Applicazioni lineari tra spazi euclidei. Cambi di base.

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Applicazioni lineari tra spazi euclidei. Cambi di base."

Transcript

1 pplicazioni lineari tra spazi euclidei. Cambi di base. Esercizio. Data la seguente applicazione lineare f : R R : f(x, y, z) = (x z, x + y, y + z), scrivere la matrice B, rappresentativa di f rispetto alla base di R = V = W : B = {,, }. L i-esima colonna di B si determina:. trovando f(b i ) (dove b i B);. scrivendolo sulla base B: f(b i ) = j= α j b j.. Dalla definizione di f ricaviamo, matrice rappresentativa di f rispetto alla base canonica: = al fine di calcolare f(b i ) = b i ;. Detta B la matrice che sulle colonne contiene i b i B, la rappresentazione di f(b i ) sulla base B è data dalla soluzione del sistema: b i = B dove il vettore (α, α, α ) è l i-esima colonna di B. Il procedimento va ripetuto tre volte (per i =,, ); in forma compatta si può anche scrivere: da cui la formula: α α α B = B B,, B = B B =

2 = (con beneficio del dubbio sui calcoli nell ultimo passaggio...) Esercizio. L applicazione lineare f : R R è rappresentata, rispetto alla base B = {(, ), (, )} dalla matrice: [ ] B = Trovare la matrice che rappresenta f rispetto alla base canonica. Come nell esercizio precedente, abbiamo: B = B B, dove B contiene i vettori della base B. Da cui si ha: = B B B [ ] [ = [ ] =. ] [ ] Esercizio. Dato l insieme dei tre vettori in R : V = {v, v, v } = {(,, ), (,, ), (,, )}, (a.) dopo aver verificato che sono una base dello spazio, (b.) scrivere la trasformazione del cambiamento di base, cioè quella da applicare a un vettore scritto in base canonica per esprimerlo rispetto alla base dei v i. a. I tre vettori sono una base se sono l.i., quindi se è non singolare la seguente matrice V : det V = det v v v =.

3 b. Sia w = (x, y, z) in base canonica; questo significa che: w = xe + ye + ze = w = I w, mentre w = (x, y, z ) in base V vuol dire: w = x v + y v + z v = w = V w. Volendo rappresentare il medesimo vettore sulle due basi, deve essere w = w, cioè V w = I w. Quindi, note le componenti di w in base canonica, si ottengono quelle in base V dalla relazione: w = V I w = V w = w. 6 La trasformazione cercata sarà f : R R : f(x, y, z) = ( x y + z, x, x + y z). Esercizio. Sia f : R R l applicazione rappresentata dalla matrice = Determinare nucleo e immagine di f. a. nucleo: ker f = {x R x = }, è dato da tutte e sole le soluzioni del sistema omogeneo associato ad. Tra le colonne di vale la relazione C = C + C ; e[ c è almeno] un minore non nullo di ordine, contenuto in C e C (det, o [ ] anche det ), dunque rg =, e possiamo risolvere il sistema tenendo z come variabile indipendente: x = z y = z z R

4 Dunque ker f = {( z, z, z), z R} = L((,, )), e dim ker f =. immagine: dal teorema di nullità + rango sappiamo che dim Imf = =. Dobbiamo individuare due generatori: l immagine è lo spazio generato dalle colonne di : Imf = {w = x = xc + yc + zc }, dunque basta trovare due colonne l.i.; per esempio, possiamo scegliere le prime due: Imf = {x + y } = L(, ). Esercizio. Sia f : R R rappresentata da k = k 6 con k R. k 9 a. Determinare le dimensioni di nucleo e immagine di f al variare del parametro k. b. Determinare una base di Imf al variare del parametro k. a. Dal teorema di nullità + rango sappiamo che dim Imf + dim ker f = = rg + dim ker f. Studiamo il variare di rg: poiché il minore k R, sarà certamente rg. Inoltre rg : sarà pari a se almeno uno dei due orlati del minore non nullo è non singolare: oppure Si ha: det B = det det B = det k k k 6 k 9 det B se k k = k( k), = (k )(k + 6). det B se k 6 k.

