Corso di Matematica per la Chimica

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Corso di Matematica per la Chimica"

Transcript

1 Dott.ssa Maria Carmela De Bonis a.a

2 Pivoting e stabilità Se la matrice A non appartiene a nessuna delle categorie precedenti può accadere che al k esimo passo risulti a (k) k,k = 0, e quindi il metodo di Gauss, così com è stato descritto, non può proseguire. Tuttavia se a (k) k,k = 0 necessariamente qualche altro elemento a (k) i,k, i = k + 1,..., n, della colonna k esima della matrice dei coefficienti deve essere non nullo, altrimenti la matrice dei coefficienti sarebbe singolare. Se, ad esempio, a (k) r,k 0, basta scambiare l equazione k esima con la r esima e poi procedere con le eliminazioni. Dunque ogni sistema non singolare, mediante opportuni scambi di righe, può essere sempre ricondotto alla forma triangolare superiore con il metodo di Gauss.

3 Discutiamo ora della stabilità del metodo di Gauss. È possibile provare che l esistenza di pivot molto piccoli (in valore assoluto) rispetto all ordine di grandezza degli elementi della matrice è causa di cancellazione numerica e quindi di instabilità. Dunque per assicurare una migliore stabilità numerica al metodo di eliminazione di Gauss è possibile permutare l ordine delle equazioni anche quando l elemento pivot non è nullo ma è piccolo. Tale strategia algoritmica è detta pivoting.

4 Il pivoting consiste nello scegliere, al generico passo k esimo, l elemento pivot in maniera ottimale. Le due strategie di pivoting più utilizzate sono le seguenti: pivoting parziale: si sceglie r uguale al più piccolo intero k tale che a (k) r,k = max k i n a(k) i,k e, se r k, si scambia l equazione k esima con l r esima; pivoting totale: si sceglie la coppia (r, s), con r, s k tale che a (k) r,s = max k i,j n a(k) i,j e si scambiamo l equazione k esima con l r esima e l incognita k esima (con il suo coefficiente) con l s esima.

5 La strategia del pivoting totale combinata con il metodo di Gauss assicura la stabilità dell algoritmo complessivo. Tuttavia essa può risultare molto costosa. La strategia di pivoting parziale è meno costosa e, poiché, in generale, risulta soddisfacente nella maggior parte dei casi, essa è la strategia più utilizzata. Osservazione Il metodo di eliminazione di Gauss senza pivoting è comunque numericamente stabile quando: la matrice A del sistema è a diagonale dominante per colonne (in questo caso la strategia di pivot non produce scambi); la matrice A del sistema è simmetrica e definita positiva (in questo caso la strategia effettua scambi ma non produce miglioramenti).

6 Esempio Pivoting e stabilità Consideriamo il sistema lineare Ax = b di ordine n = 18, dove ( a i,j = cos (j 1) 2i 1 ) 2n π, i, j = 1,..., n, e b i = n a i,j, i = 1,..., n, j=1 la cui soluzione esatta è x = (1, 1,..., 1) T. Tale matrice è ben condizionata, risultando cond(a) = A A 1 = Risolvendo il sistema con il metodo di eliminazione di Gauss senza e con la strategia di pivoting parziale, si ottengono i seguenti risultati:

7 Gauss e e e e e e e e e e e e e e e e e e-001 Gauss + pivoting parziale e e e e e e e e e e e e e e e e e e-001

8 Il metodo di eliminazione di Gauss, dal punto di vista matriciale, può essere riletto come la costruzione di una successione di matrici [A b] = [A (1) b (1) ],..., [A (k) b (k) ],..., [A (n) b (n) ] in modo tale che A (n) sia triangolare superiore e b (n) sia il nuovo termine noto. Le matrici della successione sono tra loro legate da una trasformazione del tipo [A (k+1) b (k+1) ] = M (k) [A (k) b (k) ], k = 1,..., n 1

9 dove M (k) = m k+1,k m k+2,k m n,k è detta matrice elementare di Gauss.

10 Si ha quindi che A = [M (1) ] 1 A (2) = [M (1) ] 1 [M (2) ] 1 A (3) = = [M (1) ] 1 [M (n 1) ] 1 A (n) e Ponendo b = [M (1) ] 1 [M (n 1) ] 1 b (n). si ottiene L = [M (1) ] 1 [M (n 1) ] 1, U = A (n) e y = b (n), A = LU e b = Ly, dove U è la matrice triangolare superiore che si ottiene alla fine del metodo di eliminazione di Gauss e L è una matrice triangolare inferiore (è prodotto di inverse di matrici triangolari inferiori).

11 La matrice L è definita come m 2, L =.. m k+1,k 1... m..... k+2,k m n, m n,k m n,n 1 1 e dunque per costruirla basta, ad ogni passo del metodo di Gauss, memorizzare i moltiplicatori cambiati di segno.

12 schema algoritmo for k=1:n-1 for i=k+1:n a i,k = a i,k /a k,k ; costruzione matrice L for j=k+1:n a i,j = a i,j a i,k a k,j ; costruzione matrice U end end end L=eye(n)+tril(A,-1) U=triu(A)

13 Dunque, con piccoli accorgimenti algoritmici, dal metodo di Gauss è possibile calcolare le due matrici L ed U tali che A = LU. Si effettua in tal modo una decomposizione della matrice A detta fattorizzazione LU di A.

14 Calcolate le matrici L e U, il sistema Ax = b, può essere risolto mediante i due sistemi Ly = b e Ux = y, il primo triangolare inferiore e il secondo triangolare superiore. Risolvere il primo sistema equivale a calcolare il nuovo termine noto. La differenza con l algoritmo di Gauss è che, invece di farlo contestualmente alla riduzione in forma triangolare, tale calcolo viene effettuato in modo indipendente. Il costo computazionale complessivo ammonta dunque a n3 3 + n2 di cui n3 3 per la fattorizzazione LU e n2 per le due sostituzioni (all indietro e in avanti).

15 Le fattorizzazioni di matrici hanno diversi utilizzi. Nel caso specifico della fattorizzazione LU la prima immediata applicazione è il calcolo del determinante di A. Infatti det(a) = det(lu) = det(l) det(u) = det(u) = n u i,i. i=1

16 Un altra possibile applicazione scaturisce dall esigenza di risolvere p sistemi che hanno tutti la stessa matrice dei coefficienti A, cioè o in altri termini il sistema Ax 1 = b 1, Ax 2 = b 2,..., Ax p = b p, AX = B, con A R n n, X, B R n p. Infatti in tal caso la fattorizzazione viene effettuata una sola volta e ogni sistema viene poi risolto mediante 2 algoritmi di sostituzione, per un costo computazionale ( ) complessivo che si riduce quindi a n pn2 (contro p n n2 2 se si risolvesse ciascun sistema indipendentemente dagli altri). Osserviamo infine che se p = n e B = I, risolvere il sistema AX = B, è equivalente a calcolare A 1.

