Il modello preda predatore. Modellistica Ambientale, 2013/14 Dinamiche di Crescita: 2 popo

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Il modello preda predatore. Modellistica Ambientale, 2013/14 Dinamiche di Crescita: 2 popo"

Transcript

1 Modellistica Ambientale, 2013/14 Dinamiche di Crescita: 2 popolazioni Il modello preda predatore

2 Interazione di due popolazioni: il modello Preda-Predatore Il modello Preda-Predatore è stato sviluppato dal matematico italiano Vito Volterra ( ) per studiare un fenomeno che era stato evidenziato dallo zoologo Umberto D Ancona. Analizzando le statistiche relative alla pesca nel nord dell Adriatico, D Ancona aveva osservato che durante gli ultimi anni della prima guerra mondiale e negli anni immediatamente seguenti si era verificato un sostanziale aumento della percentuale dei predatori (Selaci) pescati. L unica circostanza che appariva collegabile a questo incremento era la diminuzione dell attività di pesca causata dalle attività belliche.

3 Il modello x(t) : popolazione delle prede y(t) : popolazione dei predatori dx(t) = F x (x(t), y(t)) = x(t)[a αy(t)] dy(t) = F y (x(t), y(t)) = y(t)[ b + βx(t)] con a, b non negativi, e α e β positivi.

4 Equilibrio I valori delle due popolazioni all equilibrio, se esiste, sono ottenuti risolvendo il sistema x[a αy] = 0 y[ b + βx] = 0 È facile verificare che l equilibrio si ottiene o per x = y = 0, caso banale e poco interessante, oppure in corrispondenza ai valori x = b β, y = a α.

5 Equilibrio Consideriamo una soluzione della forma: (x + ɛ(t), y + η(t)) (ɛ e η sono gli scostamenti di x e di y dall equilibrio) Imponendo che sia soluzione dell equazione differenziale, abbiamo il sistema: ossia d(x + ɛ(t)) = F x (x + ɛ(t), y + η(t)) d(y + η(t)) = F y (x + ɛ(t), y + η(t)) dɛ(t) = F x (x + ɛ(t), y + η(t)) dη(t) = F y (x + ɛ(t), y + η(t))

6 Approssimando F x ed F y tramite la serie di Taylor troncata al termine lineare, abbiamo F x (x + ɛ, y + η) = F x (x, y ) + ɛ F x F y (x + ɛ, y + η) = F y (x, y ) + ɛ F y + η F x + η F y,, Ricordando che F x (x, y ) = F y (x, y ) = 0, sostituendo le approssimazioni nel modello si ottiene il seguente sistema linearizzato: dɛ(t) dη(t) = ɛ F x = ɛ F y + η F x + η F y,,

7 Nel nostro caso: dɛ(t) = (a αy )ɛ αx η Ponendo dη(t) = βy ɛ + (βx b)η x = b β, y = a α otteniamo il sistema dɛ(t) dη(t) = αb β η(t) = βa α ɛ(t)

8 Risolviamo il sistema lineare dɛ(t) dη(t) = αb β η(t) = βa α ɛ(t) Derivando la prima equazione e sostituendo dη(t) otteniamo nella seconda d 2 ɛ(t) 2 β αb = αb β d 2 ɛ(t) 2 dη(t) = βa α ɛ(t) Consideriamo la seconda equazione nella forma d 2 ɛ(t) 2 + abɛ(t) = 0

9 L equazione numerica associata e z 2 + ab = 0 z = ±i ab e pertanto si ha la soluzione generale η(t) = β αb ɛ(t) = ρ 1 cos(ωt) + ρ 2 sen(ωt), dɛ(t) dove ω = ab, ρ 1, ρ 2 R. = βω αb [ρ 1sen(ωt) ρ 2 cos(ωt)], Osserviamo che le funzioni ɛ(t) e η(t) non ammettono limite per t + e pertanto non si puo concludere che la soluzione (x, y) = (x, y ) e asintoticamente stabile.

10 Analizziamo le soluzioni particolari ottenute ponendo ρ 1 = 0 oppure ρ 2 = 0. Consideriamo, in particolare, il caso in cui ρ 2 = 0, (l altro caso e analogo). Otteniamo le soluzioni ɛ(t) = ρ 1 cos( abt) η(t) = β a α ρ 1 b sen( abt), Al variare del valore dato a ρ 1 abbiamo diverse soluzioni ma comunque di tipo oscillatorio. La simulazione conferma che le soluzioni del modello sono anche esse di tipo oscillatorio attorno alla soluzione di equilibrio.

11 Andamento oscillatorio Prede-Predatori , , , , Time (Week) Predatori Equilibrio Predatori Prede Equilibrio Prede

12 Andamento oscillatorio Prede-Predatori Prede Predatori

13 Introduciamo la pesca ν : percentuale di pesci pescati nell unità di tempo dx(t) dy(t) = x(t)[a αy(t) ν] = y(t)[ b + βx(t) ν] Nuovi punti di equilibrio: x = b + ν β y = a ν α La pesca ha l effetto di innalzare il punto di equilibrio delle prede e di diminuire corrispondentemente quello dei predatori.

14 Stabilita delle soluzioni di equilibrio Come precedentemente osservato, l analisi della stabilita di una soluzione di equilibrio (x, y ),ossia tale che: F x (x, y ) = F y (x, y ) = 0, puo essere ricondotta allo studio della stabilita della soluzione (ɛ, η) (0, 0) per il sistema linearizzato: dɛ(t) = ɛ F x + η F x, dη(t) = ɛ F y + η F y, E possibile dimostrare che (x, y ) e asintoticamente stabile per il sistema dato se la soluzione (ɛ, η) (0, 0) e asintoticamente stabile per il sistema linearizzato.

15 Stabilita delle soluzioni di equilibrio Ricordiamo che la soluzione (x, y ) si dice asintoticamente stabile per un sistema dinamico se data una qualsiasi soluzione (x(t), y(t)) del sistema sono verificate le seguenti condizioni: (i) La coppia (x(t), y(t)) e stabile, ossia si mantiene vicino a (x, y ) se (x(0), y(0)) e sufficientemente vicino a (x, y ); (ii) lim (x(t), y(t)) = (x, y ). t In particolare, osserviamo che affinche la soluzione (ɛ, η ) (0, 0) sia asintoticamente stabile per il sistema linearizzato occorre e basta che una qualsiasi soluzione (ɛ(t), η(t)) del sistema linearizzato verifichi le seguenti condizioni: lim ɛ(t) = 0, lim t η(t) = 0 t

16 La stabilita della soluzione nulla del sistema linearizzato si puo determinare considerando gli autovalori della matrice ) A = ( Fx F y ove, per semplicita, Fx (x,y ) le altre componenti. F x F y = Fx (x ed analogamente per,y ) Teorema Siano λ 1 = γ 1 + iω e λ 2 = γ 2 iω gli autovalori di A. (i) Se γ 1 < 0 e γ 2 < 0, allora la soluzione (x, y ) e asintoticamente stabile. (ii) Se γ 1 > 0 oppure γ 2 > 0, allora la soluzione (x, y ) non e stabile. Osserviamo che, se gli autovalori sono reali allora ω = 0 e λ i = γ i, i = 1, 2, mentre se gli autovalori sono complessi allora ω 0 e γ 1 = γ 2.

