Sistemi sovradeterminati

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Sistemi sovradeterminati"

Transcript

1 Sistemi sovradeterminati Sia A una matrice m n ove m > n sia b R m trovare una soluzione del sistema sovradeterminato Ax = b significa cercare di esprimere un vettore di R m come combinazione lineare di solo n vettori dello stesso spazio. b vettore(termine noto) b y* y^ 0 V n y* proiezione ortogonale di b Generalmente non esiste alcun x che soddisfa Ax = b cioé il residuo r(x) = b Ax non é mai nullo. Possiamo chiederci se esiste ed é unico un x che minimizza la norma euclidea del residuo, cioé 1

2 minimizzare la funzione f : R n R definita da f(x) = r(x) 2 2 = (b Ax) T (b Ax) = x T A T Ax 2x T A T b + b T b questo non é altro che il problema lineare dei minimi quadrati, cioé si vuole minimizzare la somma dei quadrati delle componenti del vettore residuo, vettore che dipende linearmente da x. Si tratta di un problema di approssimazione poiché Ax descrive uno spazio Vn quando x percorre R n. Si vuole trovare fra tutti i vettori y di Vn quello piú prossimo a b, una volta trovato y, si vuole anche trovare la sua rappresentazione rispetto alla base costituita dai vettori colonna della matrice A. Il vettore y, proiezione ortogonale di b sullo spazio Vn é l unico vettore di Vn per cui il residuo r = b y é ortogonale a Vn, ogni altro vettore ŷ ha una distanza da b piú elevata. D altra parte il vettore residuo r é ortogonale a Vn cioé é ortogonale a tutti i vettori che costituiscono le colonne di A a T,j r = 0, quindi A T r = 0 quindi A T y = A T b, A T Ax = A T b queste sono le equazioni normali. Data la fattorizzazione QR della matrice A per le equazioni normali avremo: R T Q T QR = R T Q T b, R T Rx = R T Q T b È possibile risolvere un sistema rettangolare senza passare attraverso la costruzione delle equazioni normali, osserviamo infatti che A R m n, Q R m m, mentre R R m n ove R =» R1 0 } n righe } m n righe ove R 1 è una matrice triangolare superiore non singolare quando A ha rango massimo. Quindi abbiamo Ax b 2 = QRx b 2 = Q(Rx Q T b 2 = Rx Q T b 2 2

3 indichiamo con y = Q T b partizionando il vettore y nel modo seguente» c1 y = c 2 } n righe } m n righe si ottiene quindi» R1 x c Rx c = 1 0 c 2 } n righe } m n righe quindi min x R n Ax b 2 2 = x R min n Rx c 2 2 = h x R min n R 1 x c 1 2 i 2 + c = c min x R n R 1 x c Poichè R 1 è non singolare la soluzione x del sistema lineare R 1 x = c 1 è tale che min x R n R 1 x c 1 2 = min x R n R 1 x c = 0 Ne segue che x è soluzione del problema e il minimo cercato é γ = c

4 Scomposizione in valori singolari di una matrice qualsiasi Teorema Sia A R m n allora esistono una matrice ortogonale Q R m m e una matrice ortogonale V R n n (unitarie se siamo in C m n, tali che A = UΣV T ove Σ é una matrice diagonale R m n con elementi diagonali σ i,i = σ i e σ i,j = 0 per i j e σ 1 σ 2... σp > 0 con p = min m, n. I σ i sono valori singolari i vettori colonna della matrice U u i sono i vettori singolari sinistri mentre i vettori colonna della matrice V v i sono i vettori singolari destri. La matrice Σ è univocamente determinata mentre non lo sono U e V. Teorema Sia A R m n e A = UΣV T la sua decomposizione in valori singolari dove σ 1 σ 2... σ k σ k+1 = σ k+2 =... = σp = 0. Allora valgono le seguenti proprietà A = U k Σ k V T k = k X i=1 σ i u i v T i dove 4

5 U k è la matrice formata dalle prime K-colonne di U: u 1, u 2... u k V k è la matrice formata dalle prime K-colonne di V : v 1, v 2... v k Σ k R k k è la matrice diagonale i cui elementi principali sono σ 1, σ 2..., σ k rank(a) = k σ 2 i sono gli autovalori di AT A A 2 = σ 1 l indice di condizionamento in norma 2: µ(a) or K(A) = σ 1 σ k A F = P k i=1 σ 2 i Si ricorda che la norma di Frobenius v A F = u nx nx t a i,j 2 = i=1 j=1 q traccia(a T A) Teorema Sia A R m n e A = UΣV T la sua decomposizione in valori singolari dove σ 1 σ 2... σ k σ k+1 = σ k+2 =... = σp = 0 e sia r < K ove k è un intero positivo. rx Ar = σ i u i vi T i=1 5

6 Indichiamo con S = {B R m n di rango r} si ha: min B S A B 2 = A A r 2 = σ r+1 % scomposizione singolare di una immagine % caricamento di una immagine bmp a=imread( sing_val.bmp ); pause imreal=double(a); [u,s,v]=svd(imreal); sigma=diag(s); disp( valori singolari ) n_val_sing=length(sigma) ns=input( ricostruzione con valori sing = ) imrec=zeros(size(imreal)); colormap(gray) for i=1:ns imrec=imrec+sigma(i)*u(:,i)*v(:,i) ; imagesc(imrec),title(num2str(i)) img(:,:,i)=imrec; pause end

7 Risoluzione del problema di minimi quadrati con scomposizione in valori singolari È possibile dare una formulazione esplicita della soluzione x di minima norma del problema dei minimi quadrati e del corrispondente valore di minimo γ anche nel caso in cui la matrice non sia di rango pieno. A = UΣV T con A R m n caso in cui m n > k > 0 si vuole risolvere il sistema sovradeterminato Ax = b, ove b R m e x R n Ax b 2 2 = UT (Ax b) 2 2 = UT AV V T x U T b 2 2 poniamo y = V T x allora = U T AV y U T b 2 2 = Σy UT b 2 X n 2 = σ i y i u T i b 2 i=1 la sommatoria può essere spezzata in kx σ i y i u T nx i b 2 + u T i b 2 i=1 i=k+1 quindi il minimo sarà raggiunto quando σ i y i u T i b = 0 per cui se scegliamo: 8 yi < = : y i = u T i b σ per i = 1, 2,..., k i 0 per i = k + 1, k + 2,..., n 7

8 poichè y = V T x allora x = V y perciò la soluzione cercata in R n sarà x kx kx = y i v i = i=1 i=1 u T i b σ i v i e il valore di minimo è dato da Ax b 2 2 = X n u T i b i=k+1 8