17 Il metodo di Gauss con la variante del pivoting esegue ancora una fattorizzazione di matrice nei seguenti termini PA = LU e Pb = Ly dove P R n n, detta matrice di permutazione, contiene le informazioni relative agli scambi di righe. Vale il seguente Teorema Per ogni matrice A R n n esiste una matrice di permutazione P R n n tale che PA = LU.

18 Sia A R n n una matrice simmetrica definita positiva. In questo caso speciale è possibile costruire un algoritmo, antagonista del metodo di Gauss, e quindi una fattorizzazione alternativa a quella LU, che è più conveniente dal punto di vista computazionale. Vale il seguente Teorema Se A R n n è una matrice simmetrica definita positiva esiste ed è unica la fattorizzazione A = LL T dove L è una matrice triangolare inferiore con elementi diagonali non nulli.

19 Posto A = (a i,j ) i,j=1,...,n e L = (l i,j ) i,j=1,...,n, si ha a i,j = n l i,k lk,j T = k=1 n l i,k l j,k. k=1 Poiché la matrice è simmetrica, possiamo considerare solo gli elementi di A con j i. Otteniamo e j 1 a i,j = l i,k l j,k + l i,j l j,j, i = 1,..., n, j = 1,..., i 1 k=1 i 1 a i,i = li,k 2 + li,i, 2 i = 1,..., n. k=1

20 Da cui l 1,1 = a 1,1 l i,j = 1 l j,j [ ] j 1 a i,j l i,k l j,k k=1 i 1 l i,i = ai,i k=1 l 2 i,k i = 2,..., n j = 1,..., i 1

21 schema algoritmo l 1,1 = a 1,1 for i=2:n for j=1:i-1 l i,j = 0; for k=1:j-1 l i,j = l i,j + l i,k l j,k ; end l i,j = (a i,j l i,j )/l j,j ; end l i,i = 0; for k=1:i-1 l i,i = l i,i + li,k 2 ; end l i,i = a i,i l i,i ; end j 1 operazioni 1 operazione i 1 operazioni 1 operazione

22 costo computazionale n i 1 i + j + n 2 = i=1 j=1 = = 1 2 = n i + i=1 n i=1 n i i=1 i(i 1) 2 n i i=1 n i i=1 n(n + 1) n 2 n i + n 2 i=1 n i 2 + n 2 i=1 = n n2 + n 3 n3 6 (n + 1)n(2n + 1) 12 + n 2

23 È possibile provare che l algoritmo di Cholesky è stabile. Ricordiamo che, peraltro, anche l algoritmo di Gauss, senza pivoting, è stabile per le matrici simmetriche definite positive.

24 Molte routine automatiche calcolano R = L T anzicché L, ma è evidente che l algoritmo è lo stesso (con un attento uso degli indici), data la simmetria della matrice di partenza A. In tali casi dunque scriveremo A = R T R. Osserviamo infine che se si vuole risolvere il sistema Ax = b mediante la fattorizzazione di Cholesky basterà, una volta computata la fattorizzazione, e quindi calcolata L ( o rispettivamente R), risolvere i seguenti due sistemi Ly = b, L T x = y (R T y = b, Rx = y rispettivamente)

25 Chiudiamo questa carrellata dei principali metodi diretti per la risoluzione di un sistema lineare descrivendo le principali function di Matlab che implementano tali metodi. Sia allora A una matrice non singolare di ordine n e b un vettore colonna di ordine n. risoluzione dei sistemi diagonali: se la matrice dei coefficienti A è diagonale, A\b risolve il sistema mediante n operazioni di divisione; risoluzione dei sistemi triangolari: se la matrice dei coefficienti A è triagolare (superiore o inferiore) A\b risolve il sistema mediante algoritmo di sostituzione (all indietro o in avanti a seconda struttura della matrice);

26 risoluzione di sistemi con matrice dei coefficienti qualsiasi: A\b risolve il sistema mediante metodo di eliminazione di Gauss (in realtà con la fattorizzazione LU) con pivoting e gli algoritmi di sostituzione; risoluzione di un sistema con matrice simmetrica e definita positiva: A\b risolve il sistema mediante metodo di Cholesky e gli algoritmi di sostituzione; fattorizzazione LU: il comando [L,U,P] = lu(a) calcola i fattori L, U e la matrice di permutazione P tali che PA = LU; fattorizzazione di Cholesky: se la matrice A è simmetrica e definita positiva, il comando R = chol(a) calcola il fattore triangolare superiore R tale che A = R T R;

27 calcolo del determinante di una matrice: det(a) calcola il determinante della matrice non singolare A, utilizzando la fattorizzazione LU; condizionamento: il comando cond(a,p), con p = 1, 2, inf, fro, calcola il numero di condizionamento rispettivamente in norma 1, 2, infinito e Frobenius; inversa di una matrice: inv(a), calcola l inversa della matrice utilizzando la fattorizzazione LU.

Corso di Matematica per la Chimica

Corso di Matematica per la Chimica Dott.ssa Maria Carmela De Bonis a.a. 2013-14 Pivoting e stabilità Se la matrice A non appartiene a nessuna delle categorie precedenti può accadere che al k esimo passo risulti a (k) k,k = 0, e quindi il

Dettagli

Corso di Calcolo Numerico

Corso di Calcolo Numerico Corso di Calcolo Numerico Dottssa MC De Bonis Università degli Studi della Basilicata, Potenza Facoltà di Ingegneria Corso di Laurea in Ingegneria Meccanica Corso di Calcolo Numerico - Dottssa MC De Bonis

Dettagli

Sistemi lineari. 2x 1 + x 2 x 3 = 2 x 1 x 2 + x 3 = 1 x 1 + 3x 2 2x 3 = 0. x 1 x 2 x 3

Sistemi lineari. 2x 1 + x 2 x 3 = 2 x 1 x 2 + x 3 = 1 x 1 + 3x 2 2x 3 = 0. x 1 x 2 x 3 Sistemi lineari 2x 1 + x 2 x 3 = 2 x 1 x 2 + x 3 = 1 x 1 + 3x 2 2x 3 = 0 2 1 1 1 1 1 1 3 2 x 1 x 2 x 3 = 2 1 0 n j=1 a i,jx j = b i, i = 1,, n Ax = b A = (a i,j ) R n n matrice invertibile (det(a) 0) b

