3.1 Esempio 1. Queste note (attualmente, e probabilmente per un bel po ) sono altamente provvisorie e (molto probabilmente) non prive di errori.

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "3.1 Esempio 1. Queste note (attualmente, e probabilmente per un bel po ) sono altamente provvisorie e (molto probabilmente) non prive di errori."

Transcript

1 ½ º¼ º¾¼½ Queste note (attualmente e probabilmente per un bel po sono altamente provvisorie e (molto probabilmente non prive di errori 31 Esempio 1 Consideriamo il sistema ẋ = 1 3 (x y(1 x y = f 1(xy ẏ = x(2 y = f 2 (xy 311 Calcolo dei punti stazionari I punti stazionari ie i punti per i quali vale f 1 (xy = f 2 (xy = 0 sono P 1 = (00 P 2 = (01 P 3 = (22 e P 4 = ( 12

2 2 Esercitazione Dinamica locale attorno ai punti di equilibrio Anzitutto calcoliamo la matrice Jacobiana ( 1 Df(xy = 3 (1 2x 1 3 ( 1+2y 2 y x (i P 1 = (00 (ẋ = Df(00 ẏ ( ( x 1 = y 2 0 ( x y λ 1 = e λ 1 = abbiamo quindi un fuoco instabile (Re(λ > 0 (ii P 2 = (01 Anzitutto effettuiamo la traslazione X = x 0 Y = y 1 (ẊẎ ( 1 ( 1 = 3 3 X 1 0 Y λ 1 = e λ2 = abbiamo quindi un punto di sella e gli autovettori corrispondenti sono ( ( 2 v 1 = 2+ 2 e v 13 2 = 2 13 (iii P 3 = (22 Anzitutto effettuiamo la traslazione X = x 2 Y = y 2 (ẊẎ = ( ( 1 1 X 0 2 Y λ 1 = 1 e λ 2 = 2 abbiamo quindi un nodo stabile e gli autovettori corrispondenti sono ( ( 1 1 v 1 = e v 0 2 = 1 Osserviamo che λ 1 < λ 2 quindi le orbite sono tangenti all autovettore v 1

3 (iv P 3 = ( 12 Anzitutto effettuiamo la traslazione X = x+1 Y = y 2 (ẊẎ = ( ( 1 1 X 0 1 Y λ 1 = 1 e λ 2 = 1 abbiamo quindi un autovalore doppio e di conseguenza un nodo degenere instabile; l autovettore corrispondente è ( 1 v 1 = Dinamica globale L analisi del comportamento locale nell intorno dei punti di equilibrio è il punto di partenza per poter comprendere (qualitativamente la dinamica globale del sistema non-lineare Una trattazione completa di questo argomento esula dai contenuti di questo corso e a maggior ragione di queste esercitazioni 1 Tuttavia per sistemi semplici uno studio qualitativo della dinamica globale pu o essere effettuato utilizzando il metodo delle isocline L osservazione banale è che l insieme dei punti {xy R 2 : ẋ = 0} divide il piano in due regioni (non necessariamente connesse quella in cui ẋ > 0 e quella in cui ẋ < 0 Lo stesso vale ovviamente per l insieme dei punti {xy R 2 : ẏ = 0} Osserviamo che naturalmente i punti di intersezione corrispondono ai punti di equilibrio In questo modo abbiamo ottenuto un informazione circa il segno del campo vettoriale e di conseguenza la direzione delle orbite nelle varie regioni del piano deve soddisfare tali condizioni Questo unito al comportamento locale analizzato nel dettaglio in precedenza ci permette di ottenere una descrizione qualitativa globale Riportiamo nel grafico seguente alcune soluzioni del sistema 1 Per i sistemi piani la teoria di PoincaréBendixson descrive in modo completo tutte le possibili situazioni Tale teoria viene approfondita nel corso di Metodi e Modelli Matematici per le Applicazioni

4 4 Esercitazione 3 Esercizio 31: Studiare il sistema {ẋ = y +x(x 2 +y 2 1 ẏ = x+y(x 2 +y 2 1 In particolare studiare le soluzioni stazionarie periodiche e la loro natura Inoltre stabilire se le soluzioni sono prolungabili e i comportamenti asintotici Suggerimenti: utilizzare le coordinate polari 32 Il sistema Lotka-Volterra Il cosiddetto modello preda-predatore è rappresentato dal sistema {ẋ = αx βxy = f1 (xy ẏ = γy +δxy = f 2 (xy con α β γ e δ parametri positivi 321 Calcolo dei punti stazionari I punti stazionari ie i punti per i quali vale f 1 (xy = f 2 (xy = 0 sono P 1 = (00 (morte totale e P 2 = (γ/δα/β (vita all equilibrio 322 Dinamica locale attorno ai punti di equilibrio Anzitutto calcoliamo la matrice Jacobiana ( α βy βx Df(xy = δy γ +δy Segue immediatamente che nell approssimazione lineare P 1 = (00 è un punto di sella mentre P 2 = (γ/δα/β è un centro (mostrare che è un centro anche per il sistema non-lineare

5 323 Costanti del moto Eliminando il tempo otteniamo che si integra immediatamente Segue che la quantità α βy y dy = γ δx dx x Φ(xy = αlogy βy +γlogx δx è una costante del moto (integrale primo Le curve di livello sono riportate nel grafico sottostante dove le frecce sono state ottenute direttamente dalla direzione del campo vettoriale in un punto Abbiamo quindi ottenuto una descrizione qualitativa della dinamica grazie alle curve di livello della funzione Φ(x y Per ottenere informazioni quantitative che giustificano anche il nome di integrale primo dobbiamo utilizzare il teorema della funziona implicita ed invertire rispetto al valore C che assume Φ(x y sulla curva di livello (vedi note del Prof Giorgilli capitolo Esponenziale di matrici Esercizio 32: Data la matrice A = ( λ 1 0 λ verificare che ( exp(ta = e λt 1 t 0 1

6 6 Esercitazione 3 Suggerimento: mostrare che ( A k λ k kλ = k 1 0 λ k Esercizio 33: Data la matrice A = ( osserviamo che A 2 = 0 dunque il calcolo dell esponenziale è banale ( 1 0 exp(ta = 1+At = t 1 Segue immediatamente che {ẋ = 0 ẏ = x x(t = x 0 y(t = y 0 +x 0 t Esercizio 34: Data la matrice A = ( osserviamo che A 2 = 1 da cui segue immediatamente che A 2n = 1 e A 2n+1 = A La soluzione x(t è quindi x(t = ( A 2n t 2n + A2n+1 t 2n+1 x 0 (2n! (2n+1! n 0 ( ( t 2n t 2n+1 = 1x 0 + Ax 0 (2n! (2n+1! n n (( ( cosht 0 0 sinht = + x 0cosht sinh t 0 0 Esercizio 35: Data la matrice A = osserviamo che A 2 =

