Soluzione sistemi triangolari La seguente funzione risolve i sistemi triangolari inferiori

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Soluzione sistemi triangolari La seguente funzione risolve i sistemi triangolari inferiori"

Transcript

1 1 Francesca Mazzia Dipartimento Interuniversitario di Matematica Università di Bari MATLAB:Soluzione Sistemi Lineari. Soluzione sistemi triangolari La seguente funzione risolve i sistemi triangolari inferiori function b = soll(l,b) %% %% dati di input %% L matrice triangolare inferiore %% b termine noto %% output %% b soluzione n = length(b); b(1) = b(1)/l(1,1); for i=2:n b(i) = (b(i) - L(i,1:i-1)*b(1:i-1))/L(i,i); end Per eseguirla in Matlab eseguiamo le seguenti istruzioni: >> [

2 ] >> b = [1;2;3;4] b = >> x=soll(l,b) x = >> L*x ans = >> b

3 3 b = >> L*x-b ans = >> norm(l*x-b, inf ) ans = >> Algoritmo di eliminazione di Gauss. Eseguiamo in Matlab tutti i passaggi per costruire la fattorizzazione >> clear P A L >> [ ]; >>A = A; >>P = eye(4);

4 4 >>b = [ 1; 2; 3; 4]; % scegliamo il pivot >>[elm,indm]=max(abs(a(1:4,1))) elm = 6 indm = 2 % scambiamo le righe di A >>A([1 indm],:)=a([indm,1],:) % scambiamo le righe di P e di b >>P([1 indm],:)=p([indm,1],:) P = >>b([1 indm])=b([indm,1]) b =

5 % calcolo gli elementi di L : L(2:4,1)=A(2:4,1)/A(1,1) >>L(2:4,1)=A(2:4,1)/A(1,1) % aggiorno la matrice A % aggiorno la seconda riga >>A(2,:)=A(2,:)-L(2,1)*A(1,:) % aggiorno la terza riga >>A(3,:)=A(3,:)-L(3,1)*A(1,:) % aggiorno la quarta riga >>A(4,:)=A(4,:)-L(4,1)*A(1,:)

6 % aggiorno il vettore b >>b(2:4)=b(2:4)-l(2:4,1)*b(1) b = % adesso ripeto il procedimento sulla sottomatrice A(2:4,2:4) % scelgo l elemento pivotale >>[elm,indm]=max(abs(a(2:4,2))) elm = 6 indm = 3 >>indm=indm+1 indm = 4 %scambio le righe di A

7 7 >>A([2 indm],:)=a([indm 2],:) % scambio le righe di P >>P([2 indm],:)=p([indm 2],:) P = % scambio le righe di b >>b([2 indm],:)=b([indm 2]) b = % scambio le righe di L >>L([2 indm],1)=l([indm 2],1) 1.

8 % calcolo gli elementi della seconda colonna di L >>L(3:4,2)=A(3:4,2)/A(2,2) % aggiorno la matrice A: terza e quarta riga >>A(3:4,:)=A(3:4,:)-L(3:4,2)*A(2,:) % aggiorno il vettore b >>b(3:4)=b(3:4)-l(3:4,2)*b(2) b = % eseguo l ultimo passaggio % calcolo elemento pivotale >>[elm,indm]=max(abs(a(3:4,3)))

9 9 elm = indm = 2 >>indm=indm+2 indm = 4 % scambio le righe di A >>A([3 indm],:)=a([indm 3],:) % scambio le righe di P >>P([3 indm],:)=p([indm 3],:) P = % scambio le righe di b >>b([3 indm],:)=b([indm 3])

10 1 b = % scambio le righe di L >>L([3 indm],:)=l([indm 3],:) % calcolo gli elementi di L >>L(4:4,3)=A(4:4,3)/A(3,3) % aggiorno la A >>A(4:4,:)=A(4:4,:)-L(4:4,3)*A(3,:)

11 11 % aggiorno la b >>b(4)=b(4)-l(4,3)*b(3) b = % ho ottenuto un sistema triangolare superiore % completo la matrice L >>L(:,4)= >>L=L+eye(4) % verifico la fattorizzazione >>P*A ans =

12 12 >>L*A ans = Costruiamo una funzione Matlab che ci permette di calcolare la fattorizzazione LU mediante il metodo di eliminazione di Gauss senza eseguire il pivot function [L,U] = gauss(a) % ELIMINAZIONE DI GAUSS % Dati di input: % matrice quadrata % Dati di output: % matrice triangolare inferiore % U = matrice triangolare superiore % tali che LU [n,m] = size(a); if n ~= m error( ERRORE: la matrice di input non e quadrata ) end for k = 1:n-1

13 % controllo sulla grandezza dell elemento diagonale: if abs(a(k,k)) < realmin disp( Un elemento diagonale e nullo ) error( Non e possibile continuare il procedimento di eliminazione ) end A(k+1:n,k) = A(k+1:n,k)/A(k,k); A(k+1:n,k+1:n) = A(k+1:n,k+1:n) -... A(k+1:n,k)*A(k,k+1:n); end tril(a,-1) + eye(n); U = triu(a); 13 Problemi dell algoritmo di fattorizzazione LU senza permutazioni: 1) Non può essere eseguita su matrici come: >> Q=[;;] Q = >> A=[1 2 5; ;1 1 3] Infatti se facciamo

14 14 >> [L,U]=gauss(Q) e >> [L,U]=gauss(A) abbiamo Un elemento diagonale e nullo??? Error using ==> gauss Non e possibile continuare il procedimento di eliminazione Possiamo risolvere tale problema utilizzando la funzione Matlab che esegue la fattorizzazione LU con pivot che si chiama lu; >> A=[1 2 5; ;1 1 3] >> [L,U,P]=lu(A)

15 15 U = P = da cui abbiamo >> P*A ans = >> L*U ans = Analogamente:

