Il programma OCTAVE per l insegnamento dell algebra lineare nella Scuola Secondaria p. 1

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Il programma OCTAVE per l insegnamento dell algebra lineare nella Scuola Secondaria p. 1"

Transcript

1 Il programma OCTAVE per l insegnamento dell algebra lineare nella Scuola Secondaria R. Vitolo Dipartimento di Matematica Università di Lecce SaLUG! - Salento Linux User Group Il programma OCTAVE per l insegnamento dell algebra lineare nella Scuola Secondaria p. 1

2 Introduzione OCTAVE è un programma per il calcolo matriciale (e non solo). Le sue caratteristiche sono: è a linea di comando; è software libero (e gratuito); è facilmente installabile; è semplice da apprendere. NOTA: L utilizzo di un programma non si apprende con un manuale, ma lavorando con il programma al calcolatore. Il programma OCTAVE per l insegnamento dell algebra lineare nella Scuola Secondaria p. 2

3 Primi Passi Come si ottiene aiuto su di un comando? Basta scrivere al terminale > help nomecomando Come si introduce una matrice? Basta scrivere al terminale la matrice: > A=[1 2 3; 4 5 6; 7 8 9] L aggiunta di un ; alla fine sopprime l output del terminale. La matrice rimane in memoria, fino a che non viene cancellata o rimpiazzata, o il programma viene chiuso. Il programma OCTAVE per l insegnamento dell algebra lineare nella Scuola Secondaria p. 3

4 Primi passi Come si selezione un elemento di matrice? Con i suoi indici: A(2,3) stampa il valore 6. Come si inserisce una matrice complessa? Basta inserire i numeri complessi senza spazi così: > C=[1+ i 2 2 i ; 3+ i 0.5+ i ] Come si ottiene la matrice trasposta? A. Come si crea un vettore colonna? Così: > pippo = [ 1 ; 2 ; 3 ; 4 ; 5 ] oppure così: > pippo =[ ] Il programma OCTAVE per l insegnamento dell algebra lineare nella Scuola Secondaria p. 4

5 Primi passi Come si ottengono le dimensioni di una matrice? > [m, n ]= size ( pippo ) Quali operazioni tra matrici sono disponibili? +,,,ˆ,, \, /. Si inserisca un altra matrice B di tipo e si calcoli A+B, A B, A B. Che cos è la divisione matriciale? Equivale a risolvere un sistema lineare: > b=[1 2 3 ] > A=[1 2 1; 2 3 5; 8 0 2] > X=A \ b Si effettui la verifica A X=b. Il programma OCTAVE per l insegnamento dell algebra lineare nella Scuola Secondaria p. 5

6 Primi passi Ci sono matrici predefinite? Si: eye(n), zeros(m,n), rand(m,n), diag, triu e tril, ecc.. Come si crea una matrice di tipo 5 5 di numeri pseudocasuali compresi tra 0 e 100? Così: E= f l o o r (100 ( rand ( 5, 5 ) ) ) Come si seleziona una sottomatrice? Si consideri la sottomatrice di E formata dalle colonne 2 e 3 e dalle righe 3, 4, 5: E( 2 : 3, 3 : 5 ) I : indicano un ciclo a passo 1. La prima riga si può ottenere da E (1,:). Il programma OCTAVE per l insegnamento dell algebra lineare nella Scuola Secondaria p. 6

7 Il workspace Come si visualizzano le variabili? who. Come si salvano le variabili? save. Come si cancellano le variabili? Così: clear A oppure clear all. Come si ricaricano le variabili salvate? load nomefile.mat Come si misura il tempo di calcolo? Così: > t1=cputime ; X=A \ b ; cputime t1 Come si seleziona il formato di output? format Qual è la precisione del programma? eps. Il programma OCTAVE per l insegnamento dell algebra lineare nella Scuola Secondaria p. 7

8 Problemi Problema 1. Si moltiplichino le matrici A e B, dove A è la matrice quadrata che ha per diagonale il vettore (1, 2, 3) e 1 2 B = SOLUZIONE. > s o l =diag ( [ 1 2 3]) B Il programma OCTAVE per l insegnamento dell algebra lineare nella Scuola Secondaria p. 8

9 Problemi Problema 2. Si verifichi che il determinante di A = calcolato con la regola di Laplace è uguale al determinante di A calcolato con la funzione det. SOLUZIONE. Si ha det(a)=166. Si usa la quarta riga per sviluppare det(a): si ottiene > temp=1 det (A( 1 : 3, [ ] ) ) 9 det (A( 1 : 3, [ 1 2 4])) 3 det (A ( 1 : 3, 1 : 3 ) ) Il programma OCTAVE per l insegnamento dell algebra lineare nella Scuola Secondaria p. 9

10 Problemi Problema 3. Si verifichi che il determinante di A cambia segno se si scambiano due righe. SOLUZIONE. Si utilizzi l assegnazione > temp=a ( [ ], : ) per effettuare lo scambio di righe. Problema 4. Si verifichi che il determinante di A è moltiplicato per 5 se si moltiplica la prima riga per 5. Che succede se si moltiplica A per 5? Il programma OCTAVE per l insegnamento dell algebra lineare nella Scuola Secondaria p. 10

11 Problemi Problema 5. Data la matrice B = , si verifichi la regola di Binet per il prodotto AB. Problema 6. Si verifichi che AB BA, (AB) T A T B T ma che (AB) T = B T A T. Il programma OCTAVE per l insegnamento dell algebra lineare nella Scuola Secondaria p. 11

12 Problemi Problema 7. Si calcoli la matrice inversa della matrice D = mediante la matrice dei complementi algebrici. SOLUZIONE. Si calcola solo il primo complemento algebrico > D11=( 1) (1+1) det (D( 2 : 3, 2 : 3 ) ) L inversa sarà data da > E=( det (D) ) ( 1) ([D11 D12 D13 ; D21... ] ) Si verifichi che questa coincide con la matriceinv(d). Il programma OCTAVE per l insegnamento dell algebra lineare nella Scuola Secondaria p. 12

13 Problemi Problema 8. Si calcoli il rango della matrice F = utilizzando il teorema degli orlati (o di Kronecker). SOLUZIONE. Si trovino minori di F di dimensioni crescenti con determinante diverso da 0. Si calcolino gli orlati di questi per stabilire il rango. Si confronti la soluzione ottenuta con quella che si ha dal comando rank. Il programma OCTAVE per l insegnamento dell algebra lineare nella Scuola Secondaria p. 13

14 Problemi Problema 9. Date le matrici G = ( ) , H = ( ) provare che (A + B) 2 A 2 + 2AB + B 2. Il programma OCTAVE per l insegnamento dell algebra lineare nella Scuola Secondaria p. 14

