Esercizi Applicazioni Lineari

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Esercizi Applicazioni Lineari"

Transcript

1 Esercizi Applicazioni Lineari (1) Sia f : R 4 R 2 l applicazione lineare definita dalla legge f(x, y, z, t) = (x + y + z, y + z + t). (a) Determinare il nucleo di f, l immagine di f, una loro base e le loro dimensioni. Il nucleo di f consiste dei vettori (x, y, z, t) tali ce x + y + z = 0 = y + z + t. Risolvendo il sistema otteniamo ker(f) = (t, z t, z, t); z, t R} = (0, 1, 1, 0), (1, 1, 0, 1). I due vettori sono linearmente indipendenti e formano una base di ker(f), ce quindi risulta di dimensione 2. [ ] x f(x, y, z, t) = y z t e Im(f) = (1, 0), (1, 1), (0, 1) = (1, 0), (0, 1) = R 2. (b) Sia U =< (1,,, 0), (,,, ) > R 4, dove R é un parametro. Determinare al variare di R la dimensione di U e una sua base B. Sia [ ] 1 0 A =. Allora ρ(a ) = 1 se e solo se = 0. Quindi U 0 = (1, 0, 0, 0) e dim(u 0 ) = 1. Per ogni 0 abbiamo dim(u ) = 2 e i vettori (1,,, 0) e (,,, ) formano in questo caso una base B di U. (c) Sia g : U R 2 la restrizione di f a U. Determinare per ogni R la matrice di g rispetto alla base B di U determinata precedentemente e alla base canonica di R 2. Se = 0, abbiamo g 0 ((1, 0, 0, 0)) = f((1, 0, 0, 0)) = (1, 0). La matrice di g 0 rispetto alla base B 0 = (1, 0, 0, 0)} e alla base canonica C di R 2 é: [g 0 ] B 0 C = [ 1 0 ]. Se 0, abbiamo g ((1,,, 0)) = f((1,,, 0)) = (1, 0) e g ((,,, )) = (, ). La matrice di g rispetto alla base B = (1,,, 0), (,,, )} e alla base canonica C di R 2 é: [g 0 ] B C = [ 1 0 (d) Determinare i valori di R per cui g é iniettiva. Se = 0, abbiamo g 0 ((1, 0, 0, 0)) = (1, 0) (0, 0) e quindi g 0 é iniettiva. Se 0, abbiamo [ 1 det( 0 ]. ] ) = e pertanto g risulta iniettiva ance per 0. In conclusione g é iniettiva per ogni R. 1

2 2 (2) Sia f : R 3 R 3 l applicazione lineare definita da f (x, y, z) = (x z, x + y z, x + z), R. (a) Determinare ker(f ) e Im(f ) per ogni R. Sia A = la matrice di f rispetto alla base canonica. Abbiamo A = = 1 2. Se ±1, A 0, f é un isomorfismo e pertanto ker(f ) = 0 e Im(f ) = R 3. Se = 1, operando per rige, abbiamo A 1 = da cui deduciamo ker(f 1 ) = (z, 0, z), z R} =< (1, 0, 1) >. Dalla espressione di A 1 otteniamo Im(f 1 ) =< (1, 1, 1), (0, 1, 0) > e dim(im(f 1 )) = 2. Se = 1, operando per rige,abbiamo A 1 = da cui deduciamo ker(f 1 ) = ( z, 0, z), z R} =< ( 1, 0, 1) >. Dalla espressione di A 1 ricaviamo Im(f 1 ) =< (1, 1, 1), (0, 1, 0) > e dim(im(f 1 )) = 2. (b) Studiare, al variare di R, la diagonalizzabilitá di f e, per gli eventuali valori di R per cui risulta diagonalizzabile, determinare una base di R 3 formata da autovettori di f. Calcoliamo il polinomio caratteristico di f : 1 t t = (1 t) 1 t 0 1 t 0 1 t 1 1 t 0 = = (1 t)[(1 t) 2 2 ] = (1 t)(t 1 )(t 1 + ). Gli autovalori di f sono quindi 1, 1+, 1. Se 0, abbiamo tre autovalori distinti e f risulta diagonalizzabile. Se = 0, l autovalore 1 a molteplicitá algebrica 3 e molteplicitá geometrica 3 ρ(a 0 I 3 3 ) = 3 ρ( ) = 3 1 = 2. Pertanto f 0 non é diagonalizzabile, fatto ce poteva ance essere dedotto osservando ce f 0 I R 3, l unico endomorfismo di R 3 diagonalizzabile e con autovalore 1 di molteplicitá algebrica 3.,,

3 Supponiamo ora 0 e determiniamo una base di R 3 formata da autovettori di f. Per l autovalore 1, l autospazio R 3 1 relativo é composto dalle soluzioni del sistema omogeneo z = 0 x 0 z = 0 x = 0 Quindi R 3 1 =< (0, 1, 0) >. Analogamente per l autovalore 1 + abbiamo x z = 0 x y z = 0 x z = 0 e R =< ( 1,, 1) >. Per l autovalore 1 abbiamo x z = 0 x +y z = 0 x z = 0 e R 3 1 =< (1, 1, 1) >. (c) Per ogni R determinare f 1 (1, 0, 1). Gli elementi cercati sono le soluzioni del sistema Abbiamo B = A x y z = Se ±1, abbiamo ρ(a ) = 3 = ρ(b ) e il sistema ammette l unica soluzione (1, 1, 1 ). 1 1 Se = 1, il sistema non ammette soluzioni percé la terza equazione si riduce a 0 = 2. Se = 1, abbiamo infinite soluzioni della forma (1 t, 1, t) = (1, 1, 0) + t( 1, 0, 1), t R. 3 (3) Sia R[x] 3 lo spazio vettoriale reale dei polinomi di grado minore o uguale a 3 nella variabile x e sia f : R[x] 3 [ R 2,2 l applicazione lineare ] definita dalla a + b + c + d b + c legge f (a + bx + cx 2 + dx 3 ) =, dove R é un b c d b parametro reale. (a) Determinare, al variare di R, il nucleo di f, l immagine di f e le loro dimensioni. Consideriamo la base A = 1, x, x 2, x 3 } di R[x] 3 e la base [ ] [ ] [ ] [ ] B =,,, }

4 4 di R 2,2. Abbiamo Pertanto A = [f] A B = A = = = 2. Se 0, allora A 0 e f é un isomorfismo. Pertanto per ogni 0 abbiamo ker(f ) = 0 e Im(f ) = R 2,2 visto ce dim(r[x] 3 ) = 4 = dim(r 2,2 ). Se = 0, operando per rige, abbiamo A 0 = da cui deduciamo le equazioni cartesiane di ker(f 0 ): a = b + c = 0. Otteniamo ker(f 0 ) = bx bx 2 + dx 3 ; b, d R} =< x x 2, x 3 > e quindi dim(ker(f 0 )) = 2. Dalla espressione di A 0 segue [ ] [ ] Im(f 0 ) =, e dim(im(f 0 )) = 2. (b) Esistono dei valori di R per cui f non é isomorfismo? Giustificare la risposta. L unico valore di per cui f non é isomorfismo é = 0. Per 0 abbiamo ker(f ) = 0 e Im(f ) = R 2,2 e f é un isomorfismo. (c) Determinare, [ ] al variare di R, la controimmagine della matrice A = 0 3, i.e. determinare f (A). Consideriamo la matrice associata al sistema A e riduciamo per rige: a b c d = Se = 0, otteniamo il sistema a = 3 b + c = 3 e f 1 (A) = 3 + (3 c)x + cx2 + dx 3, c, d R}.,

5 Se 0, possiamo ridurre ulteriormente dividendo per la terza e quarta riga, poi sottraendo alla prima riga la terza riga e alla seconda riga la quarta riga. Ricaviamo il sistema: e f 1 (A) = 3 + 3x2. a = 3 c = 3 d = 0 b = 0 (4) Sia f : R 4 R 4 l applicazione lineare definita dalla legge f (x, y, z, t) = (x + y + z + t, y + z, y z t, y) dove R é un parametro reale. (a) Determinare, al variare di R, il nucleo di f, l immagine di f e le loro equazioni cartesiane. Sia A = la matrice di f rispetto alla base canonica. Abbiamo A = = = 2. Se 0, A = 0, allora f é un isomorfismo e pertanto ker(f ) = 0 e Im(f ) = R 4. Se = 0, operando per rige, abbiamo A 0 = da cui deduciamo le equazioni cartesiane di ker(f 0 ): x = y + z = 0. Otteniamo ker(f 0 ) = (0, z, z, t), z, t R} =< (0, 1, 1, 0), (0, 0, 0, 1) >, dim(ker(f 0 )) = 2. Dalla espressione di A 0 segue Im(f 0 ) =< (1, 0, 0, 0), (1, 1, 1, 0) >, e dim(im(f 0 )) = 2. Le equazioni parametrice della immagine sono x = α+ β y = β ; α, β R, z = β t = 0 da cui possiamo ricavare le seguenti equazioni cartesiane di Im(f 0 ): t = y + z = 0 5