16 16 >> Q=[;;] Q = >> [L,U,P]=lu(Q) U = P = da cui >> P*Q ans =

17 17 >> L*U ans = Vediamo anche come costruire l algoritmo per calcolare la fattorizzazione LU con il metodo di eliminazione di Gauss con il pivot parziale: function [L,U,P] = gaussp(a) % ELIMINAZIONE DI GAUSS CON PIVOT PARZIALE % Dati di input: % matrice quadrata % Dati di output: % matrice triangolare inferiore % U = matrice triangolare superiore % P = matrice di permutazione % tali che P LU [n,m] = size(a); if n ~= m error( ERRORE: la matrice di input non e quadrata ) end P = eye(n); for k = 1:n-1 % ricerca del pivot e permutazione: % si scambiano le righe k e rp di A e di P

18 18 [piv,rp] = max(abs(a(k:n,k))); rp = rp + k - 1; P([k rp],:)=p([rp k],:) A([k rp],:)=a([rp k],:) % controllo sulla grandezza dell elemento pivotale: if abs(a(k,k)) <= realmin disp( Un elemento pivotale e nullo ) error( La matrice in input e singolare ) end A(k+1:n,k) = A(k+1:n,k)/A(k,k); A(k+1:n,k+1:n) = A(k+1:n,k+1:n) - A(k+1:n,k)*A(k,k+1:n); end tril(a,-1) + eye(n); U = triu(a); Anche mediante tale funzione possiamo risolvere il problema precedente; infatti: >> A=[1 2 5; ;1 1 3] >> [L,U,P]=gaussp(A)

19 U = P = e >> Q=[;;] Q = >> [L,U,P]=gaussp(Q)

20 2 U = P = 2) La fattorizzazione LU senza pivot Presenta problemi di instabilità numerica: { 1 17 x 1 + x 2 = 1 x 1 + x 2 = 2 Il problema è ben posto, ed ha come soluzione esatta x (1, 1) T. Infatti ponendo: >> A=[1e-17 1;1 1] 1.e-17 1.e+ 1.e+ 1.e+ >> b=[1;2] b =

21 abbiamo: >> x=a\b x = 1 1 Applicando il metodo di Gauss ed operando in virgola mobile in base 2 in doppia precisione, si ottengono i fattori L ed U seguenti: >> [L,U]=gauss(A) 1.e+ 1.e+17 1.e+ U = 1.e-17 1.e+ -1.e+17 Il prodotto LU non è A e infatti: >> A-L*U

22 22 ans = 1 Ciò significa che la soluzione numerica ottenuta con il metodo di Gauss senza pivot sarà totalmente sbagliata. Infatti risolvendo Ly = b e Uxtilde = y abbiamo: >> y=l\b y = 1.e+ -1.e+17 >> xtilde=u\y xtilde = 1 Se invece utilizziamo il metodo di Gauss con il pivot parziale abbiamo: >> A=[1e-17 1;1 1] 1.e-17 1.e+ 1.e+ 1.e+

23 23 >> [L,U,P]=gaussp(A) 1.e+ 1.e-17 1.e+ U = P = da cui >> P*A-L*U ans = >> y=l\p*b y = 2 1 >> xtilde=u\y xtilde = 1 1

Algoritmi per la soluzione di sistemi lineari

Algoritmi per la soluzione di sistemi lineari Capitolo Algoritmi per la soluzione di sistemi lineari. Sistemi triangolari inferiori Le matrici L con n righe ed n colonne ed elementi uguali a zero al di sopra della diagonale principale: l, 0... 0.

Dettagli

4. Algoritmi per la soluzione di sistemi lineari.

4. Algoritmi per la soluzione di sistemi lineari. CALCOLO NUMERICO Francesca Mazzia Dipartimento Interuniversitario di Matematica Università di Bari 4. Algoritmi per la soluzione di sistemi lineari. 1 Sistemi triangolari inferiori Sia L triangolare inferiore.

Dettagli

Complementi di Matematica e Calcolo Numerico A.A

Complementi di Matematica e Calcolo Numerico A.A Complementi di Matematica e Calcolo Numerico A.A. 205-206 Laboratorio 9 Metodo di Eliminazione Gaussiana per sistemi lineari Siano A R n n una matrice quadrata non singolare (det(a) 0) e b R n un vettore

Dettagli

Corso di Matematica per la Chimica

Corso di Matematica per la Chimica Dott.ssa Maria Carmela De Bonis a.a. 2013-14 Pivoting e stabilità Se la matrice A non appartiene a nessuna delle categorie precedenti può accadere che al k esimo passo risulti a (k) k,k = 0, e quindi il

Dettagli

Corso di Matematica per la Chimica

Corso di Matematica per la Chimica Dott.ssa Maria Carmela De Bonis a.a. 2013-14 Pivoting e stabilità Se la matrice A non appartiene a nessuna delle categorie precedenti può accadere che al k esimo passo risulti a (k) k,k = 0, e quindi il

Dettagli

Algoritmi per la soluzione di sistemi lineari

Algoritmi per la soluzione di sistemi lineari Algoritmi per la soluzione di sistemi lineari Corso di Calcolo Numerico, a.a. 2005/2006 Francesca Mazzia Dipartimento di Matematica Università di Bari 31 Marzo 2009 Francesca Mazzia (Univ. Bari) Algoritmi

Dettagli

Sistemi lineari: metodi diretti II

Sistemi lineari: metodi diretti II Sistemi lineari: metodi diretti II Ana Alonso Dipartimento di Matematica - Università di Trento 8 ottobre 2015 Metodo di eliminazione di Gauss (senza pivotazione) U matrice triangolare superiore. for k

Dettagli

Complementi di Matematica e Calcolo Numerico C.L. Chimica Industriale A.A

Complementi di Matematica e Calcolo Numerico C.L. Chimica Industriale A.A Complementi di Matematica e Calcolo Numerico C.L. Chimica Industriale A.A. 208-209 Laboratorio 4-4 aprile 209 Metodo delle sostituzioni in avanti per sistemi lineari con matrice triangolare inferiore Siano

Dettagli

Sistemi lineari: metodi diretti II

Sistemi lineari: metodi diretti II Sistemi lineari: metodi diretti II Ana Alonso Dipartimento di Matematica - Università di Trento 9 ottobre 2014 Metodo di eliminazione di Gauss (senza pivotazione) U matrice triangolare superiore. for k