15 La programmazione È possibile automatizzare le operazioni in OCTAVE in due modi: tramite i function files (o funzioni). Una funzione è scritta in un file di testo (anche col blocco note ); inizia con la riga function xyz dove xyz.m sarà il nome del file; è interpretata come il BASIC, non compilata come il FORTRAN o il c. Il programma OCTAVE per l insegnamento dell algebra lineare nella Scuola Secondaria p. 15

16 La programmazione Esempio 1. Scrivere una funzione che stampi la frase ciao mondo sullo schermo. SOLUZIONE. function ciao p r i n t f ( ciao mondo\n ) ; endfunction L istruzione endfunction non è strettamente necessaria. Il programma OCTAVE per l insegnamento dell algebra lineare nella Scuola Secondaria p. 16

17 La programmazione Esempio 2. Scrivere una funzione che calcoli il fattoriale di un numero n dato. SOLUZIONE. function v a l o r e = f a t t o r i a l e ( n ) i f ( n > 0) v a l o r e = n f a t t o r i a l e else v a l o r e = 1; end endfunction ( n 1); Si noti che la funzione è stata definita ricorsivamente. Il programma OCTAVE per l insegnamento dell algebra lineare nella Scuola Secondaria p. 17

18 La programmazione Esempio 3. Scrivere una funzione che calcoli la media aritmetica di un vettore v dato. SOLUZIONE. function r e t v a l = media ( v ) r e t v a l = sum ( v ) / length ( v ) ; endfunction Il programma OCTAVE per l insegnamento dell algebra lineare nella Scuola Secondaria p. 18

19 La programmazione Esempio 4. Scrivere una funzione che calcoli la media aritmetica di un vettore v dato, effettuando prima un controllo sul tipo di dato. SOLUZIONE. function r e t v a l = mediacontr ( v ) r e t v a l = 0; i f ( i s v e c t o r ( v ) ) r e t v a l = sum ( v ) / length ( v ) ; else e r r o r ( mediacontr : dato non v e t t o r i a l e ) ; end endfunction Il programma OCTAVE per l insegnamento dell algebra lineare nella Scuola Secondaria p. 19

20 La programmazione Esempio 5. Scrivere una funzione (di due variabili) che calcoli l area di un rettangolo. SOLUZIONE. function [ A, p, d ] = r e t t a n g ( a, b ) A = a b ; p = 2 ( a + b ) ; d = sqrt ( a 2 + b 2 ) ; endfunction Il programma OCTAVE per l insegnamento dell algebra lineare nella Scuola Secondaria p. 20

21 La programmazione Esempio 6. Scrivere una funzione che crei una matrice triangolare superiore di numeri casuali compresi tra 0 e 100 di ordine n. SOLUZIONE. function a=mat sup ( n ) temporanea= f l o o r (100 rand ( n, n ) ) for end for end j =1:n i =1: j a ( i, j )= temporanea ( i, j ) ; endfunction Il programma OCTAVE per l insegnamento dell algebra lineare nella Scuola Secondaria p. 21

22 La programmazione Esempio 7. Scrivere una funzione di due variabili che risolva un sistema con matrice triangolare superiore. Iniziare la funzione con un test sulle variabili. SOLUZIONE. function x= t r i s u p ( a, b ) % C o n t r o l l a l e dimensioni d i a : [ n,m] = size ( a ) ; i f m = n end p r i n t f ( A non e quadrata ) return Il programma OCTAVE per l insegnamento dell algebra lineare nella Scuola Secondaria p. 22

23 La programmazione for i =1:n for j =1: i 1 i f a ( i, j ) =0 p r i n t f ( A non e t r i a n g o l a r e supe return end end end i f length ( b ) = n p r i n t f ( B non e c o m p a t i b i l e ) return end Il programma OCTAVE per l insegnamento dell algebra lineare nella Scuola Secondaria p. 23

24 La programmazione % Risolve i l sistema x ( n ) = b ( n ) / a ( n, n ) ; for i =n 1: 1:1 sum=b ( i ) ; for j = i +1:n sum = sum a ( i, j ) x ( j ) ; end x ( i ) = sum/ a ( i, i ) ; end endfunction Il programma OCTAVE per l insegnamento dell algebra lineare nella Scuola Secondaria p. 24

25 Problemi Problema 10. Scrivere una funzione che crei una matrice di ordine n che ha 2 sulla diagonale principale, 1 sulla sottodiagonale e sulla sopradiagonale e 0 altrimenti. Problema 11. Scrivere un programma che confronti la velocità di risoluzione di un sistema triangolare superiore usando, rispettivamente, la funzione dell esercizio precedente e la funzione di divisione matriciale di OCTAVE. Problema 12. Scrivere una funzione di due variabili (matrice incompleta e termine noto) che risolva un sistema con matrice triangolare inferiore. Iniziare la funzione con un test sulle variabili. Il programma OCTAVE per l insegnamento dell algebra lineare nella Scuola Secondaria p. 25

26 Problemi Problema 13. Scrivere una funzione di una variabile (matrice quadrata) che calcoli il determinante con uno sviluppo di Laplace. Si confronti il tempo di esecuzione con il tempo di esecuzione della funzione det e con la funzione dell esercizio precedente. Problema 14. Scrivere una funzione di una variabile che calcoli l inversa di una matrice quadrata con il metodo di Cramer Laplace. Si confronti il tempo di esecuzione con il tempo di esecuzione della funzione inv. Problema 15. Scrivere una funzione di due variabili (matrice incompleta e termine noto) che risolva un sistema lineare a matrice quadrata con il metodo di eliminazione. Alla fine, si usi la funzione tri sup. Il programma OCTAVE per l insegnamento dell algebra lineare nella Scuola Secondaria p. 26

Corso di Matematica Generale M-Z Dipartimento di Economia Universitá degli Studi di Foggia ALGEBRA LINEARE. Giovanni Villani

Corso di Matematica Generale M-Z Dipartimento di Economia Universitá degli Studi di Foggia ALGEBRA LINEARE. Giovanni Villani Corso di Matematica Generale M-Z Dipartimento di Economia Universitá degli Studi di Foggia ALGEBRA LINEARE Giovanni Villani Matrici Definizione 1 Si definisce matrice di tipo m n una funzione che associa

Dettagli

MATRICI E VETTORI APPROFONDIMENTO PER IL CORSO DI LABORATORIO DI INFORMATICA SARA POLTRONIERI

MATRICI E VETTORI APPROFONDIMENTO PER IL CORSO DI LABORATORIO DI INFORMATICA SARA POLTRONIERI MATRICI E VETTORI APPROFONDIMENTO PER IL CORSO DI LABORATORIO DI INFORMATICA SARA POLTRONIERI LE MATRICI DEFINIZIONE: Una matrice è un insieme di numeri disposti su righe e colonne. 1 3 7 M = 2 5 1 M è