6 6 (b) Nel caso in cui f non é isomorfismo, determinare se f é diagonalizzabile. Dobbiamo studiare la diagonalizzabilitá di f 0. Calcoliamo il polinomio caratteristico di A 0 : A 0 ti 4 4 = 1 t t t 0 t = (1 t) 1 t t t = (1 t)( t) 1 t t = t(t 1)[(1 t)( 1 t) + 1] = (t 1)t3. = L autovalore 0 a molteplicitá algebrica 3 e molteplicitá geometrica 2 = 4 ρ(a 0 ) = 4 2. Pertanto f 0 non é diagonalizzabile. (c) Sia V k = (x, y, z, t) R 4 x + ky + z = 0} R 4, con k R parametro reale; determinare il valore di k per cui f induce un endomorfismo ϕ di V k. Abbiamo dim(v k ) = 3 per ogni k R e i vettori di V k sono della forma (x, y, x ky, t), x, y, t R}. Consideriamo la base B k = v 1 = (1, 0, 1, 0), v 2 = (0, 1, k, 0), v 3 = (0, 0, 0, 1)} di V k. Abbiamo f (v 1 ) = (0, 1, 1, 0); f (v 2 ) = (1 k, 1 k, 1 + k, ) e f (v 3 ) = (, 0,, 0) = v 1 V k per ogni k, R. Sostituendo nella equazione cartesiana di V k per imporre f (v 1 ) V k abbiamo 0 = 0 + k( 1) = k + 1 e quindi k = 1. Per k = 1 abbiamo f (v 2 ) = (0, 0, 0, ) = v 3 V k per ogni, k R. In conclusione f induce un endomorfismo se e solo se k = 1. (d) Verificare ce ϕ : V k V k, quando definito, non é mai diagonalizzabile. Dall analisi precedente, con k = 1, otteniamo ϕ(v 1 ) = v 2, ϕ(v 2 ) = v 3 e ϕ(v 3 ) = v 1. Ricaviamo ce B = [ϕ] B B = Il polinomio caratteristico di ϕ é: t 0 1 t 0 0 t = t t 0 t + 1 t 0 = t3 2 = (t ). Questo polinomio a una sola radice reale di molteplicitá algebrica 1 se 0 e per questi valori risulta non diagonalizzabile. Se = 0, l autovalore 0 a molteplicitá algebrica 3 e molteplicitá geometrica 3 ρ(b 0 ) = 3 1 = 2 e ϕ non é diagonalizzabile nemmeno per = 0. (e) Determinare, al variare di R, la controimmagine del vettore (0, 3, 3, 0), i.e. determinare f 1 ((0, 3, 3, 0)). Consideriamo la matrice associata al sistema e riduciamo per rige:

7 7 Se = 0, otteniamo il sistema x = 3 y + z = 3 e f 1 ((0, 3, 3, 0)) = ( 3, 3 z, z, t), z, t R}. Se 0, possiamo ridurre ulteriormente dividendo per la terza e quarta riga, poi sottraendo alla prima riga la terza riga e alla seconda riga la quarta riga. Ricaviamo il sistema: x = 3 z = 3 t = 0 y = 0 e f 1 ((0, 3, 3, 0)) = ( 3, 0, 3, 0). (5) Sono assegnati il sottospazio V = (x, y, z, t) R 4 x z + t = 0} R 4 e l endomorfismo f : V V dato da f (1, 0, 1, 0) = ( 1, + 1, 0, 1) f (0, 1, 0, 0) = (, 0, 2, ) f (0, 0, 1, 1) = ( 1, 1, 0, 1) dove R é un parametro reale. (a) Determinare, al variare di R, il nucleo di f, l immagine di f e le loro dimensioni. I vettori v 1 = (1, 0, 1, 0), v 2 = (0, 1, 0, 0) e v 3 = (0, 0, 1, 1) formano una base di V ce indiceremo con B. Abbiamo Quindi f (v 1 ) = (1, + 1, 0, 1) = v 1 + ( + 1)v 2 v 3, f (v 2 ) = (, 0, 2, ) = v 1 + v 3, f (v 3 ) = ( 1, 1, 0, 1) = v 1 v 2 + v 3. A = [f ] B B = e A = 2 2. Se 0, allora f é un isomorfismo, ker(f ) = 0 e Im(f ) = V. Se = 0, abbiamo A 0 = [f 0 ] B B = Se u = v 1 + v 2 v 3 = (1, 1, 0, 1), allora Im(f 0 ) = u e dim(im(f 0 )) = 1. Dall espressione di A 0 otteniamo ce, se (x, y, z) sono le coordinate di v V rispetto a B, allora ker(f 0 ) = (x, y, z) : x = z} = (1, 0, 1), (0, 1, 0) = v 1 + v 3, v 2 = e dim(ker(f 0 )) = 2. = (1, 0, 2, 1), (0, 1, 0, 0)

8 8 (b) Discutere la diagonalizzabilitá di f al variare di R determinando, quando esiste, una base di V formata da autovettori di f. Calcoliamo il polinomio caratteristico di f : 1 t t t = t(1 t)2 + ( + 1) + t ( + 1)(1 t) + (1 t) = = t(1 t) 2 + ( + 1) + t 2 (1 t) (1 t) + (1 t) = = t 3 + 2t t 2 2 = (2 t)(t 2 2 ). Gli autovalori di f sono quindi 2,,. Se 0, 2, 2, f a tre autovalori distinti e risulta quindi diagonalizzabile. Calcoliamo gli autospazi relativi agli autovalori 2, e supponendo inizialmente 0, 2, 2. Per l autovalore 2, l autospazio V 2 relativo é composto dalle soluzioni del sistema omogeneo x +y z = 0 ( + 1)x 2y z = 0, x +y z = 0 equivalente a (1) ( + 2)x ( + 2)y = 0 x +y z = 0. Poicé supponiamo 2, abbiamo x = y e z = ( 1)x, i.e. le soluzioni sono della forma (x, x, ( 1)x) = x(1, 1, 1). Quindi V 2 = v 1 + v 2 + ( 1)v 3 = (1, 1,, 1), visto ce (1, 1,, 1) = v 1 + v 2 + ( 1)v 3. Consideriamo l autovalore e il sistema associato (1 )x +y z = 0 ( + 1)x +y z = 0 x +y +( + 1)z = 0 equivalente al sistema x x y z = 0 = 0. Visto ce supponiamo 0, le soluzioni sono della forma (x, x, x) = x(1, 1, 1). Quindi V = v 1 + v 2 + v 3 = (1, 1, 2, 1). Consideriamo l autovalore e il sistema associato (1 + )x +y z = 0 (1 + )x +y z = 0, x +y +( + 1)z = 0 equivalente al sistema x +2y +z = 0 ( + 2)x ( + 2)z = 0.,

9 Poicé supponiamo 0, 2, abbiamo soluzioni della forma (x, x, x) = x(1, 1, 1). Allora V = v 1 v 2 + v 3 = (1, 1, 2, 1). 9 Riassumendo per 0, 2, 2, abbiamo la base di autovettori (1, 1,, 1), (1, 1, 2, 1), (1, 1, 2, 1)}. Per = 0, l autovalore 0 a molteplicitá algebrica 2 e f 0 risulta diagonalizzabile percé dim(ker(f 0 )) = 2. Quindi per = 0, abbiamo la base (1, 1, 0, 1), (1, 0, 2, 1), (0, 1, 0, 0)} di autovettori di f 0. Per = 2 il sistema (1) si riduce all equazione x = z. Pertanto dim(v 2 ) = 2 e abbiamo la base (1, 0, 0, 1), (0, 1, 2, 2), (1, 1, 2, 1)} di autovettori di f 2. Per = 2 l endomorfismo f 2 risulta non diagonalizzabile percé dim(v 2 ) = 1 come risulta dal sistema (1). (c) Calcolare, al variare di R, la controimmagine del vettore (,, 2, ), cioé determinare f 1 ((,, 2, )) = v V : f (v) = (,, 2, )}. Abbiamo (,, 2, ) = v 1 + v 2 + v 3 = (v 1 + v 2 + v 3 ). Se = 0, abbiamo f 1 0 (0) = ker(f 0 ) = (1, 0, 2, 1), (0, 1, 0, 0). Se 0, f é isomorfismo e per il calcolo effettuato per determinare V abbiamo f (v 1 + v 2 + v 3 ) = (v 1 + v 2 + v 3 ) = (,, 2, ). Quindi per 0 abbiamo f 1 ((,, 2, )) = (1, 1, 2, 1). (d) Per 0 determinare gli isomorfismi ϕ : R 4 R 4 tali ce ϕ(v) = f (v) per ogni v V. Completiamo la base v 1, v 2, v 3 } di V ad una base di R 4 tramite il vettore e 4 = (0, 0, 0, 1) V. Sia ϕ(e 4 ) = (α, β, γ, δ) R 4 e sia ϕ : R 4 R 4 l endomorfismo ce estende f a R 4. Tutti gli endomorfismi di R 4 ce estendono f possono considerarsi di questo tipo. Poicé per 0 abbiamo Im(f ) = V, l endomorfismo ϕ risulta un isomorfismo di R 4 se e solamente se Im(ϕ) = R 4, i.e. se e solamente se (α, β, γ, δ) V. Quindi dovremo avere α γ+δ 0. (6) Sia f : R 2 R 2 l endomorfismo definito da f (1, 1) = (2, 2) f (1, 1) = (2, 2 4) con R. (a) Determinare la matrice di f rispetto alla base canonica di R 2, Im f e ker f. La matrice associata di f rispetto alla base canonica é [ ] A = 1 3 1

10 10 pertanto A = 4 2. Per 0 f è un isomorfismo, Im f = R 2 e ker f = 0. Per = 0 la matrice A 0 a rango 1, Im f 0 = (1, 1), ker f 0 = (1, 1). (b) Studiare la diagonalizzabilità di f al variare di, determinandone gli autospazi. Il polinomio caratteristico di f é c A (t) = t 2 4t = (t 2) 2 ce a t = 2 come radice di molteplicitá algebrica 2. Abbiamo [ ] 1 1 A (2) I 2 2 =. 1 1 Se 1, abbiamo R 2 2 = (1, 1) e quindi f non é diagonalizzabile. Se = 1, allora A 1 2 I 2 2 = 0 2 2, R 2 2 = R 2 e f 1 risulta diagonalizzabile. (7) Sia ϕ : R 3 R 3 definita da ϕ (1, 1, 0) = (2, 2, 0) ϕ (1, 1, 0) = (2, 2 4, 0) ϕ (0, 1, 1) = (, 3, 2) con R parametro reale. (a) Studiare, al variare del parametro, l endomorfismo ϕ : R 3 R 3 determinando la matrice di ϕ rispetto alla base canonica di R 3, Im ϕ e ker ϕ. La matrice di ϕ rispetto alla base canonica di R 3 é A = Quindi A = 4 2 ( 2). Pertanto per 0, 2 ϕ é un isomorfismo, Im ϕ = R 3 e ker ϕ = 0. Se = 0, A 0 = e abbiamo Im ϕ 0 = (1, 1, 0), (0, 0, 1), ker ϕ 0 = (1, 1, 0). Se = 2, A 2 = , Im ϕ 2 = (1, 0, 0), (0, 1, 0) e ker ϕ = (1, 1, 4). (b) Studiare, al variare di, la diagonalizzabilità di ϕ, determinandone gli autospazi. Il polinomio caratteristico di ϕ é c A (t) = ( 2 t)(t 2) 2, avente t = 2 come radice di molteplicitá algebrica almeno uguale a 2 e come rimanente radice reale t = 2.