9 Inversa generalizzata o pseudoinversa Il concetto di matrice inversa può essere esteso anche nel caso di matrici A non quadrate in analogia con la risoluzione di un sistema non quadrato. In questo caso si definisce la matrice pseudoinversa di A e i viene indicata con A + che consente di scrivere la soluzione di minima norma x = A + b A + é la matrice pseudoinversa di Moore-Penrose di A che soddisfa alle seguenti condizioni: 1) AXA = A 2) XAX = X 3) (AX) T = AX 4) (XA) T = XA Se il rango di A é massimo allora se m n allora A + = (A T A) 1 A T se m n allora A + = A T (A T A) 1 se m=n=rango di A allora A + = A 1 Quindi se Allora la matrice pseudoinversa di A é data da A = UΣV T A + = V Σ + U H ove Σ + ha elementi non nulli solo sulla diagonale principale e valgono rispettivamente 1 σ i. Se si utilizza la norma 2 per la stima dell indice di condizionamento allora µ 2 (A) = σ max σ min 9

10 ove σmax, σ min sono il valore singolare massimo e minimo della matrice A. Se la matrice A é reale e simmetrica allora µ 2 (A) = λ max λ min ove λmax, λ min sono rispettivamente il massimo e il minimo autovalore della matrice A. 10

11 Analisi del Condizionamento di un sistema Ax = b Qualunque metodo si usi per risolvere un sistema lineare, non possiamo prescindere dagli errori di rappresentazione dei dati e dagli errori di arrotondamento nei calcoli. La soluzione di un sistema lineare, tenendo conto degli errori dovuti all uso dell aritmetica floating point e a possibili errori nel termine noto, puó essere considerata come soluzione esatta di un problema perturbato del tipo: (A + δa)(x + δx) = b + δb ove x é la soluzione esatta che si sarebbe ottenuta in assenza di errori e x + δx la soluzione fornita dal calcolatore. Generalmente la matrice A non si conosce esattamente perché i coefficienti possono essere delle misure, oppure sono calcolati con errori di arrotondamento, quindi nella pratica ci troviamo a lavorare con un sistema del tipo à x = b ove δa = à A. É naturale chiedersi quanto x é vicino ad x. Questo é un problema di teoria delle perturbazioni matriciale. Innanzi tutto occorre trovare le condizioni sotto le quali la matrice à risulta non singolare. Teorema Sia A non singolare. Se oppure A 1 δa < 1 A 1 δa < 1 allora A + δa é non singolare 11

12 Per semplitá consideriamo inizialmente il caso in cui sia perturbato il solo termine noto. Sia δb R n il vettore che perturba il termine noto. Allora la soluzione sará x + δx, piú precisamente: A(x + δx) = b + δb da cui si ricava Aδx = δb, δx = A 1 δb Per una qualsiasi norma matriciale indotta dalla norma vettoriale si ottiene: δx = A 1 δb A 1 δb d altra parte abbiamo b = Ax A x combinando insieme queste ultime due relazioni si ottiene: δx x A A 1 δb b Generalmente si indica con µ(a) = A A 1 il numero di condizionamento della matrice A, si osservi che µ(a) = A A 1 AA 1 = 1 quindi se µ(a) assume valori piccoli allora a piccole perturbazioni sui dati corrispondono piccole perturbazioni sulla soluzione e quindi il problema é ben condizionato, cioé la matrice del sistema é ben condizionata. Se µ(a) assume valori grandi allora piccole variazioni sui dati possono indurre grandi perturbazioni nella soluzione, e quindi il problema é mal condizionato. Nel caso in cui consideriamo le perturbazioni anche sui coefficienti della matrice A supposto che la matrice A + δa sia non singolare, indicata ancora con x + δx la soluzione del sistema perturbato (A + δa)(x + δx) = b + δb risulta: δx x µ(a) δa A + δb b 1 µ(a) δa A 12

13 se indichiamo con ɛx la perturbazione relativa sulla soluzione indotta dalle perturbazioni relative dei datie ɛ A, ɛ b allora ɛ ɛx µ(a) A + ɛ b 1 µ(a)ɛ A Se consideriamo la matrice di Hilbert H i cui elementi sono dati da: h i,j = 1 i + j 1, i, j = 1,..., n La matrice inversa esatta ( ottenuta per via analitica) é data da h 1 i,j ( 1) i+j (n + i 1)!(n + j 1)! (i + j 1)[(i 1)!(j 1)!] 2 (n i)!(n j)! Il numero di condizione é stimato µ 2 (H) = O(e αn ) con α costante maggiore di zero. 13

14 x^ x x^ x 14

1 Risoluzione di sistemi lineari

1 Risoluzione di sistemi lineari Risoluzione di sistemi lineari La presente nota è in parte ripresa dal testo D Bini M Capovani O Menchi Metodi numerici per l algebra lineare Zanichelli Editore Siano A una matrice non singolare di ordine

Dettagli

Sistemi lineari. Lucia Gastaldi. DICATAM - Sez. di Matematica,

Sistemi lineari. Lucia Gastaldi. DICATAM - Sez. di Matematica, Sistemi lineari Lucia Gastaldi DICATAM - Sez. di Matematica, http://www.ing.unibs.it/gastaldi/ Indice 1 Risoluzione di sistemi lineari Risoluzione di sistemi lineari in Matlab Metodi di risoluzione Fattorizzazione

Dettagli

Esercitazione 4: Vettori e Matrici

Esercitazione 4: Vettori e Matrici Esercitazione 4: Vettori e Matrici Richiami di teoria: Norme di vettore Principali norme di vettore:. x = n i= x i 2. x 2 = n i= x i 2 3. x = max i n x i Ad esempio dato il vettore x = (, 2, 3, 4) abbiamo.

Dettagli

Risoluzione di sistemi lineari sparsi e di grandi dimensioni

Risoluzione di sistemi lineari sparsi e di grandi dimensioni Risoluzione di sistemi lineari sparsi e di grandi dimensioni Un sistema lineare Ax = b con A R n n, b R n, è sparso quando il numero di elementi della matrice A diversi da zero è αn, con n α. Una caratteristica

Dettagli

NORMA DI UN VETTORE. Una NORMA VETTORIALE su R n è una funzione. : R n R +

NORMA DI UN VETTORE. Una NORMA VETTORIALE su R n è una funzione. : R n R + NORMA DI UN VETTORE Una NORMA VETTORIALE su R n è una funzione. : R n R + {0}, che associa ad ogni vettore x R n di componenti x i, i = 1,..., n, uno scalare in modo che valgano le seguenti proprietà:

Dettagli

x n i sima pos. x, y = x T y = x i y i R. i=1

x n i sima pos. x, y = x T y = x i y i R. i=1 1 Elementi di Algebra Lineare In questo capitolo introduttivo al corso di Calcolo Numerico per la laurea triennale in Informatica, saranno presentate una serie di definizioni e proprietà di matrici e dei