Dettagli

ESERCITAZIONE CON EXCEL SULLE MATRICI

ESERCITAZIONE CON EXCEL SULLE MATRICI ESERCITAZIONE CON EXCEL SULLE MATRICI PROBLEMA 1 commutativa. 2 1 0 e 1 2 4 B = 3 1 2, verificare che la loro somma è Per poter risolvere il problema proposto, è necessario predisporre le matrici sul foglio

Dettagli

Esercizi di MatLab. Sommario Esercizi di introduzione a MatLab per il corso di Calcolo Numerico e Laboratorio, A.A

Esercizi di MatLab. Sommario Esercizi di introduzione a MatLab per il corso di Calcolo Numerico e Laboratorio, A.A Esercizi di MatLab Sommario Esercizi di introduzione a MatLab per il corso di Calcolo Numerico e Laboratorio, AA 2017 2018 Gli esercizi sono divisi in due gruppi: fondamentali ed avanzati I primi sono

Dettagli

Introduzione a Matlab (e al Calcolo Numerico)

Introduzione a Matlab (e al Calcolo Numerico) Introduzione a Matlab (e al Calcolo Numerico) Giuseppe Rodriguez Università di Roma Tor Vergata Seminario nell ambito del corso di Fondamenti di Informatica per gli studenti di Ingegneria Meccanica e Ingegneria

Dettagli

Esercitazione 4: Vettori e Matrici

Esercitazione 4: Vettori e Matrici Esercitazione 4: Vettori e Matrici Richiami di teoria: Norme di vettore Principali norme di vettore:. x = n i= x i 2. x 2 = n i= x i 2 3. x = max i n x i Ad esempio dato il vettore x = (, 2, 3, 4) abbiamo.

Dettagli

Scilab. Matrici Bidimensionali. Corso di Informatica CdL: Chimica. Claudia d'amato.

Scilab. Matrici Bidimensionali. Corso di Informatica CdL: Chimica. Claudia d'amato. Scilab Corso di Informatica CdL: Chimica Matrici Bidimensionali Claudia d'amato claudia.damato@di.uniba.it Matrici Uno dei tipi di base di Scilab è costituito dalla matrice Uno dei modi più semplici per

Dettagli

SISTEMI LINEARI MATRICI E SISTEMI 1

SISTEMI LINEARI MATRICI E SISTEMI 1 MATRICI E SISTEMI SISTEMI LINEARI Sistemi lineari e forma matriciale (definizioni e risoluzione). Teorema di Rouché-Capelli. Sistemi lineari parametrici. Esercizio Risolvere il sistema omogeneo la cui

Dettagli

2x 5y +4z = 3 x 2y + z =5 x 4y +6z = A =

2x 5y +4z = 3 x 2y + z =5 x 4y +6z = A = Esercizio 1. Risolvere il sistema lineare 2x 5y +4z = x 2y + z =5 x 4y +6z =10 (1) Soluz. La matrice dei coefficienti è 1 4 6, calcoliamone il rango. Il determinante di A è (applico la regola di Sarrus):

Dettagli

Introduzione. MATLAB è l acronimo di MATrix LABoratory

Introduzione. MATLAB è l acronimo di MATrix LABoratory MatLab Lezione 1 Introduzione MATLAB è l acronimo di MATrix LABoratory E un ambiente per l analisi e la simulazione dei sistemi lineari e non lineari e per l analisi numerica Il sito ufficiale per informazioni

Dettagli

MATRICI E SISTEMI LINEARI

MATRICI E SISTEMI LINEARI 1 Rappresentazione di dati strutturati MATRICI E SISTEMI LINEARI Gli elementi di una matrice, detti coefficienti, possono essere qualsiasi e non devono necessariamente essere omogenei tra loro; di solito

Dettagli

SISTEMI LINEARI. x y + 2t = 0 2x + y + z t = 0 x z t = 0 ; S 3 : ; S 5x 2y z = 1 4x 7y = 3

SISTEMI LINEARI. x y + 2t = 0 2x + y + z t = 0 x z t = 0 ; S 3 : ; S 5x 2y z = 1 4x 7y = 3 SISTEMI LINEARI. Esercizi Esercizio. Verificare se (,, ) è soluzione del sistema x y + z = x + y z = 3. Trovare poi tutte le soluzioni del sistema. Esercizio. Scrivere un sistema lineare di 3 equazioni

Dettagli

MATRICI. 1. Esercizi

MATRICI. 1. Esercizi MATICI Esercizio Siano A = 0, B = Esercizi 2, C = 0 2 2 Calcolare: a2a B; b3a + 2B 4C; c 2A + B + 2C 2B; d3b + 2(2A C (A + B + 2C isolvere, se possibile: ( 3X + 2(A X + B + 2(C + 2X = 0; (2 4A + 2(B +

Dettagli

Sistemi II. Sistemi II. Elisabetta Colombo

Sistemi II. Sistemi II. Elisabetta Colombo Corso di Approfondimenti di Matematica per Biotecnologie, Anno Accademico 2011-2012, http://users.mat.unimi.it/users/colombo/programmabio.html 1 2 3 con R.C.+ o 1.10 Rango massimo e determinante con R.C.+

Dettagli

ossia può anche essere localizzato univocamente sul piano complesso con la sua forma polare.

ossia può anche essere localizzato univocamente sul piano complesso con la sua forma polare. ALGEBRA COMPLESSA Nel corso dei secoli gli insiemi dei numeri sono andati man mano allargandosi per rispondere all esigenza di dare soluzione a equazioni e problemi sempre nuovi I numeri complessi sono

Dettagli

Sui determinanti e l indipendenza lineare di vettori

Sui determinanti e l indipendenza lineare di vettori Sui determinanti e l indipendenza lineare di vettori 1 Si dice che m vettori v 1, v 2,,v m di R n sono linearmente indipendenti, se una loro combinazione lineare può dare il vettore nullo solo se i coefficienti

Dettagli

Introduzione al MATLAB c Parte 3 Script e function

Introduzione al MATLAB c Parte 3 Script e function Introduzione al MATLAB c Parte 3 Script e function Lucia Gastaldi DICATAM - Sezione di Matematica, http://lucia-gastaldi.unibs.it Indice 1 M-file di tipo Script e Function Script Function 2 Gestione dell

Dettagli

Geometria BIAR Esercizi 2

Geometria BIAR Esercizi 2 Geometria BIAR 0- Esercizi Esercizio. a Si consideri il generico vettore v b R c (a) Si trovi un vettore riga x (x, y, z) tale che x v a (b) Si trovi un vettore riga x (x, y, z) tale che x v kb (c) Si

