Progetto e ottimizzazione di reti 2

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Progetto e ottimizzazione di reti 2"

Transcript

1 Progetto e ottimizzazione di reti 2 Esercitazione AMPL A.A Esercitazione a cura di Silvia Canale contatto canale@dis.uniroma1.it Università i di Roma La Sapienza Dipartimento di Informatica e Sistemistica Corso di Laurea in Ingegneria Gestionale 1

2 Riassumendo AMPL è un linguaggio di modellazione algebrico che ci permette di modellare problemi di programmazione matematica di diversa natura. Abbiamo visto come dichiarare (file.mod) e definire i (file.dat) le entità: - Insiemi (parola chiave set); - Parametri semplici o a più dimensioni (parola chiave param); - Variabili (parola chiave var); - Funzione obiettivo (parola chiave minimize o maximize); - Vincoli (parola chiave subject to). Abbiamo visto come far interpretare i file.mod e.dat all interprete AMPL. Abbiamo visto come far risolvere il problema modellato all interprete AMPL invocando un opportuno solutore di programmazione matematica (CPLEX). Abbiamo visto altre funzionalità del linguaggio AMPL e come scrivere script in AMPL per risolvere in maniera efficiente problemi di programmazione matematica. 2

3 Check parametri AMPL permette di dichiarare delle restrizioni sui parametri. Il modo è lo stesso visto per le restrizioni sulle variabili. Esempio: Se nel problema MCF vogliamo dichiarare i vettori costo e capacita dip parametri metinonneg negativi iet tali che heil costo todi ciascun arco sia non superiore alla metà della sua capacità, si dichiara nel file MCF_chk.mod: param capacita {ARCHI} >= 0; param costo {j in ARCHI} >= 0, <= 0.5 * capacita[j]; Successivamente definiamo i parametri nel file MCF_chk_1.dat i valori dei parametri: param: capacita costo := AB 6 2 AC 4 2 BC 2 1 BE CD 8 1 DB 4 2 DE ; 3

4 Check parametri Successivamente definiamo i parametri nel file MCF_chk_2.dat i valori dei parametri: param: costo capacita := AB 6 2 AC 4 3 BC 2 1 BE 7 5 CD 8 1 DB 4 2 DE 5 4 ; Il solutore nel primo caso risolverà correttamente il problema. Nel secondo, restituirà un errore (un insieme di errori: uno per ogni vincolo violato dai valori dei parametri). 4

5 Parametri simbolici Un parametro in AMPL può assumere sia valori numerici che valori simbolici riferiti ad un insieme base. Attraverso la parola chiave symbolic possiamo dichiarare un parametro che assume valori definiti nell insieme in cui viene dichiarato simbolico Esempio: Se dichiariamo un insieme base S e vogliamo dichiarare un parametri che ampl: set S; ampl: param a symbolic in S; Una volta definito l insieme S, possiamo assegnare al parametro a un qualsiasi elemento presente nell insieme S: ampl: data; ampl data: set S := A B C; ampl data: param a := 'A'; ampl data: display S, a; set S := A B C; a = A 5

6 Parametri simbolici Un caso in cui l uso di parametri simbolici può essere utile è il caso in cui il valore di un parametro del problema non è noto prima di eseguire il blocco di istruzioni per risolvere il problema Esempio: Modello sym.mod set NODI; set ARCHI; param domanda {NODI}; param capacita {ARCHI}; param costo {ARCHI}; param M {NODI, ARCHI}; var x {j in ARCHI} >= 0; minimize Costo_Totale: sum {j in ARCHI} costo[j] * x[j]; subject to Incidenza {i in NODI}: sum {j in ARCHI} M[i,j] * x[j] = domanda[i]; subject to Capacita {j in ARCHI}: x[j] <= capacita[j]; 6

7 Parametri simbolici Esempio: Dati sym.dat data; set NODI := A B C D E ; set ARCHI := AB AC BC BE CD DB DE; param: domanda := A -1 B 0 C 0 D 0 E 0 ; param: capacita costo := AB 4 1 AC 2 1 BC 3 1 BE 7 1 CD 4 1 DB 5 1 DE 1 1 ; 7

8 Parametri simbolici Esempio: Dati sym.dat (segue) param M : AB AC BC BE CD DB DE := A B C D E ; 8

9 Parametri simbolici Esempio: Script sym.run model sym.mod; data sym.dat; param p symbolic in NODI; printf "\nqual e' il nodo destinazione?\n"; read p < - ; let domanda[p] := - domanda['a']; display p; display domanda; option solver cplex; solve; display Costo_Totale; display x; reset; 9

10 Più funzioni obiettivo AMPL permette di dichiarare (e definire) più di una funzione obiettivo e di scegliere di volta in volta la funzione rispetto alla quale ottimizzare un problema. Esempio: Se nel modello MCF.mod vogliamo dichiarare oltre alla funzione obiettivo Costo_Totale una funzione obiettivo che restituisca il numero di unità di bene che transitano complessivamente su ciascun arco della rete, dichiariamo un la funzione obiettivo Utilizzo_Totale nel file MCF_fo.mod minimize Utilizzo_Totale: sum {j in ARCHI} x[j]; Dopo aver letto il file MCF.dat, le due funzioni obiettivo sono completamente specificate. Per indicare rispetto a quale delle due funzioni obiettivo vogliamo risolvere il problema, usiamo la parola chiave solve seguita dal nome della funzione obiettivo da ottimizzare. solve Utilizzo_Totale ; solve Costo_Totale ; 10

11 Più funzioni obiettivo Esempio: Script MCF_fo.run model MCF_ fo.mod; data MCF.dat; option solver cplex; solve Costo_Totale; display Costo_Totale; solve Utilizzo_Totale; display Utilizzo_Totale; reset; 11

12 Metodo del Simplesso Dinamico Descrizione implicita di: P ={x R n : Ax<b, x > 0 n } ^ x R n Oracolo di Separazione di P ^x P ^x P a i ^ x > b i vincolo violato A x^ < b x^ a i Riga i b i x^ P 12

13 Metodo del Simplesso Dinamico Risolve un problema di Programmazione Lineare: min c T x: x P = {x R n : Ax b, 1 n x 0 n } Due ingredienti: ^ x R n min c T x Ax b, 1 n x 0 n Oracolo di Separazione di P Metodo del Simplesso ^x P ^x P ^ a i x > b i x * soluzione ottima problema illimitato nessuna soluzione (P= ) 13

14 Dfiii Definizione del dl problema core A D 0 d 0 b D=D 0 ; d=d 0 min c T x x Q= Dx<d, (P Q) 1 n > x > 0 n Nuova D e nuovo d D d a T i b i Aggiunta del vincolo violato Metodo del Simplesso x * ottima (in Q) Q= P= Oracolo di Separazione x* P di P x * P x* ottima a T i x>bi 14

