Complementi di Matematica e Calcolo Numerico A.A

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Complementi di Matematica e Calcolo Numerico A.A"

Transcript

1 Complementi di Matematica e Calcolo Numerico A.A Laboratorio 5 Metodi diretti per sistemi lineari Siano A R n n una matrice quadrata non singolare (det(a) 0) e b R n un vettore assegnati, allora esiste un unico vettore x R n che risolve il sistema lineare Ax = b Una volta inseriti in memoria A e b, la soluzione x del sistema si può calcolare in Matlab con l operatore \, che per una matrice quadrata generica implementa il metodo di Eliminazione Gaussiana con pivoting parziale, per una triangolare inferiore la sostituzione in avanti e per una triangolare superiore la sostituzione all indietro: >> x = A\b Esercizio Risolvere i seguenti sistemi lineari con l operatore \: x = 4 x = x = x = 0

2 Confrontare i risultati ottenuti con quelli che provengono dal prodotto dell inversa di A con il vettore b ossia >> x = inv(a)*b Perchè i risultati non coincidono? Perchè non si usa questa seconda strategia? Esercizio 2 (E se la matrice fosse singolare?) Dopo aver calcolato il determinante della matrice del sistema, risolvere con \ i seguenti sistemi lineari, facendo molta attenzione ai messaggi d errore/warning. Nel secondo e terzo caso confrontare il valore del termine noto con quello del prodotto matrice-soluzione x =, x = 2 3, x =

3 FATTORIZZAZIONE LU Il metodo di Eliminazione Gaussiana (senza pivot) fattorizza, quando possibile, la matrice A nel prodotto A = LU, con L matrice triangolare inferiore (con tutti i coefficienti uguali a sulla diagonale) ed U triangolare superiore. Contestualmente risolve per sostituzioni due sistemi triangolari con matrici dei coefficienti L ed U fino ad ottenere la soluzione del sistema lineare dato Ax = b. Quando dobbiamo risolvere più sistemi lineari con diversi termini noti, ma tutti di ugual matrice A, risulta spesso eccessivamente oneroso, e un inutile spreco di risorse, eseguire l Eliminazione Gaussiana su ognuno di essi, è meglio separare il calcolo della fattorizzazione da quello della soluzione del sistema. In altre parole conviene, scrivere la matrice A come prodotto di due matrici, A = LU, L triangolare inferiore ed U triangolare superiore, e poi risolvere ogni sistema lineare di tipo: equivalente a Ax = b LUx = b risolvendo in sequenza per sostituzioni i due sistemi triangolari: Ly = b Ux = y 3

4 Utilizzando il metodo di Eliminazione Gaussiana con pivoting parziale (scambi di righe) è possibile calcolare una matrice triangolare superiore U, una triangolare inferiore L( con coefficienti diagonali uguali a ) e una matrice di permutazione P (una matrice che moltiplicata a sinistra di un altra ne scambia le righe) tali che PA = LU. In questo caso la soluzione del sistema lineare Ax = b, equivalente a PAx = P b,sicalcoleràrisolvendoinsequenzaiduesistemitriangolari Ly = Pb Ux = y Il comando lu di Matlab calcola la fattorizzazione LU di PA. La sua sintassi è: [L,U,P]= lu(a) 4

5 Esercizio 3. Si considerino le seguenti matrici: A = magic(4) + 40 * eye(4) e A 2 = Per ciascuna di esse: si calcoli la fattorizzazione LU tramite il comando Matlab lu, per entrambe le matrici A e A 2 si osservi se la matrice di permutazione P fornita da Matlab è o meno l identità. Si noti che A è a dominanza diagonale stretta e A 2 è simmetrica definita positiva.queste proprietà delle matrici garantiscono l esistenza della fattorizzazione A = LU e quindi la possibilità di portare a termine l eliminazione Gaussina senza necessità di effettuare scambi di righe (pivoting). Si scelga b = A i ones(n,) con n dimensione di A i, e si considerino i due sistemi lineari A i x = b che avranno in tal modo soluzione esatta nota x = ones(n, ). Risolvere ciascuno dei sistemi lineari assegnati sfruttando la fattorizzazione calcolata. 5

6 Esercizio 4 Si consideri la seguente matrice: A = si calcoli la fattorizzazione LU tramite il comando Matlab lu u- sando la sintassi >> [L,U,P]=lu(A) si osservi che la matrice di permutazione P non è l identità, il che significa che è stato effettuato il pivoting. Pertanto abbiamo P A = LU. Sia b = A ones(3,), a partire dai fattori L, U, P ottenuti con lu si risolva il sistema Ax = b. Esercizio 5 Data la matrice A = si calcoli l inversa A risolvendo i sistemi lineari Ax = e i, dove e i = i {}}{ (0,...,,...0) i =,..n denotano i vettori della base canonica di R n. La soluzione dell i-esimo sistema Ax = e i, fornisce infatti la colonna i-esima della matrice A. Poichè la matrice dei coefficienti di ciascun sistema è sempre A si calcoli una sola volta la fattorizzazione LU per ridurre i costi computazionali., 6

7 IL FENOMENO DEL FILL-IN Per ognuna delle seguenti matrici calcolare la fattorizzazione LU, controllare l esecuzione o meno del pivoting e verificare il fenomeno del fill-in mediante il comando spy applicato ad L e U: A 0 0 = B 0 0 = C 0 0 = D 7 7 = ed esempio >> A=4*diag(ones(0,))-diag(ones(9,),)-diag(ones(9,),-) >> [L U P]=lu(A) >> figure() >> spy(l) >> figure(2) >> spy(u) 7

8 nz = nz = 9 Osserviamo che la matrice A è a banda, non viene effettuato il pivoting e quindi le matrici L ed U mantengono la struttura a banda. la matrice B è a banda, viene però effettuato il pivoting e quindi le matrici L ed U perdono la struttura a banda. le matrici C e D sono sparse, ma le matrici L ed U sono piene. 8