17 Il modello di Samuelson x(t) : popolazione delle prede y(t) : popolazione dei predatori dx(t) = F x (x(t), y(t)) = x(t)[a γx(t) αy(t)] dy(t) = F y (x(t), y(t)) = y(t)[ b + βx(t)] ove i parametri a, b, α, γ e β si suppongono positivi.

18 Equilibrio I valori delle due popolazioni all equilibrio sono ottenuti risolvendo il sistema x[a γx αy] = 0 y[ b + βx] = 0 È facile verificare che l equilibrio si ottiene o per x = y = 0, oppure in corrispondenza ai valori x = a γ, y = 0 x = b β, y = aβ γb. αβ

19 Consideriamo la matrice A = ( Fx F y F x F y ) Abbiamo F x (x, y ) = a 2γx αy ; F x (x, y ) = αx F y (x, y ) = βy, F y (x, y ) = b + βx

20 Stabilita dei punti di equilibrio Consideriamo il punto x = 0, y = 0. Abbiamo ( ) a 0 A = 0 b Essendo la matrice diagonale, e immediato verificare che gli autovalori sono λ 1 = a, λ 2 = b ed essendo a > 0 il punto (0, 0) non e stabile.

21 Stabilita dei punti di equilibrio Consideriamo il punto x = a γ, y = 0. Abbiamo A = ( ) a αa γ 0 b + aβ γ Gli autovalori di A sono λ 1 = a, λ 2 = b + aβ γ. Essendo a > 0 il punto ( a γ, 0) e asintoticamente stabile se b + aβ γ < 0 ossia aβ < bγ.

22 Stabilita dei punti di equilibrio Consideriamo il punto x = b β, y = aβ γb. αβ Supponiamo y 0 da cui aβ bγ. Abbiamo ( ) A = L equazione caratteristica e : det(a λi ) = det γb β αb β aβ γb α 0 ( γb ) β λ αb β = 0 λ aβ γb α da cui λ 2 + λ γb β + ab γb2 β = 0. (1)

23 Se nell equazione (1) si ha 0 allora λ = γb β La parte reale delle soluzioni e : ± i 2 Re(λ) = γb 2β < 0 e la soluzione (x, y ) e asintoticamente stabile. Se nell equazione (1) si ha > 0 allora: se aβ γb > 0 le radici sono entrambe negative e la soluzione (x, y ) e asintoticamente stabile; se aβ γb = 0, una radice della (1) e negativa ed una e nulla, per cui non si puo determinare se (x, y ) e asintoticamente stabile.

Il modello preda predatore. Modelli Matematici Ambientali, 2015/16 Dinamiche di Crescita:

Il modello preda predatore. Modelli Matematici Ambientali, 2015/16 Dinamiche di Crescita: Modelli Matematici Ambientali, 2015/16 Dinamiche di Crescita: 2 popolazioni Il modello preda predatore Interazione di due popolazioni: il modello Preda-Predatore Il modello Preda-Predatore è stato sviluppato

Dettagli

6. Dinamica dei Sistemi (1)

6. Dinamica dei Sistemi (1) 6. Dinamica dei Sistemi (1) Corso di Simulazione Anno accademico 2006/07 Dinamica dei sistemi Riprendiamo il modello Preda-Predatore visto nel primo capitolo Non ci interessa l informazione riguardante

Dettagli

Modellistica ambientale a.a. 2009/10 Dinamiche di crescita

Modellistica ambientale a.a. 2009/10 Dinamiche di crescita Modellistica ambientale a.a. 2009/10 Dinamiche di crescita Dinamiche di crescita Consideriamo la crescita di una popolazione, assumendo che ci siano limiti alle risorse utilizzabili x 0 entità della popolazione

Dettagli

SISTEMI DI EQUAZIONI DIFFERENZIALI- ESERCIZI SVOLTI

SISTEMI DI EQUAZIONI DIFFERENZIALI- ESERCIZI SVOLTI SISTEMI DI EQUAZIONI DIFFERENZIALI- ESERCIZI SVOLTI Generalità sui sistemi Sia xt, yt la soluzione del problema di Cauchy Posto vt = e xtyt, calcolare v x = 3x x = y = x y = 0 Sia x = 3x y y = x + y Scrivere

Dettagli

Modelli matematici ambientali a.a. 2015/16 Introduzione alle equazioni differenziali

Modelli matematici ambientali a.a. 2015/16 Introduzione alle equazioni differenziali Modelli matematici ambientali a.a. 2015/16 Introduzione alle equazioni differenziali Argomenti trattati Introduzione ai modelli Equazioni differenziali del primo ordine Metodi risolutivi:integrazione diretta

Dettagli

Sistemi differenziali 2 2: esercizi svolti. 1 Sistemi lineari Stabilità nei sistemi lineari

Sistemi differenziali 2 2: esercizi svolti. 1 Sistemi lineari Stabilità nei sistemi lineari Sistemi differenziali : esercizi svolti 1 Sistemi lineari Stabilità nei sistemi lineari 14 1 Sistemi differenziali : esercizi svolti 1 Sistemi lineari Gli esercizi contrassegnati con il simbolo * presentano

Dettagli

Simulazione a.a. 2008/09 Crescita di popolazioni

Simulazione a.a. 2008/09 Crescita di popolazioni Simulazione a.a. 2008/09 Crescita di popolazioni Un semplice esempio: la dinamica di una popolazione Si voglia studiare la crescita di una popolazione. Si hanno le seguenti variabili : livello: popolazione

Dettagli

Simulazione a.a. 2009/10 Crescita di popolazioni

Simulazione a.a. 2009/10 Crescita di popolazioni Simulazione a.a. 2009/10 Crescita di popolazioni Un semplice esempio: la dinamica di una popolazione Si voglia studiare la crescita di una popolazione. Si hanno le seguenti variabili : livello: popolazione