5 Se k, almeno uno dei due orlati è non singolare, dunque: dim Imf = rg =, dim ker f = = ; se k =, si annullano entrambi i minori di ordine : dim Imf = rg =, dim ker f = =. b. Sia k =. llora dim Imf = ; una base è data dalle prime due colonne (quelle contenenti il minore non nullo di ordine ): B = {(,, ), (,, )}. Sia k. llora dim Imf = ; una base è data da tre colonne l.i. Distinguiamo i casi: k = : si annulla det B, possiamo usare come base le colonne di B : B = {(,, ), (,, ), (, 6, 9)}. k = 6 : si annulla det B, una base è data dalle colonne di B : B = {(,, ), (,, 6), (, 6, )}. In tutti gli altri casi, si può scegliere indifferentemente B o B : B = {(,, ), (,, k), (, k, )}, o anche B = {(,, ), (,, k), (k, 6, 9)}. Esercizio. Sia f : R R 6 tale che f(a, b) = (a, b, a, a, b, a). a. f è iniettiva ma non suriettiva? b. f è suriettiva ma non iniettiva? c. f è biunivoca? d. Imf = V = L((,,,,, ), (,,,,, ), (,,,,, ))? e. Imf = V = L((,,,,, ), (,,,,, ), (,,,,, ))? 5

6 a. b. c. Per il teorema nullità + rango, la dimensione dell immagine di una trasformazione lineare non può mai superare quella dello spazio di partenza: in questo caso abbiamo dim Imf, mentre dim W = dim R 6 = 6, pertanto la trasformazione è certamente non suriettiva (e conseguentemente non biunivoca). Per quanto riguarda l iniettività, si verifica facilmente che l unico elemento trasformato nello zero di R 6 è il vettore nullo di R : dunque f è iniettiva. d. e. Lo spazio immagine di f è: Imf = {a + b } = L(, ). Verifichiamo se V e/o V coincidono con questo spazio: V = {a + b + c } = { a b c a b c } Imf; mentre V = {a + b + c } = { b + c b + c } = { B B } = Imf (basta porre = e B = b + c.) Esercizio. Data la trasformazione f : R R f(x, y, z) = x + ( + k)y + z x + ( k)y + z x + ( + k)y + z, con k R, per quali valori di k non è iniettiva? Determinare ker f per tali valori. 6

7 Scriviamo la matrice rappresentativa: = + k k + k Perché f non sia iniettiva, si deve avere dim ker f = rg rg rg det =.. Calcoliamo: det = (k + 5) = k = 5. Per questo valore del parametro, la matrice diventa: = 7 Il rango può essere al più pari a ; poiché però ci sono minori di ordine che non si annullano, indipendentemente da k, il rango sarà esattamente : dunque dim ker f = e gli elementi del nucleo sono le soluzioni del sistema omogeneo associato ad, che dipendono da un parametro libero; ad esempio, si ottiene: x R y = x ker f = L( z = 7 x 7 ).. 7

CAPITOLO IV RISOLUZIONE DEI SISTEMI LINEARI COL METODO DEI DETERMINANTI

CAPITOLO IV RISOLUZIONE DEI SISTEMI LINEARI COL METODO DEI DETERMINANTI CAPITOLO IV RISOLUZIONE DEI SISTEMI LINEARI COL METODO DEI DETERMINANTI 1. REGOLA DI CRAMER Sia S un sistema lineare di n ( 2) equazioni in n incognite su un campo K : a 11 x 1 + a 12 x 2 + + a 1n x n

Dettagli

Informatica Grafica. Un introduzione

Informatica Grafica. Un introduzione Informatica Grafica Un introduzione Rappresentare la Geometria Operabile da metodi di calcolo automatici Grafica Vettoriale Partiamo dalla rappresentazione di un punto... Spazi Vettoriale SPAZI VETTORIALI

Dettagli

Generazione di Numeri Casuali- Parte 2

Generazione di Numeri Casuali- Parte 2 Esercitazione con generatori di numeri casuali Seconda parte Sommario Trasformazioni di Variabili Aleatorie Trasformazione non lineare: numeri casuali di tipo Lognormale Trasformazioni affini Numeri casuali

Dettagli

Esercitazione n o 3 per il corso di Ricerca Operativa

Esercitazione n o 3 per il corso di Ricerca Operativa Esercitazione n o 3 per il corso di Ricerca Operativa Ultimo aggiornamento October 17, 2011 Fornitura acqua Una città deve essere rifornita, ogni giorno, con 500 000 litri di acqua. Si richiede che l acqua

Dettagli

f(x, y, z) = (x + ky + z, x y + 2z, x + y z) f(x, y, z) = (x + 2y z, x + y z, x + 2y) F (f(x)) = (f(0), f(1), f(2))

f(x, y, z) = (x + ky + z, x y + 2z, x + y z) f(x, y, z) = (x + 2y z, x + y z, x + 2y) F (f(x)) = (f(0), f(1), f(2)) Algebra Lineare e Geometria Analitica Politecnico di Milano Ingegneria Applicazioni Lineari 1. Sia f : R 3 R 3 l applicazione lineare definita da f(x, y, z) = (x + ky + z, x y + 2z, x + y z) per ogni (x,