Dettagli

Metodi diretti: eliminazione gaussiana

Metodi diretti: eliminazione gaussiana Calcolo numerico 08/09 p. 1/1 SISTEMI LINEARI Metodi diretti: eliminazione gaussiana Calcolo numerico 08/09 p. 2/1 Sistemi lineari Ax = b, A R n n, b R n b INPUT x OUTPUT A relazione funzionale non ambigua

Dettagli

Esercitazione di Calcolo Numerico 1 22 Aprile Determinare la fattorizzazione LU della matrice a 1 1 A = 3a 2 a 2a a a 2 A =

Esercitazione di Calcolo Numerico 1 22 Aprile Determinare la fattorizzazione LU della matrice a 1 1 A = 3a 2 a 2a a a 2 A = Esercitazione di Calcolo Numerico 22 Aprile 29. Determinare la fattorizzazione LU della matrice a A = 3a 2 a 2a a a 2 ed utilizzarla per calcolare il det(a). 2. Calcolare il determinante della matrice

Dettagli

Esercitazione 5: Sistemi a risoluzione immediata.

Esercitazione 5: Sistemi a risoluzione immediata. Esercitazione 5: Sistemi a risoluzione immediata. Ipotesi: Supponiamo le matrici non singolari. Nota: Per verificare che si ha risolto correttamente il sistema lineare Ax = b basta calcolare la norma del

Dettagli

Sistemi lineari. Lucia Gastaldi. DICATAM - Sez. di Matematica,

Sistemi lineari. Lucia Gastaldi. DICATAM - Sez. di Matematica, Sistemi lineari Lucia Gastaldi DICATAM - Sez. di Matematica, http://www.ing.unibs.it/gastaldi/ Indice 1 Risoluzione di sistemi lineari Risoluzione di sistemi lineari in Matlab Metodi di risoluzione Fattorizzazione

Dettagli

1 Risoluzione di sistemi lineari

1 Risoluzione di sistemi lineari Risoluzione di sistemi lineari La presente nota è in parte ripresa dal testo D Bini M Capovani O Menchi Metodi numerici per l algebra lineare Zanichelli Editore Siano A una matrice non singolare di ordine

Dettagli

Motivazioni. Sistemi lineari. Obiettivo. Il problema

Motivazioni. Sistemi lineari. Obiettivo. Il problema Motivazioni Sistemi lineari Metodo di eliminazione di Gauss Molti problemi si possono rappresentare mediante un sistema lineare La soluzione di un sistema lineare costituisce un sottoproblema di moltissime

Dettagli

2. Risolvere con il metodo di eliminazione di Gauss con pivoting parziale il seguente sistema lineare:

2. Risolvere con il metodo di eliminazione di Gauss con pivoting parziale il seguente sistema lineare: Esercizi sui metodi diretti per la risoluzione di sistemi lineari 1. Data la matrice 1 0 2 1 3 1 5 2 1 determinare la sua fattorizzazione P LR. Risolvere il sistema Ax = b con b = (3, 5, 6) T mediante

Dettagli

Per esempio, una matrice 4 4 triangolare alta ha la forma. 0 a. mentre una matrice di ordine 4 triangolare bassa è del tipo

Per esempio, una matrice 4 4 triangolare alta ha la forma. 0 a. mentre una matrice di ordine 4 triangolare bassa è del tipo Matrici triangolari Prima di esporre il metodo LU per la risoluzione di sistemi lineari, introduciamo la nozione di matrice triangolare Ci limiteremo al caso di matrici quadrate anche se l estensione a

Dettagli

Matrici di permutazione

Matrici di permutazione Matrici di permutazione Si dice matrice di permutazione elementare una matrice ottenuta dall identità scambiando due righe i e j o due colonne i e j. P ij =...... P ij ha come effetto di scambiare le righe

Dettagli

Un sistema lineare si rappresenta in generale come

Un sistema lineare si rappresenta in generale come SISTEMI LINEARI Un sistema lineare si rappresenta in generale come n j=1 a ij x j = b i i = 1, 2,..., m o anche AX = B. La soluzione esiste se e solo se B appartiene allo spazio lineare generato dalle

Dettagli

3x 2 = 6. 3x 2 x 3 = 6

3x 2 = 6. 3x 2 x 3 = 6 Facoltà di Scienze Statistiche, Algebra Lineare 1 A, GParmeggiani LEZIONE 7 Sistemi lineari Scrittura matriciale di un sistema lineare Def 1 Un sistema di m equazioni ed n incognite x 1, x 2, x n, si dice

Dettagli

Risoluzione di sistemi lineari sparsi e di grandi dimensioni

Risoluzione di sistemi lineari sparsi e di grandi dimensioni Risoluzione di sistemi lineari sparsi e di grandi dimensioni Un sistema lineare Ax = b con A R n n, b R n, è sparso quando il numero di elementi della matrice A diversi da zero è αn, con n α. Una caratteristica

Dettagli

Corso di Calcolo Numerico

Corso di Calcolo Numerico Corso di Laurea in Ingegneria Gestionale Sede di Fermo Corso di 7 - CALCOLO NUMERICO CON MATRICI Richiami teorici Operazioni fondamentali Siano A = {a ij } e B = {b ij }, i = 1,..., m, j = 1,..., n due

Dettagli

INTRODUZIONE A MATLAB

INTRODUZIONE A MATLAB INTRODUZIONE A MATLAB M.R. Russo Università degli Studi di Padova Dipartimento di Matematica Pura ed Applicata A.A. 2008/2009 INDICE Sistemi lineari Casi particolari Eliminazione di Gauss Fattorizzazione

Dettagli

RISOLUZIONE DI SISTEMI LINEARI

RISOLUZIONE DI SISTEMI LINEARI RISOLUZIONE DI SISTEMI LINEARI Algebra lineare numerica 1 La risoluzione di un sistema lineare è il nucleo principale del processo di risoluzione di circa il 70% di tutti i problemi reali Per la risoluzione

Dettagli

Metodi numerici per la risoluzione di Sistemi Lineari

Metodi numerici per la risoluzione di Sistemi Lineari Metodi numerici per la risoluzione di Sistemi Lineari Dipartimento di Matematica tel. 011 0907503 stefano.berrone@polito.it http://calvino.polito.it/~sberrone Laboratorio di modellazione e progettazione