11 Abbiamo 2 = 2 se e solamente se = 2. Quindi se = 2, ϕ 2 a come unico autovalore t = 4 di molteplicitá algebrica 3. In questo caso si ottiene A 2 ( 4) I 3 3 = e quindi R 3 4 = (x, y, 3x + 3y)} = (1, 0, 3), (0, 1, 3). Poicé la molteplicitá geometrica dell autovalore t = 4 di ϕ 2 é 2, deduciamo ce ϕ 2 non é diagonalizzabile. Supponiamo ora 2 e quindi ce t = 2 sia autovalore di molteplicitá algebrica 2 mentre t = 2 é autovalore di molteplicitá algebrica 1. Per t = 2 abbiamo A ( 2) I 3 3 = Quindi si ottiene il sistema associato ( + 2)x ( + 2)y = 0 ( + 2)x + z = 0 da cui deduciamo R 3 2 = (x, x, ( + 2)x)} = (1, 1, ( + 2)). Per t = 2 abbiamo A 2 I 3 3 = da cui otteniamo i seguenti sistemi: x y = 0 1 R z = = (x, x, 0)} = (1, 1, 0) = 1 R 3 2 = (x, y, 0)} = (1, 0, 0), (0, 1, 0). In definitiva ϕ è diagonalizzabile solo per = 1. (8) Si considerino l applicazioni lineare f : R 4 R 3, definita da f(x, y, z, t) = (x t, x + y, z + t), e l applicazione lineare g : R 3 R 4, definita da g(x, y, z) = (z x, y, y, x + y). 11 Abbiamo f(x, y, z, t) = x y z t = A x y z t

12 12 e g(x, y, z) = x y z = B x y z a) Determinare una base del nucleo e dell immagine di f e di g e studiare l iniettivitá e suriettivitá di entrambe le applicazioni lineari. L immagine di f é R 3 percé le prime tre rige di f sono linearmente indipendenti. Quindi f é suriettiva e una base dell immagine é ad esempio la base canonica di R 3. Per determinare il nucleo dobbiamo risolvere il sistema omogeneo Abbiamo A x y z t = x t = 0 x +y = 0 z +t = 0 e pertanto ker(f) = (t, t, t, t), t R} = (1, 1, 1, 1) >. L applicazione lineare f non é iniettiva. Le tre colonne della matrice B sono linearmente indipendenti. Abbiamo dim(im(g)) = 3 e Im(g) = ( 1, 0, 0, 1), (0, 1, 1, 1), (1, 0, 0, 0). Per il Teorema del Nucleo e della Immagine l applicazione lineare g risulta iniettiva e ker(g) = 0 R 3. L applicazione lineare g non é suriettiva percé Im(g) R 4. b) Sia v = (, 1,, 1). Calcolare g 1 (v ), al variare del parametro reale. L insieme g 1 (v ) é costituito dalle soluzioni del sistema di equazioni lineari B = Abbiamo x y z 1 1 x +z = y = 1 y = x +y = 1 Affincé il sistema abbia soluzioni dobbiamo avere = 1 confrontando la seconda e terza equazione. Sostituendo = 1 otteniamo x +z = 1 y = 1 y +z = 0 ce ammette come unica soluzione (2, 1, 1). In conclusione g 1 (v 1 ) = (2, 1, 1) e g 1 (v ) = per ogni 1. c) Studiare la diagonalizzabilitá di f g e g f.

13 La matrice di f g : R 3 R 3 rispetto alla base canonica di R 3 é la matrice D = A B = 1 1 1, il cui polinomio caratteristico risulta essere c D (t) = t(t 2)(t + 3). Quindi f g : R 3 R 3 risulta diagonalizzabile avendo tre autovalori reali distinti. La matrice di g f : R 4 R 4 rispetto alla base canonica di R 4 é la matrice E = B A = il cui polinomio caratteristico risulta essere c E (t) = t 2 (t 2)(t+3). La molteplicitá geometrica dell autovalore 0 é uguale a 4 ρ(e) = 4 3 = 1 < 2. Pertanto g f risulta non diagonalizzabile. (9) Sono assegnati il sottospazio V = (x, y, z, t) R 4 x + y z = 0} R 4 e l endomorfismo f : V V dato da, f (1, 0, 1, 0) = ( + 1, 1, 2, 0 ) f (0, 1, 1, 0) = ( 1, 3 1, 4 2, 0 ) f (0, 0, 0, 1) = ( 1, 1, 2, 2 ) dove R é un parametro reale. (a) Determinare, al variare di R, il nucleo di f, l immagine di f e le loro dimensioni. I vettori v 1 = (1, 0, 1, 0), v 2 = (0, 1, 1, 0) e v 3 = (0, 0, 0, 1) formano una base di V ce indiceremo con B. Abbiamo f (v 1 ) = ( + 1, 1, 2, 0) = ( + 1)v 1 + (1 )v 2, f (v 2 ) = ( 1, 3 1, 4 2, 0) = ( 1)v 1 + (3 1)v 2, f (v 3 ) = (1, 1, 2, 2) = v 1 + v 2 + ( 2)v 3. Quindi A = [f ] B B = e A = 4 2 ( 2). Pertanto per 0, 2 f é un isomorfismo, Im f = V e ker f = 0 V. Se = 0, A 0 = e abbiamo Im f 0 = (1, 1, 0) B, (0, 0, 1) B = v 1 +v 2, v 3 = (1, 1, 2, 0), (0, 0, 0, 1) e ker f 0 = (1, 1, 0) B = v 1 + v 2 = (1, 1, 1, 0). Se = 2, A 2 = , Im f 2 = (1, 0, 0) B, (0, 1, 0) B = v 1, v 2 e ker f 2 = (1, 1, 4) B = v 1 + v 2 4v 3. 13

14 14 (b) Discutere la diagonalizzabilitá di f al variare di R determinando, quando esiste, una base di V formata da autovettori di f. Il polinomio caratteristico di f é c A (t) = ( 2 t)(t 2) 2, avente t = 2 come radice di molteplicitá algebrica almeno uguale a 2 e come rimanente radice reale t = 2. Abbiamo 2 = 2 se e solamente se = 2. Quindi se = 2, f 2 a come unico autovalore t = 4 di molteplicitá algebrica 3. In questo caso si ottiene e quindi A 2 ( 4) I 3 3 = V 4 = (x, y, 3x + 3y)} = (1, 0, 3) B, (0, 1, 3) B = v 1 3v 2, v 2 + 3v 1. Poicé la molteplicitá geometrica dell autovalore t = 4 di f 2 é 2, deduciamo ce f 2 non é diagonalizzabile. Supponiamo ora 2 e quindi ce t = 2 sia autovalore di molteplicitá algebrica 2 mentre t = 2 é autovalore di molteplicitá algebrica 1. Per t = 2 abbiamo A ( 2) I 3 3 = Risolvendo il sistema associato ( + 2)x ( + 2)y = 0 ( + 2)x + z = 0 deduciamo V 2 = (x, x, ( + 2)x)} = (1, 1, ( + 2)) B = v 1 + v 2 ( + 2)v 3. Per t = 2 abbiamo A 2 I 3 3 = da cui otteniamo i seguenti sistemi: x y = 0 1 V z = 0 2 = (x, x, 0)} = (1, 1, 0) B = v 1 + v 2 = 1 V 2 = (x, y, 0)} = (1, 0, 0) B, (0, 1, 0) B = v 1, v 2. In definitiva f è diagonalizzabile solo per = 1. (c) Calcolare, al variare di R, la controimmagine del vettore w = (1, 1, 2, 2), cioé determinare f 1 ((1, 1, 2, 2)) = v V : f (v) = (1, 1, 2, 2)}. Poicé f (v 3 ) = w per ogni R e poicé per 0, 2 f é un isomorfismo, abbiamo f 1 (w) = v 3 per 0, 2. Se = 0, abbiamo ker f 0 = v 1 + v 2 e pertanto f0 1 (w) = v 3 + α(v 1 + v 2 ) con α R. Se = 2, abbiamo ker f 2 = v 1 + v 2 4v 3 e pertanto f2 1 (w) = v 3 + α(v 1 + v 2 4v 3 ) con α R.

15 (10) Sia f : R 3 R 3, R, l endomorfismo associato alla matrice (a) Determinare Im(f ) e ker(f ). Essendo = + 3, abbiamo ce per 3, ker(f ) = 0 e Im(f ) = R 3. Per = 3 la matrice diventa , ce operando sulle colonne si trasforma in Pertanto Im(f ) = (1, 0, 1), (1, 1, 2) e ker(f ) = (1, 1, 1). (b) Determinare, al variare di, la controimmagine f 1 (1, 0, 1) = v R3 f (v) = (1, 0, 1)} Risolviamo il sistema associato, considerando la matrice estesa (A w): quindi per 3 si a una sola soluzione, f 1 (1, 0, 1) = (1, 0, 1)}; in particolare t = 1 risulta essere un autovalore di f per 3. Per = 3 si a ρ(a ) = ρ(a, w) = 2, quindi si anno 1 soluzioni. Risolvendo il sistema ridotto si trova facilmente f 1 (1, 0, 1) = (x, x 1, x 2)}. (c) Studiare la diagonalizzabilità di f individuando, quando è possibile, una base di autovettori. Abbiamo 2 t 1 c f (t) = t t = (t 1)2 (t ( + 3)). Se + 3 = 1, cioé se = 2, l autovalore 1 a molteplicitá algebrica 3 e molteplicitá geometrica 3 ρ( ) = Quindi f 2 risulta non diagonalizzabile.