Dettagli

INDICAZIONI PER LA RICERCA DEGLI ASINTOTI VERTICALI

INDICAZIONI PER LA RICERCA DEGLI ASINTOTI VERTICALI 2.13 ASINTOTI 44 Un "asintoto", per una funzione y = f( ), è una retta alla quale il grafico della funzione "si avvicina indefinitamente", "si avvicina di tanto quanto noi vogliamo", nel senso precisato

Dettagli

Parte 6. Applicazioni lineari

Parte 6. Applicazioni lineari Parte 6 Applicazioni lineari A Savo Appunti del Corso di Geometria 203-4 Indice delle sezioni Applicazioni fra insiemi, 2 Applicazioni lineari tra spazi vettoriali, 2 3 Applicazioni lineari da R n a R

Dettagli

Università degli Studi di Roma Tor Vergata. Corso di Laurea in Ingegneria Meccanica

Università degli Studi di Roma Tor Vergata. Corso di Laurea in Ingegneria Meccanica Università degli Studi di Roma Tor Vergata. Corso di Laurea in Ingegneria Meccanica Esame di Geometria (Prof. F. Tovena) Argomenti: Proprietà di nucleo e immagine di una applicazione lineare. dim V = dim

Dettagli

0.1 Esercizi calcolo combinatorio

0.1 Esercizi calcolo combinatorio 0.1 Esercizi calcolo combinatorio Esercizio 1. Sia T l insieme dei primi 100 numeri naturali. Calcolare: 1. Il numero di sottoinsiemi A di T che contengono esattamente 8 pari.. Il numero di coppie (A,

Dettagli

Navigazione Tattica. L intercettazione

Navigazione Tattica. L intercettazione Navigazione Tattica I problemi di navigazione tattica si distinguono in: Intercettazione, che riguarda lo studio delle procedure atte a raggiungere nel minor tempo possibile un aeromobile o un qualsiasi

Dettagli

EQUAZIONI CON VALORE ASSOLUTO DISEQUAZIONI CON VALORE ASSOLUTO

EQUAZIONI CON VALORE ASSOLUTO DISEQUAZIONI CON VALORE ASSOLUTO EQUAZIONI CON VALORE AOLUTO DIEQUAZIONI CON VALORE AOLUTO Prima di tutto: che cosa è il valore assoluto di un numero? Il valore assoluto è quella legge che ad un numero (positivo o negativo) associa sempre

Dettagli

APPLICAZIONI LINEARI

APPLICAZIONI LINEARI APPLICAZIONI LINEARI 1. Esercizi Esercizio 1. Date le seguenti applicazioni lineari (1) f : R 2 R 3 definita da f(x, y) = (x 2y, x + y, x + y); (2) g : R 3 R 2 definita da g(x, y, z) = (x + y, x y); (3)

Dettagli

CAPITOLO 2. Rette e piani. y = 3x+1 y x+z = 0

CAPITOLO 2. Rette e piani. y = 3x+1 y x+z = 0 CAPITOLO Rette e piani Esercizio.1. Determinare l equazione parametrica e Cartesiana della retta del piano (a) Passante per i punti A(1,) e B( 1,). (b) Passante per il punto C(,) e parallela al vettore

Dettagli

Lezione 12 Argomenti

Lezione 12 Argomenti Lezione 12 Argomenti Costi di produzione: differenza tra costo economico e costo contabile I costi nel breve periodo Relazione di breve periodo tra funzione di produzione, produttività del lavoro e costi

Dettagli

Prof. Stefano Capparelli

Prof. Stefano Capparelli APPUNTI PER UN SECONDO CORSO DI ALGEBRA LINEARE Prof. Stefano Capparelli A mia madre Prefazione. Brevi Richiami di Algebra Lineare. Forma Canonica di Jordan.. Blocco di Jordan.. Base di Jordan.. Polinomio

Dettagli

GEOMETRIA ANALITICA. (*) ax+by+c=0 con a,b,c numeri reali che è detta equazione generale della retta.

GEOMETRIA ANALITICA. (*) ax+by+c=0 con a,b,c numeri reali che è detta equazione generale della retta. EQUAZIONE DELLA RETTA Teoria in sintesi GEOMETRIA ANALITICA Dati due punti A e B nel piano, essi individuano (univocamente) una retta. La retta è rappresentata da un equazione di primo grado in due variabili:

Dettagli

Studio di funzione. Tutti i diritti sono riservati. E vietata la riproduzione, anche parziale, senza il consenso dell autore. Funzioni elementari 2

Studio di funzione. Tutti i diritti sono riservati. E vietata la riproduzione, anche parziale, senza il consenso dell autore. Funzioni elementari 2 Studio di funzione Copyright c 2009 Pasquale Terrecuso Tutti i diritti sono riservati. E vietata la riproduzione, anche parziale, senza il consenso dell autore. Funzioni elementari 2 Studio di funzione