Dettagli

Complementi di Matematica e Calcolo Numerico A.A

Complementi di Matematica e Calcolo Numerico A.A Complementi di Matematica e Calcolo Numerico A.A. 207-208 Laboratorio 5 Metodi diretti per sistemi lineari Siano A R n n una matrice quadrata non singolare (det(a) 0) e b R n un vettore assegnati, allora

Dettagli

Metodi numerici con elementi di Programmazione A.A

Metodi numerici con elementi di Programmazione A.A Metodi numerici con elementi di Programmazione A.A. 2013-2014 Esercizi svolti in Laboratorio Lezione del 19-11-2013 1 Docente: Vittoria Bruni Email: vittoria.bruni@sbai.uniroma1.it Ufficio: Via A. Scarpa,

Dettagli

Complementi di Matematica e Calcolo Numerico A.A

Complementi di Matematica e Calcolo Numerico A.A Complementi di Matematica e Calcolo Numerico A.A. 206-207 Laboratorio Autovalori, raggio spettrale e norme di matrici Sia A una matrice quadrata di ordine n a valori reali o complessi, il numero λ C si

Dettagli

1. Calcolo dell indice di condizionamento di una matrice

1. Calcolo dell indice di condizionamento di una matrice 1 Esercizi sul condizionamento con matlab laboratorio di Calcolo Scientifico per Geofisici Prof. A. Murli a.a. 2006/07 1. Calcolo dell indice di condizionamento di una matrice Determinare una function

Dettagli

Risoluzione di più sistemi con la stessa matrice

Risoluzione di più sistemi con la stessa matrice Risoluzione di più sistemi con la stessa matrice Data A R n n e b R n, calcolare x e z : Ax = b, Az = c costo del MEG ( 2 3 n3 + n 2) + ( 2 3 n3 + n 2) costo totale = 4 3 n3 + 2n 2 Obiettivo: separare

Dettagli

Laboratorio di Calcolo Numerico Laboratorio 11: Metodi diretti per la soluzione di sistemi lineari

Laboratorio di Calcolo Numerico Laboratorio 11: Metodi diretti per la soluzione di sistemi lineari Laboratorio di Calcolo Numerico Laboratorio 11: Metodi diretti per la soluzione di sistemi lineari Claudia Zoccarato E-mail: claudia.zoccarato@unipd.it Dispense: Moodle Dipartimento ICEA 17 Maggio 2017

Dettagli

Esercitazione 1-I parte

Esercitazione 1-I parte Esercitazione 1-I parte Argomento: Sistemi triangolari Scopo: Implementare il metodo di sostituzione all indietro per la risoluzione di sistemi triangolari superiori. function x=indietro(a,b) Sintassi

Dettagli

Fattorizzazione LU (lu)

Fattorizzazione LU (lu) Fattorizzazione LU (lu) Pivoting Esercizio Si consideri la matrice d A = / d d / d = LU; dove d è un parametro reale non nullo. Si utilizzi la fattorizzazione di A per risolvere il sistema Ax = b, con

Dettagli

Laboratorio di Calcolo Numerico

Laboratorio di Calcolo Numerico Laboratorio di Calcolo Numerico M.R. Russo Università degli Studi di Padova Dipartimento di Matematica Pura ed Applicata A.A. 2009/2010 INDICE Sistemi lineari Casi particolari Eliminazione di Gauss Fattorizzazione

Dettagli

Matrici. 3. Costruire le seguenti matrici, contarne gli elementi non nulli e visualizzarle con spy: . B 10x10 = ; D 7x7 =

Matrici. 3. Costruire le seguenti matrici, contarne gli elementi non nulli e visualizzarle con spy: . B 10x10 = ; D 7x7 = Matrici diag, tril, triu. Sia v il vettore colonna casuale di lunghezza. Calcolare: diag(v), diag (v,), diag (v,-), diag(v,), diag(v,-). Sia A la matrice magica x. Calcolare: tril(a), tril(a, ), tril(a,

Dettagli

Calcolo Numerico. Lab n. 8. Metodi diretti per la soluzione di sistemi lineari A.A

Calcolo Numerico. Lab n. 8. Metodi diretti per la soluzione di sistemi lineari A.A Calcolo Numerico A.A. 4-5 Lab n. 8 Metodi diretti per la soluzione di sistemi lineari 6 Novembre 4 Matrici Una matrice si può definire come un insieme di vettori riga separati da un punto e virgola oppure

Dettagli

INTRODUZIONE A MATLAB

INTRODUZIONE A MATLAB INTRODUZIONE A MATLAB M.R. Russo Università degli Studi di Padova Dipartimento di Matematica Pura ed Applicata A.A. 2008/2009 INDICE Sistemi lineari Casi particolari Eliminazione di Gauss Fattorizzazione

Dettagli

Sistemi lineari. Lucia Gastaldi. DICATAM - Sez. di Matematica,

Sistemi lineari. Lucia Gastaldi. DICATAM - Sez. di Matematica, Sistemi lineari Lucia Gastaldi DICATAM - Sez. di Matematica, http://www.ing.unibs.it/gastaldi/ Indice 1 Risoluzione di sistemi lineari Risoluzione di sistemi lineari in Matlab Metodi di risoluzione Fattorizzazione

Dettagli

Sistemi lineari. Lucia Gastaldi. DICATAM - Sez. di Matematica,

Sistemi lineari. Lucia Gastaldi. DICATAM - Sez. di Matematica, Sistemi lineari Lucia Gastaldi DICATAM - Sez. di Matematica, http://lucia-gastaldi.unibs.it Indice 1 Risoluzione di sistemi lineari Risoluzione di sistemi lineari in Matlab Metodi di risoluzione Fattorizzazione

Dettagli

Sistemi lineari. 2x 1 + x 2 x 3 = 2 x 1 x 2 + x 3 = 1 x 1 + 3x 2 2x 3 = 0. x 1 x 2 x 3