9 FATTORIZZAZIONE DI CHOLESKY Se A R n n è una matrice simmetrica definita positiva, allora esiste una matrice R R n n triangolare superiore tale che A = R T R. Tale fattorizzazione è detta fattorizzazione di Cholesky. Il comando R = chol(a) di Matlab determina tale fattorizzazione. Esempio Verificare che la matrice 0 A = 5 6, è simmetrica definita positiva. Calcolare con il comando chol di Matlab la fattorizzazione di Cholesky di A. Si risolva il sistema lineare Ax = b con b=[3;;] sfruttando la fattorizzazione calcolata. Osserviamo che poichè A = R T R, la risoluzione del sistema lineare di partenza comporta la risoluzione in sequenza dei due sistemi triangolari R T y = b Rx = y A=[ - 0; - 5 6; 0 6 0]; eig(a) R=chol(A); b=[3;;]; y=r \b; x=r\y 9

10 Esercizio di riepilogo - ex tema d esame. Sian = 0edAlamatricedidimensionen nottenutasommando la matrice di Hilbert di ordine n con la matrice tridiagonale avente gli elementi diagonali tutti uguali a 3, e quelli sulla prima sottodiagonale e sopradiagonale pari a. Si calcolino il più grande ed il più piccolo autovalore della matrice A. Si riportino i valori in format short e: λ min =...,λ max = Si calcoli la fattorizzazione LU della matrice A assegnata al punto precedente utilizzando la funzione Matlab lu. Si calcoli inoltre L e U. Si riportino i valori in format short e: L =... U = Sia b il vettore colonna di lunghezza n e coefficienti tutti uguali ad. Sfruttando la fattorizzazione calcolata si determini la soluzione x delsistemalineareax = b. Siayilterminenotodelsistemalineare che occorrerà risolvere per sostituzione all indietro, si calcolino le seguenti norme e se ne riportino i valori in format short e. y =... e x =... 0

Complementi di Matematica e Calcolo Numerico C.L. Chimica Industriale A.A

Complementi di Matematica e Calcolo Numerico C.L. Chimica Industriale A.A Complementi di Matematica e Calcolo Numerico C.L. Chimica Industriale A.A. 208-209 Laboratorio 4-4 aprile 209 Metodo delle sostituzioni in avanti per sistemi lineari con matrice triangolare inferiore Siano

Dettagli

Complementi di Matematica e Calcolo Numerico A.A

Complementi di Matematica e Calcolo Numerico A.A Complementi di Matematica e Calcolo Numerico A.A. 206-207 Laboratorio Autovalori, raggio spettrale e norme di matrici Sia A una matrice quadrata di ordine n a valori reali o complessi, il numero λ C si

Dettagli

Complementi di Matematica e Calcolo Numerico A.A

Complementi di Matematica e Calcolo Numerico A.A Complementi di Matematica e Calcolo Numerico A.A. 205-206 Laboratorio 9 Metodo di Eliminazione Gaussiana per sistemi lineari Siano A R n n una matrice quadrata non singolare (det(a) 0) e b R n un vettore

Dettagli

Complementi di Matematica e Calcolo Numerico A.A

Complementi di Matematica e Calcolo Numerico A.A Complementi di Matematica e Calcolo Numerico A.A. 0-0 Laboratorio 9 Autovalori, raggio spettrale e norme di matrici Sia A una matrice quadrata di ordine n a valori reali o complessi, il numero λ C si dice

Dettagli

Fattorizzazione LU (lu)

Fattorizzazione LU (lu) Fattorizzazione LU (lu) Pivoting Esercizio Si consideri la matrice d A = / d d / d = LU; dove d è un parametro reale non nullo. Si utilizzi la fattorizzazione di A per risolvere il sistema Ax = b, con

Dettagli

Matrici. 3. Costruire le seguenti matrici, contarne gli elementi non nulli e visualizzarle con spy: . B 10x10 = ; D 7x7 =

Matrici. 3. Costruire le seguenti matrici, contarne gli elementi non nulli e visualizzarle con spy: . B 10x10 = ; D 7x7 = Matrici diag, tril, triu. Sia v il vettore colonna casuale di lunghezza. Calcolare: diag(v), diag (v,), diag (v,-), diag(v,), diag(v,-). Sia A la matrice magica x. Calcolare: tril(a), tril(a, ), tril(a,

Dettagli

Corso di Matematica per la Chimica

Corso di Matematica per la Chimica Dott.ssa Maria Carmela De Bonis a.a. 2013-14 Pivoting e stabilità Se la matrice A non appartiene a nessuna delle categorie precedenti può accadere che al k esimo passo risulti a (k) k,k = 0, e quindi il

Dettagli

Corso di Matematica per la Chimica

Corso di Matematica per la Chimica Dott.ssa Maria Carmela De Bonis a.a. 2013-14 Pivoting e stabilità Se la matrice A non appartiene a nessuna delle categorie precedenti può accadere che al k esimo passo risulti a (k) k,k = 0, e quindi il

Dettagli

Complementi di Matematica e Calcolo Numerico A.A

Complementi di Matematica e Calcolo Numerico A.A Complementi di Matematica e Calcolo Numerico A.A. 20-206 Laboratorio 8. (punteggio 3/3/) Si consideri la funzione f(x) = sin(e x/2 ).. Si approssimi la radice α di f nell intervallo [0, 3.] utilizzando

Dettagli

n +1 determinanti (D i, i =1,...,n e det A) n! prodotti per ciascun determinante n 1 moltiplicazioni per ciascun prodotto

n +1 determinanti (D i, i =1,...,n e det A) n! prodotti per ciascun determinante n 1 moltiplicazioni per ciascun prodotto METODI NUMERICI (A.A. 2007-2008) Prof. F.Pitolli Appunti delle lezioni sui sistemi lineari: metodi diretti; condizionamento Metodi diretti per la soluzione di sistemi lineari Metodi diretti Sono basati