Dettagli

MATRICI E SISTEMI LINEARI

MATRICI E SISTEMI LINEARI 1 Rappresentazione di dati strutturati MATRICI E SISTEMI LINEARI Gli elementi di una matrice, detti coefficienti, possono essere qualsiasi e non devono necessariamente essere omogenei tra loro; di solito

Dettagli

Matrici elementari e fattorizzazioni

Matrici elementari e fattorizzazioni Matrici elementari e fattorizzazioni Dario A Bini, Università di Pisa 19 ottobre 2015 Sommario Questo modulo didattico introduce ed analizza la classe delle matrici elementari Tale classe verrà usata per

Dettagli

Altre trasformazioni elementari

Altre trasformazioni elementari Altre trasformazioni elementari Si possono definire altri tipi di trasformazioni elementari Analogamente alle trasformazioni di Gauss, esse danno luogo a fattorizzazioni Trasformazione elementari di Givens

Dettagli

Metodi diretti per la soluzione di sistemi lineari

Metodi diretti per la soluzione di sistemi lineari Metodi diretti per la soluzione di sistemi lineari N Del Buono 1 Introduzione Consideriamo un sistema di n equazioni in n incognite a 11 x 1 + a 12 x 2 + a 13 x 3 + + a 1n x n = b 1, a 21 x 1 + a 22 x

Dettagli

8 Metodi iterativi per la risoluzione di sistemi lineari

8 Metodi iterativi per la risoluzione di sistemi lineari 8 Metodi iterativi per la risoluzione di sistemi lineari È dato il sistema lineare Ax = b con A R n n e x, b R n, con deta 0 Si vogliono individuare dei metodi per determinarne su calcolatore la soluzione,

Dettagli

Corso di Matematica per la Chimica

Corso di Matematica per la Chimica Corso di Matematica per la Chimica Dott.ssa Maria Carmela De Bonis Dipartimento di Matematica, Informatica e Economia Università della Basilicata a.a. 2014-15 Propagazione degli errori introdotti nei dati

Dettagli

Esercizi su algebra lineare, fattorizzazione LU e risoluzione di sistemi lineari

Esercizi su algebra lineare, fattorizzazione LU e risoluzione di sistemi lineari Esercizi su algebra lineare, fattorizzazione LU e risoluzione di sistemi lineari 4 maggio Nota: gli esercizi più impegnativi sono contrassegnati dal simbolo ( ) Esercizio Siano 3 6 8 6 4 3 3 ) determinare

Dettagli

Esercitazione 4: Vettori e Matrici

Esercitazione 4: Vettori e Matrici Esercitazione 4: Vettori e Matrici Richiami di teoria: Norme di vettore Principali norme di vettore:. x = n i= x i 2. x 2 = n i= x i 2 3. x = max i n x i Ad esempio dato il vettore x = (, 2, 3, 4) abbiamo.

Dettagli

Motivazione: Come si fa? Matrici simmetriche. Fattorizzazioni di matrici speciali

Motivazione: Come si fa? Matrici simmetriche. Fattorizzazioni di matrici speciali Motivazione: Fattorizzazioni di matrici speciali Diminuire la complessità computazionale = evitare operazioni inutili = risparmiare tempo di calcolo Diminuire l occupazione di memoria Come si fa? Si tiene

Dettagli

Appunti su Indipendenza Lineare di Vettori

Appunti su Indipendenza Lineare di Vettori Appunti su Indipendenza Lineare di Vettori Claudia Fassino a.a. Queste dispense, relative a una parte del corso di Matematica Computazionale (Laurea in Informatica), rappresentano solo un aiuto per lo

Dettagli

Corso di Analisi Numerica - AN1. Parte 2: metodi diretti per sistemi lineari. Roberto Ferretti

Corso di Analisi Numerica - AN1. Parte 2: metodi diretti per sistemi lineari. Roberto Ferretti Corso di Analisi Numerica - AN1 Parte 2: metodi diretti per sistemi lineari Roberto Ferretti Richiami sulle norme e sui sistemi lineari Il Metodo di Eliminazione di Gauss Il Metodo di Eliminazione con

Dettagli

Corso di Matematica per la Chimica

Corso di Matematica per la Chimica Dott.ssa Maria Carmela De Bonis a.a. 2013-14 Risoluzione di Equazioni Algebriche Le equazioni algebriche sono equazioni del tipo P(x) = 0 dove P è un polinomio di grado n cioé P(x) = a 1 x n + a 2 x n

Dettagli

Geometria BIAR Esercizi 2

Geometria BIAR Esercizi 2 Geometria BIAR 0- Esercizi Esercizio. a Si consideri il generico vettore v b R c (a) Si trovi un vettore riga x (x, y, z) tale che x v a (b) Si trovi un vettore riga x (x, y, z) tale che x v kb (c) Si

Dettagli

SISTEMI LINEARI. x y + 2t = 0 2x + y + z t = 0 x z t = 0 ; S 3 : ; S 5x 2y z = 1 4x 7y = 3

SISTEMI LINEARI. x y + 2t = 0 2x + y + z t = 0 x z t = 0 ; S 3 : ; S 5x 2y z = 1 4x 7y = 3 SISTEMI LINEARI. Esercizi Esercizio. Verificare se (,, ) è soluzione del sistema x y + z = x + y z = 3. Trovare poi tutte le soluzioni del sistema. Esercizio. Scrivere un sistema lineare di 3 equazioni

Dettagli

Sistemi II. Sistemi II. Elisabetta Colombo

Sistemi II. Sistemi II. Elisabetta Colombo Corso di Approfondimenti di Matematica per Biotecnologie, Anno Accademico 2011-2012, http://users.mat.unimi.it/users/colombo/programmabio.html 1 2 3 con R.C.+ o 1.10 Rango massimo e determinante con R.C.+

Dettagli

Esercitazione 1-I parte

Esercitazione 1-I parte Esercitazione 1-I parte Argomento: Sistemi triangolari Scopo: Implementare il metodo di sostituzione all indietro per la risoluzione di sistemi triangolari superiori. function x=indietro(a,b) Sintassi

Dettagli

Corso di Geometria BIAR, BSIR Esercizi 2: soluzioni

Corso di Geometria BIAR, BSIR Esercizi 2: soluzioni Corso di Geometria 2- BIAR, BSIR Esercizi 2: soluzioni Esercizio Calcolare il determinante della matrice 2 3 : 3 2 a) con lo sviluppo lungo la prima riga, b) con lo sviluppo lungo la terza colonna, c)