7 mentre A 3 = 0 La soluzione x(t è quindi x(t = (1+At+ 12 A2 t t = t 1 0 x 0 t 2 2 t x 0

4.1 Sulla linearizzazione attorno agli equilibri

4.1 Sulla linearizzazione attorno agli equilibri ½¾º¼ º¾¼½ Queste note (attualmente, e probabilmente per un bel po ) sono altamente provvisorie e (molto probabilmente) non prive di errori 41 Sulla linearizzazione attorno agli equilibri Come abbiamo già

Dettagli

Queste note (attualmente, e probabilmente per un bel po ) sono altamente provvisorie e (molto probabilmente) non prive di errori.

Queste note (attualmente, e probabilmente per un bel po ) sono altamente provvisorie e (molto probabilmente) non prive di errori. ËÁËÌ ÅÁ ÈÁ ÆÁ ½ Queste note attualmente e probabilmente per un bel po ) sono altamente provvisorie e molto probabilmente) non prive di errori 41 Sistemi 2D Come abbiamo già detto tipicamente è impossibile

Dettagli

2.1 Osservazioni sull esercitazione del

2.1 Osservazioni sull esercitazione del ¾ ½¾º¼ º¾¼½ Queste note (attualmente, e probabilmente per un bel po ) sono altamente provvisorie e (molto probabilmente) non prive di errori. 2.1 Osservazioni sull esercitazione del 5.3.214 2.1.1 Equazione

Dettagli

1.1 Sistemi dinamici monodimensionali

1.1 Sistemi dinamici monodimensionali ½ ½½º¼ º¾¼½ Queste note (attualmente, e probabilmente per un bel po ) sono altamente provvisorie e (molto probabilmente) non prive di errori. 1.1 Sistemi dinamici monodimensionali Esercizio 1.1: Consideriamo

Dettagli

2.1 Esponenziale di matrici

2.1 Esponenziale di matrici ¾ ½ º¼ º¾¼½ Queste note (attualmente e probabilmente per un bel po sono altamente provvisorie e (molto probabilmente non prive di errori Esponenziale di matrici Esercizio : Data la matrice λ A λ calcolare

Dettagli

Queste note (attualmente, e probabilmente per un bel po ) sono altamente provvisorie e (molto probabilmente) non prive di errori.

Queste note (attualmente, e probabilmente per un bel po ) sono altamente provvisorie e (molto probabilmente) non prive di errori. ËÈÇÆ Æ Á Ä Á Å ÌÊÁ Á Queste note (attualmente e probabilmente per un bel po ) sono altamente provvisorie e (molto probabilmente) non prive di errori 31 Sistemi lineari Consideriamo un sistema lineare nella

Dettagli

1 Sistemi Dinamici Esercizio del Parziale del 29/11/2010

1 Sistemi Dinamici Esercizio del Parziale del 29/11/2010 1 Sistemi Dinamici Esercizio del Parziale del 29/11/2010 Si consideri il sistema dinamico con { ẋ = y ẏ = d U(x) U(x) = 2 ( x 2 3 x + 4 ) e x/2. (2) 1. Tracciare qualitativamente le curve di fase del sistema

Dettagli

FM1 - Equazioni differenziali e meccanica

FM1 - Equazioni differenziali e meccanica Corso di laurea in Matematica - Anno Accademico 2006/2007 FM1 - Equazioni differenziali e meccanica Prima prova d esonero (03-04-2006) CORREZIONE Esercizio 1. Lo spettro Σ(A) della matrice A si trova risolvendo

Dettagli

Sistemi Dinamici Corso di Laurea in Matematica Prova parziale del ẋ = y y 2 + 2x

Sistemi Dinamici Corso di Laurea in Matematica Prova parziale del ẋ = y y 2 + 2x Sistemi Dinamici Corso di Laurea in Matematica Prova parziale del --08 Esercizio. 0 punti Studiare al variare del parametro µ R con µ, la stabilità dell origine per il sistema ẋ = µy + y x 3 x 5 ẏ = x

Dettagli

FM210 - Fisica Matematica 1. Esercizio 1. Si consideri il sistema di equazioni differenziali lineari

FM210 - Fisica Matematica 1. Esercizio 1. Si consideri il sistema di equazioni differenziali lineari TUTORATO 1 (5-03-2019) FM210 - Fisica Matematica 1 sercizio 1. Si consideri il sistema di equazioni differenziali lineari ( ) ẋ = Ax, x R 2 3 2, A = 6 1 1. Si calcolino gli autovalori e gli autovettori.

Dettagli

FM210 - Fisica Matematica I

FM210 - Fisica Matematica I FM21 - Fisica Matematica I Seconda Prova Scritta [16-2-212] Soluzioni Problema 1 1. Chiamiamo A la matrice del sistema e cerchiamo anzitutto gli autovalori della matrice: l equazione secolare è (λ + 2β)λ

Dettagli

Sistemi Dinamici Corso di Laurea in Matematica Compito del

Sistemi Dinamici Corso di Laurea in Matematica Compito del Sistemi Dinamici Corso di Laurea in Matematica Compito del 6--9 Esercizio. punti) i) Studiare al variare del parametro µ R, il ritratto di fase del sistema meccanico dato da un punto materiale di massa

Dettagli

Prova Finale di Tipo B e Prova di Accesso alla Laura Special. Dip. Matematica - Università Roma Tre. 2 febbraio 2005

Prova Finale di Tipo B e Prova di Accesso alla Laura Special. Dip. Matematica - Università Roma Tre. 2 febbraio 2005 Prova Finale di Tipo B e Prova di Accesso alla Laura Special Dip. Matematica - Università Roma Tre 2 febbraio 2005 Istruzioni. a) La sufficienza viene raggiunta con un punteggio di almeno 20 punti in ciascuno

Dettagli

In questa lezione ci occuperemo di sistemi dinamici in tempo continuo, rappresentati da equazioni differenziali.