Sistemi lineari. 2x 1 + x 2 x 3 = 2 x 1 x 2 + x 3 = 1 x 1 + 3x 2 2x 3 = 0. x 1 x 2 x 3 Sistemi lineari 2x 1 + x 2 x 3 = 2 x 1 x 2 + x 3 = 1 x 1 + 3x 2 2x 3 = 0 2 1 1 1 1 1 1 3 2 x 1 x 2 x 3 = 2 1 0 n j=1 a i,jx j = b i, i = 1,, n Ax = b A = (a i,j ) R n n matrice invertibile (det(a) 0) b

Dettagli

Calcolo Numerico (CdS in Matematica) A.A. 2012/13

Calcolo Numerico (CdS in Matematica) A.A. 2012/13 Calcolo Numerico (CdS in Matematica) A.A. 2012/13 Esercitazione di Laboratorio sulla risoluzione di sistemi di equazioni lineari Parte 1. Fattorizzazione di matrici Scrivere una funzione Matlab che implementi

Dettagli

Corso di Geometria e Algebra Lineare

Corso di Geometria e Algebra Lineare Prof. C. Vergara, Dott.ssa N. Franchina, Dr. A. Colombo Corso di Geometria e Algebra Lineare Laboratorio 3: sistemi lineari 25 29 Maggio 2015 Metodi diretti per sistemi lineari Si consideri il seguente

Dettagli

Soluzione sistemi lineari

Soluzione sistemi lineari Soluzione sistemi lineari Laboratorio di programmazione e calcolo Chimica e Tecnologie chimiche Pierluigi Amodio Dipartimento di Matematica Università di Bari Soluzione sistemi lineari p. / matrice diagonale

Dettagli

Metodi diretti: eliminazione gaussiana

Metodi diretti: eliminazione gaussiana Calcolo numerico 08/09 p. 1/1 SISTEMI LINEARI Metodi diretti: eliminazione gaussiana Calcolo numerico 08/09 p. 2/1 Sistemi lineari Ax = b, A R n n, b R n b INPUT x OUTPUT A relazione funzionale non ambigua

Dettagli

Corso di Calcolo Numerico

Corso di Calcolo Numerico Corso di Calcolo Numerico Dottssa MC De Bonis Università degli Studi della Basilicata, Potenza Facoltà di Ingegneria Corso di Laurea in Ingegneria Meccanica Corso di Calcolo Numerico - Dottssa MC De Bonis

Dettagli

Esercitazione di Calcolo Numerico 1 22 Aprile Determinare la fattorizzazione LU della matrice a 1 1 A = 3a 2 a 2a a a 2 A =

Esercitazione di Calcolo Numerico 1 22 Aprile Determinare la fattorizzazione LU della matrice a 1 1 A = 3a 2 a 2a a a 2 A = Esercitazione di Calcolo Numerico 22 Aprile 29. Determinare la fattorizzazione LU della matrice a A = 3a 2 a 2a a a 2 ed utilizzarla per calcolare il det(a). 2. Calcolare il determinante della matrice

Dettagli

Programmare con MATLAB c Parte 5 Cicli: for e while

Programmare con MATLAB c Parte 5 Cicli: for e while Programmare con MATLAB c Parte 5 Cicli: for e while Lucia Gastaldi DICATAM - Sezione di Matematica, http://lucia-gastaldi.unibs.it Indice 1 La notazione due punti 2 Ciclo: for 3 Ciclo con controllo: while

Dettagli

Corso di Matematica per la Chimica

Corso di Matematica per la Chimica Corso di Matematica per la Chimica Dott.ssa Maria Carmela De Bonis Dipartimento di Matematica, Informatica e Economia Università della Basilicata a.a. 2014-15 Propagazione degli errori introdotti nei dati

Dettagli

Complementi di Matematica e Calcolo Numerico A.A

Complementi di Matematica e Calcolo Numerico A.A Complementi di Matematica e Calcolo Numerico A.A. 0-0 Laboratorio 9 Autovalori, raggio spettrale e norme di matrici Sia A una matrice quadrata di ordine n a valori reali o complessi, il numero λ C si dice

Dettagli

LABORATORIO DI PROGRAMMAZIONE E CALCOLO Docente E. Carlini A.A. 2012/13 Foglio di esercizi N.8 con la collaborazione di Andrea Pugliese

LABORATORIO DI PROGRAMMAZIONE E CALCOLO Docente E. Carlini A.A. 2012/13 Foglio di esercizi N.8 con la collaborazione di Andrea Pugliese LABORATORIO DI PROGRAMMAZIONE E CALCOLO Docente E. Carlini A.A. / Foglio di esercizi N.8 con la collaborazione di Andrea Pugliese Dovete strutturare i programmi dei seguenti esercizi in funzioni ) (Metodo

Dettagli

Esercizi su algebra lineare, fattorizzazione LU e risoluzione di sistemi lineari

Esercizi su algebra lineare, fattorizzazione LU e risoluzione di sistemi lineari Esercizi su algebra lineare, fattorizzazione LU e risoluzione di sistemi lineari 4 maggio Nota: gli esercizi più impegnativi sono contrassegnati dal simbolo ( ) Esercizio Siano 3 6 8 6 4 3 3 ) determinare

Dettagli

2. Risolvere con il metodo di eliminazione di Gauss con pivoting parziale il seguente sistema lineare:

2. Risolvere con il metodo di eliminazione di Gauss con pivoting parziale il seguente sistema lineare: Esercizi sui metodi diretti per la risoluzione di sistemi lineari 1. Data la matrice 1 0 2 1 3 1 5 2 1 determinare la sua fattorizzazione P LR. Risolvere il sistema Ax = b con b = (3, 5, 6) T mediante

Dettagli

Per esempio, una matrice 4 4 triangolare alta ha la forma. 0 a. mentre una matrice di ordine 4 triangolare bassa è del tipo

Per esempio, una matrice 4 4 triangolare alta ha la forma. 0 a. mentre una matrice di ordine 4 triangolare bassa è del tipo Matrici triangolari Prima di esporre il metodo LU per la risoluzione di sistemi lineari, introduciamo la nozione di matrice triangolare Ci limiteremo al caso di matrici quadrate anche se l estensione a

Dettagli

SISTEMI LINEARI. Metodi diretti. Calcolo numerico 07/08 p. 1/1

SISTEMI LINEARI. Metodi diretti. Calcolo numerico 07/08 p. 1/1 SISTEMI LINEARI Metodi diretti Calcolo numerico 07/08 p. 1/1 Sistemi lineari Ax = b, A R n n, b R n b INPUT x OUTPUT A relazione funzionale non ambigua det(a) 0 ( un unica soluzione) (Esercizio 1) Se det

Dettagli

Esercitazione 5: Sistemi a risoluzione immediata.