Dettagli

3. Vettori, Spazi Vettoriali e Matrici

3. Vettori, Spazi Vettoriali e Matrici 3. Vettori, Spazi Vettoriali e Matrici Vettori e Spazi Vettoriali Operazioni tra vettori Basi Trasformazioni ed Operatori Operazioni tra Matrici Autovalori ed autovettori Forme quadratiche, quadriche e

Dettagli

RICHIAMI DI ALGEBRA LINEARE E NORME DI MATRICI E VETTORI. a 11 a 12 a 1n a 21 a 22 a 2n. a m1 a m2 a mn

RICHIAMI DI ALGEBRA LINEARE E NORME DI MATRICI E VETTORI. a 11 a 12 a 1n a 21 a 22 a 2n. a m1 a m2 a mn RICHIAMI DI ALGEBRA LINEARE E NORME DI MATRICI E VETTORI LUCIA GASTALDI 1. Matrici. Operazioni fondamentali. Una matrice A è un insieme di m n numeri reali (o complessi) ordinati, rappresentato nella tabella

Dettagli

Corso di Calcolo Numerico

Corso di Calcolo Numerico Corso di Calcolo Numerico Dottssa MC De Bonis Università degli Studi della Basilicata, Potenza Facoltà di Ingegneria Corso di Laurea in Ingegneria Meccanica Corso di Calcolo Numerico - Dottssa MC De Bonis

Dettagli

Un sistema lineare si rappresenta in generale come

Un sistema lineare si rappresenta in generale come SISTEMI LINEARI Un sistema lineare si rappresenta in generale come n j=1 a ij x j = b i i = 1, 2,..., m o anche AX = B. La soluzione esiste se e solo se B appartiene allo spazio lineare generato dalle

Dettagli

Richiami di algebra delle matrici a valori reali

Richiami di algebra delle matrici a valori reali Richiami di algebra delle matrici a valori reali Vettore v n = v 1 v 2. v n Vettore trasposto v n = (v 1, v 2,..., v n ) v n = (v 1, v 2,..., v n ) A. Pollice - Statistica Multivariata Vettore nullo o

Dettagli

1 Equazioni parametriche e cartesiane di sottospazi affini di R n

1 Equazioni parametriche e cartesiane di sottospazi affini di R n 2 Trapani Dispensa di Geometria, Equazioni parametriche e cartesiane di sottospazi affini di R n Un sottospazio affine Σ di R n e il traslato di un sottospazio vettoriale. Cioe esiste un sottospazio vettoriale

Dettagli

8 Metodi iterativi per la risoluzione di sistemi lineari

8 Metodi iterativi per la risoluzione di sistemi lineari 8 Metodi iterativi per la risoluzione di sistemi lineari È dato il sistema lineare Ax = b con A R n n e x, b R n, con deta 0 Si vogliono individuare dei metodi per determinarne su calcolatore la soluzione,

Dettagli

I. Foglio di esercizi su vettori linearmente dipendenti e linearmente indipendenti. , v 2 = α v 1 + β v 2 + γ v 3. α v 1 + β v 2 + γ v 3 = 0. + γ.

I. Foglio di esercizi su vettori linearmente dipendenti e linearmente indipendenti. , v 2 = α v 1 + β v 2 + γ v 3. α v 1 + β v 2 + γ v 3 = 0. + γ. ESERCIZI SVOLTI DI ALGEBRA LINEARE (Sono svolti alcune degli esercizi proposti nei fogli di esercizi su vettori linearmente dipendenti e vettori linearmente indipendenti e su sistemi lineari ) I. Foglio

Dettagli

Metodi diretti: eliminazione gaussiana

Metodi diretti: eliminazione gaussiana Calcolo numerico 08/09 p. 1/1 SISTEMI LINEARI Metodi diretti: eliminazione gaussiana Calcolo numerico 08/09 p. 2/1 Sistemi lineari Ax = b, A R n n, b R n b INPUT x OUTPUT A relazione funzionale non ambigua

Dettagli

Elementi di Algebra Lineare Matrici e Sistemi di Equazioni Lineari

Elementi di Algebra Lineare Matrici e Sistemi di Equazioni Lineari Elementi di Algebra Lineare Matrici e Sistemi di Equazioni Lineari Antonio Lanteri e Cristina Turrini UNIMI - 2016/2017 Antonio Lanteri e Cristina Turrini (UNIMI - 2016/2017 Elementi di Algebra Lineare

Dettagli

Corso di Matematica per la Chimica

Corso di Matematica per la Chimica Dott.ssa Maria Carmela De Bonis a.a. 2013-14 Pivoting e stabilità Se la matrice A non appartiene a nessuna delle categorie precedenti può accadere che al k esimo passo risulti a (k) k,k = 0, e quindi il

Dettagli

Esercitazione 6 - Soluzione

Esercitazione 6 - Soluzione Anno Accademico 28-29 Corso di Algebra Lineare e Calcolo Numerico per Ingegneria Meccanica Esercitazione 6 - Soluzione Immagine, nucleo. Teorema di Rouché-Capelli. Esercizio Sia L : R 3 R 3 l applicazione

Dettagli

Richiami di algebra delle matrici

Richiami di algebra delle matrici Richiami di algebra delle matrici (S. Terzi) 1. SPAZI VETTORIALI I. ALCUNE DEFINIZIONI 1) Definizione di spazio vettoriale Sia S un insieme di vettori di ordine n. S è detto spazio lineare se e' un insieme

Dettagli

Corso di Matematica per la Chimica

Corso di Matematica per la Chimica Dott.ssa Maria Carmela De Bonis a.a. 2013-14 Pivoting e stabilità Se la matrice A non appartiene a nessuna delle categorie precedenti può accadere che al k esimo passo risulti a (k) k,k = 0, e quindi il

Dettagli

Metodo dei minimi quadrati e matrice pseudoinversa

Metodo dei minimi quadrati e matrice pseudoinversa Scuola universitaria professionale della Svizzera italiana Dipartimento Tecnologie Innovative Metodo dei minimi quadrati e matrice pseudoinversa Algebra Lineare Semestre Estivo 2006 Metodo dei minimi quadrati

Dettagli

Si consideri il sistema a coefficienti reali di m equazioni lineari in n incognite

Si consideri il sistema a coefficienti reali di m equazioni lineari in n incognite 3 Sistemi lineari 3 Generalità Si consideri il sistema a coefficienti reali di m equazioni lineari in n incognite ovvero, in forma matriciale, a x + a 2 x 2 + + a n x n = b a 2 x + a 22 x 2 + + a 2n x