Dettagli

differiticerti.notebook November 25, 2010 nov 6 17.29 nov 6 17.36 nov 6 18.55 Problemi con effetti differiti

differiticerti.notebook November 25, 2010 nov 6 17.29 nov 6 17.36 nov 6 18.55 Problemi con effetti differiti Problemi con effetti differiti sono quelli per i quali tra il momento di sostentamento dei costi ed il momento di realizzo dei ricavi intercorre un certo lasso di tempo. Nei casi in cui il vantaggio è

Dettagli

Pierangelo Ciurlia, Riccardo Gusso, Martina Nardon

Pierangelo Ciurlia, Riccardo Gusso, Martina Nardon Department of Applied Mathematics, University of Venice QUADERNI DI DIDATTICA Pierangelo Ciurlia, Riccardo Gusso, Martina Nardon Esercizi di algebra lineare e sistemi di equazioni lineari con applicazioni

Dettagli

Regola del partitore di tensione

Regola del partitore di tensione Regola del partitore di tensione Se conosciamo la tensione ai capi di una serie di resistenze e i valori delle resistenze stesse, è possibile calcolare la caduta di tensione ai capi di ciascuna R resistenza,

Dettagli

Massimi e minimi vincolati in R 2 - Esercizi svolti

Massimi e minimi vincolati in R 2 - Esercizi svolti Massimi e minimi vincolati in R 2 - Esercizi svolti Esercizio 1. Determinare i massimi e minimi assoluti della funzione f(x, y) = 2x + 3y vincolati alla curva di equazione x 4 + y 4 = 1. Esercizio 2. Determinare

Dettagli

OFFERTA DI LAVORO. p * C = M + w * L

OFFERTA DI LAVORO. p * C = M + w * L 1 OFFERTA DI LAVORO Supponiamo che il consumatore abbia inizialmente un reddito monetario M, sia che lavori o no: potrebbe trattarsi di un reddito da investimenti, di donazioni familiari, o altro. Definiamo

Dettagli

Esercizi sulla conversione tra unità di misura

Esercizi sulla conversione tra unità di misura Esercizi sulla conversione tra unità di misura Autore: Enrico Campanelli Prima stesura: Settembre 2013 Ultima revisione: Settembre 2013 Per segnalare errori o per osservazioni e suggerimenti di qualsiasi

Dettagli

FUNZIONI CONTINUE - ESERCIZI SVOLTI

FUNZIONI CONTINUE - ESERCIZI SVOLTI FUNZIONI CONTINUE - ESERCIZI SVOLTI 1) Verificare che x è continua in x 0 per ogni x 0 0 ) Verificare che 1 x 1 x 0 è continua in x 0 per ogni x 0 0 3) Disegnare il grafico e studiare i punti di discontinuità

Dettagli

MISURA DELLA DISTANZA FOCALE DI UNA LENTE CONVERGENTE

MISURA DELLA DISTANZA FOCALE DI UNA LENTE CONVERGENTE MISURA DELLA DISTANZA FOCALE DI UNA LENTE CONVERGENTE La distanza focale f di una lente convergente sottile è data dalla formula: da cui 1 f = 1 p + 1 q f = pq p + q dove p e q sono, rispettivamente, le

Dettagli

Il programma OCTAVE per l insegnamento dell algebra lineare nella Scuola Secondaria p. 1

Il programma OCTAVE per l insegnamento dell algebra lineare nella Scuola Secondaria p. 1 Il programma OCTAVE per l insegnamento dell algebra lineare nella Scuola Secondaria R. Vitolo Dipartimento di Matematica Università di Lecce SaLUG! - Salento Linux User Group Il programma OCTAVE per l

Dettagli

NUMERI COMPLESSI. Test di autovalutazione

NUMERI COMPLESSI. Test di autovalutazione NUMERI COMPLESSI Test di autovalutazione 1. Se due numeri complessi z 1 e z 2 sono rappresentati nel piano di Gauss da due punti simmetrici rispetto all origine: (a) sono le radici quadrate di uno stesso

Dettagli

ITCS Erasmo da Rotterdam. Anno Scolastico 2014/2015. CLASSE 4^ M Costruzioni, ambiente e territorio

ITCS Erasmo da Rotterdam. Anno Scolastico 2014/2015. CLASSE 4^ M Costruzioni, ambiente e territorio ITCS Erasmo da Rotterdam Anno Scolastico 014/015 CLASSE 4^ M Costruzioni, ambiente e territorio INDICAZIONI PER IL LAVORO ESTIVO DI MATEMATICA e COMPLEMENTI di MATEMATICA GLI STUDENTI CON IL DEBITO FORMATIVO