Dettagli

Applicazioni eliminazione di Gauss

Applicazioni eliminazione di Gauss Applicazioni eliminazione di Gauss. Premessa Nel seguito supporremo sempre di applicare il metodo di eliminazione di Gauss allo scopo di trasformare la matrice del sistema Ax = b in una matrice triangolare

Dettagli

LEZIONE Equazioni matriciali. Negli Esempi e si sono studiati più sistemi diversi AX 1 = B 1, AX 2 = R m,n, B = (b i,h ) 1 i m

LEZIONE Equazioni matriciali. Negli Esempi e si sono studiati più sistemi diversi AX 1 = B 1, AX 2 = R m,n, B = (b i,h ) 1 i m LEZIONE 4 41 Equazioni matriciali Negli Esempi 336 e 337 si sono studiati più sistemi diversi AX 1 = B 1, AX 2 = B 2,, AX p = B p aventi la stessa matrice incompleta A Tale tipo di problema si presenta

Dettagli

Cenni sui metodi iterativi per sistemi lineari. Analisi Numerica Prof. M. Lucia Sampoli a.a. 2014/2015

Cenni sui metodi iterativi per sistemi lineari. Analisi Numerica Prof. M. Lucia Sampoli a.a. 2014/2015 Cenni sui metodi iterativi per sistemi lineari Analisi Numerica Prof. M. Lucia Sampoli a.a. 2014/2015 Metodi numerici per sistemi lineari Nei metodi diretti la presenza di eventuali elementi nulli nella

Dettagli

Corso di Calcolo Numerico

Corso di Calcolo Numerico Corso di Calcolo Numerico Dott.ssa M.C. De Bonis Università degli Studi della Basilicata, Potenza Facoltà di Ingegneria Corso di Laurea in Ingegneria Meccanica Risoluzione di Equazioni Algebriche Le equazioni

Dettagli

Sistemi lineari. Lorenzo Pareschi. Dipartimento di Matematica & Facoltá di Architettura Universitá di Ferrara

Sistemi lineari. Lorenzo Pareschi. Dipartimento di Matematica & Facoltá di Architettura Universitá di Ferrara Sistemi lineari Lorenzo Pareschi Dipartimento di Matematica & Facoltá di Architettura Universitá di Ferrara http://utenti.unife.it/lorenzo.pareschi/ lorenzo.pareschi@unife.it Lorenzo Pareschi (Univ. Ferrara)

Dettagli

Aspetti computazionali dei metodi di Gauss e di Householder

Aspetti computazionali dei metodi di Gauss e di Householder Aspetti computazionali dei metodi di Gauss e di Householder Dario A. Bini, Università di Pisa 20 ottobre 2014 Sommario Questo modulo didattico contiene una discussione sugli aspetti computazionali dei

Dettagli

Esercitazione di Calcolo Numerico 1 27 Maggio Calcolare la fattorizzazione P A = LU della matrice A =

Esercitazione di Calcolo Numerico 1 27 Maggio Calcolare la fattorizzazione P A = LU della matrice A = Esercitazione di Calcolo Numerico 1 27 Maggio 29 1. Calcolare la fattorizzazione P A = LU della matrice 1 2 3 A = 2 3 3, ed utilizzarla per risolvere il sistema lineare Ax = b, con b = (1, 2,, 16) T. 2.

Dettagli

RICHIAMI PER IL CORSO DI ANALISI NUMERICA

RICHIAMI PER IL CORSO DI ANALISI NUMERICA RICHIAMI PER IL CORSO DI ANALISI NUMERICA Anno accademico 211 212 1 RICHIAMI: PRECISIONE FINITA (USO DI UN COMPUTER) IN UN COMPUTER UNA QUALUNQUE INFORMAZIONE VIENE RAPPRESENTATA COME UNA SEQUENZA FINITA

Dettagli

Parte II: Eliminazione di Gauss

Parte II: Eliminazione di Gauss Matrici e sistemi lineari Richiamiamo rapidamente alcuni elementi essenziali di algebra lineare. Indicato con a ij (i indice di riga della tabella, j indice di colonna della tabella) il generico elemento

Dettagli

Decomposizione LU di una matrice quadrata

Decomposizione LU di una matrice quadrata Appendice al Cap. 5 Decomposizione LU di una matrice quadrata Una qualunque matrice quadrata M = {m ij } di ordine N, reale, invertibile, i cui minori principali siano tutti non nulli, si può sempre decomporre

Dettagli

9 Metodi diretti per la risoluzione di sistemi lineari: fattorizzazione P A = LU

9 Metodi diretti per la risoluzione di sistemi lineari: fattorizzazione P A = LU 9 Metodi diretti per la risoluzione di sistemi lineari: fattorizzazione P A LU 9.1 Il metodo di Gauss Come si è visto nella sezione 3.3, per la risoluzione di un sistema lineare si può considerare al posto

Dettagli

= 3 (con qualunque precisione di macchina) e richiede una sola operazione, mentre attraverso il calcolo dell'inversa 1/7 si ottiene la soluzione

= 3 (con qualunque precisione di macchina) e richiede una sola operazione, mentre attraverso il calcolo dell'inversa 1/7 si ottiene la soluzione CAP2A-DUDOC Versione aggiornata il 2/0/93 2- METODI DIRETTI I metodi diretti per la risoluzione numerica dei sistemi lineari consistono sostanzialmente nell'applicazione del metodo di riduzione di Gauss

Dettagli

Equivalentemente, le colonne di A sono linearmente indipendenti se e solo se

Equivalentemente, le colonne di A sono linearmente indipendenti se e solo se Lezioni di Algebra Lineare. Versione novembre 2008 VI. Il determinante Il determinante det A di una matrice A, reale e quadrata, è un numero reale associato ad A. Dunque det è una funzione dall insieme

Dettagli

LEZIONE i i 3

LEZIONE i i 3 LEZIONE 5 51 Determinanti In questo lezione affronteremo da un punto di vista prettamente operativo la nozione di determinante, descrivendone le proprietà ed i metodi di calcolo, senza entrare nei dettagli

Dettagli

Fattorizzazione LU ed eliminazione gaussiana

Fattorizzazione LU ed eliminazione gaussiana Fattorizzazione LU ed eliminazione gaussiana Alvise Sommariva Università degli Studi di Padova Dipartimento di Matematica 3 maggio 2015 Alvise Sommariva Fattorizzazione LU ed eliminazione gaussiana 1/

Dettagli

Modelli Matematici e Calcolo Numerico

Modelli Matematici e Calcolo Numerico Modelli Matematici e Calcolo Numerico Calcolo Numerico Massimiliano Martinelli martinelli@imati.cnr.it Università di Pavia Facoltà di Ingegneria 30 Settembre - 14 Ottobre 2010 Obiettivi del corso Esempi

Dettagli

APPUNTI DI ALGEBRA LINEARE

APPUNTI DI ALGEBRA LINEARE APPUNTI DI ALGEBRA LINEARE. Definizione Si dice spazio vettoriale (sul campo dei numeri reali R) un insieme V per il quale siano definite l operazione interna di somma (che ad ogni coppia di vettori e

Dettagli

x n i sima pos. x, y = x T y = x i y i R. i=1

x n i sima pos. x, y = x T y = x i y i R. i=1 1 Elementi di Algebra Lineare In questo capitolo introduttivo al corso di Calcolo Numerico per la laurea triennale in Informatica, saranno presentate una serie di definizioni e proprietà di matrici e dei

Dettagli

LEZIONE 5. AX = 0 m,1.