In questa lezione ci occuperemo di sistemi dinamici in tempo continuo, rappresentati da equazioni differenziali. Sistemi dinamici In questa lezione ci occuperemo di sistemi dinamici in tempo continuo, rappresentati da equazioni differenziali. Le equazioni differenziali sono delle equazioni in cui le incognite rispetto

Dettagli

SISTEMI DI EQUAZIONI DIFFERENZIALI- ESERCIZI SVOLTI

SISTEMI DI EQUAZIONI DIFFERENZIALI- ESERCIZI SVOLTI SISTEMI DI EQUAZIONI DIFFERENZIALI- ESERCIZI SVOLTI Generalità sui sistemi Sia xt, yt la soluzione del problema di Cauchy Posto vt = e xtyt, calcolare v x = 3x x = y = x y = 0 Sia x = 3x y y = x + y Scrivere

Dettagli

Note sul sistema di Lotka-Volterra. Prima versione. Commenti e correzioni sono benvenuti.

Note sul sistema di Lotka-Volterra. Prima versione. Commenti e correzioni sono benvenuti. Ottobre 2016 Note sul sistema di Lotka-Volterra Prima versione. Commenti e correzioni sono benvenuti. 1 Introduzione Il sistema di Lotka Volterra (LV), o sistema preda predatore è probabilmente il primo

Dettagli

Il modello preda predatore. Modellistica Ambientale, 2013/14 Dinamiche di Crescita: 2 popo

Il modello preda predatore. Modellistica Ambientale, 2013/14 Dinamiche di Crescita: 2 popo Modellistica Ambientale, 2013/14 Dinamiche di Crescita: 2 popolazioni Il modello preda predatore Interazione di due popolazioni: il modello Preda-Predatore Il modello Preda-Predatore è stato sviluppato

Dettagli

Modelli discreti di due popolazioni

Modelli discreti di due popolazioni Capitolo 7 Modelli discreti di due popolazioni Analogo del caso di un sistema di equazioni differenziali è un sistema di più successioni. Tale sistema descrive un sistema ecologico di due o più popolazioni

Dettagli

Università degli Studi di Bergamo Matematica II (5 e 7,5 crediti) 18 febbraio 2010 Tema A

Università degli Studi di Bergamo Matematica II (5 e 7,5 crediti) 18 febbraio 2010 Tema A Università degli Studi di Bergamo Matematica II (5 e 7,5 crediti) 18 febbraio 21 Tema A Tempo a disposizione: 2 ore. Calcolatrici, libri e appunti non sono ammessi. Ogni esercizio va iniziato all inizio

Dettagli

FM210 - Fisica Matematica I

FM210 - Fisica Matematica I FM21 - Fisica Matematica I Prima Prova Scritta [26-1-212] Soluzioni Problema 1 1. Riscriviamo il sistema come e risolviamo la prima equazione: xt) = x e 3t + 2 ẋ = 3x + 2, ẏ = y + z 3, ż = 2x + z, Inserendo

Dettagli

GRAFICA E COMPUTER. 19 giugno () PLS-Grafica 19 giugno / 32

GRAFICA E COMPUTER. 19 giugno () PLS-Grafica 19 giugno / 32 GRAFICA E COMPUTER 19 giugno 2013 3 2 1 0 1 2 3 3 2 1 0 1 2 3 () PLS-Grafica 19 giugno 2013 1 / 32 Equazioni differenziali modellizzano fenomeni (fisici e non) che variano nel tempo partendo da dati noti,

Dettagli

Il modello preda predatore. Modelli Matematici Ambientali, 2015/16 Dinamiche di Crescita:

Il modello preda predatore. Modelli Matematici Ambientali, 2015/16 Dinamiche di Crescita: Modelli Matematici Ambientali, 2015/16 Dinamiche di Crescita: 2 popolazioni Il modello preda predatore Interazione di due popolazioni: il modello Preda-Predatore Il modello Preda-Predatore è stato sviluppato

Dettagli

Sistemi lineari a coe costanti in IR 2

Sistemi lineari a coe costanti in IR 2 Capitolo 4 Sistemi lineari a coe costanti in IR 2 cienti I sistemi lineari omogenei a coe cienti costanti Ẋ = AX, A 2 IR N IR N, (4.1) possono essere risolti esplicitamente. Indicando con e A l esponenziale

Dettagli

Prova Finale di Tipo B e Prova di Accesso alla Laurea Magistrale 30 Gennaio 2009

Prova Finale di Tipo B e Prova di Accesso alla Laurea Magistrale 30 Gennaio 2009 Prova Finale di Tipo B e Prova di Accesso alla Laurea Magistrale 30 Gennaio 2009 Dipartimento di Matematica Università di Roma Tre U. Bessi, A. Bruno, S. Gabelli, G. Gentile Istruzioni (a) La sufficienza

Dettagli

Prova Finale di Tipo B e Prova di Accesso alla Laura Magistrale. Dip. Matematica - Università Roma Tre

Prova Finale di Tipo B e Prova di Accesso alla Laura Magistrale. Dip. Matematica - Università Roma Tre Prova Finale di Tipo B e Prova di Accesso alla Laura Magistrale Dip. Matematica - Università Roma Tre Prof. U. Bessi, S. Gabelli, G. Gentile, M. Pontecorvo febbraio 2006 Istruzioni. a) La sufficienza viene

Dettagli

ESERCIZI DEL TUTORATO DI FISICA MATEMATICA. 1. Prima parte Esercizio 1.1 (G. Stefani). Sia X il campo vettoriale lineare associato alla matrice A =.

ESERCIZI DEL TUTORATO DI FISICA MATEMATICA. 1. Prima parte Esercizio 1.1 (G. Stefani). Sia X il campo vettoriale lineare associato alla matrice A =. ESERCIZI DEL TUTORATO DI FISICA MATEMATICA GIORGIO STEFANI Sommario. I seguenti esercizi sono stati svolti durante il tutorato per il corso di Fisica Matematica dell a.a. 0-03, tenuto dal Prof. A. Lovison.