Dettagli

Metodi matematici 2 9 giugno 2011

Metodi matematici 2 9 giugno 2011 Metodi matematici giugno 0 TEST 6CFU Cognome Nome Matricola Si indichi la soluzione senza procedimento. Nel caso si intenda annullare una risposta crocettare la risposta ritenuta errata. Risultati corretti

Dettagli

Pro memoria per la ripartizione delle spese

Pro memoria per la ripartizione delle spese Pro memoria per la ripartizione delle spese Documento di lavoro post incontro del 23 e 24 novembre 2009, Roma, ad uso interno del Gruppo di lavoro Istat-Upi per la sperimentazione della contabilità ambientale

Dettagli

MATEMATICA PER LO STUDIO DELLE INTERAZIONI STRATEGICHE: TEORIA DEI GIOCHI. Anna TORRE

MATEMATICA PER LO STUDIO DELLE INTERAZIONI STRATEGICHE: TEORIA DEI GIOCHI. Anna TORRE MATEMATICA PER LO STUDIO DELLE INTERAZIONI STRATEGICHE: TEORIA DEI GIOCHI Anna TORRE Dipartimento di Matematica, Università di Pavia, Via Ferrata 1, 27100, Pavia, Italy. E-mail: anna.torre@unipv.it 1 GIOCHI

Dettagli

CORSO DI STATISTICA (parte 1) - ESERCITAZIONE 5

CORSO DI STATISTICA (parte 1) - ESERCITAZIONE 5 CORSO DI STATISTICA (parte 1) - ESERCITAZIONE 5 Dott.ssa Antonella Costanzo a.costanzo@unicas.it Esercizio 1. Misura dell associazione tra due caratteri Uno store manager è interessato a studiare la relazione

Dettagli

Lezione 2. Sommario. Il sistema binario. La differenza Analogico/Digitale Il sistema binario

Lezione 2. Sommario. Il sistema binario. La differenza Analogico/Digitale Il sistema binario Lezione 2 Il sistema binario Sommario La differenza Analogico/Digitale Il sistema binario 1 La conoscenza del mondo Per poter parlare (ed elaborare) degli oggetti (nella visione scientifica) si deve poter

Dettagli

Università degli studi di Foggia SSIS D.M.85 2005 Laboratorio di didattica della matematica finanziaria Classe 17/A

Università degli studi di Foggia SSIS D.M.85 2005 Laboratorio di didattica della matematica finanziaria Classe 17/A Università degli studi di Foggia SSIS D.M.85 2005 Laboratorio di didattica della matematica finanziaria Classe 17/A Appunti sull utilizzo di Excel per la soluzione di problemi di matematica finanziaria.

Dettagli

Lezione 6 Nucleo, Immagine e Teorema della Dimensione. 1 Definizione di Nucleo e Immagine

Lezione 6 Nucleo, Immagine e Teorema della Dimensione. 1 Definizione di Nucleo e Immagine Lezione 6 Nucleo, Immagine e Teorema della Dimensione In questa lezione entriamo nel vivo della teoria delle applicazioni lineari. Per una applicazione lineare L : V W definiamo e impariamo a calcolare

Dettagli

APPLICAZIONI LINEARI. B si definisce surriettiva. 9 quando ogni elemento di. B risulta IMMAGINE di. almeno un elemento di A.

APPLICAZIONI LINEARI. B si definisce surriettiva. 9 quando ogni elemento di. B risulta IMMAGINE di. almeno un elemento di A. APPLICAZIONI LINEARI Siano V e W due spazi vettoriali, di dimensione m ed n sullo stesso campo di scalari R. Una APPLICAZIONE ƒ : V W viene definita APPLICAZIONE LINEARE od OMOMORFISMO se risulta, per

Dettagli

7 Esercizi e complementi di Elettrotecnica per allievi non elettrici. Circuiti elementari

7 Esercizi e complementi di Elettrotecnica per allievi non elettrici. Circuiti elementari 7 Esercizi e complementi di Elettrotecnica per allievi non elettrici Circuiti elementari Gli esercizi proposti in questa sezione hanno lo scopo di introdurre l allievo ad alcune tecniche, semplici e fondamentali,

Dettagli

Esercizio C2.1 - Acquisizione dati: specifiche dei blocchi

Esercizio C2.1 - Acquisizione dati: specifiche dei blocchi Esercizio C2.1 - Acquisizione dati: specifiche dei blocchi È dato un segnale analogico avente banda 2 khz e dinamica compresa tra -2 V e 2V. Tale segnale deve essere convertito in segnale digitale da un