Dettagli

ẋ 1 = 2x 1 + (sen 2 (x 1 ) + 1)x 2 + 2u (1) y = x 1

ẋ 1 = 2x 1 + (sen 2 (x 1 ) + 1)x 2 + 2u (1) y = x 1 Alcuni esercizi risolti su: - calcolo dell equilibrio di un sistema lineare e valutazione delle proprietà di stabilità dell equilibrio attraverso linearizzazione - calcolo del movimento dello stato e dell

Dettagli

FM1 - Equazioni differenziali e meccanica

FM1 - Equazioni differenziali e meccanica Corso di laurea in Matematica - Anno Accademico 2006/2007 FM1 - Equazioni differenziali e meccanica Prima prova d esonero (03-04-2006) CORREZIONE Esercizio 1. Lo spettro Σ(A) della matrice A si trova risolvendo

Dettagli

Modelli discreti di due popolazioni

Modelli discreti di due popolazioni Capitolo 7 Modelli discreti di due popolazioni Analogo del caso di un sistema di equazioni differenziali è un sistema di più successioni. Tale sistema descrive un sistema ecologico di due o più popolazioni

Dettagli

2.1 Osservazioni sull esercitazione del

2.1 Osservazioni sull esercitazione del ¾ ½¾º¼ º¾¼½ Queste note (attualmente, e probabilmente per un bel po ) sono altamente provvisorie e (molto probabilmente) non prive di errori. 2.1 Osservazioni sull esercitazione del 5.3.214 2.1.1 Equazione

Dettagli

FM210 - Fisica Matematica I

FM210 - Fisica Matematica I FM21 - Fisica Matematica I Prima Prova Scritta [26-1-212] Soluzioni Problema 1 1. Riscriviamo il sistema come e risolviamo la prima equazione: xt) = x e 3t + 2 ẋ = 3x + 2, ẏ = y + z 3, ż = 2x + z, Inserendo

Dettagli

I. Foglio di esercizi su vettori linearmente dipendenti e linearmente indipendenti. , v 2 = α v 1 + β v 2 + γ v 3. α v 1 + β v 2 + γ v 3 = 0. + γ.

I. Foglio di esercizi su vettori linearmente dipendenti e linearmente indipendenti. , v 2 = α v 1 + β v 2 + γ v 3. α v 1 + β v 2 + γ v 3 = 0. + γ. ESERCIZI SVOLTI DI ALGEBRA LINEARE (Sono svolti alcune degli esercizi proposti nei fogli di esercizi su vettori linearmente dipendenti e vettori linearmente indipendenti e su sistemi lineari ) I. Foglio

Dettagli

L algebra lineare nello studio delle coniche

L algebra lineare nello studio delle coniche L algebra lineare nello studio delle coniche È possibile utilizzare le tecniche dell algebra lineare per studiare e classificare le coniche. Data l equazione generale di una conica, si considera la sua

Dettagli

1 Sistemi Dinamici Esercizio del Parziale del 29/11/2010

1 Sistemi Dinamici Esercizio del Parziale del 29/11/2010 1 Sistemi Dinamici Esercizio del Parziale del 29/11/2010 Si consideri il sistema dinamico con { ẋ = y ẏ = d U(x) U(x) = 2 ( x 2 3 x + 4 ) e x/2. (2) 1. Tracciare qualitativamente le curve di fase del sistema

Dettagli

4.1 Sulla linearizzazione attorno agli equilibri

4.1 Sulla linearizzazione attorno agli equilibri ½¾º¼ º¾¼½ Queste note (attualmente, e probabilmente per un bel po ) sono altamente provvisorie e (molto probabilmente) non prive di errori 41 Sulla linearizzazione attorno agli equilibri Come abbiamo già

Dettagli

Universita degli Studi di Ancona Laurea in Ingegneria Meccanica ed Informatica a Distanza Anno Accademico 2005/2006. Matematica 2 (Analisi)

Universita degli Studi di Ancona Laurea in Ingegneria Meccanica ed Informatica a Distanza Anno Accademico 2005/2006. Matematica 2 (Analisi) Universita degli Studi di Ancona Laurea in Ingegneria Meccanica ed Informatica a Distanza Anno Accademico 2005/2006 Matematica 2 (Analisi) Nome:................................. N. matr.:.................................

Dettagli

Analisi 4 - SOLUZIONI (compito del 29/09/2011)

Analisi 4 - SOLUZIONI (compito del 29/09/2011) Corso di laurea in Matematica Analisi 4 - SOLUZIONI compito del 9/09/0 Docente: Claudia Anedda Calcolare, tramite uno sviluppo in serie noto, la radice quinta di e la radice cubica di 9 Utilizzando la

Dettagli

Es. 1 Es. 2 Es. 3 Es. 4 Es. 5 Totale

Es. 1 Es. 2 Es. 3 Es. 4 Es. 5 Totale Es. 1 Es. 2 Es. Es. 4 Es. 5 Totale Analisi e geometria 2 rimo Appello Docente: 17 luglio 29 Cognome: Nome: Matricola: Tutte le risposte devono essere motivate. Gli esercizi vanno svolti su questi fogli,

Dettagli

k 2 m 1 u 2 Figura 1 z 1 β m 1 ż 1 + β m 1 ż m 2 z 2 β m 2 ẋ = A x + B u y = C x + D u

k 2 m 1 u 2 Figura 1 z 1 β m 1 ż 1 + β m 1 ż m 2 z 2 β m 2 ẋ = A x + B u y = C x + D u Esercizio Si consideri il sistema meccanico riportato in Figura, dove m e m sono le masse dei carrelli, z e z sono le rispettive posizioni, k e k sono i coefficienti elastici delle molle, e β è un coefficiente

Dettagli

Equazioni differenziali del 2 ordine Prof. Ettore Limoli. Sommario. Equazione differenziale omogenea a coefficienti costanti

Equazioni differenziali del 2 ordine Prof. Ettore Limoli. Sommario. Equazione differenziale omogenea a coefficienti costanti Equazioni differenziali del 2 ordine Prof. Ettore Limoli Sommario Equazione differenziale omogenea a coefficienti costanti... 1 Equazione omogenea di esempio... 2 Equazione differenziale non omogenea a

Dettagli

Equazioni differenziali

Equazioni differenziali Capitolo 2 Equazioni differenziali I modelli matematici per lo studio di una popolazione isolata sono equazioni differenziali. Premettiamo dunque allo studio dei modelli di popolazioni isolate una breve