16 16 T = 1 T = + 3 Supponiamo ora 2 e calcoliamo gli autospazi: V 1 = (x, y, x y)} con base u 1 = (1, 0, 1), u 2 = (0, 1, ); V +3 = (x, x, x)} con base u 3 = (1, 1, 1). Quindi per ogni 2 l endomorfismo f risulta diagonalizzabile e abbiamo la base di autovettori B = (1, 0, 1), (0, 1, ), (1, 1, 1)}. (11) Sia V il sottospazio di R 4 generato dai vettori v 1 = (0, 1, 0, 0), v 2 = (0, 0, 1, 0), v 3 = (1, 0, 0, 1) e sia A = v 1, v 2, v 3 }. Sia inoltre f : V V l endomorfismo la cui matrice associata rispetto alla base A é M = [f ] A A = , con R parametro. (i) Determinare, al variare di, il nucleo e l immagine di f. Se = 1, abbiamo Im f 1 = v 1 + v 2 + v 3 e ker f 1 = v 1 v 3, v 2 v 3. Se 1, abbiamo Im f = v 1, v 2 + v 3 e ker f = v 2 v 3. (ii) Studiare la diagonalizzabilitá di f al variare di e nel caso = 1 determinarne gli autospazi. Si potrebbe immediatamente osservare ce f é diagonalizzabile per ogni R visto ce la matrice M é simmetrica e passare a studiare direttamente il caso = 1. Altrimenti si procede nella maniera standard. Abbiamo c M (t) = t[t 2 ( + 2)t + 2( 1)]. Il polinomio t 2 ( + 2)t + 2( 1) a discriminante = ( 2) > 0 per ogni R. Quindi le due radici di questo polinomio sono distinte per ogni R. La radice 0 di c M (t) é radice ance di t 2 ( + 2)t + 2( 1) se e solamente se 2( 1) = 0, i.e. se e solamente se = 1. In conclusione se 1 abbiamo tre autovalori distinti e f risulta diagonalizzabile mentre f 1 a 0 come autovalore di molteplicitá algebrica 2 e 3 come autovalore di molteplicitá algebrica 1. Quindi per = 1, abbiamo V 0 = ker f 1 = x+y+z = 0} = v 1 v 3, v 2 v 3 e V 1 = 2x + y + z = 0 = x 2y + z} = v 1 + v 2 + v 3. Ance l endomorfismo f 1 risulta quindi diagonalizzabile. (iii) Sia W = Im f 2. Determinare gli eventuali valori di per cui f W risulti iniettiva. Abbiamo W = v 1, v 2 + v 3 e in coordinate rispetto alla base A il sottospazio W a equazioni cartesiane y z = 0. Il sottospazio ker f 1 a equazioni cartesiane x + y + z = 0 e quindi ker f 1 W = 2v 1 + v 2 + v 3 0 V. Allora f 1 W non é iniettiva. Se 1, abbiamo ker f W = 0 V e quindi f W risulta iniettiva.

17 17 (iv) Dire se M 1 é simile alla matrice B = Abbiamo c B (t) = t 2 (3 t) ed essendo ρ(b) = 2 la matrice B risulta diagonalizzabile. Essendo ance M 1 diagonalizzabile, le matrici M 1 e B risultano entrambe simili a e quindi sono simili.

FONDAMENTI DI ALGEBRA LINEARE E GEOMETRIA

FONDAMENTI DI ALGEBRA LINEARE E GEOMETRIA Cognome Nome Matricola FONDAMENTI DI ALGEBRA LINEARE E GEOMETRIA Ciarellotto, Esposito, Garuti Prova del 21 settembre 2013 Dire se è vero o falso (giustificare le risposte. Bisogna necessariamente rispondere

Dettagli

APPLICAZIONI LINEARI

APPLICAZIONI LINEARI APPLICAZIONI LINEARI Esercizi Esercizio Date le seguenti applicazioni lineari f : R 2 R 3 definita da fx y = x 2y x + y x + y; 2 g : R 3 R 2 definita da gx y z = x + y x y; 3 h : Rx] 2 R 2 definita da

Dettagli

Tempo a disposizione: 150 minuti. 1 È dato l endomorfismo f : R 3 R 3 definito dalle relazioni

Tempo a disposizione: 150 minuti. 1 È dato l endomorfismo f : R 3 R 3 definito dalle relazioni Università degli Studi di Catania Anno Accademico 2014-2015 Corso di Laurea in Informatica Prova in itinere di Matematica Discreta (12 CFU) 17 Aprile 2015 Prova completa Tempo a disposizione: 150 minuti

Dettagli

Esercizi di MATEMATICA PER RCHITETTURA prima parte: Algebra Lineare e Geometria

Esercizi di MATEMATICA PER RCHITETTURA prima parte: Algebra Lineare e Geometria Esercizi di MATEMATICA PER RCHITETTURA prima parte: Algebra Lineare e Geometria Avvertenze In quanto segue tutti i vettori hanno il medesimo punto d origine O l origine dello spazio cartesiano. Possiamo

Dettagli

Esercizi di GEOMETRIA I - Algebra Lineare B = , calcolare A A t A + I

Esercizi di GEOMETRIA I - Algebra Lineare B = , calcolare A A t A + I Esercizi di GEOMETRIA I - Algebra Lineare. Tra le seguenti matrici, eseguire tutti i prodotti possibili: 2 ( ) A = 0 3 4 B = 2 0 0 2 D = ( 0 ) E = ( ) 4 4 2 C = 2 0 5 F = 4 2 6 2. Data la matrice A = 0

Dettagli

ESERCIZI DI MATEMATICA DISCRETA ANNO 2006/2007

ESERCIZI DI MATEMATICA DISCRETA ANNO 2006/2007 ESERCIZI DI MATEMATICA DISCRETA ANNO 6/7 //7 () Ridurre la seguente matrice ad una a scala ridotta utilizzando il metodo di Gauss-Jordan. Soluzione. () Determinare quante e quali sono le matrici a scala

Dettagli

DIAGONALIZZAZIONE. M(f) =

DIAGONALIZZAZIONE. M(f) = DIAGONALIZZAZIONE Esercizi Esercizio 1. Sia f End(R 3 ) associato alla matrice M(f) = 0 1 2 0. 2 (1) Determinare gli autovalori di f e le relative molteplicità. (2) Determinare gli autospazi di f e trovare,

Dettagli

(VX) (F) Se A e B sono due matrici simmetriche n n allora anche A B è una matrice simmetrica.

(VX) (F) Se A e B sono due matrici simmetriche n n allora anche A B è una matrice simmetrica. 5 luglio 010 - PROVA D ESAME - Geometria e Algebra T NOME: MATRICOLA: a=, b=, c= Sostituire ai parametri a, b, c rispettivamente la terzultima, penultima e ultima cifra del proprio numero di matricola

Dettagli

(2) Dato il vettore w = (1, 1, 1), calcolare T (w). (3) Determinare la matrice A associata a T rispetto alla base canonica.

(2) Dato il vettore w = (1, 1, 1), calcolare T (w). (3) Determinare la matrice A associata a T rispetto alla base canonica. 1. Applicazioni lineari Esercizio 1.1. Sia T : R 2 R 3 l applicazione lineare definita sulla base canonica di R 2 nel seguente modo: T (e 1 ) = (1, 2, 1), T (e 2 ) = (1, 0, 1). a) Esplicitare T (x, y).

Dettagli

Soluzione. (a) L insieme F 1 e linearmente indipendente; gli insiemi F 2 ed F 3 sono linearmente

Soluzione. (a) L insieme F 1 e linearmente indipendente; gli insiemi F 2 ed F 3 sono linearmente 1. Insiemi di generatori, lineare indipendenza, basi, dimensione. Consideriamo nello spazio vettoriale R 3 i seguenti vettori: v 1 = (0, 1, ), v = (1, 1, 1), v 3 = (, 1, 0), v 4 = (3, 3, ). Siano poi F

Dettagli

CdL in Ingegneria Gestionale e CdL in Ingegneria del Recupero Edilizio ed Ambientale

CdL in Ingegneria Gestionale e CdL in Ingegneria del Recupero Edilizio ed Ambientale CdL in Ingegneria Gestionale e CdL in Ingegneria del Recupero Edilizio ed Ambientale della prova scritta di Algebra Lineare e Geometria- Compito A- 8 Aprile 8 E assegnato l endomorfismo f : R 3 R 3 definito

Dettagli

Applicazioni lineari e diagonalizzazione. Esercizi svolti

Applicazioni lineari e diagonalizzazione. Esercizi svolti . Applicazioni lineari Esercizi svolti. Si consideri l applicazione f : K -> K definita da f(x,y) = x + y e si stabilisca se è lineare. Non è lineare. Possibile verifica: f(,) = 4; f(,4) = 6; quindi f(,4)

Dettagli

Ingegneria Civile. Compito di Geometria del 06/09/05. E assegnato l endomorfismo f : R 3 R 3 mediante le relazioni

Ingegneria Civile. Compito di Geometria del 06/09/05. E assegnato l endomorfismo f : R 3 R 3 mediante le relazioni Ingegneria Civile. Compito di Geometria del 06/09/05 E assegnato l endomorfismo f : R 3 R 3 mediante le relazioni I f(,, 0) = (h +,h+, ) f(,, ) = (h,h, h) f(0,, ) = (,h, h) con h parametro reale. ) Studiare

Dettagli

Esercizi di ripasso: geometria e algebra lineare.