Dettagli

6. IMPIANTO DI CLIMATIZZAZIONE CALCOLO PSICROMETRICO DEL SOGGIORNO-PRANZO

6. IMPIANTO DI CLIMATIZZAZIONE CALCOLO PSICROMETRICO DEL SOGGIORNO-PRANZO 6. IMPIANTO DI CLIMATIZZAZIONE CALCOLO PSICROMETRICO DEL SOGGIORNO-PRANZO Regime estivo Dal calcolo dei carichi termici effettuato a regime variabile (includendo anche quelli apportati dagli utenti e dall

Dettagli

p k q n k = p n (k) = n 12 = 1 = 12 1 12 11 10 9 1 0,1208. q = 1 2 e si ha: p 12 (8) = 12 8 4

p k q n k = p n (k) = n 12 = 1 = 12 1 12 11 10 9 1 0,1208. q = 1 2 e si ha: p 12 (8) = 12 8 4 CAPITOLO QUARTO DISTRIBUZIONE BINOMIALE (O DI BERNOULLI) Molti degli esempi che abbiamo presentato nei capitoli precedenti possono essere pensati come casi particolari di uno schema generale di prove ripetute,

Dettagli

Corso di Laurea in Ingegneria Informatica Analisi Numerica

Corso di Laurea in Ingegneria Informatica Analisi Numerica Corso di Laurea in Ingegneria Informatica Lucio Demeio Dipartimento di Scienze Matematiche 1 2 Analisi degli errori Informazioni generali Libro di testo: J. D. Faires, R. Burden, Numerical Analysis, Brooks/Cole,

Dettagli

Normalizzazione. Definizione

Normalizzazione. Definizione Normalizzazione Definizione Le forme normali 2 Una forma normale è una proprietà di una base di dati relazionale che ne garantisce la qualità, cioè l'assenza di determinati difetti Quando una relazione

Dettagli

Tecniche statistiche di analisi del cambiamento

Tecniche statistiche di analisi del cambiamento Tecniche statistiche di analisi del cambiamento 07-Anova con covariata (vers. 1.0, 3 dicembre 2015) Germano Rossi 1 germano.rossi@unimib.it 1 Dipartimento di Psicologia, Università di Milano-Bicocca 2015-16

Dettagli

METODI DI CONVERSIONE FRA MISURE

METODI DI CONVERSIONE FRA MISURE METODI DI CONVERSIONE FRA MISURE Un problema molto frequente e delicato da risolvere è la conversione tra misure, già in parte introdotto a proposito delle conversioni tra multipli e sottomultipli delle

Dettagli

ESERCIZI DI ALGEBRA LINEARE E GEOMETRIA

ESERCIZI DI ALGEBRA LINEARE E GEOMETRIA ESERCIZI DI ALGEBRA LINEARE E GEOMETRIA Francesco Bottacin Padova, 24 febbraio 2012 Capitolo 1 Algebra Lineare 1.1 Spazi e sottospazi vettoriali Esercizio 1.1. Sia U il sottospazio di R 4 generato dai

Dettagli

Definizione Dati due insiemi A e B, contenuti nel campo reale R, si definisce funzione reale di variabile reale una legge f : A

Definizione Dati due insiemi A e B, contenuti nel campo reale R, si definisce funzione reale di variabile reale una legge f : A Scopo centrale, sia della teoria statistica che della economica, è proprio quello di esprimere ed analizzare le relazioni, esistenti tra le variabili statistiche ed economiche, che, in linguaggio matematico,

Dettagli

1 Applicazioni Lineari tra Spazi Vettoriali

1 Applicazioni Lineari tra Spazi Vettoriali 1 Applicazioni Lineari tra Spazi Vettoriali Definizione 1 (Applicazioni lineari) Si chiama applicazione lineare una applicazione tra uno spazio vettoriale ed uno spazio vettoriale sul campo tale che "!$%!

Dettagli

Lezione 3: Il problema del consumatore: Il

Lezione 3: Il problema del consumatore: Il Corso di Economica Politica prof. Stefano Papa Lezione 3: Il problema del consumatore: Il vincolo di bilancio Facoltà di Economia Università di Roma La Sapienza Il problema del consumatore 2 Applichiamo

Dettagli

x log(x) + 3. f(x) =

x log(x) + 3. f(x) = Università di Bari, Corso di Laurea in Economia e Commercio Esame di Matematica per l Economia L/Z Dr. G. Taglialatela 03 giugno 05 Traccia dispari Esercizio. Calcolare Esercizio. Calcolare e cos log d