Dettagli

Corso di Matematica per la Chimica. Dott.ssa Maria Carmela De Bonis a.a

Corso di Matematica per la Chimica. Dott.ssa Maria Carmela De Bonis a.a Dott.ssa Maria Carmela De Bonis a.a. 2013-14 Autovalori ed Autovettori di una matrice Siano Se A = (a i,j ) i,j=1,...,n R n n, 0 x = (x i ) i=1,...,n R n λ R Ax = λx (1) allora λ è detto autovalore di

Dettagli

Minimi quadrati ordinari Interpretazione geometrica. Eduardo Rossi

Minimi quadrati ordinari Interpretazione geometrica. Eduardo Rossi Minimi quadrati ordinari Interpretazione geometrica Eduardo Rossi Il MRLM Il modello di regressione lineare multipla è usato per studiare le relazioni tra la variabile dipendente e diverse variabili indipendenti

Dettagli

( ) TEORIA DELLE MATRICI. A. Scimone a.s pag 1

( ) TEORIA DELLE MATRICI. A. Scimone a.s pag 1 . Scimone a.s 1997 98 pag 1 TEORI DELLE MTRICI Dato un campo K, definiamo matrice ad elementi in K di tipo (m, n) un insieme di numeri ordinati secondo righe e colonne in una tabella rettangolare del tipo

Dettagli

A m n B n p = P m p. 0 1 a b c d. a b. 0 a 0 c Il risultato e lo stesso solo nel caso in cui c = 0 e a = d.

A m n B n p = P m p. 0 1 a b c d. a b. 0 a 0 c Il risultato e lo stesso solo nel caso in cui c = 0 e a = d. Matematica II, 220404 Il prodotto di matrici e un operazione parziale che prende in entrata una matrice A ed una matrice B, tali che il numero delle colonne di A sia uguale al numero delle righe di B,

Dettagli

Appunti su Indipendenza Lineare di Vettori

Appunti su Indipendenza Lineare di Vettori Appunti su Indipendenza Lineare di Vettori Claudia Fassino a.a. Queste dispense, relative a una parte del corso di Matematica Computazionale (Laurea in Informatica), rappresentano solo un aiuto per lo

Dettagli

Autovalori e autovettori

Autovalori e autovettori Capitolo 3 Autovalori e autovettori 3. Richiami di teoria Prerequisiti: nozioni elementari di algebra lineare, numeri complessi. Sia A R n n. Un numero λ per cui esiste un vettore x 0 tale che valga la

Dettagli

Esercizi su algebra lineare, fattorizzazione LU e risoluzione di sistemi lineari

Esercizi su algebra lineare, fattorizzazione LU e risoluzione di sistemi lineari Esercizi su algebra lineare, fattorizzazione LU e risoluzione di sistemi lineari 4 maggio Nota: gli esercizi più impegnativi sono contrassegnati dal simbolo ( ) Esercizio Siano 3 6 8 6 4 3 3 ) determinare

Dettagli

Università degli studi di Cagliari REGOLARIZZAZIONE TRAMITE FATTORIZZAZIONE AI VALORI SINGOLARI: TEORIA E APPLICAZIONI

Università degli studi di Cagliari REGOLARIZZAZIONE TRAMITE FATTORIZZAZIONE AI VALORI SINGOLARI: TEORIA E APPLICAZIONI Università degli studi di Cagliari FACOLTÀ DI INGEGNERIA Corso di Laurea in Ingegneria Elettronica REGOLARIZZAZIONE TRAMITE FATTORIZZAZIONE AI VALORI SINGOLARI: TEORIA E APPLICAZIONI Seminario di Algebra

Dettagli

SISTEMI LINEARI: APPROFONDIMENTI ED ESEMPI

SISTEMI LINEARI: APPROFONDIMENTI ED ESEMPI SISTEMI LINEARI: APPROFONDIMENTI ED ESEMPI Appunti presi dalle lezioni del prof. Nedo Checcaglini Liceo Scientifico di Castiglion Fiorentino (Classe 4B) January 17, 005 1 SISTEMI LINEARI Se a ik, b i R,

Dettagli

20 gennaio Soluzione esame di geometria - 12 crediti Ingegneria gestionale - a.a COGNOME... NOME... N. MATRICOLA...

20 gennaio Soluzione esame di geometria - 12 crediti Ingegneria gestionale - a.a COGNOME... NOME... N. MATRICOLA... 0 gennaio 010 - Soluzione esame di geometria - 1 crediti Ingegneria gestionale - a.a. 009-010 COGNOME.......................... NOME.......................... N. MATRICOLA............. La prova dura ore.

Dettagli

a + 2b + c 3d = 0, a + c d = 0 c d

a + 2b + c 3d = 0, a + c d = 0 c d SPAZI VETTORIALI 1. Esercizi Esercizio 1. Stabilire quali dei seguenti sottoinsiemi sono sottospazi: V 1 = {(x, y, z) R 3 /x = y = z} V = {(x, y, z) R 3 /x = 4} V 3 = {(x, y, z) R 3 /z = x } V 4 = {(x,

Dettagli

Sistemi lineari. Lorenzo Pareschi. Dipartimento di Matematica & Facoltá di Architettura Universitá di Ferrara

Sistemi lineari. Lorenzo Pareschi. Dipartimento di Matematica & Facoltá di Architettura Universitá di Ferrara Sistemi lineari Lorenzo Pareschi Dipartimento di Matematica & Facoltá di Architettura Universitá di Ferrara http://utenti.unife.it/lorenzo.pareschi/ lorenzo.pareschi@unife.it Lorenzo Pareschi (Univ. Ferrara)

Dettagli

Universita degli Studi di Ancona - Facolta di Ingegneria Laurea in Ing. Elettronica (VO) Ing. Informatica e Automatica - Ing. delle Telecomunicazioni

Universita degli Studi di Ancona - Facolta di Ingegneria Laurea in Ing. Elettronica (VO) Ing. Informatica e Automatica - Ing. delle Telecomunicazioni Universita degli Studi di Ancona - Facolta di Ingegneria Laurea in Ing. Elettronica (VO) Ing. Informatica e Automatica - Ing. delle Telecomunicazioni ANALISI NUMERICA - Primo Parziale - TEMA A (Prof. A.M.Perdon)

Dettagli

Dipendenza e indipendenza lineare (senza il concetto di rango)

Dipendenza e indipendenza lineare (senza il concetto di rango) CAPITOLO 5 Dipendenza e indipendenza lineare (senza il concetto di rango) Esercizio 5.1. Scrivere un vettore w R 3 linearmente dipendente dal vettore v ( 1, 9, 0). Esercizio 5.2. Stabilire se i vettori

Dettagli

Capitolo 1. Esercizi a.a Esercizi. Esercizio 1.1 Dimostrare che il metodo iterativo