Esercitazione 5: Sistemi a risoluzione immediata. Esercitazione 5: Sistemi a risoluzione immediata. Ipotesi: Supponiamo le matrici non singolari. Nota: Per verificare che si ha risolto correttamente il sistema lineare Ax = b basta calcolare la norma del

Dettagli

Esercizio. fattorizzazione QR? Quale è più conveniente dal punto di vista computazionale

Esercizio. fattorizzazione QR? Quale è più conveniente dal punto di vista computazionale Esercizio Si consideri, fissato n N, la matrice A M n(r) generata dal comando A = magic(n); e il sistema lineare Ax = b, dove il termine noto b R n é scelto in modo tale che la soluzione esatta sia x =

Dettagli

Sistemi lineari. Lucia Gastaldi. 11 novembre Dipartimento di Matematica,

Sistemi lineari. Lucia Gastaldi. 11 novembre Dipartimento di Matematica, Sistemi lineari Lucia Gastaldi Dipartimento di Matematica, http://dm.ing.unibs.it/gastaldi/ 11 novembre 2007 Outline 1 Come risolvere un sistema lineare con MATLAB Il comando per risolvere i sistemi lineari

Dettagli

Francesca Mazzia Dipartimento Interuniversitario di Matematica Università di Bari. MATLAB: Elementi di Algebra Lineare

Francesca Mazzia Dipartimento Interuniversitario di Matematica Università di Bari. MATLAB: Elementi di Algebra Lineare 1 Francesca Mazzia Dipartimento Interuniversitario di Matematica Università di Bari MATLAB: Elementi di Algebra Lineare 2 Elementi di Algebra Lineare. Una matrice è una tabella di numeri ordinata per righe

Dettagli

Complementi di Matematica e Calcolo Numerico A.A Laboratorio 6 Metodi iterativi per sistemi lineari

Complementi di Matematica e Calcolo Numerico A.A Laboratorio 6 Metodi iterativi per sistemi lineari Complementi di Matematica e Calcolo Numerico A.A. 2017-2018 Laboratorio 6 Metodi iterativi per sistemi lineari Dati una matrice A R N N non singolare e un vettore b R N, un metodo iterativo per la risoluzione

Dettagli

Metodi Numerici con elementi di Programmazione A.A

Metodi Numerici con elementi di Programmazione A.A Metodi Numerici con elementi di Programmazione A.A. 2013-2014 Introduzione al MatLab V parte 1 Docente: Vittoria Bruni Email: vittoria.bruni@sbai.uniroma1.it Ufficio: Via A. Scarpa, Pal. B, I piano, Stanza

Dettagli

G. Parmeggiani, 29/3/2018 Algebra Lineare, a.a. 2017/2018, numero di MATRICOLA PARI. Svolgimento degli Esercizi per casa 4

G. Parmeggiani, 29/3/2018 Algebra Lineare, a.a. 2017/2018, numero di MATRICOLA PARI. Svolgimento degli Esercizi per casa 4 G. Parmeggiani, 29/3/2018 Algebra Lineare, a.a. 2017/2018, Scuola di Scienze - Corsi di laurea: Studenti: Statistica per l economia e l impresa Statistica per le tecnologie e le scienze numero di MARICOLA

Dettagli

Aritmetica in Floating Point

Aritmetica in Floating Point Aritmetica in Floating Point Esempio di non associatività Alcune proprietà delle operazioni in aritmetica esatta possono non valere in aritmetica finita in virgola mobile (floating point). Ad esempio:

Dettagli

n +1 determinanti (D i, i =1,...,n e det A) n! prodotti per ciascun determinante n 1 moltiplicazioni per ciascun prodotto

n +1 determinanti (D i, i =1,...,n e det A) n! prodotti per ciascun determinante n 1 moltiplicazioni per ciascun prodotto METODI NUMERICI (A.A. 2007-2008) Prof. F.Pitolli Appunti delle lezioni sui sistemi lineari: metodi diretti; condizionamento Metodi diretti per la soluzione di sistemi lineari Metodi diretti Sono basati

Dettagli

Problema. Sistemi lineari. Problema. Problema. Quali sono i potenziali in ogni nodo? Leggi di Kirkoff e di Ohm:

Problema. Sistemi lineari. Problema. Problema. Quali sono i potenziali in ogni nodo? Leggi di Kirkoff e di Ohm: Problema 4 Ω 3 3 Ω 2 2 Ω 40 V Sistemi lineari 2 Ω Ω 2 Ω Ω 5 6 7 8 Ω 4 Ω Ω 0 V Quali sono i potenziali in ogni nodo? 2 4 Ω Problema 3 3 Ω 2 2 Ω 40 V 4 Ω Problema 3 3 Ω 2 2 Ω 40 V 2 Ω Ω 2 Ω Ω 2 Ω Ω 2 Ω Ω

Dettagli

Arrays. Vector array. Matrix array. Row vector. 2D matrix. 1 2 Column vector

Arrays. Vector array. Matrix array. Row vector. 2D matrix. 1 2 Column vector Arrays Vector array [ 2.7 3E 9 4 4] 1 2 4 + 3i 3.6 Column vector Row vector Matrix array 1.1 1 6 8 8.7 5.6 6 7 2D matrix Vettori Creazione di vettori: lista esplicita Indirizzamento di un elemento di un