Dettagli

AUTOMATICA I (Ingegneria Biomedica - Allievi da L a Z) Appello dell 8 luglio 2008: testo e soluzione

AUTOMATICA I (Ingegneria Biomedica - Allievi da L a Z) Appello dell 8 luglio 2008: testo e soluzione AUTOMATICA I (Ingegneria Biomedica - Allievi da L a Z) Appello dell 8 luglio 8: testo e soluzione Prof. Maria Prandini 1. Si consideri il sistema con ingresso u ed uscita y descritto dalle seguenti equazioni:

Dettagli

EQUAZIONI LINEARI DEL SECONDO ORDINE

EQUAZIONI LINEARI DEL SECONDO ORDINE EQUAZIONI LINEARI DEL SECONDO ORDINE Umberto Marconi Dipartimento di Matematica Università di Padova 1 Considerazioni generali Nel seguito le funzioni sono continue (e derivabili quanto basta) su un intervallo

Dettagli

Sistemi differenziali ordinari. Davide Manca Calcoli di Processo dell Ingegneria Chimica Politecnico di Milano

Sistemi differenziali ordinari. Davide Manca Calcoli di Processo dell Ingegneria Chimica Politecnico di Milano E8 Sistemi differenziali ordinari E8 Costruzione di un modello E8. Il sistema Predatore-Preda Si desidera studiare l evoluzione dinamica di un ecosistema costituito da due specie: preda e predatore (ad

Dettagli

Esercizi di teoria dei sistemi

Esercizi di teoria dei sistemi Esercizi di teoria dei sistemi Controlli Automatici LS (Prof. C. Melchiorri) Esercizio Dato il sistema lineare tempo continuo: ẋ(t) 2 y(t) x(t) x(t) + u(t) a) Determinare l evoluzione libera dello stato

Dettagli

ESERCITAZIONE SUI PUNTI STAZIONARI DI FUNZIONI LIBERE E SULLE FUNZIONI OMOGENEE

ESERCITAZIONE SUI PUNTI STAZIONARI DI FUNZIONI LIBERE E SULLE FUNZIONI OMOGENEE ESERCITAZIONE SUI PUNTI STAZIONARI DI FUNZIONI LIBERE E SULLE FUNZIONI OMOGENEE 1 Funzioni libere I punti stazionari di una funzione libera di più variabili si ottengono risolvendo il sistema di equazioni

Dettagli

Corso di Laurea in Ingegneria Informatica Prova di Analisi Matematica 1

Corso di Laurea in Ingegneria Informatica Prova di Analisi Matematica 1 Corso di Laurea in Ingegneria Informatica Prova di Analisi Matematica 1 9 Gennaio 2018 Scrivere subito nome e cognome e matricola sul foglio risposte e preparare il libretto sul banco per il controllo.

Dettagli

Cenni sulle coniche 1.

Cenni sulle coniche 1. 1 Premessa Cenni sulle coniche 1. Corso di laurea in Ingegneria Civile ed Edile Università degli Studi di Palermo A.A. 2013/2014 prof.ssa Paola Staglianò (pstagliano@unime.it) Scopo della geometria analitica

Dettagli

Corso di Laurea in Ingegneria Civile ed Ambientale Prova Scritta di Analisi Matematica 2 del 29 settembre 2012

Corso di Laurea in Ingegneria Civile ed Ambientale Prova Scritta di Analisi Matematica 2 del 29 settembre 2012 Corso di Laurea in Ingegneria Civile ed Ambientale Prova Scritta di Analisi Matematica del 9 settembre A) Data la funzione f(x, y) = { xy x se (x, y) (, ) se (x, y) = (, ), i) stabilire se risulta continua

Dettagli

Istituzioni di Matematica II 5 Luglio 2010

Istituzioni di Matematica II 5 Luglio 2010 Istituzioni di Matematica II 5 Luglio 010 1. Classificare, al variare del parametro α R, la forma quadratica (1 + α )x + 4xy + αy.. i) Si determinino tutti i punti critici della seguente funzione f(x,

Dettagli

MODELLI e METODI MATEMATICI della FISICA. Esercizi - A.A

MODELLI e METODI MATEMATICI della FISICA. Esercizi - A.A MODELLI e METODI MATEMATICI della FISICA Esercizi - A.A. 08-9 settimana Esercizi:. Risolvere il problema di Cauchy y (x) = αy (x) + y (x) y (x) = αy (x) + y 3 (x) y 3(x) = αy 3 (x) con condizioni iniziali

Dettagli

Daniela Lera A.A

Daniela Lera A.A Daniela Lera Università degli Studi di Cagliari Dipartimento di Matematica e Informatica A.A. 2014-2015 Equazioni Differenziali Si consideri il seguente problema: Quali sono le curve y = f (x) del piano

Dettagli

I teoremi della funzione inversa e della funzione implicita

I teoremi della funzione inversa e della funzione implicita I teoremi della funzione inversa e della funzione implicita Appunti per il corso di Analisi Matematica 4 G. Mauceri Indice 1 Il teorema della funzione inversa 1 Il teorema della funzione implicita 3 1

Dettagli

Modelli nello spazio degli stati

Modelli nello spazio degli stati Modelli nello spazio degli stati Modelli nello spazio degli stati Stato: informazione che riassume, in ogni istante, l effetto della storia passata del sistema sul suo comportamento futuro. x(t) stato

Dettagli

Controlli Automatici e Teoria dei Sistemi Stabilità dei Moti e delle Risposte nei Sistemi a Stato Vettore

Controlli Automatici e Teoria dei Sistemi Stabilità dei Moti e delle Risposte nei Sistemi a Stato Vettore Controlli Automatici e Teoria dei Sistemi Stabilità dei Moti e delle Risposte nei Sistemi a Stato Vettore Prof. Roberto Guidorzi Dipartimento di Elettronica, Informatica e Sistemistica Università di Bologna

Dettagli

CdL in Ingegneria Industriale (A-E e F-O)

CdL in Ingegneria Industriale (A-E e F-O) CdL in Ingegneria Industriale (A-E e F-O) Prova scritta di Algebra lineare e Geometria- Febbraio 06 Durata della prova: tre ore. È vietato uscire dall aula prima di aver consegnato definitivamente il compito.