15 Algoritmo di soluzione (I) Per implementare il metodo del Simplesso Dinamico in AMPL dobbiamo prevedere una struttura dati che ci consenta di definire, iterazione per iterazione, quali vincoli del sistema Ax<b si trovano nel sottoproblema corrente. Dichiariamo nel file.mod - un parametro M che indichi il numero di vincoli - un parametro z che indichi il numero di vincoli presenti nel sottoproblema corrente - un vettore di parametri I che indichi gli indici dei vincoli presenti nel sottoproblema corrente Nel file.dat definiamo i coefficienti e i termini noti di tutti i vincoli. Modificando opportunamente i parametri z e I definiamo di volta in volta il sottoproblema definendo solamente i vincoli con indici in I. 15

16 Algoritmo di soluzione (I) Per risolvere un generico problema di PL con poliedro P ={x R n : Ax<b, x> 0 n } l oracolo di separazione più semplice che possiamo immaginare è quello che verifica che la soluzione x * ottima (in Q) in input verifichi tutti i vincoli del sistema Ax<b (separazione per look-up). x* R n Realizziamo due script: Oracolo di Separazione di P verifica A x*< b x* P x* P a i x > b i - oracolo.run che trova, se esiste, un vincolo violato, aggiungendolo a I - main.run che dichiara i parametri e definisce il problema, assegna i valori iniziali ai parametri, risolve il sottoproblema corrente e invoca l oracolo. 16

17 Implementazione in AMPL # file test1.mod param N; param M; param z; param I {1..M}; param c {1..N}; param d {1..M}; param D {1..M, 1..N}; var x {j in 1..N} >= 0; minimize Funzione_Obiettivo: sum {j in 1..N} c[j] * x[j]; subject to Insieme_Vincoli {i in 1..z}: sum {j in 1..N} D[I[i],j] * x[j] >= d[i[i]]; 17

18 Implementazione in AMPL # file test1.dat data; param N := 10; param M := 100; param c := ; // segue definizione dei vettori di parametri D e d 18

19 Implementazione in AMPL # script main1.run - script per risolvere un problema # di PL con il metodo del Simplesso Dinamico model test.mod; data test.dat; param nv; let z := 10; let {i in 1..z} I[i] := i; option solver cplex; 19

20 Implementazione in AMPL repeat { solve; commands oracolo1.run; display Funzione_Obiettivo > sol.txt; display x > sol.txt; display I > sol.txt; } until nv = 0; display Funzione_Obiettivo; display x; 20

21 Implementazione in AMPL # script oracolo1.run - script per l'oracolo di # separazione per look-up let nv := 0; for {i in 1..M} { if( sum {j in 1..N} D[i,j] * x[j] >= d[i] ) then continue; else { lt let z := z +1; let I[z] := i; let nv := 1; break; } } 21

22 Esecuzione e soluzione ampl: commands main1.run; Nel file sol.txt t sono riportati ti per le diverse iterazioni: i i - il valore della soluzione -la soluzione - il vettore di indici dei vincoli nel sottoproblema corrente A monitor viene stampata la soluzione ottima: ottenuta risolvendo un problema di PL con 10 variabili e 15 vincoli (anzichè 100): Funzione_Obiettivo = 10 x [*] := ; 22

23 Implementazione in AMPL # script main1.run - script per risolvere un problema # di PL con il metodo del Simplesso Dinamico # variante con lettura del valore del parametro z da tastiera model test1.mod; data test1.dat; param nv; # se al posto di let z := 10; scriviamo: printf "\nquanti vincoli iniziali?\n"; read z <- ; #il valore del parametro z viene letto da tastiera ti let {i in 1..z} I[i] := i; option solver cplex; 23

24 Più problemi di ottimizzazione AMPL permette di risolvere più problemi di ottimizzazione dichiarati e definiti simultaneamente aventi parametri, variabili,, distinti. Esempio: Supponiamo di dichiarare il seguente prob_a.mod set A; param ca {A}; param da {A}; param DA {A, A}; var x {j in A} >= 0, <= 1; minimize Costo_A: sum {j in A} ca[j] * x[j]; subject to Vincoli_A {i in A}: sum {j in A} DA[i,j] * x[j] = da[i]; 24

25 Più problemi di ottimizzazione Esempio: Subito dopo dichiariamo un secondo problema prob_b.mod set B; param cb {B}; param db {B}; param DB {B, B}; var y {j in B} >= 10, <= 20; maximize Costo_B: sum {j in B} cb[j] * y[j]; subject to Vincoli_B {i in B}: sum {j in B} DB[i,j] * y[j] >= db[i]; 25

26 Più problemi di ottimizzazione Esempio: I due problemi non hanno dichiarazioni comuni, quindi possiamo dichiararli entrambi e decidere poi quale dei due risolvere per primo ampl: model prob_a.mod; ampl: data prob_a.dat; ampl: model prob_b.mod; ampl: data prob_ B.dat; ampl: option solver cplex; ampl: solve Costo_A; Solution determined by presolve; objective Costo_A = 8. ampl: display x; x [*] := z1 1 z2 1 ; 26

27 Più problemi di ottimizzazione Esempio (continua): ampl: solve Costo_B; CPLEX : optimal solution; objective dual simplex iterations (0 in phase I) ampl: display y; y [*] := a 20 b 20 c 20 ; 27

28 Algoritmo di soluzione (II) Riprendiamo l esempio del metodo del Simplesso Dinamico. Per la sua implementazione in AMPL dobbiamo sempre prevedere una struttura dati che ci consenta di definire, iterazione per iterazione, quali vincoli del sistema Ax<b si trovano nel sottoproblema corrente. Supponiamo di non conoscere esplicitamente it t tutti tti i vincoli del sistema Ax<b. Dichiariamo i nel file.mod - un parametro M che indichi il numero di vincoli - un parametro z che indichi il numero di vincoli presenti nel sottoproblema corrente Nel file.dat definiamo i coefficienti e i termini noti dei vincoli presenti nel sottoproblema corrente. Modificando opportunamente i parametri z e M definiamo di volta in volta il sottoproblema definendo solamente i vincoli presenti nel sottoproblema corrente. 28

29 Algoritmo di soluzione (II) Vogliamo risolvere un generico problema di PL con poliedro P ={x R n : Ax<b, x> 0 n } avendo a disposizione un oracolo di separazione che richiede di risolvere un altro problema di ottimizzazione P ={y R n : A y<b, y > 0 n } x* R n Realizziamo due script: Oracolo di Separazione di P risolve min c T y y P ={y R n : A y<b, y > 0 n } - oracolo.run che trova, se esiste, un vincolo violato, risolvendo il problema di separazione x* P x* P a i x > b i - main.run che dichiara i parametri e definisce il problema, assegna i valori iniziali ai parametri, risolve il sottoproblema corrente e invoca l oracolo. 29

30 Consideriamo il poliedro Algoritmo di soluzione (II) P ={x R n : Ax > b, x > 0 n } in cui tutti i vincoli a i x > b i sono del tipo: e T a i = 4 0 < a ij <1 i=1 1..m, j=1 1,..,n b i = 2 x* R n Oracolo di Separazione di P risolve min a T x* : a P dove P ={a R n : e T a= 4, 0 n < a < 1 n } i = 1..m x* P x* P T a i x* < bi Dato il vettore x* vogliamo determinare un vettore a tale che se esista un vettore a tale che e T a = 4 0 n < a < 1 n e che a T x* < 2 i i 30