Dettagli

2 Sistemi lineari. Metodo di riduzione a scala.

2 Sistemi lineari. Metodo di riduzione a scala. Sistemi lineari. Metodo di riduzione a scala. Esercizio.1 Utilizzando il metodo di eliminazione di Gauss, risolvere i seguenti sistemi lineari: 1. 3. x 1 x + 3x 3 = 1 x 1 x x 3 = x 1 + x + 3x 3 = 5 x 1

Dettagli

SISTEMI LINEARI: APPROFONDIMENTI ED ESEMPI

SISTEMI LINEARI: APPROFONDIMENTI ED ESEMPI SISTEMI LINEARI: APPROFONDIMENTI ED ESEMPI Appunti presi dalle lezioni del prof. Nedo Checcaglini Liceo Scientifico di Castiglion Fiorentino (Classe 4B) January 17, 005 1 SISTEMI LINEARI Se a ik, b i R,

Dettagli

3. Matrici e algebra lineare in MATLAB

3. Matrici e algebra lineare in MATLAB 3. Matrici e algebra lineare in MATLAB Riferimenti bibliografici Getting Started with MATLAB, Version 7, The MathWorks, www.mathworks.com (Capitolo 2) Mathematics, Version 7, The MathWorks, www.mathworks.com

Dettagli

Corso di Matematica e Statistica 3 Algebra delle matrici. Una tabella rettangolare: la matrice. Una tabella rettangolare: la matrice

Corso di Matematica e Statistica 3 Algebra delle matrici. Una tabella rettangolare: la matrice. Una tabella rettangolare: la matrice Pordenone Corso di Matematica e Statistica 3 Algebra delle UNIVERSITAS STUDIORUM UTINENSIS Giorgio T. Bagni Facoltà di Scienze della Formazione Dipartimento di Matematica e Informatica Università di Udine

Dettagli

ESERCITAZIONE MATLAB

ESERCITAZIONE MATLAB ESERCITAZIONE MATLAB Di seguito sono ripostati alcuni esercizi da eseguire in ambiente MatLab. Gli esercizi sono divisi per argomenti. Ogni esercizio è preceduto da una serie di esempi che aiutano nello

Dettagli

Il teorema di Rouché-Capelli

Il teorema di Rouché-Capelli Luciano Battaia Questi appunti (1), ad uso degli studenti del corso di Matematica (A-La) del corso di laurea in Commercio Estero dell Università Ca Foscari di Venezia, campus di Treviso, contengono un

Dettagli

Corso di Matematica per la Chimica

Corso di Matematica per la Chimica Dott.ssa Maria Carmela De Bonis a.a. 2013-14 Pivoting e stabilità Se la matrice A non appartiene a nessuna delle categorie precedenti può accadere che al k esimo passo risulti a (k) k,k = 0, e quindi il

Dettagli

Arrays. Vector array. Matrix array. Row vector. 2D matrix. 1 2 Column vector

Arrays. Vector array. Matrix array. Row vector. 2D matrix. 1 2 Column vector Arrays Vector array [ 2.7 3E 9 4 4] 1 2 4 + 3i 3.6 Column vector Row vector Matrix array 1.1 1 6 8 8.7 5.6 6 7 2D matrix Vettori Creazione di vettori: lista esplicita Indirizzamento di un elemento di un

Dettagli

MATLAB c. Lucia Gastaldi Dipartimento di Matematica Lezione 4 (15 ottobre 2003)

MATLAB c. Lucia Gastaldi Dipartimento di Matematica  Lezione 4 (15 ottobre 2003) MATLAB c M-file. Lucia Gastaldi Dipartimento di Matematica http://dm.ing.unibs.it/gastaldi/ Lezione 4 (15 ottobre 2003) Esercizio Problema 3: la successione di funzioni f n (x) = (x 2 x) n per 0 x 1 è

Dettagli

RIDUZIONE E RANGO , C = 2 5 1

RIDUZIONE E RANGO , C = 2 5 1 MATRICI E SISTEMI RIDUZIONE E RANGO Riduzione di matrici (definizioni, trasformazioni elementari). Calcolo del rango e dell inversa (metodo di Gauss, metodo di Gauss-Jordan). 3 4 Esercizio Ridurre per

Dettagli

1. Proprietà della somma di matrici. 1. (A + B) + C = A + (B + C) qualunque. 2. A + B = B + A qualunque siano le matrici

1. Proprietà della somma di matrici. 1. (A + B) + C = A + (B + C) qualunque. 2. A + B = B + A qualunque siano le matrici Matrici R. Notari 1 1. Proprietà della somma di matrici 1. (A + B) + C = A + (B + C) qualunque siano le matrici A, B, C Mat(m, n; K). 2. A + B = B + A qualunque siano le matrici A, B Mat(m, n; K). 3. Sia

Dettagli

( ) TEORIA DELLE MATRICI. A. Scimone a.s pag 1

( ) TEORIA DELLE MATRICI. A. Scimone a.s pag 1 . Scimone a.s 1997 98 pag 1 TEORI DELLE MTRICI Dato un campo K, definiamo matrice ad elementi in K di tipo (m, n) un insieme di numeri ordinati secondo righe e colonne in una tabella rettangolare del tipo

Dettagli

Corso di Matematica B - Ingegneria Informatica Testi di Esercizi

Corso di Matematica B - Ingegneria Informatica Testi di Esercizi A. Languasco - Esercizi Matematica B - 1. Sistemi lineari e Matrici 1 A: Sistemi lineari: eliminazione gaussiana Corso di Matematica B - Ingegneria Informatica Testi di Esercizi A1. Determinare, con il

Dettagli

Matrici quadrate particolari

Matrici quadrate particolari Matrici quadrate particolari Sia A Mn(K) una matrice quadrata. Gli elementi (a 1,1, a 2,2,, a n,n ) costituiscono la diagonale principale di A. Gli elementi (a 1,n, a 2,n-1,, a n-1,2, a n,1 ) costituiscono

Dettagli

Appunti su Indipendenza Lineare di Vettori

Appunti su Indipendenza Lineare di Vettori Appunti su Indipendenza Lineare di Vettori Claudia Fassino a.a. Queste dispense, relative a una parte del corso di Matematica Computazionale (Laurea in Informatica), rappresentano solo un aiuto per lo

Dettagli

Il determinante. Calcolo del determinante di matrici particolari. matrici di ordine 2: sia. a11 a A = allora

Il determinante. Calcolo del determinante di matrici particolari. matrici di ordine 2: sia. a11 a A = allora Calcolo del determinante di matrici particolari matrici di ordine 2: sia allora Esempio. [ ] a11 a A = 12, a 21 a 22 det A = a 11 a 22 a 21 a 12. Calcolare il determinante di [ ] 1 2 A =. 3 4 matrici di