Dettagli

2. Risolvere con il metodo di eliminazione di Gauss con pivoting parziale il seguente sistema lineare:

2. Risolvere con il metodo di eliminazione di Gauss con pivoting parziale il seguente sistema lineare: Esercizi sui metodi diretti per la risoluzione di sistemi lineari 1. Data la matrice 1 0 2 1 3 1 5 2 1 determinare la sua fattorizzazione P LR. Risolvere il sistema Ax = b con b = (3, 5, 6) T mediante

Dettagli

SISTEMI LINEARI. Metodi diretti. Calcolo numerico 07/08 p. 1/1

SISTEMI LINEARI. Metodi diretti. Calcolo numerico 07/08 p. 1/1 SISTEMI LINEARI Metodi diretti Calcolo numerico 07/08 p. 1/1 Sistemi lineari Ax = b, A R n n, b R n b INPUT x OUTPUT A relazione funzionale non ambigua det(a) 0 ( un unica soluzione) (Esercizio 1) Se det

Dettagli

Sistemi lineari. Lucia Gastaldi. DICATAM - Sez. di Matematica,

Sistemi lineari. Lucia Gastaldi. DICATAM - Sez. di Matematica, Sistemi lineari Lucia Gastaldi DICATAM - Sez. di Matematica, http://www.ing.unibs.it/gastaldi/ Indice 1 Risoluzione di sistemi lineari Risoluzione di sistemi lineari in Matlab Metodi di risoluzione Fattorizzazione

Dettagli

Metodi diretti: eliminazione gaussiana

Metodi diretti: eliminazione gaussiana Calcolo numerico 08/09 p. 1/1 SISTEMI LINEARI Metodi diretti: eliminazione gaussiana Calcolo numerico 08/09 p. 2/1 Sistemi lineari Ax = b, A R n n, b R n b INPUT x OUTPUT A relazione funzionale non ambigua

Dettagli

Laboratorio di Matematica Computazionale A.A Lab. 6

Laboratorio di Matematica Computazionale A.A Lab. 6 Laboratorio di Matematica Computazionale A.A. 2007-2008 Lab. 6 Risoluzione di sistemi triangolari Si scriva una function Matlab che, presa in ingresso una matrice triangolare inferiore L e un termine noto

Dettagli

Sistemi lineari. Lucia Gastaldi. DICATAM - Sez. di Matematica,

Sistemi lineari. Lucia Gastaldi. DICATAM - Sez. di Matematica, Sistemi lineari Lucia Gastaldi DICATAM - Sez. di Matematica, http://lucia-gastaldi.unibs.it Indice 1 Risoluzione di sistemi lineari Risoluzione di sistemi lineari in Matlab Metodi di risoluzione Fattorizzazione

Dettagli

Calcolo Numerico (CdS in Matematica) A.A. 2012/13

Calcolo Numerico (CdS in Matematica) A.A. 2012/13 Calcolo Numerico (CdS in Matematica) A.A. 2012/13 Esercitazione di Laboratorio sulla risoluzione di sistemi di equazioni lineari Parte 1. Fattorizzazione di matrici Scrivere una funzione Matlab che implementi

Dettagli

Sistemi lineari. 2x 1 + x 2 x 3 = 2 x 1 x 2 + x 3 = 1 x 1 + 3x 2 2x 3 = 0. x 1 x 2 x 3

Sistemi lineari. 2x 1 + x 2 x 3 = 2 x 1 x 2 + x 3 = 1 x 1 + 3x 2 2x 3 = 0. x 1 x 2 x 3 Sistemi lineari 2x 1 + x 2 x 3 = 2 x 1 x 2 + x 3 = 1 x 1 + 3x 2 2x 3 = 0 2 1 1 1 1 1 1 3 2 x 1 x 2 x 3 = 2 1 0 n j=1 a i,jx j = b i, i = 1,, n Ax = b A = (a i,j ) R n n matrice invertibile (det(a) 0) b

Dettagli

Corso di Calcolo Numerico

Corso di Calcolo Numerico Corso di Laurea in Ingegneria Gestionale Sede di Fermo Corso di 7 - CALCOLO NUMERICO CON MATRICI Richiami teorici Operazioni fondamentali Siano A = {a ij } e B = {b ij }, i = 1,..., m, j = 1,..., n due

Dettagli

Corso di Geometria e Algebra Lineare

Corso di Geometria e Algebra Lineare Prof. C. Vergara, Dott.ssa N. Franchina, Dr. A. Colombo Corso di Geometria e Algebra Lineare Laboratorio 3: sistemi lineari 25 29 Maggio 2015 Metodi diretti per sistemi lineari Si consideri il seguente

Dettagli

Risoluzione di più sistemi con la stessa matrice

Risoluzione di più sistemi con la stessa matrice Risoluzione di più sistemi con la stessa matrice Data A R n n e b R n, calcolare x e z : Ax = b, Az = c costo del MEG ( 2 3 n3 + n 2) + ( 2 3 n3 + n 2) costo totale = 4 3 n3 + 2n 2 Obiettivo: separare

Dettagli

Calcolo Numerico I - a.a Laboratorio 9 - Sistemi lineari

Calcolo Numerico I - a.a Laboratorio 9 - Sistemi lineari Calcolo Numerico I - a.a. 200-20 Laboratorio 9 - Sistemi lineari Fattorizzazione di Cholesky Se A R n n è una matrice simmetrica definita positiva, allora esiste una matrice R R n n triangolare superiore