LEZIONE 5. AX = 0 m,1. LEZIONE 5 5 isoluzione di sistemi Supponiamo che AX = B sia un sistema di equazioni lineari Ad esso associamo la sua matrice completa (A B Per quanto visto nella precedente lezione, sappiamo di poter trasformare,

Dettagli

Corso di Matematica Generale M-Z Dipartimento di Economia Universitá degli Studi di Foggia ALGEBRA LINEARE. Giovanni Villani

Corso di Matematica Generale M-Z Dipartimento di Economia Universitá degli Studi di Foggia ALGEBRA LINEARE. Giovanni Villani Corso di Matematica Generale M-Z Dipartimento di Economia Universitá degli Studi di Foggia ALGEBRA LINEARE Giovanni Villani Matrici Definizione 1 Si definisce matrice di tipo m n una funzione che associa

Dettagli

Sistemi sovradeterminati

Sistemi sovradeterminati Sistemi sovradeterminati Sia A una matrice m n ove m > n sia b R m trovare una soluzione del sistema sovradeterminato Ax = b significa cercare di esprimere un vettore di R m come combinazione lineare di

Dettagli

Una Libreria di Algebra Lineare per il Calcolo Scientifico

Una Libreria di Algebra Lineare per il Calcolo Scientifico Una Libreria di Algebra Lineare per il Calcolo Scientifico Introduzione Il Lavoro di Tesi Introduzione al Metodo Ridurre l Occupazione di Memoria Metodo di Memorizzazione degli Elementi Risultati Attesi

Dettagli

SISTEMI LINEARI MATRICI E SISTEMI 1

SISTEMI LINEARI MATRICI E SISTEMI 1 MATRICI E SISTEMI SISTEMI LINEARI Sistemi lineari e forma matriciale (definizioni e risoluzione). Teorema di Rouché-Capelli. Sistemi lineari parametrici. Esercizio Risolvere il sistema omogeneo la cui

Dettagli

Esercizi svolti. risolvere, se possibile, l equazione xa + B = O, essendo x un incognita reale

Esercizi svolti. risolvere, se possibile, l equazione xa + B = O, essendo x un incognita reale Esercizi svolti 1. Matrici e operazioni fra matrici 1.1 Date le matrici 1 2 1 6 A = B = 5 2 9 15 6 risolvere, se possibile, l equazione xa + B = O, essendo x un incognita reale Osservazione iniziale: qualunque

Dettagli

1. Un sistema di m equazioni lineari in n incognite x 1,... x n aventi tutte termine noto nullo A =...

1. Un sistema di m equazioni lineari in n incognite x 1,... x n aventi tutte termine noto nullo A =... Algebra/ Algebra Lineare, 230207 1 Un sistema di m equazioni lineari in n incognite x 1, x n aventi tutte termine noto nullo a i1 x 1 + a i2 x 2 + + a in x n = 0, i = 1,, m si dice omogeneo; ponendo x

Dettagli

Metodi per la risoluzione di sistemi lineari

Metodi per la risoluzione di sistemi lineari Metodi per la risoluzione di sistemi lineari Sistemi di equazioni lineari. Rango di matrici Come è noto (vedi [] sez.0.8), ad ogni matrice quadrata A è associato un numero reale det(a) detto determinante

Dettagli

4 Sistemi di equazioni.

4 Sistemi di equazioni. 4 Sistemi di equazioni. Risolvere un sistema significa erminare le soluzioni comuni a tutte le equazioni che lo compongono. Il grado di un sistema è il prodotto dei gradi di tali equazioni. 4. Sistemi

Dettagli

Esercizi sui sistemi di equazioni lineari.

Esercizi sui sistemi di equazioni lineari. Esercizi sui sistemi di equazioni lineari Risolvere il sistema di equazioni lineari x y + z 6 x + y z x y z Si tratta di un sistema di tre equazioni lineari nelle tre incognite x, y e z Poichè m n, la

Dettagli

SISTEMI LINEARI: APPROFONDIMENTI ED ESEMPI

SISTEMI LINEARI: APPROFONDIMENTI ED ESEMPI SISTEMI LINEARI: APPROFONDIMENTI ED ESEMPI Appunti presi dalle lezioni del prof. Nedo Checcaglini Liceo Scientifico di Castiglion Fiorentino (Classe 4B) January 17, 005 1 SISTEMI LINEARI Se a ik, b i R,

Dettagli

Si consideri il sistema a coefficienti reali di m equazioni lineari in n incognite

Si consideri il sistema a coefficienti reali di m equazioni lineari in n incognite 3 Sistemi lineari 3 Generalità Si consideri il sistema a coefficienti reali di m equazioni lineari in n incognite ovvero, in forma matriciale, a x + a 2 x 2 + + a n x n = b a 2 x + a 22 x 2 + + a 2n x

Dettagli

Corso di Matematica per la Chimica. Dott.ssa Maria Carmela De Bonis a.a

Corso di Matematica per la Chimica. Dott.ssa Maria Carmela De Bonis a.a Dott.ssa Maria Carmela De Bonis a.a. 2013-14 Autovalori ed Autovettori di una matrice Siano Se A = (a i,j ) i,j=1,...,n R n n, 0 x = (x i ) i=1,...,n R n λ R Ax = λx (1) allora λ è detto autovalore di

Dettagli

1. Martedì 27/09/2016, ore: 2(2) Introduzione al corso: problemi ben posti, condizionamento, stabilità, complessità

1. Martedì 27/09/2016, ore: 2(2) Introduzione al corso: problemi ben posti, condizionamento, stabilità, complessità Registro delle lezioni di MATEMATICA APPLICATA Corsi di Laurea in Chimica e Meccanica 6 CFU - A.A. 2016/2017 docente: Dott.ssa Luisa Fermo ultimo aggiornamento: 15 dicembre 2016 1. Martedì 27/09/2016,