Dettagli

FONDAMENTI DI AUTOMATICA (Ingegneria Biomedica) Appello del 16 febbraio 2010: testo e soluzione. y = x 1

FONDAMENTI DI AUTOMATICA (Ingegneria Biomedica) Appello del 16 febbraio 2010: testo e soluzione. y = x 1 FONDAMENTI DI AUTOMATICA (Ingegneria Biomedica) Appello del 16 febbraio 21: testo e soluzione Prof. Maria Prandini 1. Si consideri il sistema descritto dalle seguenti equazioni: ẋ 1 = x 2 2 + x 1 ẋ 2 =

Dettagli

Analisi Matematica 2. Continuità, derivabilità e differenziabilità

Analisi Matematica 2. Continuità, derivabilità e differenziabilità Docente: E. G. Casini Università degli Studi dell Insubria DIPATIMENTO DI SCIENZA E ALTA TECNOLOGIA Corso di Studio in Matematica e Fisica Analisi Matematica ichiami di Teoria ed Esercizi con Svolgimento

Dettagli

Analisi Matematica II - INGEGNERIA Gestionale - B 20 luglio 2017 Cognome: Nome: Matricola:

Analisi Matematica II - INGEGNERIA Gestionale - B 20 luglio 2017 Cognome: Nome: Matricola: Analisi Matematica II - INGEGNERIA Gestionale - B luglio 7 Cognome: Nome: Matricola: IMPORTANTE: Giustificare tutte le affermazioni e riportare i calcoli essenziali Esercizio [8 punti] Data la matrice

Dettagli

COMPITO A: soluzione

COMPITO A: soluzione PROVA SCRITTA DI FONDAMENTI DI AUTOMATICA (PRIMA PARTE) A.A. 2005/2006 9 novembre 2005 nome e cognome: numero di matricola: Note: Scrivere le risposte negli spazi appositi. Non consegnare fogli aggiuntivi.

Dettagli

X = x + 1. X = x + 1

X = x + 1. X = x + 1 CONICHE. Esercizi Esercizio. Classificare, ridurre a forma canonica (completando i quadrati), e disegnare le seguenti coniche: γ : x y + x = 0; γ : x + 4x y + = 0; γ 3 : x + y + y + 0 = 0; γ 4 : x + y

Dettagli

Lezione XXVIII Sistemi vibranti a 2-n gdl. 6LVWHPLDSLJUDGLGLOLEHUWjQRQVPRU]DWL

Lezione XXVIII Sistemi vibranti a 2-n gdl. 6LVWHPLDSLJUDGLGLOLEHUWjQRQVPRU]DWL 6LVWHLDSLJUDGLGLOLEHUWjQRQVRU]DWL er un sistema non smorzato con gradi di libertà, le equazioni che ne governano il moto possono essere sempre scritte nella forma matriciale dove [ 0 ] e [ ] [ 0 ]{&& [()

Dettagli

Calcolo delle Differenze

Calcolo delle Differenze Carla Guerrini 1 Calcolo delle Differenze Le differenze finite introdotte nel 17-esimo secolo per il calcolo delle funzioni, si prestano bene ad essere utilizzate in procedimenti e problemi discreti: da

Dettagli

AUTOVALORI, AUTOVETTORI, AUTOSPAZI

AUTOVALORI, AUTOVETTORI, AUTOSPAZI AUTOVALORI, AUTOVETTORI, AUTOSPAZI. Esercizi Esercizio. Sia f : R 3 R 3 l endomorfismo definito da f(x, y, z) = (x+y, y +z, x+z). Calcolare gli autovalori ed una base per ogni autospazio di f. Dire se

Dettagli

Esercizi Applicazioni Lineari

Esercizi Applicazioni Lineari Esercizi Applicazioni Lineari (1) Sia f : R 4 R 2 l applicazione lineare definita dalla legge f(x, y, z, t) = (x + y + z, y + z + t). (a) Determinare il nucleo di f, l immagine di f, una loro base e le

Dettagli

Esame scritto (parte di Meccanica Quantistica) 19/06/2017. Esercizio 1. Si consideri l oscillatore armonico descritto dalla Hamiltoniana

Esame scritto (parte di Meccanica Quantistica) 19/06/2017. Esercizio 1. Si consideri l oscillatore armonico descritto dalla Hamiltoniana Corso di Fisica Matematica 3 a.a. 06/7 Esame scritto (parte di Meccanica Quantistica) 9/06/07 Esercizio. Si consideri l oscillatore armonico descritto dalla Hamiltoniana H 0 = p m + mω x, e siano n (n

Dettagli

ANALISI MATEMATICA I MODULO, I e II MODULO, II MODULO CORSO DI LAUREA IN INFORMATICA

ANALISI MATEMATICA I MODULO, I e II MODULO, II MODULO CORSO DI LAUREA IN INFORMATICA ANALISI MATEMATICA I MODULO, I e II MODULO, II MODULO CORSO DI LAUREA IN INFORMATICA Prova scritta del 6 giugno 2004: soluzioni ESERCIZIO - Data la funzione f) 3 2 4 + 27 + 9 2 ) /3 4 + 27, + 9 si chiede

Dettagli

Traiettorie nello spazio degli stati

Traiettorie nello spazio degli stati . Traiettorie nello spazio degli stati Per mostrare i tipici andamenti delle traiettorie nello spazio degli stati in funzione della posizione dei poli del sistema si farà riferimento ad un esempio: un

Dettagli

Analisi Matematica II - Ingegneria Meccanica/Energetica - 7 Lulgio a) Studiare l esistenza e la natura degli estremi liberi della funzione.

Analisi Matematica II - Ingegneria Meccanica/Energetica - 7 Lulgio a) Studiare l esistenza e la natura degli estremi liberi della funzione. Analisi Matematica II - Ingegneria Meccanica/Energetica - 7 Lulgio 218 1) Data la funzione f(, ) = 4 + 4 4 2 7 a) Studiare l esistenza e la natura degli estremi liberi della funzione. b) Trovare il massimo

Dettagli

1 Punti di equilibrio e stabilità: definizioni

1 Punti di equilibrio e stabilità: definizioni ASPETTI QUALITATIVI DELLA TEORIA DELLE EQUAZIONI DIFFERENZIALI (Schema del contenuto delle lezioni e riferimenti bibliografici) Testi [HS] M. Hirsch and S. Smale Differential Equations, Dynamical Systems

Dettagli

Queste note (attualmente, e probabilmente per un bel po ) sono altamente provvisorie e (molto probabilmente) non prive di errori.