Dettagli

Laboratorio di Matematica Computazionale A.A Lab. 5

Laboratorio di Matematica Computazionale A.A Lab. 5 Laboratorio di Matematica Computazionale A.A. -8 Lab. Costruzione e Manipolazione di Matrici diag tril triu nnz find spy. Sia v il vettore colonna casuale di lunghezza. Calcolare: diag(v) diag (v) diag

Dettagli

Esercizi su algebra lineare, fattorizzazione LU e risoluzione di sistemi lineari

Esercizi su algebra lineare, fattorizzazione LU e risoluzione di sistemi lineari Esercizi su algebra lineare, fattorizzazione LU e risoluzione di sistemi lineari 4 maggio Nota: gli esercizi più impegnativi sono contrassegnati dal simbolo ( ) Esercizio Siano 3 6 8 6 4 3 3 ) determinare

Dettagli

Laboratorio di Calcolo Numerico

Laboratorio di Calcolo Numerico Laboratorio di Calcolo Numerico M.R. Russo Università degli Studi di Padova Dipartimento di Matematica Pura ed Applicata A.A. 2009/2010 INDICE Sistemi lineari Casi particolari Eliminazione di Gauss Fattorizzazione

Dettagli

Sistemi lineari: metodi diretti II

Sistemi lineari: metodi diretti II Sistemi lineari: metodi diretti II Ana Alonso Dipartimento di Matematica - Università di Trento 8 ottobre 2015 Metodo di eliminazione di Gauss (senza pivotazione) U matrice triangolare superiore. for k

Dettagli

Esercitazione 5: Sistemi a risoluzione immediata.

Esercitazione 5: Sistemi a risoluzione immediata. Esercitazione 5: Sistemi a risoluzione immediata. Ipotesi: Supponiamo le matrici non singolari. Nota: Per verificare che si ha risolto correttamente il sistema lineare Ax = b basta calcolare la norma del

Dettagli

INTRODUZIONE A MATLAB

INTRODUZIONE A MATLAB INTRODUZIONE A MATLAB M.R. Russo Università degli Studi di Padova Dipartimento di Matematica Pura ed Applicata A.A. 2008/2009 INDICE Sistemi lineari Casi particolari Eliminazione di Gauss Fattorizzazione

Dettagli

Sistemi lineari: metodi diretti II

Sistemi lineari: metodi diretti II Sistemi lineari: metodi diretti II Ana Alonso Dipartimento di Matematica - Università di Trento 9 ottobre 2014 Metodo di eliminazione di Gauss (senza pivotazione) U matrice triangolare superiore. for k

Dettagli

Motivazione: Come si fa? Matrici simmetriche. Fattorizzazioni di matrici speciali

Motivazione: Come si fa? Matrici simmetriche. Fattorizzazioni di matrici speciali Motivazione: Fattorizzazioni di matrici speciali Diminuire la complessità computazionale = evitare operazioni inutili = risparmiare tempo di calcolo Diminuire l occupazione di memoria Come si fa? Si tiene

Dettagli

Complementi di Matematica e Calcolo Numerico A.A Laboratorio 6 Metodi iterativi per sistemi lineari

Complementi di Matematica e Calcolo Numerico A.A Laboratorio 6 Metodi iterativi per sistemi lineari Complementi di Matematica e Calcolo Numerico A.A. 2017-2018 Laboratorio 6 Metodi iterativi per sistemi lineari Dati una matrice A R N N non singolare e un vettore b R N, un metodo iterativo per la risoluzione

Dettagli

Compito numero 2 - Compito intero

Compito numero 2 - Compito intero Esercitazione 6 - Correzione esame dell 8//3 Lucia Pilleri 9//3 Compito numero - Compito intero Esercizio del parziale - del compito intero Risolvere, mediante la fattorizzazione P A = LU, il sistema lineare

Dettagli

Esercitazione di Calcolo Numerico 1 22 Aprile Determinare la fattorizzazione LU della matrice a 1 1 A = 3a 2 a 2a a a 2 A =

Esercitazione di Calcolo Numerico 1 22 Aprile Determinare la fattorizzazione LU della matrice a 1 1 A = 3a 2 a 2a a a 2 A = Esercitazione di Calcolo Numerico 22 Aprile 29. Determinare la fattorizzazione LU della matrice a A = 3a 2 a 2a a a 2 ed utilizzarla per calcolare il det(a). 2. Calcolare il determinante della matrice

Dettagli

Laboratorio di Calcolo Numerico Laboratorio 11: Metodi diretti per la soluzione di sistemi lineari

Laboratorio di Calcolo Numerico Laboratorio 11: Metodi diretti per la soluzione di sistemi lineari Laboratorio di Calcolo Numerico Laboratorio 11: Metodi diretti per la soluzione di sistemi lineari Claudia Zoccarato E-mail: claudia.zoccarato@unipd.it Dispense: Moodle Dipartimento ICEA 17 Maggio 2017

Dettagli

4. Algoritmi per la soluzione di sistemi lineari.

4. Algoritmi per la soluzione di sistemi lineari. CALCOLO NUMERICO Francesca Mazzia Dipartimento Interuniversitario di Matematica Università di Bari 4. Algoritmi per la soluzione di sistemi lineari. 1 Sistemi triangolari inferiori Sia L triangolare inferiore.