Dettagli

Algebra lineare numerica in Matlab

Algebra lineare numerica in Matlab Algebra lineare numerica in Matlab Alvise Sommariva Università degli Studi di Padova Dipartimento di Matematica Pura e Applicata 3 gennaio 2019 Alvise Sommariva Algebra lineare numerica in Matlab 1/ 19

Dettagli

Geometria BAER I canale Foglio esercizi 2

Geometria BAER I canale Foglio esercizi 2 Geometria BAER I canale Foglio esercizi Esercizio. ( ) Data la matrice, determinare tutte le matrici X Mat( ) tali che AX = 0 e tutte le matrici Y Mat( ) tali che Y 0. ( ) ( ) ( ) x y x + z y + w Soluzione:

Dettagli

Laboratorio di Matematica Computazionale A.A Lab. 5

Laboratorio di Matematica Computazionale A.A Lab. 5 Laboratorio di Matematica Computazionale A.A. -8 Lab. Costruzione e Manipolazione di Matrici diag tril triu nnz find spy. Sia v il vettore colonna casuale di lunghezza. Calcolare: diag(v) diag (v) diag

Dettagli

Elementi di Algebra Lineare

Elementi di Algebra Lineare Elementi di Algebra Lineare Corso di Calcolo Numerico, a.a. 2009/2010 Francesca Mazzia Dipartimento di Matematica Università di Bari 13 Marzo 2006 Francesca Mazzia (Univ. Bari) Elementi di Algebra Lineare

Dettagli

3. Elementi di Algebra Lineare.

3. Elementi di Algebra Lineare. CALCOLO NUMERICO Francesca Mazzia Dipartimento Interuniversitario di Matematica Università di Bari 3. Elementi di Algebra Lineare. 1 Sistemi lineari Sia A IR m n, x IR n di n Ax = b è un vettore di m componenti.

Dettagli

1 1, { x1 2x 2 + x 3 = 0 2x 2 8x 3 = 1 x 1 x 4 = = 0

1 1, { x1 2x 2 + x 3 = 0 2x 2 8x 3 = 1 x 1 x 4 = = 0 a.a. 5-6 Esercizi. Sistemi lineari. Soluzioni.. Determinare quali delle quaterne, 3,, sono soluzioni del sistema di tre equazioni in 4 incognite { x x + x 3 = x 8x 3 = x x 4 =. Sol. Sostituendo ad x, x,

Dettagli

Compito numero 2 - Compito intero

Compito numero 2 - Compito intero Esercitazione 6 - Correzione esame dell 8//3 Lucia Pilleri 9//3 Compito numero - Compito intero Esercizio del parziale - del compito intero Risolvere, mediante la fattorizzazione P A = LU, il sistema lineare

Dettagli

Laboratorio computazionale numerico Lezione 2

Laboratorio computazionale numerico Lezione 2 Laboratorio computazionale numerico Lezione 2 f.poloni&sns.it 2008-11-05 1 Fattorizzazione LU ed eliminazione di Gauss 1.1 Matrice di test Esercizio 1 (di riscaldamento). Scrivere una funzione testmatrix(n)

Dettagli

Complementi di Matematica e Calcolo Numerico A.A

Complementi di Matematica e Calcolo Numerico A.A Complementi di Matematica e Calcolo Numerico A.A. 20-206 Laboratorio 8. (punteggio 3/3/) Si consideri la funzione f(x) = sin(e x/2 ).. Si approssimi la radice α di f nell intervallo [0, 3.] utilizzando

Dettagli

Esercitazione 1. Argomento: Introduzione al MATLAB Scopo: Eseguire alcune semplici istruzioni MatLab e imparare l uso della grafica.

Esercitazione 1. Argomento: Introduzione al MATLAB Scopo: Eseguire alcune semplici istruzioni MatLab e imparare l uso della grafica. Esercitazione 1 Argomento: Introduzione al MATLAB Scopo: Eseguire alcune semplici istruzioni MatLab e imparare l uso della grafica. Scopo di questa prima esercitazione è quello di iniziare a conoscere

Dettagli

RISOLUZIONE DI SISTEMI LINEARI

RISOLUZIONE DI SISTEMI LINEARI RISOLUZIONE DI SISTEMI LINEARI Algebra lineare numerica 1 La risoluzione di un sistema lineare è il nucleo principale del processo di risoluzione di circa il 70% di tutti i problemi reali Per la risoluzione

Dettagli

Laboratorio computazionale numerico Lezione 3

Laboratorio computazionale numerico Lezione 3 Laboratorio computazionale numerico Lezione f.poloni&sns.it 008-0-9 Esercizio (di riscaldamento). Creare una funzione function M=laplacian(n) che crea la matrice di dimensione n n che ha sulla diagonale

Dettagli

CALCOLO NUMERICO. Francesca Mazzia. Calcolo degli autovalori. Dipartimento Interuniversitario di Matematica. Università di Bari

CALCOLO NUMERICO. Francesca Mazzia. Calcolo degli autovalori. Dipartimento Interuniversitario di Matematica. Università di Bari CALCOLO NUMERICO Francesca Mazzia Dipartimento Interuniversitario di Matematica Università di Bari Calcolo degli autovalori 1 Calcolo degli autovalori Gli autovalore e gli autovettore di una matrice quadrata

Dettagli

Calcolo Numerico - Prova Matlab 19 luglio 2013

Calcolo Numerico - Prova Matlab 19 luglio 2013 9 luglio 0 () tempo a disposizione per completare la prova: ora; () lo svolgimento della prova deve essere salvato in file denominati cognomenome#m; () è fatto assoluto divieto di aprire applicazioni diverse

Dettagli

Laboratorio computazionale numerico Lezione 4

Laboratorio computazionale numerico Lezione 4 Laboratorio computazionale numerico Lezione 4 Federico Poloni 2009-11-04 1 Sottomatrici e determinanti Utilizzando l operatore :, in Octave è possibile selezionare un intera sottomatrice