Capitolo 1. Esercizi a.a Esercizi. Esercizio 1.1 Dimostrare che il metodo iterativo Capitolo Esercizi a.a. 206-7 Esercizi Esercizio. Dimostrare che il metodo iterativo x k+ = Φ(x k ), k = 0,,..., se convergente a x, deve verificare la condizione di consistenza x = Φ(x ). Ovvero, la soluzione

Dettagli

Spazi lineari - PARTE II - Felice Iavernaro. Dipartimento di Matematica Università di Bari. 9 e 16 Marzo 2007

Spazi lineari - PARTE II - Felice Iavernaro. Dipartimento di Matematica Università di Bari. 9 e 16 Marzo 2007 Spazi lineari - PARTE II - Felice Iavernaro Dipartimento di Matematica Università di Bari 9 e 16 Marzo 2007 Felice Iavernaro (Univ. Bari) Spazi lineari 9-16/03/2007 1 / 17 Condizionamento dei sistemi lineari

Dettagli

SPAZI EUCLIDEI, APPLICAZIONI SIMMETRICHE, FORME QUADRATICHE

SPAZI EUCLIDEI, APPLICAZIONI SIMMETRICHE, FORME QUADRATICHE SPAZI EUCLIDEI, APPLICAZIONI SIMMETRICHE, FORME QUADRATICHE. Esercizi Esercizio. In R calcolare il modulo dei vettori,, ),,, ) ed il loro angolo. Esercizio. Calcolare una base ortonormale del sottospazio

Dettagli

Registro Lezioni di Algebra lineare del 15 e 16 novembre 2016.

Registro Lezioni di Algebra lineare del 15 e 16 novembre 2016. Registro Lezioni di Algebra lineare del 15 e 16 novembre 2016 Di seguito si riporta il riassunto degli argomenti svolti; i riferimenti sono a parti del Cap8 Elementi di geometria e algebra lineare Par5

Dettagli

Lezione n. 1. Introduzione all analisi numerica (richiami di algebra lineare e analisi funzionale)

Lezione n. 1. Introduzione all analisi numerica (richiami di algebra lineare e analisi funzionale) Lezione n. 1 Introduzione all analisi numerica (richiami di algebra lineare e analisi funzionale) R. Albanese, "Metodi numerici Pag. 1 Pag. 2 Programma 1. Introduzione all analisi numerica (richiami di

Dettagli

Esercizi di Matematica di Base Scienze biologiche e Scienze e Tecnologie dell Ambiente

Esercizi di Matematica di Base Scienze biologiche e Scienze e Tecnologie dell Ambiente Esercizi di Matematica di Base Scienze biologiche e Scienze e Tecnologie dell Ambiente Dati i vettori di R (i) Calcolare il prodotto scalare v w, (ii) Stabilire se v e w sono ortogonali, (ii) Stabilire

Dettagli

Algebra lineare Geometria 1 11 luglio 2008

Algebra lineare Geometria 1 11 luglio 2008 Algebra lineare Geometria 1 11 luglio 2008 Esercizio 1. Si considerino la funzione: { R f : 3 R 3 (α, β, γ) ( 2β α γ, (k 1)β + (1 k)γ α, 3β + (k 2)γ ) dove k è un parametro reale, e il sottospazio U =

Dettagli

Facoltá di Scienze MM.FF.NN. Corso di Studi in Informatica- A.A

Facoltá di Scienze MM.FF.NN. Corso di Studi in Informatica- A.A Facoltá di Scienze MM.FF.NN. Corso di Studi in Informatica- A.A. 5-6 Corso di CALCOLO NUMERICO / ANALISI NUMERICA : Esempi di esercizi svolti in aula 5//5 ) Dato un triangolo, siano a, b le lunghezze di

Dettagli

Cenni sui metodi iterativi per sistemi lineari. Analisi Numerica Prof. M. Lucia Sampoli a.a. 2014/2015

Cenni sui metodi iterativi per sistemi lineari. Analisi Numerica Prof. M. Lucia Sampoli a.a. 2014/2015 Cenni sui metodi iterativi per sistemi lineari Analisi Numerica Prof. M. Lucia Sampoli a.a. 2014/2015 Metodi numerici per sistemi lineari Nei metodi diretti la presenza di eventuali elementi nulli nella

Dettagli

Autovalori ed autovettori di una matrice

Autovalori ed autovettori di una matrice Autovalori ed autovettori di una matrice Lucia Gastaldi DICATAM http://www.ing.unibs.it/gastaldi/ Indice 1 Definizioni di autovalori ed autovettori Autovalori ed autovettori 2 Metodo delle potenze 3 Calcolo

Dettagli

Sistemi lineari - Parte Seconda - Esercizi

Sistemi lineari - Parte Seconda - Esercizi Sistemi lineari - Parte Seconda - Esercizi Terminologia Operazioni elementari sulle righe. Equivalenza per righe. Riduzione a scala per righe. Rango di una matrice. Forma canonica per righe. Eliminazione

Dettagli

RICHIAMI PER IL CORSO DI ANALISI NUMERICA

RICHIAMI PER IL CORSO DI ANALISI NUMERICA RICHIAMI PER IL CORSO DI ANALISI NUMERICA Anno accademico 211 212 1 RICHIAMI: PRECISIONE FINITA (USO DI UN COMPUTER) IN UN COMPUTER UNA QUALUNQUE INFORMAZIONE VIENE RAPPRESENTATA COME UNA SEQUENZA FINITA

Dettagli

Corso di Matematica Generale M-Z Dipartimento di Economia Universitá degli Studi di Foggia ALGEBRA LINEARE. Giovanni Villani

Corso di Matematica Generale M-Z Dipartimento di Economia Universitá degli Studi di Foggia ALGEBRA LINEARE. Giovanni Villani Corso di Matematica Generale M-Z Dipartimento di Economia Universitá degli Studi di Foggia ALGEBRA LINEARE Giovanni Villani Matrici Definizione 1 Si definisce matrice di tipo m n una funzione che associa

Dettagli

Geometria BIAR Esercizi 2

Geometria BIAR Esercizi 2 Geometria BIAR 0- Esercizi Esercizio. a Si consideri il generico vettore v b R c (a) Si trovi un vettore riga x (x, y, z) tale che x v a (b) Si trovi un vettore riga x (x, y, z) tale che x v kb (c) Si

Dettagli

La notazione usata è quella usuale nel caso scalare, ed è estesa al caso generale. Consideriamo una forma quadratica:

La notazione usata è quella usuale nel caso scalare, ed è estesa al caso generale. Consideriamo una forma quadratica: . SU ALCUNI OPERAORI DI DERIVAZIONE Alcune operazioni tipiche dell analisi matematica hanno un diretto riscontro in termini matriciali. Consideriamo ad esempio una forma lineare: f() l l + l +..l n n ;

Dettagli

6.2 Problema generale di approssimazione

6.2 Problema generale di approssimazione 6.2 Problema generale di approssimazione 313 Esercizio 6.16 Dati (m + 1)(n + 1) valori f i,j, per i = 1, 2,...,m + 1 e j = 1, 2,...,n + 1, posto X m,i (x) := Y n,i (y) := m+1 k=1, k i n+1 k=1, k i x x

Dettagli

Metodi per la risoluzione di sistemi lineari

Metodi per la risoluzione di sistemi lineari Metodi per la risoluzione di sistemi lineari Sistemi di equazioni lineari. Rango di matrici Come è noto (vedi [] sez.0.8), ad ogni matrice quadrata A è associato un numero reale det(a) detto determinante

Dettagli

(VX) (F) Se A e B sono due matrici simmetriche n n allora anche A B è una matrice simmetrica.