Dettagli

Sistemi di equazioni lineari. la soluzione è unica se det(a) 0 e vale

Sistemi di equazioni lineari. la soluzione è unica se det(a) 0 e vale Sistemi di equazioni lineari a 00 x 0 + a 01 x 1 + a 02 x 2 = b 0 a 10 x 0 + a 11 x 1 + a 12 x 2 = b 1 a 20 x 0 + a 21 x 1 + a 22 x 2 = b 2 Per N equazioni N 1 j=0 a ij x j = b i i = 0, N 1 la soluzione

Dettagli

Complementi di Matematica e Calcolo Numerico A.A Laboratorio 3-28/3/2019

Complementi di Matematica e Calcolo Numerico A.A Laboratorio 3-28/3/2019 Complementi di Matematica e Calcolo Numerico A.A. 2018-2019 Laboratorio 3-28/3/2019 Programmare con Matlab: Script-files Che cos è uno script file? È un file con estensione.m (ad esempio: myfile.m). Contiene

Dettagli

Esercitazione 4 Sistemi lineari, pivoting

Esercitazione 4 Sistemi lineari, pivoting Esercitazione 4 Sistemi lineari, pivoting a.a. 218-19 Esercizio 1 (T) Quando viene utilizzato il pivoting parziale? La fattorizzazione ottenuta con il pivoting per colonne è unica? Si può applicare anche

Dettagli

Corso di Calcolo Numerico

Corso di Calcolo Numerico Corso di Calcolo Numerico Dottssa MC De Bonis Università degli Studi della Basilicata, Potenza Facoltà di Ingegneria Corso di Laurea in Ingegneria Meccanica Corso di Calcolo Numerico - Dottssa MC De Bonis

Dettagli

Metodi Diretti per la Risoluzione di Sistemi Lineari

Metodi Diretti per la Risoluzione di Sistemi Lineari Metodi Diretti per la Risoluzione di Sistemi Lineari Luca Gemignani luca.gemignani@unipi.it 20 marzo 2018 Indice Lezione 1: Sistemi Triangolari. 1 Lezione 2: Matrici Elementari di Gauss ed il Metodo di

Dettagli

Per esempio, una matrice 4 4 triangolare alta ha la forma. 0 a. mentre una matrice di ordine 4 triangolare bassa è del tipo

Per esempio, una matrice 4 4 triangolare alta ha la forma. 0 a. mentre una matrice di ordine 4 triangolare bassa è del tipo Matrici triangolari Prima di esporre il metodo LU per la risoluzione di sistemi lineari, introduciamo la nozione di matrice triangolare Ci limiteremo al caso di matrici quadrate anche se l estensione a

Dettagli

Prendiamo in considerazione la matrice tridiagonale

Prendiamo in considerazione la matrice tridiagonale Questi esercizi sono il completamento di quelli sui sistemi lineari già a disposizione. Ogni esercizio proposto può fare riferimento a qualcuno di questi. In ogni caso sono riportati tutti i dati essenziali

Dettagli

Algoritmi per la soluzione di sistemi lineari

Algoritmi per la soluzione di sistemi lineari Capitolo Algoritmi per la soluzione di sistemi lineari. Sistemi triangolari inferiori Le matrici L con n righe ed n colonne ed elementi uguali a zero al di sopra della diagonale principale: l, 0... 0.

Dettagli

1. Calcolo dell indice di condizionamento di una matrice

1. Calcolo dell indice di condizionamento di una matrice 1 Esercizi sul condizionamento con matlab laboratorio di Calcolo Scientifico per Geofisici Prof. A. Murli a.a. 2006/07 1. Calcolo dell indice di condizionamento di una matrice Determinare una function

Dettagli

Soluzione sistemi triangolari La seguente funzione risolve i sistemi triangolari inferiori

Soluzione sistemi triangolari La seguente funzione risolve i sistemi triangolari inferiori 1 Francesca Mazzia Dipartimento Interuniversitario di Matematica Università di Bari MATLAB:Soluzione Sistemi Lineari. Soluzione sistemi triangolari La seguente funzione risolve i sistemi triangolari inferiori

Dettagli

Esercitazione di Calcolo Numerico 1 27 Maggio Calcolare la fattorizzazione P A = LU della matrice A =

Esercitazione di Calcolo Numerico 1 27 Maggio Calcolare la fattorizzazione P A = LU della matrice A = Esercitazione di Calcolo Numerico 1 27 Maggio 29 1. Calcolare la fattorizzazione P A = LU della matrice 1 2 3 A = 2 3 3, ed utilizzarla per risolvere il sistema lineare Ax = b, con b = (1, 2,, 16) T. 2.

Dettagli

EQUAZIONI DIFFERENZIALI

EQUAZIONI DIFFERENZIALI EQUAZIONI DIFFERENZIALI Si consideri il problema di Cauchy y'(t) t y, y() y(t) t e. t, la cui soluzione esatta è PARTE a. Approssimare il problema di Cauchy con il metodo di Eulero Esplicito b. Eseguire

Dettagli

1 Risoluzione di sistemi lineari

1 Risoluzione di sistemi lineari Risoluzione di sistemi lineari La presente nota è in parte ripresa dal testo D Bini M Capovani O Menchi Metodi numerici per l algebra lineare Zanichelli Editore Siano A una matrice non singolare di ordine

Dettagli

Fattorizzazione LU ed eliminazione gaussiana

Fattorizzazione LU ed eliminazione gaussiana Fattorizzazione LU ed eliminazione gaussiana Alvise Sommariva Università degli Studi di Padova Dipartimento di Matematica 3 maggio 2015 Alvise Sommariva Fattorizzazione LU ed eliminazione gaussiana 1/

Dettagli

Sistemi lineari. Lucia Gastaldi. 11 novembre Dipartimento di Matematica,

Sistemi lineari. Lucia Gastaldi. 11 novembre Dipartimento di Matematica, Sistemi lineari Lucia Gastaldi Dipartimento di Matematica, http://dm.ing.unibs.it/gastaldi/ 11 novembre 2007 Outline 1 Come risolvere un sistema lineare con MATLAB Il comando per risolvere i sistemi lineari

Dettagli

Motivazioni. Sistemi lineari. Obiettivo. Il problema

Motivazioni. Sistemi lineari. Obiettivo. Il problema Motivazioni Sistemi lineari Metodo di eliminazione di Gauss Molti problemi si possono rappresentare mediante un sistema lineare La soluzione di un sistema lineare costituisce un sottoproblema di moltissime