Dettagli

Metodi per la risoluzione di sistemi lineari

Metodi per la risoluzione di sistemi lineari Metodi per la risoluzione di sistemi lineari Sistemi di equazioni lineari. Rango di matrici Come è noto (vedi [] sez.0.8), ad ogni matrice quadrata A è associato un numero reale det(a) detto determinante

Dettagli

Corso di Geometria BIAR, BSIR Esercizi 2: soluzioni

Corso di Geometria BIAR, BSIR Esercizi 2: soluzioni Corso di Geometria 2- BIAR, BSIR Esercizi 2: soluzioni Esercizio Calcolare il determinante della matrice 2 3 : 3 2 a) con lo sviluppo lungo la prima riga, b) con lo sviluppo lungo la terza colonna, c)

Dettagli

RISOLUZIONE DI SISTEMI LINEARI

RISOLUZIONE DI SISTEMI LINEARI RISOLUZIONE DI SISTEMI LINEARI Algebra lineare numerica 1 La risoluzione di un sistema lineare è il nucleo principale del processo di risoluzione di circa il 70% di tutti i problemi reali Per la risoluzione

Dettagli

Metodi di Analisi dei Dati Sperimentali. AA 2009/2010 Pier Luca Maffettone. Elementi di Matlab

Metodi di Analisi dei Dati Sperimentali. AA 2009/2010 Pier Luca Maffettone. Elementi di Matlab Metodi di Analisi dei Dati Sperimentali AA /2010 Pier Luca Maffettone Elementi di Matlab Sommario Introduzione Variabili Manipolazione di elementi Creazione di vettori/matrici Operazioni elementari Funzioni

Dettagli

Esercitazione di Matematica su matrici e sistemi lineari

Esercitazione di Matematica su matrici e sistemi lineari Esercitazione di Matematica su matrici e sistemi lineari Notazioni: deta, A T =trasposta di A, A 1 =inversa di A. 1. Si considerino le matrici A, B, C, D denite da 1 0 5 1 A = 0, B = 0 0, C = 0 1 0 6 1

Dettagli

Determinanti. Definizione ed esempi. Definizione ed esempi. Proprietà dei determinanti Rango di matrici

Determinanti. Definizione ed esempi. Definizione ed esempi. Proprietà dei determinanti Rango di matrici Introduzione S S S Rango di matrici Si dice sottomatrice d'una matrice data la matrice ottenuta selezionando un certo numero di righe e di colonne della matrice iniziale. Lezione 24.wpd 08/01/2011 XXIV

Dettagli

Una Libreria di Algebra Lineare per il Calcolo Scientifico

Una Libreria di Algebra Lineare per il Calcolo Scientifico Una Libreria di Algebra Lineare per il Calcolo Scientifico Introduzione Il Lavoro di Tesi Introduzione al Metodo Ridurre l Occupazione di Memoria Metodo di Memorizzazione degli Elementi Risultati Attesi

Dettagli

PON 2007 2013 Liceo Scientifico Leonardo da Vinci. Vallo della Lucania

PON 2007 2013 Liceo Scientifico Leonardo da Vinci. Vallo della Lucania PON 2007 2013 Liceo Scientifico Leonardo da Vinci Vallo della Lucania Nuovi percorsi matematici: Osservare, descrivere, costruire. Matlab - 2: Lavorare con le matrici Vallo della Lucania 26 Settembre 2008

Dettagli

Anno 4 Matrice inversa

Anno 4 Matrice inversa Anno 4 Matrice inversa 1 Introduzione In questa lezione parleremo della matrice inversa di una matrice quadrata: definizione metodo per individuarla Al termine della lezione sarai in grado di: descrivere

Dettagli

UNIVERSITÀ DEGLI STUDI DI PAVIA FACOLTÀ DI INGEGNERIA. Introduzione a Matlab

UNIVERSITÀ DEGLI STUDI DI PAVIA FACOLTÀ DI INGEGNERIA. Introduzione a Matlab UNIVERSITÀ DEGLI STUDI DI PAVIA FACOLTÀ DI INGEGNERIA Introduzione a Matlab MATLAB MATLAB (abbreviazione di Matrix Laboratory) è un ambiente per il calcolo numerico e un linguaggio di programmazione (interpretato)

Dettagli

MATLAB - Programmazione - 2. Antonino Polimeno

MATLAB - Programmazione - 2. Antonino Polimeno MATLAB - Programmazione - 2 Antonino Polimeno antonino.polimeno@unipd.it Manipolazione di matrici - 1 Input di matrici Definizione manuale: A = [1, 2, 3; 7, 8, 9] Generazione da funzioni Lettura da file

Dettagli

Inversa di una matrice

Inversa di una matrice Geometria Lingotto. LeLing: La matrice inversa. Ārgomenti svolti: Inversa di una matrice. Unicita e calcolo della inversa. La inversa di una matrice. Il gruppo delle matrici invertibili. Ēsercizi consigliati:

Dettagli

Esercitazione di Calcolo Numerico 1 22 Aprile Determinare la fattorizzazione LU della matrice a 1 1 A = 3a 2 a 2a a a 2 A =

Esercitazione di Calcolo Numerico 1 22 Aprile Determinare la fattorizzazione LU della matrice a 1 1 A = 3a 2 a 2a a a 2 A = Esercitazione di Calcolo Numerico 22 Aprile 29. Determinare la fattorizzazione LU della matrice a A = 3a 2 a 2a a a 2 ed utilizzarla per calcolare il det(a). 2. Calcolare il determinante della matrice

Dettagli

Richiami di algebra delle matrici a valori reali

Richiami di algebra delle matrici a valori reali Richiami di algebra delle matrici a valori reali Vettore v n = v 1 v 2. v n Vettore trasposto v n = (v 1, v 2,..., v n ) v n = (v 1, v 2,..., v n ) A. Pollice - Statistica Multivariata Vettore nullo o

Dettagli

2. Risolvere con il metodo di eliminazione di Gauss con pivoting parziale il seguente sistema lineare:

2. Risolvere con il metodo di eliminazione di Gauss con pivoting parziale il seguente sistema lineare: Esercizi sui metodi diretti per la risoluzione di sistemi lineari 1. Data la matrice 1 0 2 1 3 1 5 2 1 determinare la sua fattorizzazione P LR. Risolvere il sistema Ax = b con b = (3, 5, 6) T mediante

Dettagli

= elemento che compare nella seconda riga e quinta colonna = -4 In generale una matrice A di m righe e n colonne si denota con