31 Algoritmo di soluzione (II) Oracolo di x* R n Separazione di P x* P a T x* > 2 Realizziamo due script: min a T x* a T x* < 2 e T a= 4, x* P 0 n < a < 1 n - oracolo.run che trova, se esiste, un vincolo violato, risolvendo il problema di separazione: min a T x* e T a =4 4, 0 n < a < 1 n - main.run che dichiara i parametri e definisce il problema, assegna i valori iniziali ai parametri, risolve il sottoproblema corrente e invoca l oracolo. 31

32 Implementazione in AMPL # file test2.mod param N; param M; param z; param c {1..N}; param d {1..M}; param D {1..M, 1..N}; var x {j in 1..N} >= 0; minimize Funzione_Obiettivo: sum {j in 1..N} c[j] * x[j]; subject to Insieme_Vincoli {i in 1..z}: sum {j in 1..N} D[i,j] * x[j] >= d[i]; 32

33 Implementazione in AMPL # file test2.dat data; param N := 10; param M := 1000; param z := 3; param c := ; param d := ; param D : := ; 33

34 Implementazione in AMPL # file separazione.mod param X {1..N} default 0; param g default 0; param f {1..N} default 0; var a {j in 1..N} >= 0, <= 1; minimize Violazione: sum {j in 1..N} X[j] * a[j]; subject to Vincolo: sum {j in 1..N} f[j] * a[j] = g; 34

35 Implementazione in AMPL # file separazione.dat data; param f := ; param g := 4; 35

36 Implementazione in AMPL # script main2.run - script per risolvere un problema # di PL con il metodo del Simplesso Dinamico model test2.mod; data test2.dat; model separazione.mod; data separazione.dat; option solver cplex; 36

37 Implementazione in AMPL repeat { solve Funzione_ Obiettivo; display Funzione_Obiettivo > sol.txt; display x > sol.txt; commands oracolo2.run; if( Violazione < 2 ) then { display z, {j in 1..N} D[z,j], d[z]; } } until Violazione >= 2; 37

38 Implementazione in AMPL display Funzione_Obiettivo; display x; close sol.txt; reset; 38

39 Implementazione in AMPL # script oracolo2.run - script per l'oracolo di # separazione che risolve il problema di ottimizzazione separazione.mod let {j in 1..N} X[j] := x[j]; solve Violazione; if( Violazione < 2 ) then { let z := z + 1; let {j in 1..N} D[z,j] := a[j]; let d[z] := 2; } display Violazione > sol.txt; 39

40 Esecuzione e soluzione ampl: commands main2.run; Nel file sol.txt t sono riportati ti per le diverse iterazioni: i i - il valore della soluzione corrente - la soluzione corrente - il valore della violazione A monitor viene stampata la soluzione ottima: ottenuta risolvendo un problema di PL con 10 variabili e 16 vincoli: Funzione_Obiettivo = x [*] := ; 40

Ottimizzazione Combinatoria

Ottimizzazione Combinatoria Ottimizzazione Combinatoria Esercitazione AMPL A.A. 2010-20112011 Esercitazione a cura di Silvia Canale contatto e-mail: canale@dis.uniroma1.it Università i di Roma La Sapienza Dipartimento di Informatica

Dettagli

Progetto e ottimizzazione di reti 2

Progetto e ottimizzazione di reti 2 Progetto e ottimizzazione di reti 2 Esercitazione AMPL A.A. 29-2 Esercitazione a cura di Silvia Canale contatto e-mail: canale@dis.uniroma.it Università di Roma La Sapienza Dipartimento di Informatica

Dettagli

Ottimizzazione Combinatoria

Ottimizzazione Combinatoria Ottimizzazione Combinatoria Esercitazione AMPL A.A. 2-22 Esercitazione a cura di Silvia Canale contatto e-mail: canale@dis.uniroma.it Università i di Roma La Sapienza Dipartimento di Informatica e Sistemistica

Dettagli

Progetto e ottimizzazione di reti 2

Progetto e ottimizzazione di reti 2 Progetto e ottimizzazione di reti 2 Esercitazione AMPL A.A. 2009-2010 Esercitazione a cura di Silvia Canale contatto e-mail: canale@dis.uniroma1.it Università di Roma La Sapienza Dipartimento di Informatica

Dettagli

Ottimizzazione Combinatoria

Ottimizzazione Combinatoria Ottimizzazione Combinatoria Esercitazione AMPL A.A. 2009-2010 Esercitazione a cura di Silvia Canale contatto e-mail: canale@dis.uniroma1.it Università di Roma La Sapienza Dipartimento di Informatica e

Dettagli

Ottimizzazione Combinatoria

Ottimizzazione Combinatoria Ottimizzazione Combinatoria Esercitazione AMPL A.A. 2-22 Esercitazione a cura di Silvia Canale contatto e-mail: canale@dis.uniroma.it Università i di Roma La Sapienza Dipartimento di Informatica e Sistemistica

Dettagli

Ottimizzazione Combinatoria

Ottimizzazione Combinatoria Ottimizzazione Combinatoria Esercitazione AMPL A.A. 29-2 Esercitazione a cura di Silvia Canale contatto e-mail: canale@dis.uniroma.it Università di Roma La Sapienza Dipartimento di Informatica e Sistemistica

Dettagli

Scopo del laboratorio

Scopo del laboratorio p. 1/1 Scopo del laboratorio Imparare ad usare programmi che implementino metodi di ottimizzazione: simplesso, branch and bound ecc. utilizzarli per risolvere un problema proposto Modellatori Solver p.

Dettagli

Uso avanzato di AMPL. Renato Bruni. prendendo come esempio il problema di Localizzazione di Impianti.

Uso avanzato di AMPL. Renato Bruni. prendendo come esempio il problema di Localizzazione di Impianti. Uso avanzato di AMPL prendendo come esempio il problema di Localizzazione di Impianti Renato Bruni bruni@dis.uniroma1.it www.dis.uniroma1.it/~bruni Localizzazione di Impianti Consideriamo il problema di

Dettagli

Miscelazione di benzine

Miscelazione di benzine Miscelazione di benzine Una raffineria deve miscelare 4 tipi di petrolio grezzo per ottenere 3 tipi di benzina. La tabella seguente mostra la massima quantità disponibile per ogni tipo di petrolio grezzo

Dettagli

AMPL: Risoluzione di Problemi Nonlineari Parte 2

AMPL: Risoluzione di Problemi Nonlineari Parte 2 AMPL: Risoluzione di Problemi Nonlineari Parte 2 Dipartimento di Matematica Università di Padova Corso di Laurea Matematica Outline Esempio 1: Gestione Ottima di un Portafoglio Titoli Esempio 1 Abbiamo:

Dettagli

Progetto e ottimizzazione di reti 2

Progetto e ottimizzazione di reti 2 Progetto e ottimizzazione di reti 2 Esercitazione AMPL A.A. 29-2 Esercitazione a cura di Silvia Canale contatto e-mail: canale@dis.uniroma.it Università di Roma La Sapienza Dipartimento di Informatica

Dettagli

Problemi di Localizzazione Impianti

Problemi di Localizzazione Impianti Sapienza Sapienza Università di Roma - Dipartimento di Ingegneria Informatica, Automatica e Gestionale Problemi di Localizzazione Impianti Renato Bruni bruni@dis.uniroma1.it Il materiale presentato è derivato