Queste note (attualmente, e probabilmente per un bel po ) sono altamente provvisorie e (molto probabilmente) non prive di errori. ËÁËÌ ÅÁ ÈÁ ÆÁ ½ Queste note attualmente e probabilmente per un bel po ) sono altamente provvisorie e molto probabilmente) non prive di errori 41 Sistemi 2D Come abbiamo già detto tipicamente è impossibile

Dettagli

Esercitazioni di Matematica

Esercitazioni di Matematica Università degli Studi di Udine Anno Accademico 009/00 Facoltà di Agraria Corsi di Laurea in VIT e STAL Esercitazioni di Matematica novembre 009 Trovare le soluzioni della seguente disequazione: x + +

Dettagli

Algebra lineare Geometria 1 15 luglio 2009

Algebra lineare Geometria 1 15 luglio 2009 Algebra lineare Geometria 1 15 luglio 2009 Esercizio 1. Nello spazio vettoriale reale R 3 [x] si considerino l insieme A k = {1 + x, k + (1 k)x 2, 1 + (k 1)x 2 + x 3 }, il vettore v k = k + kx x 3 e la

Dettagli

Sistemi di equazioni differenziali

Sistemi di equazioni differenziali Capitolo 5 Sistemi di equazioni differenziali Molti problemi sono governati non da una singola equazione differenziale, ma da un sistema di più equazioni. Ad esempio questo succede se si vuole descrivere

Dettagli

LEZIONE 23. ax 2 + bxy + cy 2 + dx + ey + f

LEZIONE 23. ax 2 + bxy + cy 2 + dx + ey + f LEZIONE 23 23.1. Riduzione delle coniche a forma canonica. Fissiamo nel piano un sistema di riferimento Oxy e consideriamo un polinomio di grado 2 in x, y a meno di costanti moltiplicative non nulle, diciamo

Dettagli

4. Sia Γ la conica che ha fuoco F (1, 1) e direttrice d : x y = 0, e che passa per il punto P (2, 1).

4. Sia Γ la conica che ha fuoco F (1, 1) e direttrice d : x y = 0, e che passa per il punto P (2, 1). Geometria Complementi ed esercizi sulle coniche 1 (a) Scrivere l equazione dell ellisse Γ che ha fuochi F 1 ( 1, 1), F (1, 1) e che passa per il punto P (1, 1) (b) Determinare il centro, gli assi e i vertici

Dettagli

STUDIO DELLE RADICI DI UNA EQUAZIONE ALGEBRICA DI TERZO GRADO A COEFFICIENTI REALI

STUDIO DELLE RADICI DI UNA EQUAZIONE ALGEBRICA DI TERZO GRADO A COEFFICIENTI REALI M. G. BUSATO STUDIO DELLE RADICI DI UNA EQUAZIONE ALGEBRICA DI TERZO GRADO A COEFFICIENTI REALI mgbstudio.net PAGINA INTENZIONALMENTE VUOTA SOMMARIO In questo scritto viene compiuto lo studio dettagliato

Dettagli

Corso di Biomatematica 1 Esame del 28 Settembre 2016

Corso di Biomatematica 1 Esame del 28 Settembre 2016 Corso di Biomatematica 1 Esame del 28 Settembre 2016 Scrivere chiaramente in testa all elaborato: Nome, Cognome, numero di matricola. Risolvere tutti gli esercizi. Tempo a disposizione: DUE ORE. Non e

Dettagli

Note sul sistema di Lotka-Volterra. Prima versione. Commenti e correzioni sono benvenuti.

Note sul sistema di Lotka-Volterra. Prima versione. Commenti e correzioni sono benvenuti. Ottobre 2016 Note sul sistema di Lotka-Volterra Prima versione. Commenti e correzioni sono benvenuti. 1 Introduzione Il sistema di Lotka Volterra (LV), o sistema preda predatore è probabilmente il primo

Dettagli

FM210 - Fisica Matematica I

FM210 - Fisica Matematica I FM21 - Fisica Matematica I Seconda Prova Scritta [16-2-212] Soluzioni Problema 1 1. Chiamiamo A la matrice del sistema e cerchiamo anzitutto gli autovalori della matrice: l equazione secolare è (λ + 2β)λ

Dettagli

AUTOMATICA I (Ingegneria Biomedica - Allievi da L a Z) Appello del 20 luglio 2006: testo e soluzione

AUTOMATICA I (Ingegneria Biomedica - Allievi da L a Z) Appello del 20 luglio 2006: testo e soluzione AUTOMATICA I (Ingegneria Biomedica - Allievi da L a Z) Appello del 2 luglio 26: testo e soluzione Prof. Maria Prandini 1. Si consideri il sistema lineare con ingresso u ed uscita y descritto dalle seguenti

Dettagli

La forma normale di Schur

La forma normale di Schur La forma normale di Schur Dario A Bini, Università di Pisa 30 ottobre 2013 Sommario Questo modulo didattico contiene risultati relativi alla forma normale di Schur, alle sue proprietà e alle sue applicazioni

Dettagli

Esercitazione 05: Trasformata di Laplace e funzione di trasferimento

Esercitazione 05: Trasformata di Laplace e funzione di trasferimento Esercitazione 05: Trasformata di Laplace e funzione di trasferimento 28 marzo 208 (3h) Fondamenti di Automatica Prof. M. Farina Responsabile delle esercitazioni: Enrico Terzi Queste dispense sono state

Dettagli

Università degli Studi di Bergamo Matematica II (5 e 7,5 crediti) 18 febbraio 2010 Tema A

Università degli Studi di Bergamo Matematica II (5 e 7,5 crediti) 18 febbraio 2010 Tema A Università degli Studi di Bergamo Matematica II (5 e 7,5 crediti) 18 febbraio 21 Tema A Tempo a disposizione: 2 ore. Calcolatrici, libri e appunti non sono ammessi. Ogni esercizio va iniziato all inizio

Dettagli

Equazioni differenziali

Equazioni differenziali Equazioni differenziali Hynek Kovarik Università di Brescia Analisi Matematica 1 Hynek Kovarik (Università di Brescia) Equazioni differenziali Analisi Matematica 1 1 / 30 Formulazione del problema In generale

Dettagli

Appello di Sistemi Dinamici Prova scritta del 22 settembre 2017

Appello di Sistemi Dinamici Prova scritta del 22 settembre 2017 Appello di Sistemi Dinamici Prova scritta del 22 settembre 2017 ẋ = x(µ x 2 )(x µ + 2) 2. Si calcoli la matrice esponenziale della matrice [ ] 2 4. 0 2 3. Dato il sistema differenziale lineare non omogeneo

Dettagli

Politecnico di Milano Ingegneria Industriale Analisi e Geometria 2 Secondo Appello 7 Settembre 2016