Dettagli

Calcolo Numerico. Lab n. 8. Metodi diretti per la soluzione di sistemi lineari A.A

Calcolo Numerico. Lab n. 8. Metodi diretti per la soluzione di sistemi lineari A.A Calcolo Numerico A.A. 4-5 Lab n. 8 Metodi diretti per la soluzione di sistemi lineari 6 Novembre 4 Matrici Una matrice si può definire come un insieme di vettori riga separati da un punto e virgola oppure

Dettagli

Sistemi di equazioni lineari

Sistemi di equazioni lineari Sistemi di equazioni lineari a 00 x 0 + a 01 x 1 + a 02 x 2 = b 0 a 10 x 0 + a 11 x 1 + a 12 x 2 = b 1 a 20 x 0 + a 21 x 1 + a 22 x 2 = b 2 Per N equazioni N 1 j=0 a ij x j = b i i = 0, N 1 sono equivalenti

Dettagli

VETTORI E MATRICI. Ing. Nicola Cappuccio 2014 U.F.5 ELEMENTI SCIENTIFICI ED ELETTRONICI APPLICATI AI SISTEMI DI TELECOMUNICAZIONI

VETTORI E MATRICI. Ing. Nicola Cappuccio 2014 U.F.5 ELEMENTI SCIENTIFICI ED ELETTRONICI APPLICATI AI SISTEMI DI TELECOMUNICAZIONI 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 I VETTRORI E MATRICI (RICHIAMI) Ad ogni matrice quadrata a coefficienti reali è possibile associare un numero reale, detto determinante, calcolato

Dettagli

Calcolo Numerico con elementi di programmazione

Calcolo Numerico con elementi di programmazione Calcolo Numerico con elementi di programmazione (A.A. 2014-2015) Appunti delle lezioni sui metodi numerici per la soluzione di sistemi lineari Sistemi Lineari I sistemi lineari forniscono il modello matematico

Dettagli

Corso di Analisi Numerica

Corso di Analisi Numerica con pivoting Corso di Laurea in Ingegneria Informatica Corso di Analisi Numerica 6 - METODI DIRETTI PER I SISTEMI LINEARI Lucio Demeio Dipartimento di Scienze Matematiche con pivoting 1 2 3 con pivoting

Dettagli

Esercitazione 4: Vettori e Matrici

Esercitazione 4: Vettori e Matrici Esercitazione 4: Vettori e Matrici Richiami di teoria: Norme di vettore Principali norme di vettore:. x = n i= x i 2. x 2 = n i= x i 2 3. x = max i n x i Ad esempio dato il vettore x = (, 2, 3, 4) abbiamo.

Dettagli

Esercizio 1 Sia. a n. X (k+1) = X (k) (2I AX (k) )

Esercizio 1 Sia. a n. X (k+1) = X (k) (2I AX (k) ) Esercizi per la parte Numerica e Algoritmica, Prof. Serra-Capizzano. Gli esercizi elencati sono da ritenersi come una palestra molto impegnativa: i testi di esame che saranno proposti non avranno una difficoltà

Dettagli

Corso di Analisi Numerica

Corso di Analisi Numerica con pivoting Corso di Laurea in Ingegneria Informatica Corso di Analisi Numerica 6 - METODI DIRETTI PER I SISTEMI LINEARI Lucio Demeio Dipartimento di Scienze Matematiche con pivoting 1 Introduzione algebrica

Dettagli

LABORATORIO DI PROGRAMMAZIONE E CALCOLO Docente E. Carlini A.A. 2012/13 Foglio di esercizi N.8 con la collaborazione di Andrea Pugliese

LABORATORIO DI PROGRAMMAZIONE E CALCOLO Docente E. Carlini A.A. 2012/13 Foglio di esercizi N.8 con la collaborazione di Andrea Pugliese LABORATORIO DI PROGRAMMAZIONE E CALCOLO Docente E. Carlini A.A. / Foglio di esercizi N.8 con la collaborazione di Andrea Pugliese Dovete strutturare i programmi dei seguenti esercizi in funzioni ) (Metodo

Dettagli

Laboratorio computazionale numerico Lezione 3

Laboratorio computazionale numerico Lezione 3 Laboratorio computazionale numerico Lezione f.poloni&sns.it 008-0-9 Esercizio (di riscaldamento). Creare una funzione function M=laplacian(n) che crea la matrice di dimensione n n che ha sulla diagonale

Dettagli

Calcolo Numerico con elementi di programmazione

Calcolo Numerico con elementi di programmazione Calcolo Numerico con elementi di programmazione (A.A. 2015-2016) Appunti delle lezioni sui metodi numerici per la soluzione di sistemi lineari Sistemi Lineari I sistemi lineari forniscono il modello matematico

Dettagli

Algebra lineare. Laboratorio di programmazione e calcolo CdL in Chimica. Pierluigi Amodio

Algebra lineare. Laboratorio di programmazione e calcolo CdL in Chimica. Pierluigi Amodio Algebra lineare Laboratorio di programmazione e calcolo CdL in Chimica Pierluigi Amodio Dipartimento di Matematica Università di Bari pierluigi.amodio@uniba.it http://dm.uniba.it/ amodio A.A. 2016/17 P.