Dettagli

Calcolo Numerico I - a.a Laboratorio 9 - Sistemi lineari

Calcolo Numerico I - a.a Laboratorio 9 - Sistemi lineari Calcolo Numerico I - a.a. 200-20 Laboratorio 9 - Sistemi lineari Fattorizzazione di Cholesky Se A R n n è una matrice simmetrica definita positiva, allora esiste una matrice R R n n triangolare superiore

Dettagli

Prendiamo in considerazione la matrice tridiagonale

Prendiamo in considerazione la matrice tridiagonale Questi esercizi sono il completamento di quelli sui sistemi lineari già a disposizione. Ogni esercizio proposto può fare riferimento a qualcuno di questi. In ogni caso sono riportati tutti i dati essenziali

Dettagli

Metodi Diretti per la Risoluzione di Sistemi Lineari

Metodi Diretti per la Risoluzione di Sistemi Lineari Metodi Diretti per la Risoluzione di Sistemi Lineari Luca Gemignani luca.gemignani@unipi.it 20 marzo 2018 Indice Lezione 1: Sistemi Triangolari. 1 Lezione 2: Matrici Elementari di Gauss ed il Metodo di

Dettagli

Fattorizzazione LU ed eliminazione gaussiana

Fattorizzazione LU ed eliminazione gaussiana Fattorizzazione LU ed eliminazione gaussiana Alvise Sommariva Università degli Studi di Padova Dipartimento di Matematica 3 maggio 2015 Alvise Sommariva Fattorizzazione LU ed eliminazione gaussiana 1/

Dettagli

Algoritmi per operazioni con le matrici

Algoritmi per operazioni con le matrici Algoritmi per operazioni con le matrici 1 Sommario Definizioni Alcune operazioni principali sulle matrici Somma di due matrici Trasposta di una matrice Prodotto di matrici: algoritmo classico Prodotto

Dettagli

Esercitazione di Calcolo Numerico 1 27 Maggio Calcolare la fattorizzazione P A = LU della matrice A =

Esercitazione di Calcolo Numerico 1 27 Maggio Calcolare la fattorizzazione P A = LU della matrice A = Esercitazione di Calcolo Numerico 1 27 Maggio 29 1. Calcolare la fattorizzazione P A = LU della matrice 1 2 3 A = 2 3 3, ed utilizzarla per risolvere il sistema lineare Ax = b, con b = (1, 2,, 16) T. 2.

Dettagli

a. tatone corso di matematica applicata AL EX 1 Esercizi 1. Applicare l eliminazione di Gauss per risolvere il sistema di equazioni Au = v con

a. tatone corso di matematica applicata AL EX 1 Esercizi 1. Applicare l eliminazione di Gauss per risolvere il sistema di equazioni Au = v con a. tatone corso di matematica applicata AL EX Esercizi. Applicare l eliminazione di Gauss per risolvere il sistema di equazioni Au = v con Calcolare anche la L. 0 5 20 3 20 v := 2 5 3 5 6 2. Calcolare

Dettagli

Introduzione al MATLAB c Parte 2

Introduzione al MATLAB c Parte 2 Introduzione al MATLAB c Parte 2 Lucia Gastaldi Dipartimento di Matematica, http://dm.ing.unibs.it/gastaldi/ 24 settembre 2007 Outline 1 M-file di tipo Script e Function Script Function 2 Elementi di programmazione

Dettagli

Progetto Matlab N 2. Calcolo Numerico 6 CFU. Corso di Laurea in Ingegneria delle Comunicazioni 31/05/2014

Progetto Matlab N 2. Calcolo Numerico 6 CFU. Corso di Laurea in Ingegneria delle Comunicazioni 31/05/2014 Progetto Matlab N 2 Calcolo Numerico 6 CFU Corso di Laurea in Ingegneria delle Comunicazioni 31/05/2014 Procedimento 1. Scrivere una function che implementi il prodotto matrice-vettore AX con A matrice

Dettagli

Motivazioni. Sistemi lineari. Obiettivo. Il problema

Motivazioni. Sistemi lineari. Obiettivo. Il problema Motivazioni Sistemi lineari Metodo di eliminazione di Gauss Molti problemi si possono rappresentare mediante un sistema lineare La soluzione di un sistema lineare costituisce un sottoproblema di moltissime

Dettagli

Laboratorio di Matematica Computazionale A.A Lab. 6

Laboratorio di Matematica Computazionale A.A Lab. 6 Laboratorio di Matematica Computazionale A.A. 2007-2008 Lab. 6 Risoluzione di sistemi triangolari Si scriva una function Matlab che, presa in ingresso una matrice triangolare inferiore L e un termine noto

Dettagli

Applicazioni eliminazione di Gauss

Applicazioni eliminazione di Gauss Applicazioni eliminazione di Gauss. Premessa Nel seguito supporremo sempre di applicare il metodo di eliminazione di Gauss allo scopo di trasformare la matrice del sistema Ax = b in una matrice triangolare

Dettagli

Carla Guerrini 1. Sistemi e matrici semplici

Carla Guerrini 1. Sistemi e matrici semplici Carla Guerrini 1 Sistemi e matrici semplici Vi sono delle funzioni MatLab che generano delle matrici particolari, per esempio zeros(m, n) produce una matrice m n con tutti gli elemnti nulli, ones(m, n)

Dettagli

Problemi di Calcolo Numerico

Problemi di Calcolo Numerico Problemi di Calcolo Numerico Corso di Laurea in Ingegneria Elettronica a.a. 20/202 2 Sistemi di equazioni lineari In questa Sezione, le frasi (la procedura) XX termina su x e (la funzione) XX è definita

Dettagli

1 Risoluzione di sistemi lineari

1 Risoluzione di sistemi lineari Risoluzione di sistemi lineari La presente nota è in parte ripresa dal testo D Bini M Capovani O Menchi Metodi numerici per l algebra lineare Zanichelli Editore Siano A una matrice non singolare di ordine

Dettagli

SISTEMI LINEARI. Ax = b

SISTEMI LINEARI. Ax = b SISTEMI LINEARI Un sistema lineare di n equazioni algebriche in n incognite è esprimibile come: a 11 x 1 + a 1 x + a 13 x 3 +... + a 1n x n = b 1 a 1 x 1 + a x + a 3 x 3 +... + a n x n = b a n1 x 1 + a