Politecnico di Milano Ingegneria Industriale Analisi e Geometria 2 Secondo Appello 7 Settembre 2016 Politecnico di Milano Ingegneria Industriale Analisi e Geometria Secondo Appello 7 Settembre 6 Cognome: Nome: Matricola: Es.: punti Es.: 7 punti Es.3: 7 punti Es.4: 7 punti Totale. Sia f : R 3 R 3 l applicazione

Dettagli

Massimi e minimi relativi in R n

Massimi e minimi relativi in R n Massimi e minimi relativi in R n Si consideri una funzione f : A R, con A R n, e sia x A un punto interno ad A. Definizione: si dice che x è un punto di massimo relativo per f se B(x, r) A tale che f(y)

Dettagli

Equaz. alle differenze - Equaz. differenziali

Equaz. alle differenze - Equaz. differenziali 1 Introduzione Problemi statici: Le quantità e le equazioni comportamentali (e di equilibrio) sono funzioni di un dato periodo. Il prezzo corrente di un bene dipende dalla domanda corrente dei consumatori.

Dettagli

Sistemi di Equazioni Differenziali

Sistemi di Equazioni Differenziali Sistemi di Equazioni Differenziali Nota introduttiva: Lo scopo di queste dispense non è trattare la teoria riguardo ai sistemi di equazioni differenziali, ma solo dare un metodo risolutivo pratico utilizzabile

Dettagli

Elementi di Analisi dei Sistemi Soluzione esercizi prima prova intermedia

Elementi di Analisi dei Sistemi Soluzione esercizi prima prova intermedia Elementi di Analisi dei Sistemi Soluzione esercizi prima prova intermedia Gianluca Mereu, Alessandro Giua {gianluca.mereu,giua}@diee.unica.it 07/04/207 Soluzione Esercizio. Si risponda in modo chiaro ed

Dettagli

Geometria affine e proiettiva

Geometria affine e proiettiva Geometria affine e proiettiva Laura Facchini 7 aprile 20 Esercizio. Sia E 4 il 4-spazio euclideo numerico dotato del riferimento cartesiano standard di coordinate (x, y, z, w. Siano P (0, 0,,, P (, 2,,,

Dettagli

1 Esercizi di ripasso Nel piano con un riferimento RC(Oxy) siano dati i punti O(0, 0) e A(2, 4).

1 Esercizi di ripasso Nel piano con un riferimento RC(Oxy) siano dati i punti O(0, 0) e A(2, 4). Esercizi di ripasso. Nel piano con un riferimento RC(Oxy) siano dati i punti O(0, 0) e A(2, 4). (a) Determinare le equazioni delle circonferenze che passano per O e A e aventi raggio 5. (b) Determinare

Dettagli

Analisi Matematica 2. Forme differenziali lineari. Forme differenziali lineari 1 / 26

Analisi Matematica 2. Forme differenziali lineari. Forme differenziali lineari 1 / 26 Analisi Matematica 2 Forme differenziali lineari Forme differenziali lineari 1 / 26 Forme differenziali lineari Sia F(x, y, z) = F 1 (x, y, z)i + F 2 (x, y, z)j + F 3 (x, y, z)k un campo vettoriale di

Dettagli

Calcolo del movimento di sistemi dinamici LTI

Calcolo del movimento di sistemi dinamici LTI Calcolo del movimento di sistemi dinamici LTI Analisi modale per sistemi dinamici LTI TC Modi naturali di un sistema dinamico Analisi modale Esercizio 1 Costante di tempo Esercizio 2 2 Analisi modale per

Dettagli

Proprietà strutturali e leggi di controllo

Proprietà strutturali e leggi di controllo Proprietà strutturali e leggi di controllo Retroazione statica dallo stato La legge di controllo Esempi di calcolo di leggi di controllo Il problema della regolazione 2 Retroazione statica dallo stato

Dettagli

Fondamenti di Automatica

Fondamenti di Automatica Fondamenti di Automatica Stabilità esterna e analisi della risposta Stabilità esterna e risposta a regime Risposte di sistemi del I e II ordine 2 Stabilità esterna e analisi della risposta Stabilità esterna

Dettagli

Università degli Studi Roma Tre - Corso di Laurea in Matematica Tutorato di Geometria 2

Università degli Studi Roma Tre - Corso di Laurea in Matematica Tutorato di Geometria 2 Università degli Studi Roma Tre - Corso di Laurea in Matematica Tutorato di Geometria A.A. 9-1 - Docente: Prof. A. Verra Tutori: Dott.ssa Paola Stolfi e Annamaria Iezzi Soluzioni Tutorato numero 6 (1 Dicembre

Dettagli

C.d.L. in Matematica - vecchio ordinamento

C.d.L. in Matematica - vecchio ordinamento ESAME DI PROFITTO DI GEOMETRIA 2 - gennaio 2007 CdL in Matematica - vecchio ordinamento 1 Siano V uno spazio vettoriale reale di dimensione 4, U un suo sottospazio di dimensione 2, ϕ un endomorfismo di

Dettagli

GEOMETRIA CORREZIONE DELLE PROVE D ESAME

GEOMETRIA CORREZIONE DELLE PROVE D ESAME GEOMETRIA CORREZIONE DELLE PROVE D ESAME 1. Prova del 27 settembre 2011 - A Esercizio 1.1. Si trovino i valori del parametro reale k per cui il sistema lineare (k + 1)x + (k 4)y + z = k (k + 2)x + (k 2)y

Dettagli

Traiettorie nello spazio degli stati

Traiettorie nello spazio degli stati Capitolo. INTRODUZIONE. Traiettorie nello spazio degli stati Per mostrare i tipici andamenti delle traiettorie nello spazio degli stati in funzione della posizione dei poli del sistema si farà riferimento

Dettagli

PROVE D'ESAME DI MATEMATICA DISCRETA A.A. 2010/2011

PROVE D'ESAME DI MATEMATICA DISCRETA A.A. 2010/2011 PROVE D'ESAME DI MATEMATICA DISCRETA A.A. 200/20 07/06/20 () In R 3 [t], lo spazio vettoriale dei polinomi nella variabile t di grado al piú 3, sia u = t 2 5t + 6 e w = t 3 + t 2 t. (a) Determinare una

Dettagli

Università di Bari - Dipartimento di Economia - Prova scritta di Matematica per l Economia L-Z- 19 Dicembre Traccia A

Università di Bari - Dipartimento di Economia - Prova scritta di Matematica per l Economia L-Z- 19 Dicembre Traccia A Università di Bari - Dipartimento di Economia - Prova scritta di Matematica per l Economia L-Z- 9 Dicembre 06 - Traccia A Cognome e nome................................ Numero di matricola............