Dettagli

Progetto di rete con unica sorgente e costi fissi

Progetto di rete con unica sorgente e costi fissi Progetto di rete con unica sorgente e costi fissi Si consideri la topologia di rete data dal grafo G = (V,E) in figura. Ogni nodo i V = {1...n} rappresenta un router connesso ad una rete fissa ed ogni

Dettagli

Mix Produttivo Analisi di Sensitività

Mix Produttivo Analisi di Sensitività Mix Produttivo Analisi di Sensitività Un azienda vuole pianificare il livello di produzione di 3 prodotti (A 1,A 2,A 3 ) sapendo che la domanda massima è di 4300 pezzi per A 1, 4500 pezzi per A 2 e 5400

Dettagli

Assegnamento generalizzato: generazione di piani di taglio e branch-and-cut

Assegnamento generalizzato: generazione di piani di taglio e branch-and-cut Assegnamento generalizzato: generazione di piani di taglio e branch-and-cut Riprendiamo il problema di assegnamento generalizzato considerato a esercitazione nell esercizio 4.4: max p ij x ij s.t. i I,j

Dettagli

Ricerca Operativa. G. Liuzzi. Lunedí 20 Aprile 2015

Ricerca Operativa. G. Liuzzi. Lunedí 20 Aprile 2015 1 Lunedí 20 Aprile 2015 1 Istituto di Analisi dei Sistemi ed Informatica IASI - CNR Rilassamento di un problema Rilassare un problema di Programmazione Matematica vuol dire trascurare alcuni (tutti i)

Dettagli

La Ricerca Operativa ha lo scopo di fornire un supporto scientifico alle decisioni che si può sintetizzare nei seguenti passi fondamentali:

La Ricerca Operativa ha lo scopo di fornire un supporto scientifico alle decisioni che si può sintetizzare nei seguenti passi fondamentali: Ricerca Operativa La Ricerca Operativa ha lo scopo di fornire un supporto scientifico alle decisioni che si può sintetizzare nei seguenti passi fondamentali: 1 Definizione del problema: c è un sistema

Dettagli

AMPL: Risoluzione di Problemi Nonlineari

AMPL: Risoluzione di Problemi Nonlineari Dipartimento di Matematica Università di Padova Corso di Laurea Matematica Outline Risoluzione Problemi Non Lineari Generazione Sequenza Randomica investimenti2.run # cancella eventuali dati memorizzati

Dettagli

126 APPROFONDIMENTI SUI PARAMETRI. SCRIPT IN AMPL

126 APPROFONDIMENTI SUI PARAMETRI. SCRIPT IN AMPL 126 APPROFONDIMENTI SUI PARAMETRI. SCRIPT IN AMPL Esempio 8.3.2 Una fabbrica produce divani in tessuto acquistando da un magazzino all ingrosso i quantitativi di tessuto che gli occorrono settimanalmente.

Dettagli

Programmazione Matematica: VII La scomposizione di Dantzig Wolfe

Programmazione Matematica: VII La scomposizione di Dantzig Wolfe Programmazione Matematica: VII La scomposizione di Dantzig Wolfe Daniele Vigo D.E.I.S. Università di Bologna dvigo@deis.unibo.it rev..0 Maggio 2004 Scomposizione di problemi Accade spesso che un problema

Dettagli

Problema del Set Covering (PLI)

Problema del Set Covering (PLI) Problema del Set Covering (PLI) Una società deve decidere sulla costruzione di alcuni nuovi impianti per la depurazione di acque in un distretto di 5 città C i, i 1... 5. Ha a disposizione 12 aree A i,

Dettagli

Modelli di Programmazione Non lineare

Modelli di Programmazione Non lineare 7 Modelli di Programmazione Non lineare 7.1 CENNI AI MODELLI DI PROGRAMMAZIONE NON LINEARE La trattazione dei modelli di Programmazione Non Lineare esula dai contenuti di questo corso perché tale argomento

Dettagli

Introduzione. AMPL Introduzione. F. Rinaldi. Dipartimento di Matematica Università di Padova. Corso di Laurea Matematica. F. Rinaldi AMPL Introduzione

Introduzione. AMPL Introduzione. F. Rinaldi. Dipartimento di Matematica Università di Padova. Corso di Laurea Matematica. F. Rinaldi AMPL Introduzione Dipartimento di Matematica Università di Padova Corso di Laurea Matematica Outline Introduzione Utilizzo di un Solver Definizione Un solver (o risolutore) è un software che riceve in input una descrizione

Dettagli

AMPL: Esempi. F. Rinaldi. Corso di Laurea Matematica. Dipartimento di Matematica Università di Padova. Esempi di Modellazione in AMPL

AMPL: Esempi. F. Rinaldi. Corso di Laurea Matematica. Dipartimento di Matematica Università di Padova. Esempi di Modellazione in AMPL Dipartimento di Matematica Università di Padova Corso di Laurea Matematica Outline Esempi di Modellazione in AMPL Esempio 2 Problema della Dieta In questo problema é data una lista di cibi, a ciascuno

Dettagli

Risoluzione del rilassamento continuo del problema del commesso viaggiatore

Risoluzione del rilassamento continuo del problema del commesso viaggiatore Risoluzione del rilassamento continuo del problema del commesso viaggiatore Sia G = (V,E) un grafo orientato completo, con un costo c ij R associato a ciascun arco (i, j) E. Si consideri la seguente formulazione

Dettagli

Ottimizzazione dei Sistemi Complessi

Ottimizzazione dei Sistemi Complessi 1 Martedì 17 Maggio 2016 1 Istituto di Analisi dei Sistemi ed Informatica IASI - CNR Programmazione con incertezza Una società di autonoleggio dispone (attualmente, oggi) di 50 macchine tutte dislocate

Dettagli

Appunti delle Esercitazioni di Ottimizzazione V.O. AMPL: A Mathematical Programming Language

Appunti delle Esercitazioni di Ottimizzazione V.O. AMPL: A Mathematical Programming Language Appunti delle Esercitazioni di Ottimizzazione V.O. AMPL: A Mathematical Programming Language a cura di G. Liuzzi and V. Piccialli a.a. 2004-2005 liuzzi@dis.uniroma1.it, http://www.dis.uniroma1.it/ liuzzi

Dettagli

TSP con eliminazione di sottocicli

TSP con eliminazione di sottocicli TSP con eliminazione di sottocicli Un commesso viaggiatore deve visitare 7 clienti in modo da minimizzare la distanza percorsa. Le distanze (in Km) tra ognuno dei clienti sono come segue: 7-8 9 7 9-8 79

Dettagli

Risoluzione del rilassamento continuo del problema del commesso viaggiatore

Risoluzione del rilassamento continuo del problema del commesso viaggiatore Risoluzione del rilassamento continuo del problema del commesso viaggiatore Sia G = (V,E) un grafo orientato completo, con un costo c ij R associato a ciascun arco (i, j) E. Si consideri la seguente formulazione