Dettagli

Problema. Sistemi lineari. Problema. Problema. Quali sono i potenziali in ogni nodo? Leggi di Kirkoff e di Ohm:

Problema. Sistemi lineari. Problema. Problema. Quali sono i potenziali in ogni nodo? Leggi di Kirkoff e di Ohm: Problema 4 Ω 3 3 Ω 2 2 Ω 40 V Sistemi lineari 2 Ω Ω 2 Ω Ω 5 6 7 8 Ω 4 Ω Ω 0 V Quali sono i potenziali in ogni nodo? 2 4 Ω Problema 3 3 Ω 2 2 Ω 40 V 4 Ω Problema 3 3 Ω 2 2 Ω 40 V 2 Ω Ω 2 Ω Ω 2 Ω Ω 2 Ω Ω

Dettagli

Trasformazione elementari di Givens

Trasformazione elementari di Givens Trasformazione elementari di Givens dove Osservazione Esprime una rotazione di ampiezza ϕ Esempio (n=2) Osservazione Rotazione nel senso positivo degli archi In generale Il prodotto matrice vettore equivale

Dettagli

Soluzione sistemi lineari

Soluzione sistemi lineari Soluzione sistemi lineari Laboratorio di programmazione e calcolo Chimica e Tecnologie chimiche Pierluigi Amodio Dipartimento di Matematica Università di Bari Soluzione sistemi lineari p. / matrice diagonale

Dettagli

Altre trasformazioni elementari

Altre trasformazioni elementari Altre trasformazioni elementari Si possono definire altri tipi di trasformazioni elementari Analogamente alle trasformazioni di Gauss, esse danno luogo a fattorizzazioni Trasformazione elementari di Givens

Dettagli

Esercizio. fattorizzazione QR? Quale è più conveniente dal punto di vista computazionale

Esercizio. fattorizzazione QR? Quale è più conveniente dal punto di vista computazionale Esercizio Si consideri, fissato n N, la matrice A M n(r) generata dal comando A = magic(n); e il sistema lineare Ax = b, dove il termine noto b R n é scelto in modo tale che la soluzione esatta sia x =

Dettagli

Autovalori ed autovettori di una matrice

Autovalori ed autovettori di una matrice Autovalori ed autovettori di una matrice Lucia Gastaldi DICATAM http://www.ing.unibs.it/gastaldi/ Indice 1 Definizioni di autovalori ed autovettori Autovalori ed autovettori 2 Metodo delle potenze 3 Calcolo

Dettagli

Problemi di Calcolo Numerico

Problemi di Calcolo Numerico Problemi di Calcolo Numerico Corso di Laurea in Ingegneria Elettronica a.a. 20/202 2 Sistemi di equazioni lineari In questa Sezione, le frasi (la procedura) XX termina su x e (la funzione) XX è definita

Dettagli

1 1, { x1 2x 2 + x 3 = 0 2x 2 8x 3 = 1 x 1 x 4 = = 0

1 1, { x1 2x 2 + x 3 = 0 2x 2 8x 3 = 1 x 1 x 4 = = 0 a.a. 5-6 Esercizi. Sistemi lineari. Soluzioni.. Determinare quali delle quaterne, 3,, sono soluzioni del sistema di tre equazioni in 4 incognite { x x + x 3 = x 8x 3 = x x 4 =. Sol. Sostituendo ad x, x,

Dettagli

SISTEMI LINEARI. Ax = b

SISTEMI LINEARI. Ax = b SISTEMI LINEARI Un sistema lineare di n equazioni algebriche in n incognite è esprimibile come: a 11 x 1 + a 1 x + a 13 x 3 +... + a 1n x n = b 1 a 1 x 1 + a x + a 3 x 3 +... + a n x n = b a n1 x 1 + a

Dettagli

Complementi di Matematica e Calcolo Numerico C.d.L Chimica Industriale A.A Laboratorio 5-11/04/2019

Complementi di Matematica e Calcolo Numerico C.d.L Chimica Industriale A.A Laboratorio 5-11/04/2019 Complementi di Matematica e Calcolo Numerico C.d.L Chimica Industriale A.A. 2018-2019 Laboratorio 5-11/04/2019 FATTORIZZAZIONE DI CHOLESKY Se A R n n è una matrice simmetrica definita positiva, allora

Dettagli

ISTRUZIONI PER LA CONSEGNA DEI FILE MATLAB

ISTRUZIONI PER LA CONSEGNA DEI FILE MATLAB Calcolo Numerico ed Elementi di Analisi - Allievi AEROSPAZIALI Proff. S. Micheletti, S. Perotto A.A. 20/202, Appello 28 Gennaio 203 NOME... COGNOME... MATRICOLA... DOCENTE... AULA... PC... Ver.A I seguenti

Dettagli

a = 37679, b = 37654, c = ,

a = 37679, b = 37654, c = , Esercizi di Calcolo Scientico e Metodi Numerici 1. Dati i tre numeri si calcolino le quantità a = 37679, b = 37654, c = 5.874, (a + b) + c e a + (b + c) in un sistema in virgola mobile in base 1 con mantissa

Dettagli

Determinante, autovalori e autovettori

Determinante, autovalori e autovettori Determinante, autovalori e autovettori Lorenzo Pareschi Dipartimento di Matematica, Universitá di Ferrara http://wwwlorenzopareschicom lorenzopareschi@unifeit Lorenzo Pareschi (Univ Ferrara) Determinante,

Dettagli

Metodi iterativi per la soluzione di sistemi lineari: Jacobi e Gauss-Seidel

Metodi iterativi per la soluzione di sistemi lineari: Jacobi e Gauss-Seidel Metodi iterativi per la soluzione di sistemi lineari: Jacobi e Gauss-Seidel Alvise Sommariva Università degli Studi di Padova Dipartimento di Matematica Pura e Applicata 15 aprile 2013 Alvise Sommariva

Dettagli

Equazioni differenziali con valori al bordo

Equazioni differenziali con valori al bordo Equazioni differenziali con valori al bordo Lucia Gastaldi DICATAM - Sez. di Matematica, http://www.ing.unibs.it/gastaldi/ Indice 1 Equazioni differenziali con valori ai limiti 2 Matrici, norme e condizionamento

Dettagli

Metodi numerici con elementi di Programmazione A.A

Metodi numerici con elementi di Programmazione A.A Metodi numerici con elementi di Programmazione A.A. 2013-2014 Esercizi svolti in Laboratorio Lezione del 19-11-2013 1 Docente: Vittoria Bruni Email: vittoria.bruni@sbai.uniroma1.it Ufficio: Via A. Scarpa,