Esercizi di ripasso: geometria e algebra lineare. Esercizi di ripasso: geometria e algebra lineare. Esercizio. Sia r la retta passante per i punti A(2,, 3) e B(,, 2) in R 3. a. Scrivere l equazione cartesiana del piano Π passante per A e perpendicolare

Dettagli

ESERCIZI DI ALGEBRA LINEARE (D) A = A = A = R 2,2. D5 Dire come bisogna scegliere i parametri h e k affinché la

ESERCIZI DI ALGEBRA LINEARE (D) A = A = A = R 2,2. D5 Dire come bisogna scegliere i parametri h e k affinché la ESERCIZI DI ALGEBRA LINEARE (D) D1 Nello spazio vettoriale R 2,2 si consideri l insieme { V = X R 2,2 XA = AX, A = ( 1 1 1 2 )} delle matrici che commutano con A. Verifiare che V = L(I 2, A). Verificare

Dettagli

Compiti di geometria & algebra lineare. Anno: 2004

Compiti di geometria & algebra lineare. Anno: 2004 Compiti di geometria & algebra lineare Anno: 24 Anno: 24 2 Primo compitino di Geometria e Algebra 7 novembre 23 totale tempo a disposizione : 3 minuti Esercizio. [8pt.] Si risolva nel campo complesso l

Dettagli

Algebra lineare Geometria 1 11 luglio 2008

Algebra lineare Geometria 1 11 luglio 2008 Algebra lineare Geometria 1 11 luglio 2008 Esercizio 1. Si considerino la funzione: { R f : 3 R 3 (α, β, γ) ( 2β α γ, (k 1)β + (1 k)γ α, 3β + (k 2)γ ) dove k è un parametro reale, e il sottospazio U =

Dettagli

Per le risposte utilizza gli spazi predisposti. Quando richiesto, il procedimento va esposto brevemente, ma in maniera comprensibile.

Per le risposte utilizza gli spazi predisposti. Quando richiesto, il procedimento va esposto brevemente, ma in maniera comprensibile. COGNOME............................... NOME..................................... Punti ottenuti Esame di geometria Scrivi cognome e nome negli spazi predisposti in ciascuno dei tre fogli. Per ogni domanda

Dettagli

Esercizi per il corso di Algebra e Geometria L.

Esercizi per il corso di Algebra e Geometria L. Esercizi per il corso di Algebra e Geometria L AA 2006/2007 1 Foglio 1 In tutti gli esercizi che seguiranno lo spazio ambiente sarà il piano cartesiano a valori nel campo dei numeri reali, dove supporremo

Dettagli

Tempo a disposizione: 150 minuti. 1 Studiare, al variare del parametro reale k, il seguente sistema lineare: x + ky = k 2x + ky + z = 0.

Tempo a disposizione: 150 minuti. 1 Studiare, al variare del parametro reale k, il seguente sistema lineare: x + ky = k 2x + ky + z = 0. Università degli Studi di Catania Anno Accademico 014-015 Corso di Laurea in Informatica Prova in itinere di Matematica Discreta (1 CFU) 1 Dicembre 014 A Tempo a disposizione: 150 minuti 1 Studiare, al

Dettagli

Corso di Geometria Ing. Informatica e Automatica Test 1: soluzioni

Corso di Geometria Ing. Informatica e Automatica Test 1: soluzioni Corso di Geometria Ing. Informatica e Automatica Test : soluzioni k Esercizio Data la matrice A = k dipendente dal parametro k, si consideri il k sistema lineare omogeneo AX =, con X = x x. Determinare

Dettagli

GEOMETRIA E ALGEBRA LINEARE Soluzioni Appello del 17 GIUGNO Compito A

GEOMETRIA E ALGEBRA LINEARE Soluzioni Appello del 17 GIUGNO Compito A Soluzioni Appello del 17 GIUGNO 2010 - Compito A a) Se h = 7 il sistema ha infinite soluzioni (1 variabile libera), mentre se h 7 la soluzione è unica. b) Se h = 7 allora Sol(A b) = {( 7z, 5z + 5, z),

Dettagli

I VERIFICA DI GEOMETRIA 1 CORSO DI LAUREA IN MATEMATICA - 4 DICEMBRE 2007

I VERIFICA DI GEOMETRIA 1 CORSO DI LAUREA IN MATEMATICA - 4 DICEMBRE 2007 A I VERIFICA DI GEOMETRIA 1 CORSO DI LAUREA IN MATEMATICA - 4 DICEMBRE 2007 ESERCIZIO 1. Si consideri il seguente sistema di equazioni lineari x + y + 2z = 1 2x + ky + 4z = h 2x 2y + kz = 0 (a) Determinare,

Dettagli

Ingegneria Gestionale - Corso di Analisi II e Algebra anno accademico 2008/2009

Ingegneria Gestionale - Corso di Analisi II e Algebra anno accademico 2008/2009 Ingegneria Gestionale - Corso di Analisi II e Algebra anno accademico 28/29 Dire se le seguenti proposizioni sono vere o false: ESERCITAZIONE. Proposizione Vera Falsa f : R R 4 rk(f f : R 4 R rk(f f :

Dettagli

MATRICI ORTOGONALI. MATRICI SIMMETRICHE E FORME QUADRATICHE

MATRICI ORTOGONALI. MATRICI SIMMETRICHE E FORME QUADRATICHE DIAGONALIZZAZIONE 1 MATRICI ORTOGONALI. MATRICI SIMMETRICHE E FORME QUADRATICHE Matrici ortogonali e loro proprietà. Autovalori ed autospazi di matrici simmetriche reali. Diagonalizzazione mediante matrici

Dettagli

Analisi Matematica II - INGEGNERIA Gestionale - B 20 luglio 2017 Cognome: Nome: Matricola:

Analisi Matematica II - INGEGNERIA Gestionale - B 20 luglio 2017 Cognome: Nome: Matricola: Analisi Matematica II - INGEGNERIA Gestionale - B luglio 7 Cognome: Nome: Matricola: IMPORTANTE: Giustificare tutte le affermazioni e riportare i calcoli essenziali Esercizio [8 punti] Data la matrice

Dettagli

Endomorfismi e matrici simmetriche

Endomorfismi e matrici simmetriche CAPITOLO Endomorfismi e matrici simmetriche Esercizio.. [Esercizio 5) cap. 9 del testo Geometria e algebra lineare di Manara, Perotti, Scapellato] Calcolare una base ortonormale di R 3 formata da autovettori

Dettagli

Alcuni esercizi sulla diagonalizzazione di matrici. campo dei reali. Se lo è calcolare una base spettrale e la relativa forma diagonale di A.

Alcuni esercizi sulla diagonalizzazione di matrici. campo dei reali. Se lo è calcolare una base spettrale e la relativa forma diagonale di A. Alcuni esercii sulla diagonaliaione di matrici Eserciio Dire se la matrice A 4 8 è diagonaliabile sul 3 3 campo dei reali Se lo è calcolare una base spettrale e la relativa forma diagonale di A Svolgimento

Dettagli

Esercitazione 6 - Soluzione

Esercitazione 6 - Soluzione Anno Accademico 28-29 Corso di Algebra Lineare e Calcolo Numerico per Ingegneria Meccanica Esercitazione 6 - Soluzione Immagine, nucleo. Teorema di Rouché-Capelli. Esercizio Sia L : R 3 R 3 l applicazione

Dettagli

CORSO DI LAUREA in Ingegneria Informatica (Vecchio Ordinamento)

CORSO DI LAUREA in Ingegneria Informatica (Vecchio Ordinamento) CORSO D LAUREA in ngegneria nformatica (Vecchio Ordinamento) Prova scritta di Geometria assegnata il 19/3/2002 Sia f : R 3 R 4 l applicazione lineare la cui matrice associata rispetto alle basi canoniche

Dettagli

MATRICI E SISTEMI LINEARI

MATRICI E SISTEMI LINEARI - - MATRICI E SISTEMI LINEARI ) Calcolare i seguenti determinanti: a - c - d - e - f - g - 8 7 8 h - ) Calcolare per quali valori di si annullano i seguenti determinanti: a - c - ) Calcolare il rango delle

Dettagli

Dipendenza e indipendenza lineare (senza il concetto di rango)

Dipendenza e indipendenza lineare (senza il concetto di rango) CAPITOLO 5 Dipendenza e indipendenza lineare (senza il concetto di rango) Esercizio 5.1. Scrivere un vettore w R 3 linearmente dipendente dal vettore v ( 1, 9, 0). Esercizio 5.2. Stabilire se i vettori

Dettagli

Esame di Geometria - 9 CFU (Appello del 14 gennaio A)

Esame di Geometria - 9 CFU (Appello del 14 gennaio A) Esame di Geometria - 9 CFU (Appello del 4 gennaio 24 - A) Cognome: Nome: Nr.matricola: Corso di laurea: Esercizio. Si considerino le rette s : { x x 2 2x 3 = 2 3x x 2 =, { x + x s 2 : 2 x 3 = x 2 =.. Stabilire

Dettagli

SISTEMI LINEARI. x y + 2t = 0 2x + y + z t = 0 x z t = 0 ; S 3 : ; S 5x 2y z = 1 4x 7y = 3

SISTEMI LINEARI. x y + 2t = 0 2x + y + z t = 0 x z t = 0 ; S 3 : ; S 5x 2y z = 1 4x 7y = 3 SISTEMI LINEARI. Esercizi Esercizio. Verificare se (,, ) è soluzione del sistema x y + z = x + y z = 3. Trovare poi tutte le soluzioni del sistema. Esercizio. Scrivere un sistema lineare di 3 equazioni

Dettagli

15 luglio Soluzione esame di geometria - Ing. gestionale - a.a COGNOME... NOME... N. MATRICOLA... ISTRUZIONI

15 luglio Soluzione esame di geometria - Ing. gestionale - a.a COGNOME... NOME... N. MATRICOLA... ISTRUZIONI 15 luglio 01 - Soluzione esame di geometria - Ing. gestionale - a.a. 01-01 COGNOME.......................... NOME.......................... N. MATRICOLA............. La prova dura ore. ISTRUZIONI Ti sono