Dettagli

ESERCITAZIONE 3 : PERCENTUALI

ESERCITAZIONE 3 : PERCENTUALI ESERCITAZIONE 3 : PERCENTUALI e-mail: tommei@dm.unipi.it web: www.dm.unipi.it/ tommei Ricevimento: Lunedi 14-17 Dipartimento di Matematica, piano terra, studio 114 22 Ottobre 2013 Esercizio 1 Nel 2006,

Dettagli

TECNICHE DI CONTROLLO

TECNICHE DI CONTROLLO TECNICHE DI CONTROLLO Richiami di Teoria dei Sistemi Dott. Ing. SIMANI SILVIO con supporto del Dott. Ing. BONFE MARCELLO Sistemi e Modelli Concetto di Sistema Sistema: insieme, artificialmente isolato

Dettagli

Esercizi sui Circuiti RC

Esercizi sui Circuiti RC Esercizi sui Circuiti RC Problema 1 Due condensatori di capacità C = 6 µf, due resistenze R = 2.2 kω ed una batteria da 12 V sono collegati in serie come in Figura 1a. I condensatori sono inizialmente

Dettagli

Esercizi svolti. Elettrotecnica

Esercizi svolti. Elettrotecnica Esercizi svolti di Elettrotecnica a cura del prof. Vincenzo Tucci NOVEMBE 00 NOTA SUL METODO PE LA DEGLI ESECIZI La soluzione degli esercizi è un momento della fase di apprendimento nel quale l allievo

Dettagli

VBA è un linguaggio di scripting derivato da Visual Basic, da cui prende il nome. Come ogni linguaggio ha le sue regole.

VBA è un linguaggio di scripting derivato da Visual Basic, da cui prende il nome. Come ogni linguaggio ha le sue regole. Excel VBA VBA Visual Basic for Application VBA è un linguaggio di scripting derivato da Visual Basic, da cui prende il nome. Come ogni linguaggio ha le sue regole. 2 Prima di iniziare. Che cos è una variabile?

Dettagli

2. Variabilità mediante il confronto di valori caratteristici della

2. Variabilità mediante il confronto di valori caratteristici della 2. Variabilità mediante il confronto di valori caratteristici della distribuzione Un approccio alternativo, e spesso utile, alla misura della variabilità è quello basato sul confronto di valori caratteristici

Dettagli

Corso di Politica Economica

Corso di Politica Economica Corso di Politica Economica Lezione 12: Introduzione alla Teoria dei Giochi (part 3) David Bartolini Università Politecnica delle Marche (Sede di S.Benedetto del Tronto) d.bartolini@univpm.it (email) http://utenti.dea.univpm.it/politica

Dettagli

PROBLEMI DI SCELTA dipendenti da due variabili d azione

PROBLEMI DI SCELTA dipendenti da due variabili d azione prof. Guida PROBLEMI DI SCELTA dipendenti da due variabili d azione in un problema di programmazione lineare, si ricorda che la funzione obiettivo z=f(x,y)=ax+by+c assume il suo valore massimo (o minimo)

Dettagli

M.U.T. Modulo Unico Telematico. Modifiche Contributo Minimo APE. Maggio/Giugno 2016

M.U.T. Modulo Unico Telematico. Modifiche Contributo Minimo APE. Maggio/Giugno 2016 M.U.T. Modulo Unico Telematico Modifiche Contributo Minimo APE Maggio/Giugno 2016 Pagina 1 di 18 Sommario SOMMARIO... 2 PREMESSA... 3 ESEMPI (CON PERCENTUALE APE DEL 3,5%)... 4 LAVORATORE CON ORE DICHIARATE

Dettagli

Rango: Rouchè-Capelli, dimensione e basi di spazi vettoriali.

Rango: Rouchè-Capelli, dimensione e basi di spazi vettoriali. CAPITOLO 7 Rango: Rouchè-Capelli, dimensione e basi di spazi vettoriali. Esercizio 7.1. Determinare il rango delle seguenti matrici al variare del parametro t R. 1 4 2 1 4 2 A 1 = 0 t+1 1 A 2 = 0 t+1 1

Dettagli

Direttive di applicazione del Regolamento Bachelor per il corso di laurea in lavoro sociale

Direttive di applicazione del Regolamento Bachelor per il corso di laurea in lavoro sociale Direttive di applicazione del Regolamento Bachelor per il corso di laurea in lavoro sociale Complemento del Regolamento per il Bachelor SUPSI Le seguenti direttive permettono allo studente di avere delle

Dettagli

Classificazione Singolarità isolate, Serie di Laurent, Residui, Teorema dei residui e applicazioni

Classificazione Singolarità isolate, Serie di Laurent, Residui, Teorema dei residui e applicazioni Classificazione Singolarità isolate, Serie di Laurent, Residui, Teorema dei residui e applicazioni Docente:Alessandra Cutrì Richiamo:Zeri di Funzioni olomorfe (o analitiche) Sia f : A C C A aperto connesso,