Dettagli

x 1 x 2 x 3 x 5 La base iniziale è B 0 = I e risulta x B 0 = , x N 0 = Iterazione 0. Calcolo dei costi ridotti. γ 0 = c N 0 (N 0 ) T c B 0 =

x 1 x 2 x 3 x 5 La base iniziale è B 0 = I e risulta x B 0 = , x N 0 = Iterazione 0. Calcolo dei costi ridotti. γ 0 = c N 0 (N 0 ) T c B 0 = 56 IL METODO DEL SIMPLESSO 7.4 IL METODO DEL SIMPLESSO In questo paragrafo sono riportati alcuni esercizi risolti sul metodo del simplesso. Alcuni sono risolti utilizzando la procedura di pivot per determinare,

Dettagli

Problema del Trasporto

Problema del Trasporto Problema del Trasporto Una ditta di trasporto deve trasferire container vuoti dai propri 6 Magazzini, situati a Verona, Perugia, Roma, Pescara, Taranto e Lamezia, ai principali Porti nazionali (Genova,

Dettagli

Pianificazione Multiperiodo

Pianificazione Multiperiodo Pianificazione Multiperiodo Si vuole pianificare la produzione di tre prodotti A 1, A 2, A 3, su un orizzonte temporale di quattro mesi, da Gennaio ad Aprile. La domanda cambia non solo da un prodotto

Dettagli

5.1 Metodo Branch and Bound

5.1 Metodo Branch and Bound 5. Metodo Branch and Bound Consideriamo un generico problema di ottimizzazione min{ c(x) : x X } Idea: Ricondurre la risoluzione di un problema difficile a quella di sottoproblemi più semplici effettuando

Dettagli

AMPL: Esempi e Comandi Avanzati

AMPL: Esempi e Comandi Avanzati Dipartimento di Matematica Università di Padova Corso di Laurea Matematica Outline Comandi Avanzati Script per Operazioni Complesse Ciclo For for {e in INSIEME}{... } Ciclo Repeat While (termina se espressione

Dettagli

Gestione Impresa. Mese 1 2 3 4 5 6 Unità richieste 700 600 500 800 900 800

Gestione Impresa. Mese 1 2 3 4 5 6 Unità richieste 700 600 500 800 900 800 Gestione Impresa Un impresa di produzione produce un solo tipo di merce. Ci sono 40 operai, ciascuno dei quali produce 20 unità di merce al mese. La domanda fluttua nel corso di un semestre secondo la

Dettagli

Ottimizzazione dei Sistemi Complessi

Ottimizzazione dei Sistemi Complessi 1 Lunedì 16 Maggio 2016 1 Istituto di Analisi dei Sistemi ed Informatica IASI - CNR Modalità base 1 Parte scritta, 4 esercizi riguardanti le tematiche trattate nelle lezioni: Metodi senza derivate; Metodi

Dettagli

Domini di funzioni di due variabili. Determinare i domini delle seguenti funzioni di due variabili (le soluzioni sono alla fine del fascicolo):

Domini di funzioni di due variabili. Determinare i domini delle seguenti funzioni di due variabili (le soluzioni sono alla fine del fascicolo): UNIVERSITA DEGLI STUDI DI SALERNO C.d.L. in INGEGNERIA GESTIONALE Esercizi di Ricerca Operativa Prof. Saverio Salerno Corso tenuto nell anno solare 2009 I seguenti esercizi sono da ritenersi di preparazione

Dettagli

Ottimizzazione nella Gestione dei Progetti - Esercitazione 1: calcolo degli schedule ottimi

Ottimizzazione nella Gestione dei Progetti - Esercitazione 1: calcolo degli schedule ottimi Università degli Studi di Roma La Sapienza Ottimizzazione nella Gestione dei Progetti - Esercitazione : calcolo degli schedule ottimi di FABIO D ANDREAGIOVANNI Dipartimento di Informatica e Sistemistica

Dettagli

Modelli di Programmazione Matematica e introduzione ad AMPL

Modelli di Programmazione Matematica e introduzione ad AMPL 1 Modelli di Programmazione Matematica e introduzione ad AMPL Come accennato nell introduzione, all interno della Ricerca Operativa, un ruolo di fondamentale importanza è svolto dalla Programmazione Matematica

Dettagli

TSP con eliminazione di sottocicli

TSP con eliminazione di sottocicli TSP con eliminazione di sottocicli Un commesso viaggiatore deve visitare 7 clienti in modo da minimizzare la distanza percorsa. Le distanze (in Km) tra ognuno dei clienti sono come segue: 3 5 7-8 9 57

Dettagli

Uso del linguaggio di modellazione AMPL

Uso del linguaggio di modellazione AMPL Sapienza Sapienza Universitàdi Roma - Dipartimento di Ingegneria Informatica, Automatica e Gestionale Uso del linguaggio di modellazione AMPL Renato Bruni bruni@dis.uniroma1.it www.dis.uniroma1.it/~bruni

Dettagli

Prerequisiti didattici

Prerequisiti didattici Università degli Studi di Ferrara 2014-2015 Corso TFA - A048 Matematica applicata Didattica della matematica applicata all economia e alla finanza 1 aprile 2015 Appunti di didattica della matematica applicata

Dettagli

Figura 1: 1) Si scriva la formulazione del problema come problema di PLI (con un numero minimo di vincoli) e la matrice dei vincoli.

Figura 1: 1) Si scriva la formulazione del problema come problema di PLI (con un numero minimo di vincoli) e la matrice dei vincoli. ESERCIZIO 1 Sia dato il grafo orientato in Figura 1. Si consideri il problema di flusso a 1 2 4 Figura 1: costo minimo su tale grafo con b 1 = 4 b 2 = 2 b = b 4 = e c 12 = 2 c 1 = 4 c 14 = 1 c 2 = 1 c

Dettagli

Programmazione Dinamica (PD)

Programmazione Dinamica (PD) Programmazione Dinamica (PD) Altra tecnica per risolvere problemi di ottimizzazione, piu generale degli algoritmi greedy La programmazione dinamica risolve un problema di ottimizzazione componendo le soluzioni

Dettagli

Ricerca Operativa a.a : IV appello

Ricerca Operativa a.a : IV appello Ricerca Operativa a.a. 2015-2016: IV appello (Prof. Fasano Giovanni) Università Ca Foscari Venezia - Sede di via Torino 5 settembre 2016 Regole per l esame: la violazione delle seguenti regole comporta

Dettagli

Esercizi di Programmazione Lineare

Esercizi di Programmazione Lineare Esercizi di Programmazione Lineare 1 di Base: Forma Matriciale Si consideri il poliedro P = {x R 3 : Ax b} in cui: 1 0 1 2 A = 1 1 0 0 1 1, b = 1 4 1 1 1 3, x 1 = 1 2 + 3 2 + 5 2 x 2 = I vettori x 1 e

Dettagli

Macchine parallele M 1 M 2 M 3 J 1 J 2 LAVORI J 3 J 4

Macchine parallele M 1 M 2 M 3 J 1 J 2 LAVORI J 3 J 4 Macchine parallele M 1 J 1 J 2 LAVORI M 2 J 3 J 4 M 3 Macchine parallele Scheduling su macchine parallele scorrelate R C max Descrizione del problema n lavori devono essere processati da m macchine diverse