Dettagli

Compito Parziale di Algebra lineare e Geometria analitica. 2x + 3y + 2z = 0 x y z = 0

Compito Parziale di Algebra lineare e Geometria analitica. 2x + 3y + 2z = 0 x y z = 0 Compito Parziale di Algebra lineare e Geometria analitica ) Dire se il seguente sottoinsieme di R 3 H = (x; y; z) R 3 : x + 3y + z = x y z = è o non un sottospazio vettoriale di R 3 e eventualmente calcolarne

Dettagli

Esercizi di GEOMETRIA e ALGEBRA LINEARE (Ingegneria Ambientale e Civile - Curriculum Ambientale)

Esercizi di GEOMETRIA e ALGEBRA LINEARE (Ingegneria Ambientale e Civile - Curriculum Ambientale) Esercizi di GEOMETRIA e ALGEBRA LINEARE (Ingegneria Ambientale e Civile - Curriculum Ambientale). Tra le seguenti matrici, eseguire tutti i prodotti possibili: 2 ( ) A = 0 3 4 B = C = 2 2 0 0 2 D = ( 0

Dettagli

Elementi di Algebra Lineare Applicazioni lineari

Elementi di Algebra Lineare Applicazioni lineari Elementi di Algebra Lineare Applicazioni lineari Cristina Turrini UNIMI - 2015/2016 Cristina Turrini (UNIMI - 2015/2016) Elementi di Algebra Lineare 1 / 18 index Applicazioni lineari 1 Applicazioni lineari

Dettagli

SPAZI VETTORIALI. Esercizi Esercizio 1. Sia V := R 3. Stabilire quale dei seguenti sottoinsiemi di V sono suoi sottospazi:

SPAZI VETTORIALI. Esercizi Esercizio 1. Sia V := R 3. Stabilire quale dei seguenti sottoinsiemi di V sono suoi sottospazi: SPAZI VETTORIALI Esercizi Esercizio. Sia V := R 3. Stabilire quale dei seguenti sottoinsiemi di V sono suoi sottospazi: V := { (a, a, a) V a R }, V 2 := { (a, b, a) V a, b R }, V 3 := { (a, 2a, a + b)

Dettagli

Sapienza Università di Roma Corso di laurea in Ingegneria Energetica Geometria A.A ESERCIZI DA CONSEGNARE prof.

Sapienza Università di Roma Corso di laurea in Ingegneria Energetica Geometria A.A ESERCIZI DA CONSEGNARE prof. Sapienza Università di Roma Corso di laurea in Ingegneria Energetica Geometria A.A. 2015-2016 ESERCIZI DA CONSEGNARE prof. Cigliola Consegna per Martedì 6 Ottobre Esercizio 1. Una matrice quadrata A si

Dettagli

Sistemi differenziali 2 2: esercizi svolti. 1 Sistemi lineari Stabilità nei sistemi lineari

Sistemi differenziali 2 2: esercizi svolti. 1 Sistemi lineari Stabilità nei sistemi lineari Sistemi differenziali : esercizi svolti 1 Sistemi lineari Stabilità nei sistemi lineari 14 1 Sistemi differenziali : esercizi svolti 1 Sistemi lineari Gli esercizi contrassegnati con il simbolo * presentano

Dettagli

Applicazioni lineari tra spazi euclidei. Cambi di base.

Applicazioni lineari tra spazi euclidei. Cambi di base. pplicazioni lineari tra spazi euclidei. Cambi di base. Esercizio. Data la seguente applicazione lineare f : R R : f(x, y, z) = (x z, x + y, y + z), scrivere la matrice B, rappresentativa di f rispetto

Dettagli

dipendenti. Cosa possiamo dire sulla dimensione di V?

dipendenti. Cosa possiamo dire sulla dimensione di V? Esercizi Esercizi. In uno spazio vettoriale V ci sono tre vettori v, v 2, v linearmente indipendenti. Cosa possiamo dire sulla dimensione di V? 2. In uno spazio vettoriale V ci sono tre vettori v, v 2,

Dettagli

Applicazioni lineari e diagonalizzazione pagina 1 di 5

Applicazioni lineari e diagonalizzazione pagina 1 di 5 pplicazioni lineari e diagonalizzazione pagina 1 di 5 PPLIZIONI LINERI 01. Dire quali delle seguenti applicazioni tra IR-spazi vettoriali sono lineari a. f :IR 2 IR 3 f(x y =(x y πy b. f :IR 3 IR 3 f(x

Dettagli

Tutorato di GE110. Universitá degli Studi Roma Tre - Corso di Laurea in Matematica

Tutorato di GE110. Universitá degli Studi Roma Tre - Corso di Laurea in Matematica Universitá degli Studi Roma Tre - Corso di Laurea in Matematica Tutorato di GE110 A.A. 2013-2014 - Docente: Prof. Angelo Felice Lopez Tutori: Dario Giannini e Giulia Salustri Soluzioni Tutorato 9 15 Maggio

Dettagli

REGISTRO DELLE LEZIONI

REGISTRO DELLE LEZIONI UNIVERSITA DEGLI STUDI DI GENOVA FACOLTA DI SCIENZE MATEMATICHE, FISICHE E NATURALI REGISTRO DELLE LEZIONI del Corso UFFICIALE di GEOMETRIA B tenute dal prof. Domenico AREZZO nell anno accademico 2006/2007

Dettagli

ESERCIZI SUI SISTEMI LINEARI

ESERCIZI SUI SISTEMI LINEARI ESERCIZI SUI SISTEMI LINEARI Consideriamo ora il sistema lineare omogeneo a coefficienti costanti associato alla matrice A M n n, cioè SLO Vale il seguente = A. Teorema. Sia v R n \ } e sia λ C. Condizione

Dettagli

Esercitazione di Geometria I 13 dicembre Esercizio 1. Esercizio 2. Esercizio 3

Esercitazione di Geometria I 13 dicembre Esercizio 1. Esercizio 2. Esercizio 3 Esercitazione di Geometria I 13 dicembre 2008 a. Completa la seguente definizione: i vettori v 1, v 2,..., v n del K-spazio vettoriale V si dicono linearmente dipendenti se... b. Siano w 1, w 2, w 3 vettori

Dettagli

a + 2b + c 3d = 0, a + c d = 0 c d

a + 2b + c 3d = 0, a + c d = 0 c d SPAZI VETTORIALI 1. Esercizi Esercizio 1. Stabilire quali dei seguenti sottoinsiemi sono sottospazi: V 1 = {(x, y, z) R 3 /x = y = z} V = {(x, y, z) R 3 /x = 4} V 3 = {(x, y, z) R 3 /z = x } V 4 = {(x,

Dettagli

1 Equazioni parametriche e cartesiane di sottospazi affini di R n

1 Equazioni parametriche e cartesiane di sottospazi affini di R n 2 Trapani Dispensa di Geometria, Equazioni parametriche e cartesiane di sottospazi affini di R n Un sottospazio affine Σ di R n e il traslato di un sottospazio vettoriale. Cioe esiste un sottospazio vettoriale

Dettagli

Esercizi sulle coniche (prof.ssa C. Carrara)

Esercizi sulle coniche (prof.ssa C. Carrara) Esercizi sulle coniche prof.ssa C. Carrara Alcune parti di un esercizio possono ritrovarsi in un altro esercizio, insieme a parti diverse. È un occasione per affrontarle da un altra angolazione.. Determinare

Dettagli

APPLICAZIONI LINEARI

APPLICAZIONI LINEARI APPLICAZIONI LINEARI 1 APPLICAZIONI LINEARI Applicazioni lineari tra spazi R n spazi di matrici spazi di polinomi e matrice associata rispetto ad una coppia di basi Endomorismi e matrice associata rispetto

Dettagli

Dipartimento di Matematica Corso di laurea in Matematica Compiti di Geometria II assegnati da dicembre 2000 a dicembre 2003

Dipartimento di Matematica Corso di laurea in Matematica Compiti di Geometria II assegnati da dicembre 2000 a dicembre 2003 Dipartimento di Matematica Corso di laurea in Matematica Compiti di Geometria assegnati da dicembre 2000 a dicembre 2003 11/12/2000 n R 4 sono assegnati i punti A(3, 0, 1, 0), B(0, 0, 1, 0), C(2, 1, 0,

Dettagli

Corso di Matematica II Anno Accademico Esercizi di Algebra Lineare. Calcolo di autovalori ed autovettori

Corso di Matematica II Anno Accademico Esercizi di Algebra Lineare. Calcolo di autovalori ed autovettori Esercizio 1 Corso di Matematica II Anno Accademico 29 21. Esercizi di Algebra Lineare. Calcolo di autovalori ed autovettori May 7, 21 Commenti e correzioni sono benvenuti. Mi scuso se ci fosse qualche

Dettagli

Prova scritta di FONDAMENTI DI ALGEBRA LINEARE E GEOMETRIA Vicenza, 27 giugno 2011 TEMA 1

Prova scritta di FONDAMENTI DI ALGEBRA LINEARE E GEOMETRIA Vicenza, 27 giugno 2011 TEMA 1 Vicenza, 27 giugno 20 TEMA. Determinare, al variare del parametro reale a, una base del nucleo e una dell immagine dell endomorfismo L a di R definito da L a (x, y, z) = (x 2y + az, 2x + 4y + z, ( a)x

Dettagli

Esercizi sulle coniche (prof.ssa C. Carrara)

Esercizi sulle coniche (prof.ssa C. Carrara) Esercizi sulle coniche prof.ssa C. Carrara Alcune parti di un esercizio possono ritrovarsi in un altro esercizio, insieme a parti diverse. È un occasione per affrontarle più volte.. Stabilire il tipo di

Dettagli

Elementi di Algebra Lineare. Spazio Vettoriale (lineare)

Elementi di Algebra Lineare. Spazio Vettoriale (lineare) Elementi di Algebra Lineare Spazio Vettoriale (lineare) Uno spazio vettoriale su un corpo F è una quadrupla (X, F, +, ) costituita da: un insieme di elementi X, detti vettori, un corpo F, i cui elementi

Dettagli

I. Foglio di esercizi su vettori linearmente dipendenti e linearmente indipendenti. , v 2 = α v 1 + β v 2 + γ v 3. α v 1 + β v 2 + γ v 3 = 0. + γ.