= elemento che compare nella seconda riga e quinta colonna = -4 In generale una matrice A di m righe e n colonne si denota con Definizione di matrice Una matrice (di numeri reali) è una tabella di m x n numeri disposti su m righe e n colonne. I numeri che compaiono nella tabella si dicono elementi della matrice. La loro individuazione

Dettagli

Definizioni e operazioni fondamentali

Definizioni e operazioni fondamentali MATRICI Definizioni e operazioni fondamentali Autovalori e autovettori Potenza Esponenziale Limiti, derivate e integrali Illustrazioni dal Testo di Riferimento per gentile concessione degli Autori 1 DEFINIZIONI

Dettagli

Equivalentemente, le colonne di A sono linearmente indipendenti se e solo se

Equivalentemente, le colonne di A sono linearmente indipendenti se e solo se Lezioni di Algebra Lineare. Versione novembre 2008 VI. Il determinante Il determinante det A di una matrice A, reale e quadrata, è un numero reale associato ad A. Dunque det è una funzione dall insieme

Dettagli

Variabile, costante ed espressione

Variabile, costante ed espressione Variabile, costante ed espressione All interno di un programma un informazione può essere organizzata in vari modi: Variabile Costante Espressione Le variabili a loro volta possono essere: scalari vettori

Dettagli

Inversa. Inversa. Elisabetta Colombo

Inversa. Inversa. Elisabetta Colombo Corso di Approfondimenti di Matematica per Biotecnologie, Anno Accademico 00-0, http://users.mat.unimi.it/users/colombo/programmabio.html e 3 con i Matrici inverse di matrici quadrate e con i Sia A una

Dettagli

Esercizi svolti. risolvere, se possibile, l equazione xa + B = O, essendo x un incognita reale

Esercizi svolti. risolvere, se possibile, l equazione xa + B = O, essendo x un incognita reale Esercizi svolti 1. Matrici e operazioni fra matrici 1.1 Date le matrici 1 2 1 6 A = B = 5 2 9 15 6 risolvere, se possibile, l equazione xa + B = O, essendo x un incognita reale Osservazione iniziale: qualunque

Dettagli

Introduzione soft alla matematica per l economia e la finanza. Marta Cardin, Paola Ferretti, Stefania Funari

Introduzione soft alla matematica per l economia e la finanza. Marta Cardin, Paola Ferretti, Stefania Funari Introduzione soft alla matematica per l economia e la finanza Marta Cardin, Paola Ferretti, Stefania Funari Capitolo Sistemi di equazioni lineari.8 Il Teorema di Cramer Si consideri un generico sistema

Dettagli

Corso di Matematica per la Chimica

Corso di Matematica per la Chimica Dott.ssa Maria Carmela De Bonis a.a. 2013-14 Pivoting e stabilità Se la matrice A non appartiene a nessuna delle categorie precedenti può accadere che al k esimo passo risulti a (k) k,k = 0, e quindi il

Dettagli

Introduzione a MATLAB

Introduzione a MATLAB UNIVERSITA DEGLI STUDI DI PAVIA FACOLTA DI INGEGNERIA Corso di Fondamenti di Automatica (A.A. 2006/07) Prof.G.Ferrari Trecate Introduzione a MATLAB L. Magnani (lorenza.magnani@unipv.it) Dipartimento di

Dettagli

ALGEBRA LINEARE PARTE II

ALGEBRA LINEARE PARTE II DIEM sez. Matematica Finanziaria Marina Resta Università degli studi di Genova Dicembre 005 Indice PREMESSA INVERSA DI UNA MATRICE DETERMINANTE. DETERMINANTE DI MATRICI ELEMENTARI................. MATRICI

Dettagli

Informatica B

Informatica B 2013-2014 Matlab Laboratorio del 14/01/2014 Responsabili di laboratorio: Gianluca Durelli: durelli@elet.polimi.it Luigi Malago : malago@di.unimi.it Materiale di laboratorio reperibile all indirizzo: www.gianlucadurelli.com

Dettagli

MATLAB (1) Introduzione e Operazioni con array

MATLAB (1) Introduzione e Operazioni con array Laboratorio di Informatica per Ingegneria elettrica A.A. 2010/2011 Prof. Sergio Scippacercola MATLAB (1) Introduzione e Operazioni con array N.B. le slide devono essere utilizzate solo come riferimento

Dettagli

A. Introduzione a Matlab

A. Introduzione a Matlab Controlli Automatici A. Introduzione a Matlab Prof. Cesare Fantuzzi Ing. Cristian Secchi Ing. Federica Ferraguti ARSControl - DISMI - Università di Modena e Reggio Emilia E-mail: {nome.cognome}@unimore.it

Dettagli

UNIVERSITÀ DEGLI STUDI DI PAVIA FACOLTÀ DI INGEGNERIA. Matlab: esempi ed esercizi

UNIVERSITÀ DEGLI STUDI DI PAVIA FACOLTÀ DI INGEGNERIA. Matlab: esempi ed esercizi UNIVERSITÀ DEGLI STUDI DI PAVIA FACOLTÀ DI INGEGNERIA Matlab: esempi ed esercizi Sommario e obiettivi Sommario Esempi di implementazioni Matlab di semplici algoritmi Analisi di codici Matlab Obiettivi

Dettagli

LEZIONE i i 3

LEZIONE i i 3 LEZIONE 5 51 Determinanti In questo lezione affronteremo da un punto di vista prettamente operativo la nozione di determinante, descrivendone le proprietà ed i metodi di calcolo, senza entrare nei dettagli

Dettagli

Laboratorio 1 Introduzione a Matlab R - Octave

Laboratorio 1 Introduzione a Matlab R - Octave Laboratorio 1 Introduzione a Matlab R - Octave c 2010 - Questo testo (compresi i quesiti ed il loro svolgimento) è coperto da diritto d autore. Non può essere sfruttato a fini commerciali o di pubblicazione

Dettagli

Registro Lezioni di Algebra lineare del 15 e 16 novembre 2016.