Dettagli

Esercizi di preparazione alla PFB

Esercizi di preparazione alla PFB Università degli Studi Roma Tre - Corso di Laurea in Matematica Esercizi di preparazione alla PFB A.A. 0-03 - Docenti: A. Bruno e G. Gentile Tutori: Sara Lamboglia e Maria Chiara Timpone Parte : Analisi

Dettagli

Tutorato Calcolo 2 Simone La Cesa, 15/11/2017

Tutorato Calcolo 2 Simone La Cesa, 15/11/2017 1 Tutorato Calcolo Simone La Cesa, 15/11/017 Esercizi stabilità dei sistemi di equazioni differenziali e Funzioni di Lyapunov 1. Si consideri l equazione: mx + k(x + x 3 ) = 0 moto di una particella di

Dettagli

Traiettorie nello spazio degli stati

Traiettorie nello spazio degli stati . Traiettorie nello spazio degli stati Per mostrare i tipici andamenti delle traiettorie nello spazio degli stati in funzione della posizione dei poli del sistema si farà riferimento ad un esempio: un

Dettagli

FM210 - Fisica Matematica I

FM210 - Fisica Matematica I Corso di laurea in Matematica - Anno Accademico 22/3 FM2 - Fisica Matematica I Appello Scritto [6-9-23] SOLUZIONI Esercizio Il sistema è della forma ẋ = Ax + b con A = b =. Cerchiamo gli autovalori della

Dettagli

FM210 - Fisica Matematica 1 Tutorato VI - Martha Faraggiana e Enzo Livrieri (soluzioni degli esercizi)

FM210 - Fisica Matematica 1 Tutorato VI - Martha Faraggiana e Enzo Livrieri (soluzioni degli esercizi) Corso di laurea in Matematica - Anno Accademico 2012/2013 FM210 - Fisica Matematica 1 Tutorato VI - Martha Faraggiana e Enzo Livrieri (soluzioni degli esercizi) Esercizio 1. a) Il sistema planare assegnato

Dettagli

FM210 - Fisica Matematica I

FM210 - Fisica Matematica I FM10 - Fisica Matematica I Seconda Prova di Esonero [13-01-01] Soluzioni Problema 1 1. Il moto si svolge in un campo di forze centrale in assenza di attrito. Pertanto si avranno due integrali primi del

Dettagli

Traiettorie nello spazio degli stati

Traiettorie nello spazio degli stati Capitolo. INTRODUZIONE. Traiettorie nello spazio degli stati Per mostrare i tipici andamenti delle traiettorie nello spazio degli stati in funzione della posizione dei poli del sistema si farà riferimento

Dettagli

FM210 - Fisica Matematica I

FM210 - Fisica Matematica I Corso di laurea in Matematica - Anno Accademico 03/4 FM0 - Fisica Matematica I Primo appello scritto [0-0-04]. (0 punti). Si consideri il sistema lineare { ẋ = αx + y + ẏ = α x + 3y con α R. (a) Si discuta

Dettagli

1 Il modello preda predatore di Lotka Volterra

1 Il modello preda predatore di Lotka Volterra Il modello preda predatore di Lotka Volterra Questo modello si occupa di un sistema in cui vi sia la coesistenza di prede e predatori. Nel modello entrano due variabili: il numero delle prede e quello

Dettagli

Integrali doppi. Riccarda Rossi. Università di Brescia. Analisi Matematica B

Integrali doppi. Riccarda Rossi. Università di Brescia. Analisi Matematica B Integrali doppi Riccarda Rossi Università di Brescia Analisi Matematica B Riccarda Rossi (Università di Brescia) Integrali doppi Analisi Matematica B 1 / 92 Motivazione per l integrale di Riemann: calcolo

Dettagli

Considerare il moto di un punto materiale di massa m = 1 soggetto ad un potenziale V (x):

Considerare il moto di un punto materiale di massa m = 1 soggetto ad un potenziale V (x): 1 sercizio 1 dove V (x = x x. o tutorato - MA - 17//17 Considerare il moto di un punto materiale di massa m = 1 soggetto ad un potenziale V (x: ẍ = V (x, 1. Scrivere esplicitamente l equazione del moto

Dettagli

Politecnico di Milano Ingegneria Industriale Analisi e Geometria 2

Politecnico di Milano Ingegneria Industriale Analisi e Geometria 2 Politecnico di Milano Ingegneria Industriale Analisi e Geometria Preparazione al primo compito in itinere. (a) Mostrare che l insieme B = {b, b, b 3 }, formato dai vettori b = (,, ), b = (,, ) e b 3 =

Dettagli

FM210 - Fisica Matematica I

FM210 - Fisica Matematica I Corso di laurea in Matematica - Anno Accademico 2/4 FM2 - Fisica Matematica I Prima Prova di Esonero [--2]. (2 punti). Si consideri il sistema lineare ẋ = αx + x 2 + α, ẋ 2 = x + 2α, ẋ = α 2 x 2 con α

Dettagli

Sistemi differenziali ordinari. Davide Manca Calcoli di Processo dell Ingegneria Chimica Politecnico di Milano

Sistemi differenziali ordinari. Davide Manca Calcoli di Processo dell Ingegneria Chimica Politecnico di Milano E8 Sistemi differenziali ordinari E8 Costruzione di un modello E8. Il sistema Predatore-Preda Si desidera studiare l evoluzione dinamica di un ecosistema costituito da due specie: preda e predatore (ad

Dettagli

Sistemi di equazioni differenziali

Sistemi di equazioni differenziali Capitolo 5 Sistemi di equazioni differenziali Molti problemi sono governati non da una singola equazione differenziale, ma da un sistema di più equazioni. Ad esempio questo succede se si vuole descrivere

Dettagli

Il punto (0, 0) è per f : (a) di massimo locale (b) di minimo locale (c) di sella (d) nessuno di questi.

Il punto (0, 0) è per f : (a) di massimo locale (b) di minimo locale (c) di sella (d) nessuno di questi. Corso di Algebra Lineare e Analisi Matematica II Anno Accademico 2013-2014 PRIMA PROVA SCRITTA DI ANALISI MATEMATICA II Pisa, 07.06.14 Nome e cognome Matricola 1. Sia γ : IR IR 3 una curva di classe C

Dettagli

Sistemi Dinamici 2. Esercitazioni

Sistemi Dinamici 2. Esercitazioni Sistemi Dinamici Laurea Triennale in Matematica Applicata - II anno - II semestre Esercitazioni Es. 1 Stabilità Esercizio 1 Dimostrare che per un sistema autonomo ẋ = f(x) in R valgono le seguenti proprietà:

Dettagli

Sistemi differenziali 2 2: esercizi svolti. 1 Sistemi lineari Stabilità nei sistemi lineari