Dettagli

Ottimizzazione Combinatoria

Ottimizzazione Combinatoria Ottimizzazione Combinatoria Esercitazione AMPL A.A. 2010-20112011 Esercitazione a cura di Silvia Canale contatto e-mail: canale@dis.uniroma1.it Università i di Roma La Sapienza Dipartimento di Informatica

Dettagli

Problemi di Flusso: Il modello del Trasporto

Problemi di Flusso: Il modello del Trasporto Problemi di Flusso: Il modello del rasporto Andrea Scozzari a.a. 2014-2015 April 27, 2015 Andrea Scozzari (a.a. 2014-2015) Problemi di Flusso: Il modello del rasporto April 27, 2015 1 / 25 Problemi su

Dettagli

Introduzione al Metodo del Simplesso. 1 Soluzioni di base e problemi in forma standard

Introduzione al Metodo del Simplesso. 1 Soluzioni di base e problemi in forma standard Introduzione al Metodo del Simplesso Giacomo Zambelli 1 Soluzioni di base e problemi in forma standard Consideriamo il seguente problema di programmazione lineare (PL), relativo all esempio di produzione

Dettagli

ESAME di OTTIMIZZAZIONE - Compito A Corso di Laurea in Ingegneria Gestionale 2 o anno

ESAME di OTTIMIZZAZIONE - Compito A Corso di Laurea in Ingegneria Gestionale 2 o anno ESAME di OTTIMIZZAZIONE 12 gennaio pomeriggio 2005 ESAME di OTTIMIZZAZIONE - Compito A Corso di Laurea in Ingegneria Gestionale 2 o anno Cognome : Nome : VALUTAZIONE Per gli esercizi 1,2,3,4 le risposte

Dettagli

Linguaggi di modellizzazione

Linguaggi di modellizzazione p. 1/5 Linguaggi di modellizzazione Come visto, il primo passo per risolvere un problema di decisione consiste nel formularne il modello matematico. Una volta definito il modello matematico lo dobbiamo

Dettagli

Elementi di un modello di Programmazione Matematica

Elementi di un modello di Programmazione Matematica 1 Ricerca Operativa Laboratorio: utilizzo di solver per programmazione matematica Elementi di un modello di Programmazione Matematica Insiemi: elementi del sistema; Parametri: dati del problema; Variabili

Dettagli

min 2x 1 +4x 2 2x 3 +2x 4 x 1 +4x 2 +2x 3 + x 4 =6 2x 1 + x 2 +2x 3 + x 5 =3 x 0.

min 2x 1 +4x 2 2x 3 +2x 4 x 1 +4x 2 +2x 3 + x 4 =6 2x 1 + x 2 +2x 3 + x 5 =3 x 0. 5 IL METODO DEL SIMPLESSO 6.4 IL METODO DEL SIMPLESSO In questo paragrafo sono riportati alcuni esercizi risolti sul metodo del simplesso. Alcuni sono risolti utilizzando la procedura di pivot per determinare,

Dettagli

Metodi e Modelli per l Ottimizzazione Combinatoria Ripasso sulla Programmazione Lineare e il metodo del Simplesso (parte I)

Metodi e Modelli per l Ottimizzazione Combinatoria Ripasso sulla Programmazione Lineare e il metodo del Simplesso (parte I) Metodi e Modelli per l Ottimizzazione Combinatoria Ripasso sulla Programmazione Lineare e il metodo del Simplesso (parte I) Luigi De Giovanni Giacomo Zambelli 1 Problemi di programmazione lineare Un problema

Dettagli

Ricerca Operativa A.A. 2007/ Esercitazione di laboratorio: Branch and Bound.

Ricerca Operativa A.A. 2007/ Esercitazione di laboratorio: Branch and Bound. Ricerca Operativa A.A. 2007/2008 17. Esercitazione di laboratorio: Branch and Bound. Luigi De Giovanni - Ricerca Operativa - 17. Esercitazione di laboratorio: Branch and Bound 17.1. Luigi De Giovanni -

Dettagli

METODI DELLA RICERCA OPERATIVA

METODI DELLA RICERCA OPERATIVA Università degli Studi di Cagliari FACOLTA' DI INGEGNERIA CORSO DI METODI DELLA RICERCA OPERATIVA Dott.ing. Massimo Di Francesco (mdifrance@unica.it) i i Dott.ing. Maria Ilaria Lunesu (ilaria.lunesu@unica.it)

Dettagli

a 11 a 12 a 1n a 21 a 22 a 2n a m1 a m2 a mn mentre le variabili decisionali sono rappresentate dal vettore colonna n-dimensionale x,

a 11 a 12 a 1n a 21 a 22 a 2n a m1 a m2 a mn mentre le variabili decisionali sono rappresentate dal vettore colonna n-dimensionale x, Università degli Studi di Roma Tor Vergata Facoltà di Ingegneria Appunti dal corso di Metodi e Modelli di Ottimizzazione Discreta 1 A.A. 2018-2019 Prof. Sara Nicoloso A seconda del tipo di variabili che

Dettagli

Ricerca Operativa A.A. 2007/ Esercitazione di laboratorio: Branch and Bound.

Ricerca Operativa A.A. 2007/ Esercitazione di laboratorio: Branch and Bound. Ricerca Operativa A.A. 2007/2008 17. Esercitazione di laboratorio: Branch and Bound. Luigi De Giovanni - Ricerca Operativa - 17. Esercitazione di laboratorio: Branch and Bound 17.1 . Luigi De Giovanni

Dettagli

Problema del Trasporto. Container vuoti Verona 10 Perugia 12 Roma 20 Pescara 24 Taranto 18 Lamezia 40

Problema del Trasporto. Container vuoti Verona 10 Perugia 12 Roma 20 Pescara 24 Taranto 18 Lamezia 40 Problema del Trasporto Una ditta di trasporto deve trasferire container vuoti dai propri 6 Magazzini, situati a Verona, Perugia, Roma, Pescara, Taranto e Lamezia, ai principali Porti nazionali (Genova,

Dettagli

ESERCITAZIONI DI INTRODUZIONE AGLI ALGORITMI (A.A. 08/09)

ESERCITAZIONI DI INTRODUZIONE AGLI ALGORITMI (A.A. 08/09) ESERCITAZIONI DI INTRODUZIONE AGLI ALGORITMI (A.A. 08/09) DISPENSA N. 4 1. Ricerca Binaria Ricorsiva L algoritmo Ricerca Binaria risolve il problema della ricerca di una chiave in un vettore. È un esempio

Dettagli

Rappresentazione degli algoritmi

Rappresentazione degli algoritmi Rappresentazione degli algoritmi Universitá di Ferrara Ultima Modifica: 21 ottobre 2014 1 1 Diagramma di flusso Utilizzare il diagramma di flusso per rappresentare gli algoritmi che risolvono i seguenti

Dettagli

Pianificazione di Produzione in DEC

Pianificazione di Produzione in DEC Pianificazione di Produzione in DEC L esempio considerato qui è un problema reale che la Digital Equipment Corporation (DEC) ha dovuto affrontare nell autunno del 1988 per preparare la pianificazione di