Dettagli

Dalla prova scritta del 18/01/2011

Dalla prova scritta del 18/01/2011 Esercitazione 8 Lucia Pilleri /0/0 Dalla prova scritta del 8/0/0 Esercizio Determinare i valori di α e β che rendono ortogonali le matrici B ] α α C β ] β e, in corrispondenza di una coppia di tali valori,

Dettagli

Fissiamo nel piano un sistema di riferimento cartesiano ortogonale O, x, y, u.

Fissiamo nel piano un sistema di riferimento cartesiano ortogonale O, x, y, u. Fissiamo nel piano un sistema di riferimento cartesiano ortogonale O, x, y, u. Definizione Una conica è il luogo dei punti, propri o impropri, reali o immaginari, che con le loro coordinate omogenee (x,

Dettagli

SOLUZIONE PROBLEMA 1. Punto 1 Osserviamo anzitutto che la funzione

SOLUZIONE PROBLEMA 1. Punto 1 Osserviamo anzitutto che la funzione SOLUZIONE PROBLEMA 1 Punto 1 Osserviamo anzitutto che la funzione g(x) = (ax b)e,-,. è continua e derivabile in R in quanto composizione di funzioni continue e derivabili. Per discutere la presenza di

Dettagli

Parte 3, 1. Stabilità. Prof. Thomas Parisini. Fondamenti di Automatica

Parte 3, 1. Stabilità. Prof. Thomas Parisini. Fondamenti di Automatica Parte 3, 1 Stabilità Parte 3, 2 Stabilità: - del movimento (vedere libro ma non compreso nel programma) - dell equilibrio - del sistema (solo sistemi lineari) Analizzeremo separatamente sistemi a tempo

Dettagli

Esercizi di Fondamenti di Automatica

Esercizi di Fondamenti di Automatica Esercizi di Fondamenti di Automatica Bruno Picasso Esercizio Sia dato il sistema lineare { ẋ(t) = Ax(t), x R n x() = x.. Mostrare che se x è tale che Ax = λx, λ R, allora il corrispondente movimento dello

Dettagli

In questa lezione ci occuperemo di sistemi dinamici in tempo continuo, rappresentati da equazioni differenziali.

In questa lezione ci occuperemo di sistemi dinamici in tempo continuo, rappresentati da equazioni differenziali. Sistemi dinamici In questa lezione ci occuperemo di sistemi dinamici in tempo continuo, rappresentati da equazioni differenziali. Le equazioni differenziali sono delle equazioni in cui le incognite rispetto

Dettagli

UNIVERSITÀ DEGLI STUDI ROMA TRE Corso di Laurea in Matematica GE210 - Geometria 2 a.a Prima prova di esonero TESTO E SOLUZIONI

UNIVERSITÀ DEGLI STUDI ROMA TRE Corso di Laurea in Matematica GE210 - Geometria 2 a.a Prima prova di esonero TESTO E SOLUZIONI UNIVERSITÀ DEGLI STUDI ROMA TRE Corso di Laurea in Matematica GE0 - Geometria a.a. 08-09 Prima prova di esonero TESTO E SOLUZIONI. Sia k 0 un numero reale. Sia V uno spazio vettoriale reale e sia e = {e,

Dettagli

Analisi Matematica II Corso di Ingegneria Gestionale Compito del f(x, y) = e (x3 +x) y

Analisi Matematica II Corso di Ingegneria Gestionale Compito del f(x, y) = e (x3 +x) y Analisi Matematica II Corso di Ingegneria Gestionale Compito del 8--7 - È obbligatorio consegnare tutti i fogli, anche la brutta e il testo. - Le risposte senza giustificazione sono considerate nulle.

Dettagli

LUISS Laurea specialistica in Economia e Finanza Anno Accademico 2010/2011

LUISS Laurea specialistica in Economia e Finanza Anno Accademico 2010/2011 LUISS Laurea specialistica in Economia e Finanza Anno Accademico 00/0 Corso di Metodi Matematici per la Finanza Prof. Fausto Gozzi, Dr. Davide Vergni Soluzioni all'esame scritto del 3/0/0 0 a 0 a. Dato

Dettagli

Esercizio di modellistica a tempo discreto

Esercizio di modellistica a tempo discreto Esercizio di modellistica a tempo discreto Si consideri un corso di laurea triennale, e si indichi con k =,, 2,... l anno accademico dall attivazione del corso. Si indichi con x i (k) il numero di studenti

Dettagli

Fondamenti di Analisi Matematica 2 - a.a. 2016/2017 Primo appello

Fondamenti di Analisi Matematica 2 - a.a. 2016/2017 Primo appello Fondamenti di Analisi Matematica 2 - a.a. 216/217 Primo appello Esercizi senza svolgimento - Tema 1 Ω = { x, y, z) R 3 : 4x 2 + y 2 + z 2 1, z }. x = ρ/2) sen ϕ cos ϑ, 1. y = ρ sen ϕ sen ϑ, ρ [, 1], ϕ

Dettagli

Matematica e Statistica (A-E, F-O, P-Z)

Matematica e Statistica (A-E, F-O, P-Z) Matematica e Statistica (A-E, F-O, P-Z) Prova d esame (08/07/20) Università di Verona - Laurea in Biotecnologie - A.A. 200/ Matematica e Statistica (A-E, F-O, P-Z) Prova di MATEMATICA (A-E, F-O, P-Z) (08/07/20)

Dettagli

Geometria 2. Università degli Studi di Trento Corso di Laurea in Matematica A.A. 2011/ settembre 2012

Geometria 2. Università degli Studi di Trento Corso di Laurea in Matematica A.A. 2011/ settembre 2012 Geometria 2 Università degli Studi di Trento Corso di Laurea in Matematica A.A. 2011/2012 06 settembre 2012 Si svolgano i seguenti esercizi. Esercizio 1. Sia P 3 R il 3-spazio proiettivo reale dotato del

Dettagli

CONTROLLO DI SISTEMI ROBOTICI STABILITA NEI SISTEMI LTI

CONTROLLO DI SISTEMI ROBOTICI STABILITA NEI SISTEMI LTI CONTROLLO DI SISTEMI ROBOTICI Laurea Specialistica in Ingegneria Meccatronica CONTROLLO DI SISTEMI ROBOTICI STABILITA NEI SISTEMI LTI Ing. Cristian Secchi Tel. 0522 522235 e-mail: secchi.cristian@unimore.it

Dettagli