I. Foglio di esercizi su vettori linearmente dipendenti e linearmente indipendenti. , v 2 = α v 1 + β v 2 + γ v 3. α v 1 + β v 2 + γ v 3 = 0. + γ. ESERCIZI SVOLTI DI ALGEBRA LINEARE (Sono svolti alcune degli esercizi proposti nei fogli di esercizi su vettori linearmente dipendenti e vettori linearmente indipendenti e su sistemi lineari ) I. Foglio

Dettagli

Applicazioni Lineari. Nota Bene: Questo materiale non deve essere considerato come sostituto delle lezioni.

Applicazioni Lineari. Nota Bene: Questo materiale non deve essere considerato come sostituto delle lezioni. Politecnico di Torino. Applicazioni Lineari. Nota Bene: Questo materiale non deve essere considerato come sostituto delle lezioni. Argomenti: Basi e coordinate. Applicazioni lineari. Matrici come applicazioni

Dettagli

(c) Stabilire per quali valori di h is sistema ammette un unica soluzione:

(c) Stabilire per quali valori di h is sistema ammette un unica soluzione: ognome e Nome: orso di Laurea: 4 settembre 3. Sia L: R 3! R 3 l applicazione lineare x x y + z L @ ya = @ x + y +za. z x y z (a) Scrivere la matrice A che rappresenta L nella base canonica di R 3 : (b)

Dettagli

SISTEMI LINEARI MATRICI E SISTEMI 1

SISTEMI LINEARI MATRICI E SISTEMI 1 MATRICI E SISTEMI SISTEMI LINEARI Sistemi lineari e forma matriciale (definizioni e risoluzione). Teorema di Rouché-Capelli. Sistemi lineari parametrici. Esercizio Risolvere il sistema omogeneo la cui

Dettagli

1 Ampliamento del piano e coordinate omogenee

1 Ampliamento del piano e coordinate omogenee 1 Ampliamento del piano e coordinate omogenee Vogliamo dare una idea, senza molte pretese, dei concetti che stanno alla base di alcuni calcoli svolti nella classificazione delle coniche. Supponiamo di

Dettagli

Analisi Matematica e Geometria 1

Analisi Matematica e Geometria 1 Michele Campiti Prove scritte di Analisi Matematica e Geometria 1 Ingegneria Industriale aa 2015 2016 y f 1 g 0 La funzione seno e la funzione esponenziale Raccolta delle tracce di Analisi Matematica e

Dettagli

CAPITOLO 14. Quadriche. Alcuni esercizi di questo capitolo sono ripetuti in quanto risolti in maniera differente.

CAPITOLO 14. Quadriche. Alcuni esercizi di questo capitolo sono ripetuti in quanto risolti in maniera differente. CAPITOLO 4 Quadriche Alcuni esercizi di questo capitolo sono ripetuti in quanto risolti in maniera differente. Esercizio 4.. Stabilire il tipo di quadrica corrispondente alle seguenti equazioni. Se si

Dettagli

RETTE E PIANI. ove h R. Determinare i valori di h per cui (1) r h e α sono incidenti ed, in tal caso, determinare l angolo ϑ h da essi formato;

RETTE E PIANI. ove h R. Determinare i valori di h per cui (1) r h e α sono incidenti ed, in tal caso, determinare l angolo ϑ h da essi formato; RETTE E PIANI Esercizi Esercizio 1. Nello spazio con riferimento cartesiano ortogonale Oxyz si considerino la retta r h ed il piano α rispettivamente di equazioni x = 1 + t r h : y = 1 t α : x + y + z

Dettagli

Si consideri il sistema a coefficienti reali di m equazioni lineari in n incognite

Si consideri il sistema a coefficienti reali di m equazioni lineari in n incognite 3 Sistemi lineari 3 Generalità Si consideri il sistema a coefficienti reali di m equazioni lineari in n incognite ovvero, in forma matriciale, a x + a 2 x 2 + + a n x n = b a 2 x + a 22 x 2 + + a 2n x

Dettagli

Esercitazioni di Geometria A: curve algebriche

Esercitazioni di Geometria A: curve algebriche Esercitazioni di Geometria A: curve algebriche 24-25 maggio 2016 Esercizio 1 Sia P 2 il piano proiettivo complesso munito delle coordinate proiettive (x 0 : x 1 : x 2 ). Sia r la retta proiettiva di equazione

Dettagli

Spazi vettoriali, matrici, determinante. { det(a) se n é pari det(a) se n é dispari

Spazi vettoriali, matrici, determinante. { det(a) se n é pari det(a) se n é dispari Esercizi natalizi Spazi vettoriali, matrici, determinante Ex. 1 Sia K un campo e n N. A M n (K). (a) Dimostrare che det( A) = { det(a) se n é pari det(a) se n é dispari (b) Dimostrare che ogni matrice

Dettagli

ii 1.20 Rango di una matrice Studio dei sistemi lineari Teoremi di Cramer e Rouché-Capelli......

ii 1.20 Rango di una matrice Studio dei sistemi lineari Teoremi di Cramer e Rouché-Capelli...... Indice Prefazione vii 1 Matrici e sistemi lineari 1 1.1 Le matrici di numeri reali................. 1 1.2 Nomenclatura in uso per le matrici............ 3 1.3 Matrici ridotte per righe e matrici ridotte

Dettagli

1 Il polinomio minimo.

1 Il polinomio minimo. Abstract Il polinomio minimo, così come il polinomio caratterisico, è un importante invariante per le matrici quadrate. La forma canonica di Jordan è un approssimazione della diagonalizzazione, e viene

Dettagli

Esercizi per Geometria II Geometria euclidea e proiettiva

Esercizi per Geometria II Geometria euclidea e proiettiva Esercizi per Geometria II Geometria euclidea e proiettiva Filippo F. Favale 8 aprile 014 Esercizio 1 Si consideri E dotato di un riferimento cartesiano ortonormale di coordinate (x, y) e origine O. Si

Dettagli

QUADERNI DIDATTICI. Dipartimento di Matematica. Esercizi di Geometria ealgebralinearei Corso di Studi in Fisica

QUADERNI DIDATTICI. Dipartimento di Matematica. Esercizi di Geometria ealgebralinearei Corso di Studi in Fisica Università ditorino QUADERNI DIDATTICI del Dipartimento di Matematica E Abbena, G M Gianella Esercizi di Geometria ealgebralinearei Corso di Studi in Fisica Quaderno # 6 - Aprile 003 Gli esercizi proposti

Dettagli

NUMERI COMPLESSI ED EQUAZIONI ALGEBRICHE

NUMERI COMPLESSI ED EQUAZIONI ALGEBRICHE NUMERI COMPLESSI ED EQUAZIONI ALGEBRICHE. Esercizi Esercizio. Scrivere la forma algebrica, la forma trigonometrica e quella esponenziale dei seguenti numeri complessi: z = + i, z = (cos( π ) + i sin(π

Dettagli

1. Esercizi (1) Porre in forma trigonometrica i seguenti numeri complessi: 5, 2 i2, 1 + i. (2) Calcolare le seguenti radici: 2 2i,

1. Esercizi (1) Porre in forma trigonometrica i seguenti numeri complessi: 5, 2 i2, 1 + i. (2) Calcolare le seguenti radici: 2 2i, . Esercizi () Porre in forma trigonometrica i seguenti numeri complessi: 5, i, + i. () Calcolare le seguenti radici: 3 i, 5 i, 5. (3) Risolvere le seguenti equazioni: z z + 3 = ; z z = i; z + z =. (4)

Dettagli

Similitudine (ortogonale) e congruenza (ortogonale) di matrici.

Similitudine (ortogonale) e congruenza (ortogonale) di matrici. Lezione del 4 giugno. Il riferimento principale di questa lezione e costituito da parti di: 2 Forme bilineari, quadratiche e matrici simmetriche associate, 3 Congruenza di matrici simmetriche, 5 Forme

Dettagli

Fasci di Coniche. Salvino Giuffrida. 2. Determinare e studiare il fascio Φ delle coniche che passano per A (1, 0) con tangente

Fasci di Coniche. Salvino Giuffrida. 2. Determinare e studiare il fascio Φ delle coniche che passano per A (1, 0) con tangente 1 Fasci di Coniche Salvino Giuffrida 1. Determinare e studiare il fascio Φ delle coniche che passano per O = (0, 0), con tangente l asse y, e per i punti (1, 0), (1, ). Determinare vertice e asse della

Dettagli

Definizione 1 Una applicazione f : V W, con V, W spazi vettoriali sul campo K si dice lineare se conserva le combinazioni lineari:

Definizione 1 Una applicazione f : V W, con V, W spazi vettoriali sul campo K si dice lineare se conserva le combinazioni lineari: Applicazioni lineari Definizione Una applicazione f : V W, con V, W spazi vettoriali sul campo K si dice lineare se conserva le combinazioni lineari: f(αv + βv 2 ) = αf(v ) + βf(v 2 ) v, v 2 V, α, β K.