Dettagli

Autovalori e autovettori

Autovalori e autovettori Capitolo 3 Autovalori e autovettori 3. Richiami di teoria Prerequisiti: nozioni elementari di algebra lineare, numeri complessi. Sia A R n n. Un numero λ per cui esiste un vettore x 0 tale che valga la

Dettagli

Metodi iterativi per la soluzione di sistemi lineari: Jacobi e Gauss-Seidel

Metodi iterativi per la soluzione di sistemi lineari: Jacobi e Gauss-Seidel Metodi iterativi per la soluzione di sistemi lineari: Jacobi e Gauss-Seidel Alvise Sommariva Università degli Studi di Padova Dipartimento di Matematica Pura e Applicata 15 aprile 2013 Alvise Sommariva

Dettagli

LEZIONE 3. Typeset by AMS-TEX

LEZIONE 3. Typeset by AMS-TEX LEZIONE 3 3 Risoluzione di sistemi Supponiamo che AX = B sia un sistema di equazioni lineari Ad esso associamo la sua matrice completa (A B Per la Proposizione 236 sappiamo di poter trasformare, con operazioni

Dettagli

Vettori e matrici. Lorenzo Pareschi. Dipartimento di Matematica & Facoltá di Architettura Universitá di Ferrara

Vettori e matrici. Lorenzo Pareschi. Dipartimento di Matematica & Facoltá di Architettura Universitá di Ferrara Vettori e matrici Lorenzo Pareschi Dipartimento di Matematica & Facoltá di Architettura Universitá di Ferrara http://utentiunifeit/lorenzopareschi/ lorenzopareschi@unifeit Lorenzo Pareschi Univ Ferrara

Dettagli

Elementi di Algebra Lineare Matrici e Sistemi di Equazioni Lineari

Elementi di Algebra Lineare Matrici e Sistemi di Equazioni Lineari Elementi di Algebra Lineare Matrici e Sistemi di Equazioni Lineari Antonio Lanteri e Cristina Turrini UNIMI - 2016/2017 Antonio Lanteri e Cristina Turrini (UNIMI - 2016/2017 Elementi di Algebra Lineare

Dettagli

Sistemi lineari - Parte Seconda - Esercizi

Sistemi lineari - Parte Seconda - Esercizi Sistemi lineari - Parte Seconda - Esercizi Terminologia Operazioni elementari sulle righe. Equivalenza per righe. Riduzione a scala per righe. Rango di una matrice. Forma canonica per righe. Eliminazione

Dettagli

LEZIONE 3. a + b + 2c + e = 1 b + d + g = 0 3b + f + 3g = 2. a b c d e f g

LEZIONE 3. a + b + 2c + e = 1 b + d + g = 0 3b + f + 3g = 2. a b c d e f g LEZIONE 3 3.. Matrici fortemente ridotte per righe. Nella precedente lezione abbiamo introdotto la nozione di soluzione di un sistema di equazioni lineari. In questa lezione ci poniamo il problema di descrivere

Dettagli

ESERCIZI DI MATEMATICA DISCRETA ANNO 2006/2007

ESERCIZI DI MATEMATICA DISCRETA ANNO 2006/2007 ESERCIZI DI MATEMATICA DISCRETA ANNO 6/7 //7 () Ridurre la seguente matrice ad una a scala ridotta utilizzando il metodo di Gauss-Jordan. Soluzione. () Determinare quante e quali sono le matrici a scala

Dettagli

a + 2b + c 3d = 0, a + c d = 0 c d

a + 2b + c 3d = 0, a + c d = 0 c d SPAZI VETTORIALI 1. Esercizi Esercizio 1. Stabilire quali dei seguenti sottoinsiemi sono sottospazi: V 1 = {(x, y, z) R 3 /x = y = z} V = {(x, y, z) R 3 /x = 4} V 3 = {(x, y, z) R 3 /z = x } V 4 = {(x,

Dettagli

1) Hamming bound, coset, codici equivalenti

1) Hamming bound, coset, codici equivalenti Argomenti della Lezione ) Hamming bound, coset, codici equivalenti 2) Esercizi sui codici lineari a blocchi Osservazione () Per effettuare la decodifica a rivelazione di errore si può seguire una delle

Dettagli

Lezioni di Algebra Lineare. II. Aritmetica delle matrici e eliminazione di Gauss. versione ottobre 2008

Lezioni di Algebra Lineare. II. Aritmetica delle matrici e eliminazione di Gauss. versione ottobre 2008 versione ottobre 2008 Lezioni di Algebra Lineare II. Aritmetica delle matrici e eliminazione di Gauss Contenuto. 1. Somma di matrici e prodotto di una matrice per uno scalare 2. Prodotto di matrici righe

Dettagli

Inversa. Inversa. Elisabetta Colombo

Inversa. Inversa. Elisabetta Colombo Corso di Approfondimenti di Matematica per Biotecnologie, Anno Accademico 00-0, http://users.mat.unimi.it/users/colombo/programmabio.html e 3 con i Matrici inverse di matrici quadrate e con i Sia A una

Dettagli

Operazioni elementari e riduzione

Operazioni elementari e riduzione Matrici e sistemi Operazioni elementari Riduzioni di matrici L algoritmo di riduzione 2 2006 Politecnico di Torino 1 Operazioni elementari per righe Sia A M m,n. Introduciamo tre tipi di operazioni che

Dettagli

Matrici. Matrici.h Definizione dei tipi. Un po di esercizi sulle matrici Semplici. Media difficoltà. Difficili

Matrici. Matrici.h Definizione dei tipi. Un po di esercizi sulle matrici Semplici. Media difficoltà. Difficili Matrici Un po di esercizi sulle matrici Semplici Lettura e scrittura Calcolo della trasposta Media difficoltà Calcolo del determinante Difficili Soluzione di sistemi lineari È veramente difficile? 1 Matrici.h

Dettagli

Autovalori ed autovettori di una matrice

Autovalori ed autovettori di una matrice Autovalori ed autovettori di una matrice Lucia Gastaldi DICATAM http://www.ing.unibs.it/gastaldi/ Indice 1 Definizioni di autovalori ed autovettori Autovalori ed autovettori 2 Metodo delle potenze 3 Calcolo

Dettagli

Introduzione soft alla matematica per l economia e la finanza. Marta Cardin, Paola Ferretti, Stefania Funari