Dettagli

12.1 IL PROBLEMA DEL CAMMINO MINIMO: L ALGORITMO DI DIJKSTRA

12.1 IL PROBLEMA DEL CAMMINO MINIMO: L ALGORITMO DI DIJKSTRA Problemi strutturati. IL PROBLEMA DEL CAMMINO MINIMO: L ALGORITMO DI DIJKSTRA Esercizio.. Dato il grafo di Figura.., trovare il peso dei cammini minimi dal nodo a tutti gli altri nodi del grafo (il peso

Dettagli

4.1 Localizzazione e pianificazione delle base station per le reti UMTS

4.1 Localizzazione e pianificazione delle base station per le reti UMTS esercitazione Ottimizzazione Prof E Amaldi Localizzazione e pianificazione delle base station per le reti UMTS Consideriamo il problema di localizzare un insieme di stazioni radio base, base station (BS),

Dettagli

Corso di Perfezionamento

Corso di Perfezionamento Programmazione Dinamica 1 1 Dipartimento di Matematica e Informatica Università di Camerino 15 febbraio 2009 Tecniche di Programmazione Tecniche di progettazione di algoritmi: 1 Divide et Impera 2 Programmazione

Dettagli

Introduzione al MATLAB c Parte 2

Introduzione al MATLAB c Parte 2 Introduzione al MATLAB c Parte 2 Lucia Gastaldi Dipartimento di Matematica, http://dm.ing.unibs.it/gastaldi/ 24 settembre 2007 Outline 1 M-file di tipo Script e Function Script Function 2 Elementi di programmazione

Dettagli

Esempi di Problemi di Programmazione Lineare

Esempi di Problemi di Programmazione Lineare Esempi di Problemi di Programmazione Lineare Esempio 1: Soluzione con l algoritmo del simplesso dell esempio in forma standard ma = 2 + 0 1 2 + + = 5 1 2 3 + + = 0 1 2 4 6 + 2 + = 21 1 2 5 1 2 3 4 5 Il

Dettagli

Algoritmi e Strutture Dati

Algoritmi e Strutture Dati Elementi di Programmazione Dinamica Maria Rita Di Berardini, Emanuela Merelli 1 1 Dipartimento di Matematica e Informatica Università di Camerino Tecniche di Programmazione Tecniche di progettazione e

Dettagli

RICERCA OPERATIVA (a.a. 2011/12) Nome: Cognome: Matricola:

RICERCA OPERATIVA (a.a. 2011/12) Nome: Cognome: Matricola: 5 o Appello 8/0/0 RICERCA OPERATIVA (a.a. 0/) Nome: Cognome: Matricola: ) Si individui un albero dei cammini minimi di radice sul grafo in figura, utilizzando l algoritmo più appropriato dal punto di vista

Dettagli

3.3 Problemi di PLI facili

3.3 Problemi di PLI facili 3.3 Problemi di PLI facili Consideriamo un generico problema di PLI espresso in forma standard min{c t x : Ax = b, x Z n +} (1) dove A Z m n con n m, e b Z m. Supponiamo che A sia di rango pieno. Sia P

Dettagli

Prova Scritta di RICERCA OPERATIVA. 13 Gen. 2003

Prova Scritta di RICERCA OPERATIVA. 13 Gen. 2003 Prova Scritta di RICERCA OPERATIVA 13 Gen. 003 Nome e Cognome: Esercizio 1. ( 6 punti ) Una azienda agricola coltiva mais e alleva vitelli, usando tre diversi procedimenti. Con il primo procedimento vengono

Dettagli

Metodi e Modelli per l Ottimizzazione Combinatoria Cover inequalities

Metodi e Modelli per l Ottimizzazione Combinatoria Cover inequalities Metodi e Modelli per l Ottimizzazione Combinatoria Cover inequalities L. De Giovanni M. Di Summa In questa lezione introdurremo una classe di disuguaglianze, dette cover inequalities, che permettono di

Dettagli

A UNIVERSITÀ DEGLI STUDI ROMA TRE Corso di Studi in Ingegneria Informatica Ricerca Operativa 1 Seconda prova intermedia 17 giugno 2010

A UNIVERSITÀ DEGLI STUDI ROMA TRE Corso di Studi in Ingegneria Informatica Ricerca Operativa 1 Seconda prova intermedia 17 giugno 2010 A Ricerca Operativa Seconda prova intermedia La produzione del pane su scala industriale segue un processo in cinque fasi: () preparazione ingredienti, () impasto in gradienti, (3) prima cottura, (4) trattamento

Dettagli

Parte V: Rilassamento Lagrangiano

Parte V: Rilassamento Lagrangiano Parte V: Rilassamento Lagrangiano Tecnica Lagrangiana Consideriamo il seguente problema di Programmazione Lineare Intera: P 1 min c T x L I Ax > b Cx > d x > 0, intera in cui A = matrice m x n C = matrice

Dettagli

ALGORITMO DEL SIMPLESSO. Una piccola introduzione. Ricerca Operativa. Prof. R. Tadei. Politecnico di Torino. Simplesso / 1.

ALGORITMO DEL SIMPLESSO. Una piccola introduzione. Ricerca Operativa. Prof. R. Tadei. Politecnico di Torino. Simplesso / 1. ALGORITMO DEL SIMPLESSO Una piccola introduzione R. Tadei R. Tadei 2 SIMPLESSO L obiettivo del capitolo è quello di fornire un algoritmo, l algoritmo del simplesso, che risolve qualsiasi problema di programmazione

Dettagli

RICERCA OPERATIVA (a.a. 2014/15) Nome: Cognome: Matricola:

RICERCA OPERATIVA (a.a. 2014/15) Nome: Cognome: Matricola: 3 o Appello /2/2 RICERCA OPERATIVA (a.a. 2/) Nome: Cognome: Matricola: ) Si risolva algebricamente il seguente problema di PL max x 2x 2 x x 2 2 x x + x 2 3 x 2 7 mediante l algoritmo del Simplesso Primale

Dettagli

Modelli di programmazione lineare. Il metodo grafico è basato su linearità della funzione obiettivo linearità dei vincoli

Modelli di programmazione lineare. Il metodo grafico è basato su linearità della funzione obiettivo linearità dei vincoli Ricerca Operativa 2. Modelli di Programmazione Lineare Modelli di programmazione lineare Il metodo grafico è basato su linearità della funzione obiettivo linearità dei vincoli Sotto queste ipotesi (come

Dettagli

COMPITO DI RICERCA OPERATIVA. max 3x 1 + 2x 2 x x 2 + x 3 = 4 2x 1 + x 2 + x 4 = 3

COMPITO DI RICERCA OPERATIVA. max 3x 1 + 2x 2 x x 2 + x 3 = 4 2x 1 + x 2 + x 4 = 3 COMPITO DI RICERCA OPERATIVA ESERCIZIO 1. (7 punti) Sia dato il seguente problema di PL: max 3x 1 + 2x 2 x 1 + 1 2 x 2 + x 3 = 4 2x 1 + x 2 + x 4 = 3 Lo si risolva con l algoritmo che si ritiene più opportuno