(VX) (F) Se A e B sono due matrici simmetriche n n allora anche A B è una matrice simmetrica. 5 luglio 010 - PROVA D ESAME - Geometria e Algebra T NOME: MATRICOLA: a=, b=, c= Sostituire ai parametri a, b, c rispettivamente la terzultima, penultima e ultima cifra del proprio numero di matricola

Dettagli

1 Coniche. s (x, y, t ) (1) 1 (x, y, t )F r 2

1 Coniche. s (x, y, t ) (1) 1 (x, y, t )F r 2 1 Coniche Studieremo le curve nel piano euclideo, cioè nel piano con un sistema di riferimento cartesiano ortogonale fissato, oppure nel completamento proiettivo di questo piano, ottenuto con l introduzione

Dettagli

Autovalori e autovettori, matrici simmetriche e forme quadratiche (cenni) (prof. M. Salvetti)

Autovalori e autovettori, matrici simmetriche e forme quadratiche (cenni) (prof. M. Salvetti) Autovalori e autovettori, matrici simmetriche e forme quadratiche (cenni) (prof. M. Salvetti) April 14, 2011 (alcune note non complete sugli argomenti trattati: eventuali completamenti saranno aggiunti)

Dettagli

Sistemi differenziali 2 2: esercizi svolti. 1 Sistemi lineari Stabilità nei sistemi lineari

Sistemi differenziali 2 2: esercizi svolti. 1 Sistemi lineari Stabilità nei sistemi lineari Sistemi differenziali : esercizi svolti 1 Sistemi lineari Stabilità nei sistemi lineari 14 1 Sistemi differenziali : esercizi svolti 1 Sistemi lineari Gli esercizi contrassegnati con il simbolo * presentano

Dettagli

Tutoraggio di Algebra Lineare e Geometria. Correzione del tema d'esame del 28/2/2006

Tutoraggio di Algebra Lineare e Geometria. Correzione del tema d'esame del 28/2/2006 Tutoraggio di Algebra Lineare e Geometria Correzione del tema d'esame del 8//6 Esercizio. Si considerino in R 4 i vettori : v =, v =, v = / / a) si dica se tali vettori sono linearemente indipendenti e

Dettagli

Esercitazione di Calcolo Numerico 1 27 Maggio Calcolare la fattorizzazione P A = LU della matrice A =

Esercitazione di Calcolo Numerico 1 27 Maggio Calcolare la fattorizzazione P A = LU della matrice A = Esercitazione di Calcolo Numerico 1 27 Maggio 29 1. Calcolare la fattorizzazione P A = LU della matrice 1 2 3 A = 2 3 3, ed utilizzarla per risolvere il sistema lineare Ax = b, con b = (1, 2,, 16) T. 2.

Dettagli

Geometria analitica del piano pag 12 Adolfo Scimone

Geometria analitica del piano pag 12 Adolfo Scimone Geometria analitica del piano pag 12 Adolfo Scimone Fasci di rette Siano r e r' due rette distinte di equazioni r: ax + by + c r': a' x + b' y + c' Consideriamo la retta combinazione lineare delle due

Dettagli

Sistemi lineari. 2x 1 + x 2 x 3 = 2 x 1 x 2 + x 3 = 1 x 1 + 3x 2 2x 3 = 0. x 1 x 2 x 3

Sistemi lineari. 2x 1 + x 2 x 3 = 2 x 1 x 2 + x 3 = 1 x 1 + 3x 2 2x 3 = 0. x 1 x 2 x 3 Sistemi lineari 2x 1 + x 2 x 3 = 2 x 1 x 2 + x 3 = 1 x 1 + 3x 2 2x 3 = 0 2 1 1 1 1 1 1 3 2 x 1 x 2 x 3 = 2 1 0 n j=1 a i,jx j = b i, i = 1,, n Ax = b A = (a i,j ) R n n matrice invertibile (det(a) 0) b

Dettagli

Norme di vettori e matrici

Norme di vettori e matrici Norme di vettori e matrici Dario A. Bini, Università di Pisa 30 ottobre 2013 Sommario Questo modulo didattico contiene risultati e proprietà relativi alle norme di vettori e di matrici. 1 Introduzione

Dettagli

Volumi in spazi euclidei 12 dicembre 2014

Volumi in spazi euclidei 12 dicembre 2014 Volumi in spazi euclidei 12 dicembre 2014 1 Definizioni In uno spazio euclideo reale V di dimensione n siano dati k n vettori linearmente indipendenti e sia Π := Π(v 1 v 2... v k ) il parallelepipedo generato

Dettagli

AUTOVALORI, AUTOVETTORI, AUTOSPAZI

AUTOVALORI, AUTOVETTORI, AUTOSPAZI AUTOVALORI, AUTOVETTORI, AUTOSPAZI. Esercizi Esercizio. Sia f : R 3 R 3 l endomorfismo definito da f(x, y, z) = (x+y, y +z, x+z). Calcolare gli autovalori ed una base per ogni autospazio di f. Dire se

Dettagli

Esempi di soluzione di equazioni differenziali mediante serie di potenze

Esempi di soluzione di equazioni differenziali mediante serie di potenze Esempi di soluzione di equazioni differenziali mediante serie di potenze Cerchiamo una soluzione dell equazione differenziale nella forma 3y () + y () + y() 0 + y() σ n con σ,. Una serie di potenze generalizzata

Dettagli

VETTORI NELLO SPAZIO ORDINARIO ,

VETTORI NELLO SPAZIO ORDINARIO , VETTORI E GEOMETRIA ANALITICA 1 VETTORI NELLO SPAZIO ORDINARIO Vettori ordinari ed operazioni. Dipendenza ed indipendenza lineare, basi. Prodotto scalare, proiezioni, angoli. Prodotto vettoriale e prodotto

Dettagli

2. Risolvere con il metodo di eliminazione di Gauss con pivoting parziale il seguente sistema lineare:

2. Risolvere con il metodo di eliminazione di Gauss con pivoting parziale il seguente sistema lineare: Esercizi sui metodi diretti per la risoluzione di sistemi lineari 1. Data la matrice 1 0 2 1 3 1 5 2 1 determinare la sua fattorizzazione P LR. Risolvere il sistema Ax = b con b = (3, 5, 6) T mediante