Sistemi differenziali 2 2: esercizi svolti. 1 Sistemi lineari Stabilità nei sistemi lineari Sistemi differenziali : esercizi svolti 1 Sistemi lineari Stabilità nei sistemi lineari 14 1 Sistemi differenziali : esercizi svolti 1 Sistemi lineari Gli esercizi contrassegnati con il simbolo * presentano

Dettagli

Esercizi di teoria dei sistemi

Esercizi di teoria dei sistemi Esercizi di teoria dei sistemi Controlli Automatici LS (Prof. C. Melchiorri) Esercizio Dato il sistema lineare tempo continuo: ẋ(t) 2 y(t) x(t) x(t) + u(t) a) Determinare l evoluzione libera dello stato

Dettagli

LEZIONE 23. ax 2 + bxy + cy 2 + dx + ey + f

LEZIONE 23. ax 2 + bxy + cy 2 + dx + ey + f LEZIONE 23 23.1. Riduzione delle coniche a forma canonica. Fissiamo nel piano un sistema di riferimento Oxy e consideriamo un polinomio di grado 2 in x, y a meno di costanti moltiplicative non nulle, diciamo

Dettagli

Fissiamo nello spazio un sistema di riferimento cartesiano ortogonale O, x, y, z, u.

Fissiamo nello spazio un sistema di riferimento cartesiano ortogonale O, x, y, z, u. Fissiamo nello spazio un sistema di riferimento cartesiano ortogonale O, x, y, z, u. Definizione Una quadriche è il luogo dei punti, propri o impropri, reali o immaginari, che con le loro coordinate omogenee

Dettagli

Foglio di Esercizi 7 Meccanica Razionale a.a. 2018/19 Canale A-L (P. Buttà)

Foglio di Esercizi 7 Meccanica Razionale a.a. 2018/19 Canale A-L (P. Buttà) Foglio di Esercizi 7 Meccanica Razionale a.a. 018/19 Canale A-L P. Buttà Esercizio 1. Sia {O; x, y, z} un sistema di riferimento ortonormale con l asse z diretto secondo la verticale ascendente. Un punto

Dettagli

Equazioni Differenziali Ordinarie

Equazioni Differenziali Ordinarie Equazioni Differenziali Ordinarie Modello di Malthus per la crescita delle popolazioni Ṅ t N t = con coeff di natalità coeff di mortalità Si indica più semplicemente come Primo esempio di equazione differenziale

Dettagli

1 Punti di equilibrio e stabilità: definizioni

1 Punti di equilibrio e stabilità: definizioni ASPETTI QUALITATIVI DELLA TEORIA DELLE EQUAZIONI DIFFERENZIALI (Schema del contenuto delle lezioni e riferimenti bibliografici) Testi [HS] M. Hirsch and S. Smale Differential Equations, Dynamical Systems

Dettagli

X = x + 1. X = x + 1

X = x + 1. X = x + 1 CONICHE. Esercizi Esercizio. Classificare, ridurre a forma canonica (completando i quadrati), e disegnare le seguenti coniche: γ : x y + x = 0; γ : x + 4x y + = 0; γ 3 : x + y + y + 0 = 0; γ 4 : x + y

Dettagli

MOVIMENTO DEI SISTEMI LINEARI

MOVIMENTO DEI SISTEMI LINEARI MOVIMENTO DEI SISTEMI LINEARI I sistemi continui x& = Ax + Bu Formula di Lagrange 3 3 e At = I + At + A t + A t! 3! Nei sistemi lineari, quindi x( t) = x ( t) + x ( t) l Inoltre x l (t) e x f (t) sono

Dettagli

Politecnico di Milano Ingegneria Industriale Analisi e Geometria 1 Seconda prova in itinere 31 gennaio 2011

Politecnico di Milano Ingegneria Industriale Analisi e Geometria 1 Seconda prova in itinere 31 gennaio 2011 Politecnico di Milano Ingegneria Industriale Analisi e Geometria Seconda prova in itinere 3 gennaio Cognome: Nome: Matricola: Compito A Es. : 8 punti Es. : 8 punti Es. 3: 8 punti Es. 4: 8 punti Es. 5:

Dettagli

Cenni sulle coniche 1.

Cenni sulle coniche 1. 1 Premessa Cenni sulle coniche 1. Corso di laurea in Ingegneria Civile ed Edile Università degli Studi di Palermo A.A. 2013/2014 prof.ssa Paola Staglianò (pstagliano@unime.it) Scopo della geometria analitica

Dettagli

Esercizi proposti di Meccanica Razionale

Esercizi proposti di Meccanica Razionale Esercizi proposti di Meccanica Razionale Docente Alessandro Teta a.a. 2015/16 1 Equazioni differenziali ordinarie Esercizio 1.1. Si consideri il sistema ẋ = ax (1 y) ẏ = cy (1 x) definito in D = {(x, y)

Dettagli

Modellistica e Gestione dei Sistemi Ambientali

Modellistica e Gestione dei Sistemi Ambientali Università degli Studi di Siena Facoltà di Ingegneria Modellistica e Gestione dei Sistemi Ambientali Dispense sull analisi di stabilità di sistemi dinamici Prof.ssa Chiara Mocenni A. A. 2009/2010 ... Negli

Dettagli

Da Google alle immagini satellitari: il valore degli autovalori. V. Simoncini. Dipartimento di Matematica, Università di Bologna

Da Google alle immagini satellitari: il valore degli autovalori. V. Simoncini. Dipartimento di Matematica, Università di Bologna Da Google alle immagini satellitari: il valore degli autovalori V. Simoncini Dipartimento di Matematica, Università di Bologna valeria@dm.unibo.it 1 Programma dell intervento Gli autovalori questi sconosciuti

Dettagli

Registro dell insegnamento. Emanuele Paolini

Registro dell insegnamento. Emanuele Paolini UNIVERSITÀ DEGLI STUDI DI FIRENZE Registro dell insegnamento Anno Accademico 2009/2010 Facoltà: Insegnamento: Ingegneria (Università di Pisa) Analisi Matematica II e Complementi di Analisi Matematica Settore:..........................

