2010

Lezione Novembre 2010 PSC: Progettazione di sistemi di controllo a.a. 2010-2011 Lezione 18 25 ovembre 2010 Docente: Luca Schenato Stesori: Guido Albertin, Elena Toffoli, Giancarlo Baldan 18.1 Ancora sulla progettazione di P

Dettagli

Proprietà Strutturali dei Sistemi Dinamici: Osservabilità

Proprietà Strutturali dei Sistemi Dinamici: Osservabilità Proprietà Strutturali dei Sistemi Dinamici: sservabilità Ingegneria dell'automazione Corso di Sistemi di Controllo Multivariabile - Prof. F. Amato Versione 2.2 ttobre 2012 1 Consideriamo il sistema x f

Dettagli

Lezione 6. Assegnamento degli autovalori mediante retroazione dello stato. F. Previdi - Controlli Automatici - Lez. 6 1

Lezione 6. Assegnamento degli autovalori mediante retroazione dello stato. F. Previdi - Controlli Automatici - Lez. 6 1 Lezione 6. Assegnamento degli autovalori mediante retroazione dello stato F. Previdi - Controlli Automatici - Lez. 6 Schema della lezione. ntroduzione 2. Assegnamento degli autovalori con stato accessibile

Dettagli

1 Risoluzione di sistemi lineari con l uso dei determinanti

1 Risoluzione di sistemi lineari con l uso dei determinanti 2006 Trapani Dispensa di Geometria, 1 Risoluzione di sistemi lineari con l uso dei determinanti Sia A una matrice n n con det(a) 0 consideriamo il sistema lineare AX = b abbiamo n = numero di righe di

Dettagli

- ciascun autovalore di T ha molteplicità geometrica uguale alla moltplicitaà algebrica.

- ciascun autovalore di T ha molteplicità geometrica uguale alla moltplicitaà algebrica. Lezioni del 14.05 e 17.05 In queste lezioni si sono svolti i seguenti argomenti. Ripresa del teorema generale che fornisce condizioni che implicano la diagonalizzabilità, indebolimento delle ipotesi, e

Dettagli

SISTEMI LINEARI. x y + 2t = 0 2x + y + z t = 0 x z t = 0 ; S 3 : ; S 5x 2y z = 1 4x 7y = 3

SISTEMI LINEARI. x y + 2t = 0 2x + y + z t = 0 x z t = 0 ; S 3 : ; S 5x 2y z = 1 4x 7y = 3 SISTEMI LINEARI. Esercizi Esercizio. Verificare se (,, ) è soluzione del sistema x y + z = x + y z = 3. Trovare poi tutte le soluzioni del sistema. Esercizio. Scrivere un sistema lineare di 3 equazioni

Dettagli

FACOLTA DI ECONOMIA ESAME SCRITTO DI RICERCA OPERATIVA. Verona, 6 Giugno 1996

FACOLTA DI ECONOMIA ESAME SCRITTO DI RICERCA OPERATIVA. Verona, 6 Giugno 1996 Verona, Giugno ) E dato il seguente problema di Programmazione Lineare: min( x + ) x x x Rappresentare il problema geometricamente e successivamente scriverlo in forma standard. a) Determinare una soluzione

Dettagli

NLP KKT 1. Le condizioni necessarie di ottimo per il problema min f o (x) con vincoli g i (x) 0 i I h j (x) = 0 j J

NLP KKT 1. Le condizioni necessarie di ottimo per il problema min f o (x) con vincoli g i (x) 0 i I h j (x) = 0 j J NLP KKT 1 Le condizioni necessarie di ottimo per il problema min f o (x) g i (x) 0 i I h j (x) = 0 j J sono, riferite ad un punto ammissibile x*, μ 0 f o (x*) + i I μ i g i (x*) + j J λ j h j (x*) = 0

Dettagli

La miglior approssimazione esiste se le funzioni descrivono un chiuso

La miglior approssimazione esiste se le funzioni descrivono un chiuso NON SMOOTH Funzione non C 1 tipico esempio massimo numero finito funzioni Φ(x) = max { f i (x), i I, f i C 1 } e anche massimo(sup) puntuale Φ(x) = sup { f t (x), t I, f t C 1 } Esempi a) Max numero finito

Dettagli

Geometria BAER PRIMO CANALE Foglio esercizi 1

Geometria BAER PRIMO CANALE Foglio esercizi 1 Geometria BAER PRIMO CANALE Foglio esercizi 1 Esercizio 1. Risolvere le seguenti equazioni lineari nelle variabili indicate trovando una parametrizzazione dell insieme delle soluzioni. a) x + 5y = nelle

Dettagli

Stimatori dello stato

Stimatori dello stato Capitolo. TEORIA DEI SISTEMI 5. Stimatori dello stato La retroazione statica dello stato u(k) = K x(k) richiede la conoscenza di tutte le componenti del vettore di stato. Tipicamente le uniche variabili

Dettagli