Dettagli

Definizione 1. Una matrice n m a coefficienti in K é una tabella del tipo. ... K m, detto vettore riga i-esimo, ed a im

Definizione 1. Una matrice n m a coefficienti in K é una tabella del tipo. ... K m, detto vettore riga i-esimo, ed a im APPUNTI ed ESERCIZI su matrici, rango e metodo di eliminazione di Gauss Corso di Laurea in Chimica, Facoltà di Scienze MM.FF.NN., UNICAL (Dott.ssa Galati C.) Rende, 23 Aprile 2010 Matrici, rango e metodo

Dettagli

Corso di Calcolo Numerico

Corso di Calcolo Numerico Corso di Laurea in Ingegneria Gestionale Sede di Fermo Corso di 8 - METODI ITERATIVI PER I SISTEMI LINEARI Norme Una norma in R n è una funzione. : R n R tale che x 0 x R n ; x = 0 x = 0; αx = α x ; x

Dettagli

Programmazione lineare: basi e soluzioni di base

Programmazione lineare: basi e soluzioni di base Programmazione lineare:basi e soluzioni di base p. 1/33 Programmazione lineare: basi e soluzioni di base Mariantonia Cotronei Facoltà di Ingegneria Università degli Studi Mediterranea di Reggio Calabria

Dettagli

Algebra Lineare Autovalori

Algebra Lineare Autovalori Algebra Lineare Autovalori Stefano Berrone Sandra Pieraccini Dipartimento di Matematica Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129, Torino, Italy e-mail: sberrone@calvino.polito.it sandra.pieraccini@polito.it

Dettagli

SOTTOSPAZI E OPERAZIONI IN SPAZI DIVERSI DA R n

SOTTOSPAZI E OPERAZIONI IN SPAZI DIVERSI DA R n SPAZI E SOTTOSPAZI 1 SOTTOSPAZI E OPERAZIONI IN SPAZI DIVERSI DA R n Spazi di matrici. Spazi di polinomi. Generatori, dipendenza e indipendenza lineare, basi e dimensione. Intersezione e somma di sottospazi,

Dettagli

Il teorema di Rouché-Capelli

Il teorema di Rouché-Capelli Luciano Battaia Questi appunti (1), ad uso degli studenti del corso di Matematica (A-La) del corso di laurea in Commercio Estero dell Università Ca Foscari di Venezia, campus di Treviso, contengono un

Dettagli

Punti di massimo o di minimo per funzioni di n variabili reali

Punti di massimo o di minimo per funzioni di n variabili reali Punti di massimo o di minimo per funzioni di n variabili reali Dati f : A R n R ed X 0 A, X 0 si dice : punto di minimo assoluto se X A, f ( x ) f ( X 0 ) punto di massimo assoluto se X A, f ( x ) f (

Dettagli

FONDAMENTI DI ALGEBRA LINEARE E GEOMETRIA

FONDAMENTI DI ALGEBRA LINEARE E GEOMETRIA Cognome Nome Matricola FONDAMENTI DI ALGEBRA LINEARE E GEOMETRIA Ciarellotto, Esposito, Garuti Prova del 21 settembre 2013 Dire se è vero o falso (giustificare le risposte. Bisogna necessariamente rispondere

Dettagli

Statistica. Alfonso Iodice D Enza

Statistica. Alfonso Iodice D Enza Statistica Alfonso Iodice D Enza iodicede@gmail.com Università degli studi di Cassino () Statistica 1 / 24 Outline 1 2 3 4 5 () Statistica 2 / 24 Dipendenza lineare Lo studio della relazione tra caratteri

Dettagli

Il metodo delle osservazioni indirette

Il metodo delle osservazioni indirette Il metodo delle osservazioni indirette Teoria della stima ai minimi quadrati Il criterio di massima verosimiglianza Sia data una grandezza η e si abbiano n osservazioni indipendenti l i (i=1,...,n) di

Dettagli

SISTEMI LINEARI MATRICI E SISTEMI 1

SISTEMI LINEARI MATRICI E SISTEMI 1 MATRICI E SISTEMI SISTEMI LINEARI Sistemi lineari e forma matriciale (definizioni e risoluzione). Teorema di Rouché-Capelli. Sistemi lineari parametrici. Esercizio Risolvere il sistema omogeneo la cui

Dettagli

Applicazioni eliminazione di Gauss

Applicazioni eliminazione di Gauss Applicazioni eliminazione di Gauss. Premessa Nel seguito supporremo sempre di applicare il metodo di eliminazione di Gauss allo scopo di trasformare la matrice del sistema Ax = b in una matrice triangolare

Dettagli

Esercizi di ripasso: geometria e algebra lineare.

Esercizi di ripasso: geometria e algebra lineare. Esercizi di ripasso: geometria e algebra lineare. Esercizio. Sia r la retta passante per i punti A(2,, 3) e B(,, 2) in R 3. a. Scrivere l equazione cartesiana del piano Π passante per A e perpendicolare

Dettagli

MATRICI E VETTORI APPROFONDIMENTO PER IL CORSO DI LABORATORIO DI INFORMATICA SARA POLTRONIERI

MATRICI E VETTORI APPROFONDIMENTO PER IL CORSO DI LABORATORIO DI INFORMATICA SARA POLTRONIERI MATRICI E VETTORI APPROFONDIMENTO PER IL CORSO DI LABORATORIO DI INFORMATICA SARA POLTRONIERI LE MATRICI DEFINIZIONE: Una matrice è un insieme di numeri disposti su righe e colonne. 1 3 7 M = 2 5 1 M è

Dettagli

1 Il polinomio minimo.

1 Il polinomio minimo. Abstract Il polinomio minimo, così come il polinomio caratterisico, è un importante invariante per le matrici quadrate. La forma canonica di Jordan è un approssimazione della diagonalizzazione, e viene

Dettagli

Prendiamo in considerazione la matrice tridiagonale

Prendiamo in considerazione la matrice tridiagonale Questi esercizi sono il completamento di quelli sui sistemi lineari già a disposizione. Ogni esercizio proposto può fare riferimento a qualcuno di questi. In ogni caso sono riportati tutti i dati essenziali

Dettagli

LEZIONE 12. v = α 1 v α n v n =

LEZIONE 12. v = α 1 v α n v n = LEZIONE 12 12.1. Combinazioni lineari. Definizione 12.1.1. Sia V uno spazio vettoriale su k = R, C e v 1,..., v n V vettori fissati. Un vettore v V si dice combinazione lineare di v 1,..., v n se esistono

Dettagli

La lunghezza dei vettori e legata alle operazioni sui vettori nel modo seguente: Consideriamo due vettori v, w e il vettore v + w loro somma.