Dettagli

L algebra lineare nello studio delle coniche

L algebra lineare nello studio delle coniche L algebra lineare nello studio delle coniche È possibile utilizzare le tecniche dell algebra lineare per studiare e classificare le coniche. Data l equazione generale di una conica, si considera la sua

Dettagli

Esercizio 1. Si consideri il sistema di equazioni differenziali lineari. ẋ = Ax, x R 4, A =

Esercizio 1. Si consideri il sistema di equazioni differenziali lineari. ẋ = Ax, x R 4, A = Tutorato I - Roberto Feola e Luca Battaglia (04-03-09) Esercizio. Si consideri il sistema di equazioni differenziali lineari 2 0 0 ẋ = Ax, x R 3, A = 2 0, 5 3 con dato iniziale x(0) = (,,0). Se ne trovi

Dettagli

ANALISI E SIMULAZIONE DI SISTEMI DINAMICI. Lezione XI: Stabilità interna

ANALISI E SIMULAZIONE DI SISTEMI DINAMICI. Lezione XI: Stabilità interna ANALISI E SIMULAZIONE DI SISTEMI DINAMICI Lezione XI: Stabilità interna Stabilità interna e esterna Stabilità alla Lyapunov Stabilità asintotica I sistemi lineari Esempi 11-1 Tipi di Stabilità Idea intuitiva

Dettagli

Prova Esame 10 gennaio 08 Risposte agli esercizi d esame. Esercizio 1

Prova Esame 10 gennaio 08 Risposte agli esercizi d esame. Esercizio 1 Prova Esame gennaio 8 Risposte agli esercizi d esame Testo: Esercizio La crescita dei tumori può essere modellata con l equazione di Gompertz: dr R = a R ln K dove R è la dimensione (raggio [=] L) della

Dettagli

ANALISI MATEMATICA II 8 Febbraio 2010 ore 11:00 Versione A. Analisi II 7,5 cr. Analisi D Analisi II V.O. es. 1,2,3 es. 2,4,5 es 2,4,5.

ANALISI MATEMATICA II 8 Febbraio 2010 ore 11:00 Versione A. Analisi II 7,5 cr. Analisi D Analisi II V.O. es. 1,2,3 es. 2,4,5 es 2,4,5. ANALISI MAEMAICA II 8 Feraio ore : Versione A Nome, Cognome: Docente: Corso di Laurea: Matricola Analisi II 7,5 cr. Analisi D Analisi II V.O. es.,,3 es.,4,5 es,4,5 Codice corso 9ACI ESERCIZIO Dato il sistema

Dettagli

Appello di Sistemi Dinamici Prova scritta del 22 settembre 2017

Appello di Sistemi Dinamici Prova scritta del 22 settembre 2017 Appello di Sistemi Dinamici Prova scritta del 22 settembre 2017 ẋ = x(µ x 2 )(x µ + 2) 2. Si calcoli la matrice esponenziale della matrice [ ] 2 4. 0 2 3. Dato il sistema differenziale lineare non omogeneo

Dettagli

Daniela Lera A.A

Daniela Lera A.A Daniela Lera Università degli Studi di Cagliari Dipartimento di Matematica e Informatica A.A. 2014-2015 Equazioni Differenziali Si consideri il seguente problema: Quali sono le curve y = f (x) del piano

Dettagli

Complementi di Analisi Matematica. Foglio di esercizi n.6 16/3/2018 (Aggiornamento del 6/4/2018)

Complementi di Analisi Matematica. Foglio di esercizi n.6 16/3/2018 (Aggiornamento del 6/4/2018) Complementi di Analisi Matematica. Foglio di esercizi n.6 16/3/2018 (Aggiornamento del 6/4/2018) Esercizio 1 Si consideri l insieme Esercizi sulla funzione implicita e superfici Z = {(x, y) R 2 2y xe y

Dettagli

Esercizi di Analisi Matematica C. Ingegneria Matematica Politecnico Milano. Marco Squassina AA

Esercizi di Analisi Matematica C. Ingegneria Matematica Politecnico Milano. Marco Squassina AA Esercizi di Analisi Matematica C Ingegneria Matematica Politecnico Milano Marco Squassina AA 2005-2006 Indice Capitolo 1. Esercizi di Analisi Matematica C 5 1. Equazioni del Primo Ordine 5 2. Equazioni

Dettagli

Geometria BAER Canale I Esercizi 12

Geometria BAER Canale I Esercizi 12 Geometria BAER Canale I Esercizi Alcuni di questi esercizi forse sono un po difficili visto che abbiamo fatto questa parte un po in fretta, ma si può sempre provare. Esercizio. Si scrivano le equazioni

Dettagli

Analisi Matematica 2. Ottimizzazione in due variabili. Ottimizzazione in due variabili 1 / 31

Analisi Matematica 2. Ottimizzazione in due variabili. Ottimizzazione in due variabili 1 / 31 Analisi Matematica 2 Ottimizzazione in due variabili Ottimizzazione in due variabili 1 / 31 Ottimizzazione. Figure: Massimi e minimi relativi (o locali), Massimi e minimi assoluti (o globali) Ottimizzazione

Dettagli

FM1 - Equazioni differenziali e meccanica. Il metodo di variazione delle costanti (Livia Corsi)

FM1 - Equazioni differenziali e meccanica. Il metodo di variazione delle costanti (Livia Corsi) Corso di laurea in Matematica - Anno Accademico 009/010 FM1 - Equazioni differenziali e meccanica Il metodo di variazione delle costanti (Livia Corsi Il metodo di variazione delle costanti è una tecnica

Dettagli

Le quadriche. Fissiamo nello spazio un sistema di riferimento cartesiano ortogonale O, x, y, z, u.

Le quadriche. Fissiamo nello spazio un sistema di riferimento cartesiano ortogonale O, x, y, z, u. Le quadriche Fissiamo nello spazio un sistema di riferimento cartesiano ortogonale O, x, y, z, u. Definizione Una quadrica è il luogo dei punti, propri o impropri, reali o immaginari, che con le loro coordinate

Dettagli

Corso di Biomatematica 1 Esame del giorno 24 Giugno Scrivere chiaramente e in stampatello in testa all elaborato:

Corso di Biomatematica 1 Esame del giorno 24 Giugno Scrivere chiaramente e in stampatello in testa all elaborato: Corso di Biomatematica Esame del giorno 24 Giugno 204 Scrivere chiaramente e in stampatello in testa all elaborato: Nome, Cognome, numero di matricola. Tempo a disposizione: DUE ORE E MEZZA. Risolvere

Dettagli

Modelli di Guerra e Pace

Modelli di Guerra e Pace UNIVERSITÀ DEGLI STUDI DI FIRENZE Facoltà di Scienze Matematiche Fisiche e Naturali Corso di Laurea in Matematica Anno accademico 2007/2008 Modelli di Guerra e Pace Relazione finale di Emanuele Bucarelli