Dettagli

Il programma OCTAVE per l insegnamento dell algebra lineare nella Scuola Secondaria p. 1

Il programma OCTAVE per l insegnamento dell algebra lineare nella Scuola Secondaria p. 1 Il programma OCTAVE per l insegnamento dell algebra lineare nella Scuola Secondaria R. Vitolo Dipartimento di Matematica Università di Lecce SaLUG! - Salento Linux User Group Il programma OCTAVE per l

Dettagli

PON 2007 2013 Liceo Scientifico Leonardo da Vinci. Vallo della Lucania

PON 2007 2013 Liceo Scientifico Leonardo da Vinci. Vallo della Lucania PON 2007 2013 Liceo Scientifico Leonardo da Vinci Vallo della Lucania Nuovi percorsi matematici: Osservare, descrivere, costruire. Matlab - 2: Lavorare con le matrici Vallo della Lucania 26 Settembre 2008

Dettagli

Sistemi di equazioni lineari. la soluzione è unica se det(a) 0 e vale

Sistemi di equazioni lineari. la soluzione è unica se det(a) 0 e vale Sistemi di equazioni lineari a 00 x 0 + a 01 x 1 + a 02 x 2 = b 0 a 10 x 0 + a 11 x 1 + a 12 x 2 = b 1 a 20 x 0 + a 21 x 1 + a 22 x 2 = b 2 Per N equazioni N 1 j=0 a ij x j = b i i = 0, N 1 la soluzione

Dettagli

MATLAB:Condizionamento Sistemi Lineari.

MATLAB:Condizionamento Sistemi Lineari. 1 Francesca Mazzia Dipartimento Interuniversitario di Matematica Università di Bari MATLAB:Condizionamento Sistemi Lineari. Innanzitutto vediamo qual è la funzione Matlab che ci permette di calcolare il

Dettagli

x t = M t a.

x t = M t a. Laboratorio di Matematica, 30.09.2003 1 Introduzione Il Laboratorio di Matematica si pone come scopo di presentare alcuni argomenti di algebra lineare vicini alle applicazioni e di introdurre all uso di

Dettagli

Laboratorio di Calcolo Numerico - Corso di Laurea in Matematica Appello d esame del 18/09/2012

Laboratorio di Calcolo Numerico - Corso di Laurea in Matematica Appello d esame del 18/09/2012 Cognome: Nome: Matricola: Laboratorio di Calcolo Numerico - Corso di Laurea in Matematica Appello d esame del 18/09/2012 ESERCIZIO 1 [10 punti] Si consideri il sistema lineare Ax = b, con 9 2 1 A = 1 5

Dettagli

ESERCITAZIONI DI LABORATORIO DI CALCOLO NUMERICO. Parte II: Applicazioni a Matrici e Sistemi Lineari

ESERCITAZIONI DI LABORATORIO DI CALCOLO NUMERICO. Parte II: Applicazioni a Matrici e Sistemi Lineari ESERCITAZIONI DI LABORATORIO DI CALCOLO NUMERICO Parte II: Applicazioni a Matrici e Sistemi Lineari Prof. L. Pareschi Dott. Giacomo Dimarco Applicazioni a Matrici e Sistemi Lineari Operazioni matriciali

Dettagli

Note per le esercitazioni di Geometria 1 a.a. 2007/08 A. Lotta. Metodi per il calcolo del rango di una matrice

Note per le esercitazioni di Geometria 1 a.a. 2007/08 A. Lotta. Metodi per il calcolo del rango di una matrice Note per le esercitazioni di Geometria 1 a.a. 2007/08 A. Lotta Versione del 21/12/07 Metodi per il calcolo del rango di una matrice Sia A M m,n (K). Denotiamo con A (i) la riga i-ma di A, i {1,..., m}.

Dettagli

CORSO DI LAUREA IN INFORMATICA CALCOLO NUMERICO Secondo esonero - 07 Giugno x y =2.

CORSO DI LAUREA IN INFORMATICA CALCOLO NUMERICO Secondo esonero - 07 Giugno x y =2. ORSO DI LAUREA IN INFORMATIA ALOLO NUMERIO Secondo esonero - 7 Giugno - Traccia. [Punti:.a: ;.b: ;.c:] Sia dato il sistema x + y + z =, x y =. (.a) Determinarne l insieme delle soluzioni. (.b) Indicare

Dettagli

Corso di Matematica per la Chimica. Dott.ssa Maria Carmela De Bonis a.a

Corso di Matematica per la Chimica. Dott.ssa Maria Carmela De Bonis a.a Dottssa Maria Carmela De Bonis aa 2013-14 Metodi diretti Si chiamano metodi diretti quei metodi numerici che risolvono sistemi lineari in un numero finito di passi In altri termini, supponendo di effettuare

Dettagli

Laboratorio di Programmazione II Corso di Laurea in Bioinformatica Dipartimento di Informatica - Università di Verona

Laboratorio di Programmazione II Corso di Laurea in Bioinformatica Dipartimento di Informatica - Università di Verona Laboratorio di Programmazione II Corso di Laurea in Bioinformatica Dipartimento di Informatica - Università di Verona Sommario Cicli Concetti di base (MATrix LABoratory) programma interattivo per calcolo

Dettagli

Laboratorio di Analisi Numerica Lezione 3

Laboratorio di Analisi Numerica Lezione 3 Laboratorio di Analisi Numerica Lezione 3 Gianna Del Corso Federico Poloni 16 Ottobre 2012 Quantità di esercizi: in questa dispensa ci sono più esercizi di

Dettagli

Veri ca di Matematica sulle matrici [1]

Veri ca di Matematica sulle matrici [1] Veri ca di Matematica sulle matrici []. Si considerino le matrici A e de nite da 5 A = 2 3 7 5 4 7 3 A ; = 5 6 7 alcolare det(a), det(); la matrice somma = A + ; la matrice prodotto D = A. 6 7 2 2 2 3

Dettagli