Dettagli

Esercitazione 1-I parte

Esercitazione 1-I parte Esercitazione 1-I parte Argomento: Sistemi triangolari Scopo: Implementare il metodo di sostituzione all indietro per la risoluzione di sistemi triangolari superiori. function x=indietro(a,b) Sintassi

Dettagli

SISTEMI LINEARI. x y + 2t = 0 2x + y + z t = 0 x z t = 0 ; S 3 : ; S 5x 2y z = 1 4x 7y = 3

SISTEMI LINEARI. x y + 2t = 0 2x + y + z t = 0 x z t = 0 ; S 3 : ; S 5x 2y z = 1 4x 7y = 3 SISTEMI LINEARI. Esercizi Esercizio. Verificare se (,, ) è soluzione del sistema x y + z = x + y z = 3. Trovare poi tutte le soluzioni del sistema. Esercizio. Scrivere un sistema lineare di 3 equazioni

Dettagli

= elemento che compare nella seconda riga e quinta colonna = -4 In generale una matrice A di m righe e n colonne si denota con

= elemento che compare nella seconda riga e quinta colonna = -4 In generale una matrice A di m righe e n colonne si denota con Definizione di matrice Una matrice (di numeri reali) è una tabella di m x n numeri disposti su m righe e n colonne. I numeri che compaiono nella tabella si dicono elementi della matrice. La loro individuazione

Dettagli

Soluzione della seconda prova intermedia di Algebra lineare del 17 maggio Esercizio 1

Soluzione della seconda prova intermedia di Algebra lineare del 17 maggio Esercizio 1 Soluzione della seconda prova intermedia di Algebra lineare del 17 maggio 2012 Esercizio 1 (a) Si calcola il polinomio caratteristico λ 2 1 p(λ) = det k 1 2k λ k 1 2 2 λ usando lo sviluppo di Laplace secondo

Dettagli

1. Si scriva una function Matlab che implementa il seguente metodo di punto fisso

1. Si scriva una function Matlab che implementa il seguente metodo di punto fisso Domanda 1 1. Si scriva una function Matlab che implementa il seguente metodo di punto fisso x n+1 = x n f(x n), n = 0, 1, 2,... K dove x 0 è il punto iniziale, f(x) = x 3 cos(x) e K è una costante assegnata.

Dettagli

Cenni sui metodi iterativi per sistemi lineari. Analisi Numerica Prof. M. Lucia Sampoli a.a. 2014/2015

Cenni sui metodi iterativi per sistemi lineari. Analisi Numerica Prof. M. Lucia Sampoli a.a. 2014/2015 Cenni sui metodi iterativi per sistemi lineari Analisi Numerica Prof. M. Lucia Sampoli a.a. 2014/2015 Metodi numerici per sistemi lineari Nei metodi diretti la presenza di eventuali elementi nulli nella

Dettagli

Geometria BIAR Esercizi 2

Geometria BIAR Esercizi 2 Geometria BIAR 0- Esercizi Esercizio. a Si consideri il generico vettore v b R c (a) Si trovi un vettore riga x (x, y, z) tale che x v a (b) Si trovi un vettore riga x (x, y, z) tale che x v kb (c) Si

Dettagli

Tracce di calcolo numerico 1

Tracce di calcolo numerico 1 Tracce di calcolo numerico 1 Prof. Marco Vianello - Dipartimento di Matematica, Università di Padova aggiornamento: 03 dicembre 2016 5 Elementi di algebra lineare numerica 5.1 Condizionamento di matrici

Dettagli

Capitolo 1. Esercizi a.a Esercizi. Esercizio 1.1 Dimostrare che il metodo iterativo

Capitolo 1. Esercizi a.a Esercizi. Esercizio 1.1 Dimostrare che il metodo iterativo Capitolo Esercizi a.a. 206-7 Esercizi Esercizio. Dimostrare che il metodo iterativo x k+ = Φ(x k ), k = 0,,..., se convergente a x, deve verificare la condizione di consistenza x = Φ(x ). Ovvero, la soluzione

Dettagli

Algebra lineare numerica

Algebra lineare numerica Algebra lineare numerica Sistemi lineari Lucia Gastaldi DICATAM - Sez. di Matematica, http://lucia-gastaldi.unibs.it Indice 1 in Matlab Metodi di risoluzione Fattorizzazione Analisi degli errori Numero

Dettagli

Vettori e Matrici. Corso di Calcolo Numerico. 24 Aprile 2018

Vettori e Matrici. Corso di Calcolo Numerico. 24 Aprile 2018 Vettori e Matrici 24 Aprile 2018 Richiami In MATLAB, ogni variabile ha una struttura di tipo vettoriale o array. Un array è un insieme di valori ordinati, cioè memorizza più dati all interno di una struttura

Dettagli

Complementi di Matematica e Calcolo Numerico A.A Laboratorio 4-22/3/2018

Complementi di Matematica e Calcolo Numerico A.A Laboratorio 4-22/3/2018 Complementi di Matematica e Calcolo Numerico A.A. 2017-2018 Laboratorio 4-22/3/2018 Matrici in Matlab Per assegnare le matrici [ ] 1 2 3, B = 4 5 6 [ ] 1 1 1 1 1 1 >> A=[1 2 3; 4 5 6]; >> B=ones(2,3);

Dettagli

Corso di Matematica per la Chimica. Dott.ssa Maria Carmela De Bonis a.a

Corso di Matematica per la Chimica. Dott.ssa Maria Carmela De Bonis a.a Dottssa Maria Carmela De Bonis aa 2013-14 Metodi diretti Si chiamano metodi diretti quei metodi numerici che risolvono sistemi lineari in un numero finito di passi In altri termini, supponendo di effettuare

Dettagli