Dettagli

2. Una volta decise le risposte riportatele sull apposito foglio allegato.

2. Una volta decise le risposte riportatele sull apposito foglio allegato. Prova scritta di Modelli e algoritmi della logistica - (A) LAUREA in INGEGNERIA GESTIONALE (Specialistica in Informatica, Automatica, Telecomunicazioni) aprile 8 (A) Istruzioni. Usate i fogli bianchi allegati

Dettagli

AMPL Problemi su Reti

AMPL Problemi su Reti Dipartimento di Matematica Università di Padova Corso di Laurea Informatica Outline Problemi su Reti Cammino Minimo Molti problemi di ottimizzazione combinatoria possono essere modellati ricorrendo ai

Dettagli

RICERCA OPERATIVA (a.a. 2014/15) Nome: Cognome: Matricola:

RICERCA OPERATIVA (a.a. 2014/15) Nome: Cognome: Matricola: 7 o Appello /9/ RICERCA OPERATIVA (a.a. /) Nome: Cognome: Matricola: ) Si consideri il seguente problema di PL max x x x x x x + x 6 x e la corrispondente soluzione x = [,. Utilizzando il teorema degli

Dettagli

4.5 Metodo del simplesso

4.5 Metodo del simplesso 4.5 Metodo del simplesso min z = c T x s.v. Ax = b x 0 PL in forma standard Esamina una sequenza di soluzioni di base ammissibili con valori non crescenti della funzione obiettivo fino a raggiungerne una

Dettagli

Prova di Ricerca Operativa - canale (A-L)

Prova di Ricerca Operativa - canale (A-L) Prova di Ricerca Operativa - canale (A-L) Ingegneria Gestionale Un industria produce 4 differenti prodotti P1, P2, P3, P4 ciascuno dei quali deve essere lavorato in tutti i suoi 3 reparti. La tabella che

Dettagli

Cognome e Nome : Corso e Anno di Immatricolazione: Modalità di Laboratorio (Progetto/Prova) :

Cognome e Nome : Corso e Anno di Immatricolazione: Modalità di Laboratorio (Progetto/Prova) : PROGRAMMAZIONE (Corsi B e C) Pre-appello di Gennaio 2004 (A.A. 2003/2004) PROGRAMMAZIONE (B e C) S. Straordinaria - Appello di Gennaio (A.A. 2002/2003) 22 Gennaio 2004 ore 11 Aula II di Facoltà (Durata:

Dettagli

Parte IV: Rafforzamento di formulazioni e algoritmo dei piani di taglio

Parte IV: Rafforzamento di formulazioni e algoritmo dei piani di taglio Parte IV: Rafforzamento di formulazioni e algoritmo dei piani di taglio Nozioni di geometria Definizione: Un vettore y R n è combinazione conica dei vettori { 1,, k } se esistono k coefficienti reali λ

Dettagli

Esercitazioni di Progetto di Reti di Telecomunicazioni. Anno Accademico Semestre

Esercitazioni di Progetto di Reti di Telecomunicazioni. Anno Accademico Semestre Esercitazioni di Progetto di Reti di Telecomunicazioni Anno Accademico 2007-2008 2 Semestre Per contattarmi Massimo Tornatore Int. 3691, Ufficio 329 tornator@elet.polimi.it http://networks.cs.ucdavis.edu/~tornatore

Dettagli

Esame di Ricerca Operativa del 07/06/2019

Esame di Ricerca Operativa del 07/06/2019 Esame di Ricerca Operativa del 0/0/09 (Cognome) (Nome) (Numero di Matricola) Esercizio. (a) Risolvere il seguente problema di programmazione lineare applicando l algoritmo del simplesso duale: min y y

Dettagli

Esercizi di autovalutazione - Matlab Metodi Numerici con Elementi di Programmazione A.A

Esercizi di autovalutazione - Matlab Metodi Numerici con Elementi di Programmazione A.A Esercizi di autovalutazione - Matlab Metodi Numerici con Elementi di Programmazione A.A. 2018-19 1. Scrivere la function Matlab myfun.m che valuti la funzione e la sua derivata in corrispondenza delle

Dettagli

4.5 Metodo del simplesso

4.5 Metodo del simplesso 4.5 Metodo del simplesso min z = c T x s.v. Ax = b x PL in forma standard Esamina una sequenza di soluzioni di base ammissibili con valori non crescenti della funzione obiettivo fino a raggiungerne una

Dettagli

Metodi e Modelli per l Ottimizzazione Combinatoria Ripasso sulla Programmazione Lineare e il metodo del Simplesso (parte II)

Metodi e Modelli per l Ottimizzazione Combinatoria Ripasso sulla Programmazione Lineare e il metodo del Simplesso (parte II) Metodi e Modelli per l Ottimizzazione Combinatoria Ripasso sulla Programmazione Lineare e il metodo del Simplesso (parte II) Luigi De Giovanni Giacomo Zambelli 1 I passi dell algoritmo del simplesso L

Dettagli

RICERCA OPERATIVA (a.a. 2018/19)

RICERCA OPERATIVA (a.a. 2018/19) Secondo appello //9 RICERCA OPERATIVA (a.a. 8/9) Nome: Cognome: Matricola: ) Si consideri il seguente problema di PL: min y + y y y y y = y + y y = y, y, y, y Si verifichi se la soluzione ȳ =,,, sia ottima

Dettagli

Fondamenti di Informatica Laurea in Ingegneria Civile e Ingegneria per l ambiente e il territorio

Fondamenti di Informatica Laurea in Ingegneria Civile e Ingegneria per l ambiente e il territorio Dipartimento di Ingegneria dell Informazione Università degli Studi di Parma Il problema di fondo Fondamenti di Informatica Laurea in Ingegneria Civile e Ingegneria per l ambiente e il territorio Algoritmi

Dettagli

Esercizi di autovalutazione - Matlab Metodi Numerici con Elementi di Programmazione A.A

Esercizi di autovalutazione - Matlab Metodi Numerici con Elementi di Programmazione A.A Esercizi di autovalutazione - Matlab Metodi Numerici con Elementi di Programmazione A.A. 2017-18 1. Scrivere la function Matlab myfun.m che calcoli la funzione e la sua derivata. La function deve ricevere

Dettagli

Metodo del Punto Interno in Programmazione Lineare

Metodo del Punto Interno in Programmazione Lineare Metodo del Punto Interno in Programmazione Lineare Si scriva un programma Matlab che implementi il metodo del punto interno per la programmazione lineare, e si risolva il seguente problema: min x 1 x x

Dettagli

AMPL: Esempi e Comandi Avanzati

AMPL: Esempi e Comandi Avanzati AMPL: Esempi e Dipartimento di Matematica Università di Padova Corso di Laurea Matematica AMPL: Esempi e Outline AMPL: Esempi e AMPL: Esempi e Script per Operazioni Complesse Ciclo For for {e in INSIEME}{...}

Dettagli

Esame di Ricerca Operativa del 11/02/2015

Esame di Ricerca Operativa del 11/02/2015 Esame di Ricerca Operativa del /0/0 (Cognome) (Nome) (Matricola) Esercizio. Un azienda produce tipi di TV (, 0, 0 e pollici) ed è divisa in stabilimenti (A e B). L azienda dispone di 0 operai in A e 0

Dettagli