Registro Lezioni di Algebra lineare del 15 e 16 novembre 2016. Registro Lezioni di Algebra lineare del 15 e 16 novembre 2016 Di seguito si riporta il riassunto degli argomenti svolti; i riferimenti sono a parti del Cap8 Elementi di geometria e algebra lineare Par5

Dettagli

Sistemi lineari. 2x 1 + x 2 x 3 = 2 x 1 x 2 + x 3 = 1 x 1 + 3x 2 2x 3 = 0. x 1 x 2 x 3

Sistemi lineari. 2x 1 + x 2 x 3 = 2 x 1 x 2 + x 3 = 1 x 1 + 3x 2 2x 3 = 0. x 1 x 2 x 3 Sistemi lineari 2x 1 + x 2 x 3 = 2 x 1 x 2 + x 3 = 1 x 1 + 3x 2 2x 3 = 0 2 1 1 1 1 1 1 3 2 x 1 x 2 x 3 = 2 1 0 n j=1 a i,jx j = b i, i = 1,, n Ax = b A = (a i,j ) R n n matrice invertibile (det(a) 0) b

Dettagli

INTRODUZIONE A MATLAB

INTRODUZIONE A MATLAB INTRODUZIONE A MATLAB M.R. Russo Università degli Studi di Padova Dipartimento di Matematica Pura ed Applicata A.A. 2008/2009 INDICE Sistemi lineari Casi particolari Eliminazione di Gauss Fattorizzazione

Dettagli

MATEMATICA. a.a. 2014/ Sistemi di equazioni lineari

MATEMATICA. a.a. 2014/ Sistemi di equazioni lineari MATEMATICA a.a. 2014/15 8. Sistemi di equazioni lineari SISTEMI LINEARI Si definisce sistema lineare un sistema di p equazioni di primo grado in q incognite. a11x1 + a12 x2 +... + a1 qxq = k1 a21x1 + a22x2

Dettagli

Progetto Matlab N 2. Calcolo Numerico 6 CFU. Corso di Laurea in Ingegneria delle Comunicazioni 31/05/2014

Progetto Matlab N 2. Calcolo Numerico 6 CFU. Corso di Laurea in Ingegneria delle Comunicazioni 31/05/2014 Progetto Matlab N 2 Calcolo Numerico 6 CFU Corso di Laurea in Ingegneria delle Comunicazioni 31/05/2014 Procedimento 1. Scrivere una function che implementi il prodotto matrice-vettore AX con A matrice

Dettagli

Corso di Calcolo Numerico

Corso di Calcolo Numerico Corso di Laurea in Ingegneria Gestionale Sede di Fermo Corso di 7 - CALCOLO NUMERICO CON MATRICI Richiami teorici Operazioni fondamentali Siano A = {a ij } e B = {b ij }, i = 1,..., m, j = 1,..., n due

Dettagli

SISTEMI LINEARI, METODO DI GAUSS

SISTEMI LINEARI, METODO DI GAUSS SISTEMI LINEARI, METODO DI GAUSS Abbiamo visto che un sistema di m equazioni lineari in n incognite si può rappresentare in forma matriciale come A x = b dove: A è la matrice di tipo (m, n) dei coefficienti

Dettagli

A.A. 2014/2015 Corso di Algebra Lineare

A.A. 2014/2015 Corso di Algebra Lineare A.A. 2014/2015 Corso di Algebra Lineare Stampato integrale delle lezioni Massimo Gobbino Indice Lezione 01: Vettori geometrici nel piano cartesiano. Operazioni tra vettori: somma, prodotto per un numero,

Dettagli

Esercizi su algebra lineare, fattorizzazione LU e risoluzione di sistemi lineari

Esercizi su algebra lineare, fattorizzazione LU e risoluzione di sistemi lineari Esercizi su algebra lineare, fattorizzazione LU e risoluzione di sistemi lineari 4 maggio Nota: gli esercizi più impegnativi sono contrassegnati dal simbolo ( ) Esercizio Siano 3 6 8 6 4 3 3 ) determinare

Dettagli

MATLAB parte II. Array

MATLAB parte II. Array MATLAB parte II MATLAB parte II C. Guerrini 1 Array Tutte le variabili sono array (matrici) Un array è una struttura dati, cioè memorizza più dati all interno di una struttura identificata da un singolo

Dettagli

Inversa di una matrice quadrata. L operatore inv() inverte una matrice quadrata non singolare (cioè in cui il determinate è diverso da zero).

Inversa di una matrice quadrata. L operatore inv() inverte una matrice quadrata non singolare (cioè in cui il determinate è diverso da zero). Inversa di una matrice quadrata L operatore inv() inverte una matrice quadrata non singolare (cioè in cui il determinate è diverso da zero). richiami di algebra lineare TRASPOSIZIONE DI MATRICE Il calcolo

Dettagli

0.1. MATRICI SIMILI 1

0.1. MATRICI SIMILI 1 0.1. MATRICI SIMILI 1 0.1 Matrici simili Definizione 0.1.1. Due matrici A, B di ordine n si dicono simili se esiste una matrice invertibile P con la proprietà che P 1 AP = B. Con questa terminologia dunque

Dettagli

Aritmetica in Floating Point

Aritmetica in Floating Point Aritmetica in Floating Point Esempio di non associatività Alcune proprietà delle operazioni in aritmetica esatta possono non valere in aritmetica finita in virgola mobile (floating point). Ad esempio:

Dettagli

A = Quindi > b=a(:) b =

A = Quindi > b=a(:) b = Una breve digressione. Se si vuole uscire da Matlab, occorre digitare ( come già riferito)il comando >> quit Se si vogliono utilizzare le variabili create per una successiva sessione di lavoro, prima di

Dettagli

Matematica II,

Matematica II, Matematica II,.05.04 Diamo qui la nozione di determinante di una matrice quadrata, le sue prime proprieta, e ne deriviamo una caratterizzazione delle matrici non singolari e una formula per l inversa di

Dettagli

Matrici. Matrici.h Definizione dei tipi. Un po di esercizi sulle matrici Semplici. Media difficoltà. Difficili

Matrici. Matrici.h Definizione dei tipi. Un po di esercizi sulle matrici Semplici. Media difficoltà. Difficili Matrici Un po di esercizi sulle matrici Semplici Lettura e scrittura Calcolo della trasposta Media difficoltà Calcolo del determinante Difficili Soluzione di sistemi lineari È veramente difficile? 1 Matrici.h

Dettagli

Veri ca di Matematica sulle matrici [1]

Veri ca di Matematica sulle matrici [1] Veri ca di Matematica sulle matrici []. Si considerino le matrici A e de nite da 5 A = 2 3 7 5 4 7 3 A ; = 5 6 7 alcolare det(a), det(); la matrice somma = A + ; la matrice prodotto D = A. 6 7 2 2 2 3

Dettagli

Esercizi di ripasso: geometria e algebra lineare.