La lunghezza dei vettori e legata alle operazioni sui vettori nel modo seguente: Consideriamo due vettori v, w e il vettore v + w loro somma. Matematica II, 20.2.. Lunghezza di un vettore nel piano Consideriamo il piano vettoriale geometrico P O. Scelto un segmento come unita, possiamo parlare di lunghezza di un vettore v P O rispetto a tale

Dettagli

Metodi computazionali per i Minimi Quadrati

Metodi computazionali per i Minimi Quadrati Metodi computazionali per i Minimi Quadrati Come introdotto in precedenza si considera la matrice. A causa di mal condizionamenti ed errori di inversione, si possono avere casi in cui il e quindi S sarebbe

Dettagli

Metodi e Modelli per l Ottimizzazione Combinatoria Ripasso sulla Programmazione Lineare e il metodo del Simplesso (parte I)

Metodi e Modelli per l Ottimizzazione Combinatoria Ripasso sulla Programmazione Lineare e il metodo del Simplesso (parte I) Metodi e Modelli per l Ottimizzazione Combinatoria Ripasso sulla Programmazione Lineare e il metodo del Simplesso (parte I) Luigi De Giovanni Giacomo Zambelli 1 Problemi di programmazione lineare Un problema

Dettagli

Riassumiamo le proprietà dei numeri reali da noi utilizzate nel corso di Geometria.

Riassumiamo le proprietà dei numeri reali da noi utilizzate nel corso di Geometria. Capitolo 2 Campi 2.1 Introduzione Studiamo ora i campi. Essi sono una generalizzazione dell insieme R dei numeri reali con le operazioni di addizione e di moltiplicazione. Nel secondo paragrafo ricordiamo

Dettagli

Corso di Calcolo Numerico

Corso di Calcolo Numerico Corso di Laurea in Ingegneria Gestionale Sede di Fermo Corso di 7 - CALCOLO NUMERICO CON MATRICI Richiami teorici Operazioni fondamentali Siano A = {a ij } e B = {b ij }, i = 1,..., m, j = 1,..., n due

Dettagli

Decomposizione LU di una matrice quadrata

Decomposizione LU di una matrice quadrata Appendice al Cap. 5 Decomposizione LU di una matrice quadrata Una qualunque matrice quadrata M = {m ij } di ordine N, reale, invertibile, i cui minori principali siano tutti non nulli, si può sempre decomporre

Dettagli

ossia può anche essere localizzato univocamente sul piano complesso con la sua forma polare.

ossia può anche essere localizzato univocamente sul piano complesso con la sua forma polare. ALGEBRA COMPLESSA Nel corso dei secoli gli insiemi dei numeri sono andati man mano allargandosi per rispondere all esigenza di dare soluzione a equazioni e problemi sempre nuovi I numeri complessi sono

Dettagli

Operazioni tra matrici e n-uple

Operazioni tra matrici e n-uple CAPITOLO Operazioni tra matrici e n-uple Esercizio.. Date le matrici 0 4 e dati λ = 5, µ =, si calcoli AB, BA, A+B, B A, λa+µb. Esercizio.. Per ognuna delle seguenti coppie di matrici A, B e scalari λ,

Dettagli

MATEMATICA. a.a. 2014/ Sistemi di equazioni lineari

MATEMATICA. a.a. 2014/ Sistemi di equazioni lineari MATEMATICA a.a. 2014/15 8. Sistemi di equazioni lineari SISTEMI LINEARI Si definisce sistema lineare un sistema di p equazioni di primo grado in q incognite. a11x1 + a12 x2 +... + a1 qxq = k1 a21x1 + a22x2

Dettagli

Spazi vettoriali euclidei.

Spazi vettoriali euclidei. Spazi vettoriali euclidei Prodotto scalare, lunghezza e ortogonalità in R n Consideriamo lo spazio vettoriale R n = { =,,, n R}, n con la somma fra vettori e il prodotto di un vettore per uno scalare definiti

Dettagli

Sapienza Università di Roma Corso di laurea in Ingegneria Energetica Geometria A.A ESERCIZI DA CONSEGNARE prof.

Sapienza Università di Roma Corso di laurea in Ingegneria Energetica Geometria A.A ESERCIZI DA CONSEGNARE prof. Sapienza Università di Roma Corso di laurea in Ingegneria Energetica Geometria A.A. 2015-2016 ESERCIZI DA CONSEGNARE prof. Cigliola Consegna per Martedì 6 Ottobre Esercizio 1. Una matrice quadrata A si

Dettagli

Risposta in vibrazioni libere di un sistema lineare viscoso a più gradi di libertà. Prof. Adolfo Santini - Dinamica delle Strutture 1

Risposta in vibrazioni libere di un sistema lineare viscoso a più gradi di libertà. Prof. Adolfo Santini - Dinamica delle Strutture 1 Risposta in vibrazioni libere di un sistema lineare viscoso a più gradi di libertà Prof. Adolfo Santini - Dinamica delle Strutture 1 Vibrazioni libere non smorzate 1/6 Le equazioni del moto di un sistema

Dettagli

AUTOVALORI E AUTOVETTORI

AUTOVALORI E AUTOVETTORI Capitolo 4 AUTOVALORI E AUTOVETTORI Abbiamo visto nel paragrafo 2.17 che la matrice associata ad una applicazione lineare f : R n R m dipende dalle basi scelte in R n e R m. Un problema interessante che

Dettagli

Per esempio, una matrice 4 4 triangolare alta ha la forma. 0 a. mentre una matrice di ordine 4 triangolare bassa è del tipo

Per esempio, una matrice 4 4 triangolare alta ha la forma. 0 a. mentre una matrice di ordine 4 triangolare bassa è del tipo Matrici triangolari Prima di esporre il metodo LU per la risoluzione di sistemi lineari, introduciamo la nozione di matrice triangolare Ci limiteremo al caso di matrici quadrate anche se l estensione a

Dettagli

0.1 Condizione sufficiente di diagonalizzabilità

0.1 Condizione sufficiente di diagonalizzabilità 0.1. CONDIZIONE SUFFICIENTE DI DIAGONALIZZABILITÀ 1 0.1 Condizione sufficiente di diagonalizzabilità È naturale porsi il problema di sapere se ogni matrice sia o meno diagonalizzabile. Abbiamo due potenziali

Dettagli

MATRICI E SISTEMI LINEARI

MATRICI E SISTEMI LINEARI 1 Rappresentazione di dati strutturati MATRICI E SISTEMI LINEARI Gli elementi di una matrice, detti coefficienti, possono essere qualsiasi e non devono necessariamente essere omogenei tra loro; di solito

Dettagli