Dettagli

Oscillazioni e Caos nelle Equazioni Differenziali Ordinarie

Oscillazioni e Caos nelle Equazioni Differenziali Ordinarie Oscillazioni e Caos nelle Equazioni Differenziali Ordinarie Gioele Maddalena Liceo Cantonale di Locarno 15 gennaio 2015 Indice 1 Introduzione - Fil rouge 2 Oscillazioni semplici Pendolo libero Classificazione

Dettagli

Esercitazione n 6. Esercizio 1: Determinare i punti di massimo e minimo relativo delle seguenti funzioni: (b)f(x, y) = 4y 4 16x 2 y + x

Esercitazione n 6. Esercizio 1: Determinare i punti di massimo e minimo relativo delle seguenti funzioni: (b)f(x, y) = 4y 4 16x 2 y + x Esercitazione n 6 1 Massimi e minimi di funzioni di più variabili Esercizio 1: Determinare i punti di massimo e minimo relativo delle seguenti funzioni: (a)f(x, y) = x 3 + y 3 + xy (b)f(x, y) = 4y 4 16x

Dettagli

k 2 m 1 u 2 Figura 1 z 1 β m 1 ż 1 + β m 1 ż m 2 z 2 β m 2 ẋ = A x + B u y = C x + D u

k 2 m 1 u 2 Figura 1 z 1 β m 1 ż 1 + β m 1 ż m 2 z 2 β m 2 ẋ = A x + B u y = C x + D u Esercizio Si consideri il sistema meccanico riportato in Figura, dove m e m sono le masse dei carrelli, z e z sono le rispettive posizioni, k e k sono i coefficienti elastici delle molle, e β è un coefficiente

Dettagli

Es. 1 Es. 2 Es. 3 Es. 4 Totale Teoria. Punteggi degli esercizi: Es.1: 8 punti; Es.2: 8 punti; Es.3: 8 punti; Es.4: 6 punti.

Es. 1 Es. 2 Es. 3 Es. 4 Totale Teoria. Punteggi degli esercizi: Es.1: 8 punti; Es.2: 8 punti; Es.3: 8 punti; Es.4: 6 punti. Es. 1 Es. 2 Es. 3 Es. Totale Teoria Analisi e Geometria 1 Seconda prova in itinere 0 Febbraio 2013 Compito A Docente: Politecnico di Milano Ingegneria Industriale Cognome: Nome: Matricola: Punteggi degli

Dettagli

Esame scritto di Teoria dei Sistemi - Modena - 22 Giugno Domande

Esame scritto di Teoria dei Sistemi - Modena - 22 Giugno Domande Esame scritto di Teoria dei Sistemi - Modena - Giugno 5 - Domande Per ciascuno dei seguenti test a risposta multipla segnare con una crocetta le affermazioni che si ritengono giuste. Alcuni test sono seguiti

Dettagli

Università degli Studi di Bergamo Facoltà di Ingegneria. Matematica II Ingegneria Edile. Appello del 10 settembre 2007 AC = (2, 2, 2),

Università degli Studi di Bergamo Facoltà di Ingegneria. Matematica II Ingegneria Edile. Appello del 10 settembre 2007 AC = (2, 2, 2), Università degli Studi di Bergamo Facoltà di Ingegneria Matematica II Ingegneria Edile Appello del 1 settembre 7 Cognome e Nome Matr. 1.1. Si considerino nello spaio tridimensionale R 3 i tre punti A (3,

Dettagli

Controlli Automatici e Teoria dei Sistemi Stabilità dei Moti e delle Risposte nei Sistemi a Stato Vettore

Controlli Automatici e Teoria dei Sistemi Stabilità dei Moti e delle Risposte nei Sistemi a Stato Vettore Controlli Automatici e Teoria dei Sistemi Stabilità dei Moti e delle Risposte nei Sistemi a Stato Vettore Prof. Roberto Guidorzi Dipartimento di Elettronica, Informatica e Sistemistica Università di Bologna

Dettagli

Prova Scritta di di Meccanica Analitica. 12 Gennaio 2017

Prova Scritta di di Meccanica Analitica. 12 Gennaio 2017 Prova Scritta di di Meccanica Analitica 1 Gennaio 017 Problema 1 Si studi il sistema meccanico costituito da un punto materiale di massa unitaria soggetto al potenziale V x) = a lnx) x > 0 x a) Scrivere

Dettagli

Integrali doppi. Hynek Kovarik. Analisi Matematica 2. Università di Brescia

Integrali doppi. Hynek Kovarik. Analisi Matematica 2. Università di Brescia Integrali doppi Hynek Kovarik Università di Brescia nalisi Matematica 2 Hynek Kovarik (Università di Brescia) Integrali curvilinei nalisi Matematica 2 1 / 47 Motivazione: calcolo di volume Hynek Kovarik

Dettagli

Soluzione del Compitino di Sistemi Dinamici del 16 novembre 2016

Soluzione del Compitino di Sistemi Dinamici del 16 novembre 2016 Soluzione del Compitino di Sistemi Dinamici del 6 novembre 6 Esercizio Sia data la seguente matrice 3 3 a coecienti reali 4 A = 3. / 9/ Si consideri il seguente sistema dinamico continuo lineare: Ẋ = AX

Dettagli

ANALISI MATEMATICA II 6 luglio 2010 Versione A

ANALISI MATEMATICA II 6 luglio 2010 Versione A ANALISI MATEMATICA II 6 luglio 2 Versione A Nome Cognome: Matricola Codice corso Docente: Corso di Laurea: Analisi II 75 cr. Analisi D Analisi II V.O. Analisi C es. 23 es. 245 es 24 es. es. 3 pinti b c

Dettagli

Prima prova in itinere di Analisi Matematica 2 Ingegneria Elettronica. Politecnico di Milano. A.A. 2017/2018. Prof. M. Bramanti.