Introduzione soft alla matematica per l economia e la finanza. Marta Cardin, Paola Ferretti, Stefania Funari Introduzione soft alla matematica per l economia e la finanza Marta Cardin, Paola Ferretti, Stefania Funari Capitolo Sistemi di equazioni lineari.8 Il Teorema di Cramer Si consideri un generico sistema

Dettagli

Giuseppe Accascina. Note del corso di Geometria e Algebra

Giuseppe Accascina. Note del corso di Geometria e Algebra Giuseppe Accascina Note del corso di Geometria e Algebra Corso di Laurea Specialistica in Ingegneria Gestionale Anno Accademico 26-27 ii Istruzioni per l uso Faremo spesso riferimento a ciò che è stato

Dettagli

Complementi di Algebra e Fondamenti di Geometria

Complementi di Algebra e Fondamenti di Geometria Complementi di Algebra e Fondamenti di Geometria Capitolo 3 Forma canonica di Jordan M. Ciampa Ingegneria Elettrica, a.a. 29/2 Capitolo 3 Forma canonica di Jordan Nel Capitolo si è discusso il problema

Dettagli

SISTEMI LINEARI, METODO DI GAUSS

SISTEMI LINEARI, METODO DI GAUSS SISTEMI LINEARI, METODO DI GAUSS Abbiamo visto che un sistema di m equazioni lineari in n incognite si può rappresentare in forma matriciale come A x = b dove: A è la matrice di tipo (m, n) dei coefficienti

Dettagli

Metodi per la risoluzione di sistemi lineari

Metodi per la risoluzione di sistemi lineari Metodi per la risoluzione di sistemi lineari 1 Sistemi di equazioni lineari 1.1 Determinante di matrici quadrate Ad ogni matrice quadrata A è associato un numero reale det(a) detto determinante della matrice

Dettagli

Richiami di algebra delle matrici a valori reali

Richiami di algebra delle matrici a valori reali Richiami di algebra delle matrici a valori reali Vettore v n = v 1 v 2. v n Vettore trasposto v n = (v 1, v 2,..., v n ) v n = (v 1, v 2,..., v n ) A. Pollice - Statistica Multivariata Vettore nullo o

Dettagli

( ), i, j = 1,2,...,n, si cerca un vettore x!r n tale che

( ), i, j = 1,2,...,n, si cerca un vettore x!r n tale che 4. Sistemi di equazioni algebriche lineari La soluzione numerica della maggior parte dei problemi di interesse nell ingegneria, anche molto complessi, si riduce alla soluzione di un sistema di equazioni

Dettagli

1 se k = r i. 0 altrimenti. = E ij (c)

1 se k = r i. 0 altrimenti. = E ij (c) Facoltà di Scienze Statistiche, Algebra Lineare A, G.Parmeggiani LEZIONE 5 Matrici elementari e loro inverse Si fissi m un numero naturale. Per ogni i, j m con i j siano E ij (c) (ove c è uno scalare )

Dettagli

RICHIAMI DI ALGEBRA LINEARE E NORME DI MATRICI E VETTORI. a 11 a 12 a 1n a 21 a 22 a 2n. a m1 a m2 a mn

RICHIAMI DI ALGEBRA LINEARE E NORME DI MATRICI E VETTORI. a 11 a 12 a 1n a 21 a 22 a 2n. a m1 a m2 a mn RICHIAMI DI ALGEBRA LINEARE E NORME DI MATRICI E VETTORI LUCIA GASTALDI 1. Matrici. Operazioni fondamentali. Una matrice A è un insieme di m n numeri reali (o complessi) ordinati, rappresentato nella tabella

Dettagli

Metodi numerici con elementi di Programmazione A.A

Metodi numerici con elementi di Programmazione A.A Metodi numerici con elementi di Programmazione A.A. 2013-2014 Esercizi svolti in Laboratorio Lezione del 19-11-2013 1 Docente: Vittoria Bruni Email: vittoria.bruni@sbai.uniroma1.it Ufficio: Via A. Scarpa,

Dettagli

Esercizi svolti. delle matrici

Esercizi svolti. delle matrici Esercizi svolti. astratti. Si dica se l insieme delle coppie reali (x, y) soddisfacenti alla relazione x + y è un sottospazio vettoriale di R La risposta è sì, perchè l unica coppia reale che soddisfa

Dettagli

Corso di Calcolo Numerico

Corso di Calcolo Numerico Corso di Laurea in Ingegneria Gestionale Sede di Fermo Corso di 8 - METODI ITERATIVI PER I SISTEMI LINEARI Norme Una norma in R n è una funzione. : R n R tale che x 0 x R n ; x = 0 x = 0; αx = α x ; x

Dettagli

Prendiamo in considerazione la matrice tridiagonale

Prendiamo in considerazione la matrice tridiagonale Questi esercizi sono il completamento di quelli sui sistemi lineari già a disposizione. Ogni esercizio proposto può fare riferimento a qualcuno di questi. In ogni caso sono riportati tutti i dati essenziali

Dettagli

I determinanti. a11 a A = 12 a 21 a 22

I determinanti. a11 a A = 12 a 21 a 22 I determinanti. Queste note, basate sugli appunti delle lezioni, riepilogano rapidamente la definizione e le proprietà del determinante. Vengono inoltre illustrati i metodi di calcolo e alcune dimostrazioni.

Dettagli

LEZIONE 2. ( ) a 1 x 1 + a 2 x a n x n = b, ove a j, b R sono fissati.

LEZIONE 2. ( ) a 1 x 1 + a 2 x a n x n = b, ove a j, b R sono fissati. LEZIONE 2 2 Sistemi di equazioni lineari Definizione 2 Un equazione lineare nelle n incognite x, x 2,, x n a coefficienti reali, è un equazione della forma (2 a x + a 2 x 2 + + a n x n = b, ove a j, b

Dettagli

Metodi computazionali per i Minimi Quadrati

Metodi computazionali per i Minimi Quadrati Metodi computazionali per i Minimi Quadrati Come introdotto in precedenza si considera la matrice. A causa di mal condizionamenti ed errori di inversione, si possono avere casi in cui il e quindi S sarebbe

Dettagli

Def. 1. Si chiamano operazioni elementari sulle righe di A le tre seguenti operazioni:

Def. 1. Si chiamano operazioni elementari sulle righe di A le tre seguenti operazioni: Facoltà di Scienze Statistiche, Algebra Lineare 1 A, G.Parmeggiani LEZIONE 5 Operazioni elementari sulle righe di una matrice Sia A una matrice m n. Def. 1. Si chiamano operazioni elementari sulle righe

Dettagli