Esercizi di ripasso: geometria e algebra lineare. Esercizi di ripasso: geometria e algebra lineare. Esercizio. Sia r la retta passante per i punti A(2,, 3) e B(,, 2) in R 3. a. Scrivere l equazione cartesiana del piano Π passante per A e perpendicolare

Dettagli

TEMPUS PECUNIA EST COLLANA DI MATEMATICA PER LE SCIENZE ECONOMICHE FINANZIARIE E AZIENDALI

TEMPUS PECUNIA EST COLLANA DI MATEMATICA PER LE SCIENZE ECONOMICHE FINANZIARIE E AZIENDALI TEMPUS PECUNIA EST COLLANA DI MATEMATICA PER LE SCIENZE ECONOMICHE FINANZIARIE E AZIENDALI 2 Direttore Beatrice VENTURI Università degli Studi di Cagliari Comitato scientifico Umberto NERI University of

Dettagli

Altre trasformazioni elementari

Altre trasformazioni elementari Altre trasformazioni elementari Si possono definire altri tipi di trasformazioni elementari Analogamente alle trasformazioni di Gauss, esse danno luogo a fattorizzazioni Trasformazione elementari di Givens

Dettagli

Esercitazione 1: Introduzione a MATLAB

Esercitazione 1: Introduzione a MATLAB Laboratorio di Immagini Esercitazione 1: Introduzione a MATLAB Mauro Zucchelli 09/03/2016 MATLAB Cos è MATLAB? MATLAB Cos è MATLAB? MATLAB non è un linguaggio di programmazione MATLAB Cos è MATLAB? MATLAB

Dettagli

Complementi di Matematica e Calcolo Numerico A.A Laboratorio 1 - Introduzione a MATLAB

Complementi di Matematica e Calcolo Numerico A.A Laboratorio 1 - Introduzione a MATLAB Complementi di Matematica e Calcolo Numerico A.A. 2011-2012 Laboratorio 1 - Introduzione a MATLAB MATLAB =MAT(rix)-LAB(oratory) è un ambiente integrato per il calcolo scientifico utilizzabile sia in maniera

Dettagli

Parte 2. Determinante e matrice inversa

Parte 2. Determinante e matrice inversa Parte. Determinante e matrice inversa A. Savo Appunti del Corso di Geometria 013-14 Indice delle sezioni 1 Determinante di una matrice, 1 Teorema di Cramer (caso particolare), 3 3 Determinante di una matrice

Dettagli

Sistemi lineari - Parte Seconda - Esercizi

Sistemi lineari - Parte Seconda - Esercizi Sistemi lineari - Parte Seconda - Esercizi Terminologia Operazioni elementari sulle righe. Equivalenza per righe. Riduzione a scala per righe. Rango di una matrice. Forma canonica per righe. Eliminazione

Dettagli

Sistemi lineari. Lorenzo Pareschi. Dipartimento di Matematica & Facoltá di Architettura Universitá di Ferrara

Sistemi lineari. Lorenzo Pareschi. Dipartimento di Matematica & Facoltá di Architettura Universitá di Ferrara Sistemi lineari Lorenzo Pareschi Dipartimento di Matematica & Facoltá di Architettura Universitá di Ferrara http://utenti.unife.it/lorenzo.pareschi/ lorenzo.pareschi@unife.it Lorenzo Pareschi (Univ. Ferrara)

Dettagli

1.[25 punti] Risolvere il seguente sistema di equazioni lineari al variare del parametro reale λ: X +Y +Z = 2. X 2Y +λz = 2

1.[25 punti] Risolvere il seguente sistema di equazioni lineari al variare del parametro reale λ: X +Y +Z = 2. X 2Y +λz = 2 Università di Modena e Reggio Emilia Facoltà di Scienze MM.FF.NN. PROVA SCRITTA DI GEOMETRIA A del 27 giugno 2011 ISTRUZIONI PER LO SVOLGIMENTO. Scrivere cognome, nome, numero di matricola in alto a destra

Dettagli

LeLing12: Ancora sui determinanti.

LeLing12: Ancora sui determinanti. LeLing2: Ancora sui determinanti. Ārgomenti svolti: Sviluppi di Laplace. Prodotto vettoriale e generalizzazioni. Rango e determinante: i minori. Il polinomio caratteristico. Ēsercizi consigliati: Geoling

Dettagli

1 Esercizi di Matlab. L operatore : permette di estrarre sottomatrici da una matrice assegnata. Vediamo alcuni esempi.

1 Esercizi di Matlab. L operatore : permette di estrarre sottomatrici da una matrice assegnata. Vediamo alcuni esempi. Esercizi di Matlab L operatore : permette di estrarre sottomatrici da una matrice assegnata. Vediamo alcuni esempi. Esempio Consideriamo la matrice A formata da n = righe e m = colonne M = 5 6 7 8. 9 0

Dettagli

Si consideri il sistema a coefficienti reali di m equazioni lineari in n incognite

Si consideri il sistema a coefficienti reali di m equazioni lineari in n incognite 3 Sistemi lineari 3 Generalità Si consideri il sistema a coefficienti reali di m equazioni lineari in n incognite ovvero, in forma matriciale, a x + a 2 x 2 + + a n x n = b a 2 x + a 22 x 2 + + a 2n x

Dettagli

Introduzione al Foglio Elettronico

Introduzione al Foglio Elettronico Microsoft Excel Introduzione al Foglio Elettronico Il Foglio Elettronico Si presenta come una grande tabella su un foglio di carta Le celle contengono differenti dati Numeri Testo Date Ecc I dati possono

Dettagli

Risoluzione di sistemi lineari

Risoluzione di sistemi lineari Risoluzione di sistemi lineari Teorema (Rouché-Capelli) Dato il sistema di m equazioni in n incognite Ax = b, con A M at(m, n) b R n x R n [A b] si ha che: matrice dei coefficienti, vettore dei termini

Dettagli

Esercitazione 5: Sistemi a risoluzione immediata.

Esercitazione 5: Sistemi a risoluzione immediata. Esercitazione 5: Sistemi a risoluzione immediata. Ipotesi: Supponiamo le matrici non singolari. Nota: Per verificare che si ha risolto correttamente il sistema lineare Ax = b basta calcolare la norma del

Dettagli

Laboratorio di Matlab

Laboratorio di Matlab Laboratorio di Matlab Alessandro Formaglio Dipartimento di Ingegneria dell Informazione, Università di Siena alex@dii.unisi.it http://www.dii.unisi.it/ control/matlab/labmatlab.html 9 Luglio 2009 DII -

Dettagli

MATRICI ORTOGONALI. MATRICI SIMMETRICHE E FORME QUADRATICHE

MATRICI ORTOGONALI. MATRICI SIMMETRICHE E FORME QUADRATICHE DIAGONALIZZAZIONE 1 MATRICI ORTOGONALI. MATRICI SIMMETRICHE E FORME QUADRATICHE Matrici ortogonali e loro proprietà. Autovalori ed autospazi di matrici simmetriche reali. Diagonalizzazione mediante matrici

Dettagli

Esercizi sui sistemi di equazioni lineari.

Esercizi sui sistemi di equazioni lineari. Esercizi sui sistemi di equazioni lineari Risolvere il sistema di equazioni lineari x y + z 6 x + y z x y z Si tratta di un sistema di tre equazioni lineari nelle tre incognite x, y e z Poichè m n, la

Dettagli