Dettagli

Esercizi svolti sui sistemi lineari

Esercizi svolti sui sistemi lineari Esercizio 1. Risolvere il seguente sistema lineare al variare del parametro reale t: t x + (t 1)y + z = 1 (t 1)y + t z = 1 2 x + z = 5 Soluzione. Il determinante della matrice dei coefficienti è t t 1

Dettagli

Esercizi sulle affinità - aprile 2009

Esercizi sulle affinità - aprile 2009 Esercizi sulle affinità - aprile 009 Ingegneria meccanica 008/009 Esercizio Sono assegnate nel piano le sei rette r : =, s : =, t : =, r : =, s : =, t : = determinare l affinità che trasforma ordinatamente

Dettagli

MATEMATICA PRIMO COMPITINO SOLUZIONE DI ALCUNI ESERCIZI PRIMA PARTE. Esercizio 1. (Testo B) Determina, motivando la risposta, se la funzione f : R R

MATEMATICA PRIMO COMPITINO SOLUZIONE DI ALCUNI ESERCIZI PRIMA PARTE. Esercizio 1. (Testo B) Determina, motivando la risposta, se la funzione f : R R ANNO ACCADEMICO 25 6 SCIENZE GEOLOGICHE E SCIENZE NATURALI E AMBIENTALI MATEMATICA PRIMO COMPITINO SOLUZIONE DI ALCUNI ESERCIZI PROFF MARCO ABATE E MARGHERITA LELLI-CHIESA PRIMA PARTE Esercizio (Testo

Dettagli

Esame di Geometria - 9 CFU (Appello del 20 Giugno A)

Esame di Geometria - 9 CFU (Appello del 20 Giugno A) Esame di Geometria - 9 CFU (Appello del 20 Giugno 2012 - A) Cognome: Nome: Nr.matricola: Corso di laurea: Esercizio 1. Siano dati, al variare del parametro k R, i piani: π 1 : x 2y + 2z = 2, π 2 : z =

Dettagli

10 dicembre Soluzione esame di geometria - Ingegneria gestionale - a.a COGNOME... NOME... N. MATRICOLA...

10 dicembre Soluzione esame di geometria - Ingegneria gestionale - a.a COGNOME... NOME... N. MATRICOLA... 10 dicembre 003 - Soluzione esame di geometria - Ingegneria gestionale - a.a. 003-004 COGNOME.......................... NOME.......................... N. MATRICOLA............. La prova dura 3 ore. ISTRUZIONI

Dettagli

Prova teorica di algebra lineare e geometria del 6 marzo 2009 VERSIONE A

Prova teorica di algebra lineare e geometria del 6 marzo 2009 VERSIONE A Prova teorica di algebra lineare e geometria del 6 marzo 9 VERSIONE A Nome e cognome: Matricola: Attenzione: riportare i dati personali su ogni foglio consegnato Esercizio. Sia Ax = v un sistema lineare

Dettagli

Fissiamo nel piano un sistema di riferimento cartesiano ortogonale O, x, y, u.

Fissiamo nel piano un sistema di riferimento cartesiano ortogonale O, x, y, u. Fissiamo nel piano un sistema di riferimento cartesiano ortogonale O, x, y, u. Definizione Una conica è il luogo dei punti, propri o impropri, reali o immaginari, che con le loro coordinate omogenee (x,

Dettagli

Universita degli Studi di Roma - "Tor Vergata" - Facolta Ingegneria Esercizi GEOMETRIA (Edile-Architettura e dell Edilizia) CONICHE DI

Universita degli Studi di Roma - Tor Vergata - Facolta Ingegneria Esercizi GEOMETRIA (Edile-Architettura e dell Edilizia) CONICHE DI Universita degli Studi di Roma - "Tor Vergata" - Facolta Ingegneria Esercizi GEOMETRIA (Edile-Architettura e dell Edilizia) CONICHE DI R. Docente: Prof. F. Flamini Esercizi Riepilogativi Svolti Esercizio

Dettagli

DIARIO DEL CORSO DI GEOMETRIA E ALGEBRA LINEARE

DIARIO DEL CORSO DI GEOMETRIA E ALGEBRA LINEARE DIARIO DEL CORSO DI GEOMETRIA E ALGEBRA LINEARE DOCENTI: S. MATTAREI (TITOLARE), G. VIGNA SURIA, D. FRAPPORTI Prima settimana. Lezione di martedí 23 febbraio 2010 Introduzione al corso: applicazioni dell

Dettagli

Autovalori e autovettori, matrici simmetriche e forme quadratiche (cenni) (prof. M. Salvetti)

Autovalori e autovettori, matrici simmetriche e forme quadratiche (cenni) (prof. M. Salvetti) Autovalori e autovettori, matrici simmetriche e forme quadratiche (cenni) (prof. M. Salvetti) April 14, 2011 (alcune note non complete sugli argomenti trattati: eventuali completamenti saranno aggiunti)

Dettagli

4 Autovettori e autovalori

4 Autovettori e autovalori 4 Autovettori e autovalori 41 Cambiamenti di base Sia V uno spazio vettoriale tale che dim V n Si è visto in sezione 12 che uno spazio vettoriale ammette basi distinte, ma tutte con la medesima cardinalità

Dettagli

X = x + 1. X = x + 1

X = x + 1. X = x + 1 CONICHE. Esercizi Esercizio. Classificare, ridurre a forma canonica (completando i quadrati), e disegnare le seguenti coniche: γ : x y + x = 0; γ : x + 4x y + = 0; γ 3 : x + y + y + 0 = 0; γ 4 : x + y

Dettagli

= (cioè le due terne di numeri direttori ( devono essere ) proporzionali). Tale uguaglianza non è verificata, poiché risulta ρ

= (cioè le due terne di numeri direttori ( devono essere ) proporzionali). Tale uguaglianza non è verificata, poiché risulta ρ Alcuni esercizi sullo spazio euclideo R Nel seguito R indicherà lo spazio euclideo tridimensionale standard, dotato del riferimento cartesiano naturale (pag 56-57 del libro Nota: gli esercizi proposti

Dettagli

f(x, y, z) = (x + ky + z, x y + 2z, x + y z) f(x, y, z) = (x + 2y z, x + y z, x + 2y) F (f(x)) = (f(0), f(1), f(2))

f(x, y, z) = (x + ky + z, x y + 2z, x + y z) f(x, y, z) = (x + 2y z, x + y z, x + 2y) F (f(x)) = (f(0), f(1), f(2)) Algebra Lineare e Geometria Analitica Politecnico di Milano Ingegneria Applicazioni Lineari 1. Sia f : R 3 R 3 l applicazione lineare definita da f(x, y, z) = (x + ky + z, x y + 2z, x + y z) per ogni (x,

Dettagli

Università degli Studi di Roma Tor Vergata. Corso di Laurea in Ingegneria Meccanica

Università degli Studi di Roma Tor Vergata. Corso di Laurea in Ingegneria Meccanica Università degli Studi di Roma Tor Vergata. Corso di Laurea in Ingegneria Meccanica Esame di Geometria (Prof. F. Tovena) Argomenti: Proprietà di nucleo e immagine di una applicazione lineare. dim V = dim

Dettagli

LEZIONE 23. ax 2 + bxy + cy 2 + dx + ey + f

LEZIONE 23. ax 2 + bxy + cy 2 + dx + ey + f LEZIONE 23 23.1. Riduzione delle coniche a forma canonica. Fissiamo nel piano un sistema di riferimento Oxy e consideriamo un polinomio di grado 2 in x, y a meno di costanti moltiplicative non nulle, diciamo

Dettagli

Appunti su Indipendenza Lineare di Vettori

Appunti su Indipendenza Lineare di Vettori Appunti su Indipendenza Lineare di Vettori Claudia Fassino a.a. Queste dispense, relative a una parte del corso di Matematica Computazionale (Laurea in Informatica), rappresentano solo un aiuto per lo

Dettagli

POTENZE DI MATRICI QUADRATE

POTENZE DI MATRICI QUADRATE POTENZE DI MATRICI QUADRATE In alcune applicazioni pratiche, quali lo studio di sistemi dinamici discreti, può essere necessario calcolare le potenze A k, per k N\{0}, di una matrice quadrata A M n n (R)

Dettagli

SISTEMI LINEARI. x 2y 2z = 0. Svolgimento. Procediamo con operazioni elementari di riga sulla matrice del primo sistema: 1 1 1 3 1 2 R 2 R 2 3R 0 4 5.

SISTEMI LINEARI. x 2y 2z = 0. Svolgimento. Procediamo con operazioni elementari di riga sulla matrice del primo sistema: 1 1 1 3 1 2 R 2 R 2 3R 0 4 5. SISTEMI LINEARI Esercizi Esercizio. Risolvere, se possibile, i seguenti sistemi: x y z = 0 x + y + z = 3x + y + z = 0 x y = 4x + z = 0, x y z = 0. Svolgimento. Procediamo con operazioni elementari di riga

Dettagli

Universita degli Studi di Roma Tor Vergata Facolta di Ingegneria - Edile ed Edile-Architettura

Universita degli Studi di Roma Tor Vergata Facolta di Ingegneria - Edile ed Edile-Architettura Universita degli Studi di Roma Tor Vergata Facolta di Ingegneria - Edile ed Edile-Architettura Primo Esonero del corso di Geometria Docente F. Flamini, Roma, 2//28 SOLUZIONI COMPITO I ESONERO Esercizio.

Dettagli

Funzioni implicite - Esercizi svolti

Funzioni implicite - Esercizi svolti Funzioni implicite - Esercizi svolti Esercizio. È data la funzione di due variabili F (x, y) = y(e y + x) log x. Verificare che esiste un intorno I in R del punto di ascissa x 0 = sul quale è definita

Dettagli

Diario delle lezioni e esercizi settimanali per il corso di Algebra Lineare - Canale I-Z

Diario delle lezioni e esercizi settimanali per il corso di Algebra Lineare - Canale I-Z Diario delle lezioni e esercizi settimanali per il corso di Algebra Lineare - Canale I-Z Anno Accedemico 204-5, I Semestre Docente: Alberto De Sole Lezione : lunedì 29 settembre 204, 2 ore Lettura: AdF

Dettagli

Esercizi di Algebra lineare

Esercizi di Algebra lineare Esercizi di Algebra lineare G. Romani December, 006 1. Esercizi sulle n-ple 1) Eseguire i seguenti calcoli. (, 1) + (1 3); 4(, ) + 3(4, ); 3(1,, 3) + ( )(,, 1) (3, 3, 3) + (4,, 1) + ( )(1, 4, ); (1, 4,

Dettagli