Prima prova in itinere di Analisi Matematica 2 Ingegneria Elettronica. Politecnico di Milano. A.A. 2017/2018. Prof. M. Bramanti. Prima prova in itinere di Analisi Matematica Ingegneria Elettronica. Politecnico di Milano Es. Punti A.A. 07/08. Prof. M. Bramanti Tema n 4 5 6 Tot. Cognome e nome (in stampatello) codice persona (o n

Dettagli

Concorso a n.8 borse per l avviamento alla ricerca riservate ad iscritti ai corsi di Laurea Magistrale in Matematica, a.a

Concorso a n.8 borse per l avviamento alla ricerca riservate ad iscritti ai corsi di Laurea Magistrale in Matematica, a.a Concorso a n.8 borse per l avviamento alla ricerca riservate ad iscritti ai corsi di Laurea Magistrale in Matematica, a.a. 16-17 Istituto Nazionale di Alta Matematica F. Severi SVOLGIMENTO PROVA SCRITTA

Dettagli

c.l. in Matematica (F7X) - Analisi Matematica 3 - prof. M.Vignati II prova in itinere versione a

c.l. in Matematica (F7X) - Analisi Matematica 3 - prof. M.Vignati II prova in itinere versione a Cognome Nome Matr. c.l. in Matematica (F7X) - Analisi Matematica 3 - prof. M.Vignati 22.1.2014 II prova in itinere versione a 1a] (6 punti) Dopo aver determinato per quali a, b R la forma differenziale

Dettagli

Equazioni Differenziali

Equazioni Differenziali Università degli Studi di Udine Anno Accademico 2012/2013 Facoltà di Scienze Matematiche, Fisiche e Naturali Corso di Laurea in Matematica Equazioni Differenziali Appello del 5 febbraio 2013 N.B.: scrivere

Dettagli

2x 2 + 4x 2y + 1 = 2(x 2 + 2x + 1 1) 2y + 1 = 2(x + 1) 2 2(y ) = 0.

2x 2 + 4x 2y + 1 = 2(x 2 + 2x + 1 1) 2y + 1 = 2(x + 1) 2 2(y ) = 0. CONICHE E QUADRICHE. Esercizi Esercizio. Classificare, ridurre a forma canonica (completando i quadrati), e disegnare le seguenti coniche: γ : x y + x = 0; γ : x + 4x y + = 0; γ : x + y + y + 0 = 0; γ

Dettagli

Prova Finale di Tipo B e Prova di Accesso alla Laurea Magistrale 3 Ottobre 2008

Prova Finale di Tipo B e Prova di Accesso alla Laurea Magistrale 3 Ottobre 2008 Prova Finale di Tipo B e Prova di Accesso alla Laurea Magistrale 3 Ottobre 2008 Dipartimento di Matematica Università di Roma Tre U. Bessi, A. Bruno, S. Gabelli, G. Gentile Istruzioni (a) La sufficienza

Dettagli

ESERCITAZIONE SUI PUNTI STAZIONARI DI FUNZIONI LIBERE E SULLE FUNZIONI OMOGENEE

ESERCITAZIONE SUI PUNTI STAZIONARI DI FUNZIONI LIBERE E SULLE FUNZIONI OMOGENEE ESERCITAZIONE SUI PUNTI STAZIONARI DI FUNZIONI LIBERE E SULLE FUNZIONI OMOGENEE 1 Funzioni libere I punti stazionari di una funzione libera di più variabili si ottengono risolvendo il sistema di equazioni

Dettagli

Prima prova in itinere di Analisi Matematica 2 Ingegneria Elettronica. Politecnico di Milano. A.A. 2016/2017. Prof. M. Bramanti.

Prima prova in itinere di Analisi Matematica 2 Ingegneria Elettronica. Politecnico di Milano. A.A. 2016/2017. Prof. M. Bramanti. Prima prova in itinere di Analisi Matematica Ingegneria Elettronica. Politecnico di Milano Es. Punti A.A. 016/017. Prof. M. Bramanti 1 Tema n 1 4 5 6 Tot. Cognome e nome in stampatello) codice persona

Dettagli

Analisi Matematica 3 (Fisica) Prova scritta del 17 febbraio 2012 Un breve svolgimento delle versioni A

Analisi Matematica 3 (Fisica) Prova scritta del 17 febbraio 2012 Un breve svolgimento delle versioni A Analisi Matematica 3 (Fisica) Prova scritta del 7 febbraio Un breve svolgimento delle versioni A Vi sarò grato per la segnalazione di eventuali errori. Esercizio. (a) Dimostrare che l equazione () (3 +

Dettagli

Politecnico di Milano Ingegneria Industriale Analisi e Geometria 1 Terzo Appello 8 Settembre 2014

Politecnico di Milano Ingegneria Industriale Analisi e Geometria 1 Terzo Appello 8 Settembre 2014 Politecnico di Milano Ingegneria Industriale Analisi e Geometria Terzo Appello 8 Settembre 24 Cognome: Nome: Matricola: Compito A Es.: 9 punti Es.2: 8 punti Es.3: 8 punti Es.4: 8 punti Totale. Sia F la

Dettagli

A Analisi Matematica 2 (Corso di Laurea in Informatica) Simulazione compito d esame

A Analisi Matematica 2 (Corso di Laurea in Informatica) Simulazione compito d esame COGNOME NOME Matr. Firma dello studente A Analisi Matematica (Corso di Laurea in Informatica) Simulazione compito Tempo: ore. Prima parte: test a risposta multipla. Una ed una sola delle 4 affermazioni

Dettagli

Complementi di Analisi Matematica. Foglio di esercizi n.9 10/04/2017 (Aggiornamento del 26/04/2017)

Complementi di Analisi Matematica. Foglio di esercizi n.9 10/04/2017 (Aggiornamento del 26/04/2017) Complementi di Analisi Matematica. Foglio di esercizi n.9 0/04/207 (Aggiornamento del 26/04/207) Esercizi su equazioni differenziali Esercizio Tracciare i grafici qualitativi delle soluzioni dell equazione

Dettagli

Terzo appello di Analisi Matematica 2 Ingegneria Elettronica. Politecnico di Milano Es. Punti A.A. 2016/2017. Prof. M. Bramanti.

Terzo appello di Analisi Matematica 2 Ingegneria Elettronica. Politecnico di Milano Es. Punti A.A. 2016/2017. Prof. M. Bramanti. Terzo appello di Analisi Matematica Ingegneria Elettronica. Politecnico di Milano Es. Punti A.A. 6/7. Prof. M. Bramanti Tema n 5 6 7 Tot. Cognome e nome in stampatello codice persona o n di matricola n

Dettagli

Istituzioni di Matematica II 5 Luglio 2010

Istituzioni di Matematica II 5 Luglio 2010 Istituzioni di Matematica II 5 Luglio 010 1. Classificare, al variare del parametro α R, la forma quadratica (1 + α )x + 4xy + αy.. i) Si determinino tutti i punti critici della seguente funzione f(x,

Dettagli