Dettagli

Fondamenti di Internet e Reti 097246

Fondamenti di Internet e Reti 097246 sul livello di Rete Instradamento. o Si consideri la rete in figura.. Si rappresenti, mediante un grafo, la rete per il calcolo dei cammini minimi (solo i nodi e gli archi no reti). Si calcoli il cammino

Dettagli

Algebra Lineare e Geometria

Algebra Lineare e Geometria Algebra Lineare e Geometria Corso di Laurea in Ingegneria Elettronica A.A. 2013-2014 Prova d esame del 16/06/2014. 1) a) Determinare la matrice associata all applicazione lineare T : R 3 R 4 definita da

Dettagli

SCIENZA DELLE FINANZE A.A. 2009-2010 6061 - CLEAM Terza Esercitazione (Attività finanziarie) TESTO E SOLUZIONI

SCIENZA DELLE FINANZE A.A. 2009-2010 6061 - CLEAM Terza Esercitazione (Attività finanziarie) TESTO E SOLUZIONI SCIENZA DELLE FINANZE A.A. 2009-2010 6061 - CLEAM Terza Esercitazione (Attività finanziarie) TESTO E SOLUZIONI Esercizio 1 - Risparmio individuale e risparmio gestito All inizio del 2009 il signor Rossi

Dettagli

Informatica Teorica. Macchine a registri

Informatica Teorica. Macchine a registri Informatica Teorica Macchine a registri 1 Macchine a registri RAM (Random Access Machine) astrazione ragionevole di un calcolatore nastro di ingresso nastro di uscita unità centrale in grado di eseguire

Dettagli

MURI DI SOSTEGNO. a cura del professore. Francesco Occhicone

MURI DI SOSTEGNO. a cura del professore. Francesco Occhicone MURI DI SOSTEGNO a cura del professore Francesco Occhicone anno 2014 MURI DI SOSTEGNO Per muro di sostegno si intende un opera d arte con la funzione principale di sostenere o contenere fronti di terreno

Dettagli

Esercizio: memoria virtuale

Esercizio: memoria virtuale Siano dati un indirizzo logico con la struttura ed il contenuto mostrati in figura, dove è anche riportata la funzione di rilocazione. Si indichi l indirizzo fisico corrispondente all indirizzo logico

Dettagli

Progetto del controllore

Progetto del controllore Parte 10, 1 - Problema di progetto Parte 10, 2 Progetto del controllore Il caso dei sistemi LTI a tempo continuo Determinare in modo che il sistema soddisfi alcuni requisiti - Principali requisiti e diagrammi

Dettagli

Elementi di matematica finanziaria

Elementi di matematica finanziaria Elementi di matematica finanziaria 1. Percentuale Si dice percentuale di una somma di denaro o di un altra grandezza, una parte di questa, calcolata in base ad un tanto per cento, che si chiama tasso percentuale.

Dettagli

MATEMATICA GENERALE Prova d esame del 4 giugno 2013 - FILA A

MATEMATICA GENERALE Prova d esame del 4 giugno 2013 - FILA A MATEMATICA GENERALE Prova d esame del 4 giugno 2013 - FILA A Nome e cognome Matricola I Parte OBBLIGATORIA (quesiti preliminari: 1 punto ciascuno). Riportare le soluzioni su questo foglio, mostrando i

Dettagli

ESERCIZI DEL CORSO DI INFORMATICA

ESERCIZI DEL CORSO DI INFORMATICA ESERCIZI DEL CORSO DI INFORMTIC Questa breve raccolta di esercizi vuole mettere in luce alcuni aspetti della prima parte del corso e fornire qualche spunto di riflessione. Il contenuto del materiale seguente

Dettagli

Le forze. Cos è una forza? in quiete. in moto

Le forze. Cos è una forza? in quiete. in moto Le forze Ricorda che quando parli di: - corpo: ti stai riferendo all oggetto che stai studiando; - deformazione. significa che il corpo che stai studiando cambia forma (come quando pesti una scatola di

Dettagli

Analisi. Calcolo Combinatorio. Ing. Ivano Coccorullo

Analisi. Calcolo Combinatorio. Ing. Ivano Coccorullo Analisi Ing. Ivano Coccorullo Prof. Ivano Coccorullo ü Molti dei problemi classici di calcolo delle probabilità si riducono al calcolo dei casi favorevoli e di quelli possibili. Quando le situazioni diventano

Dettagli

ANALISI MATEMATICA II Sapienza Università di Roma - Laurea in Ingegneria Informatica Esame del 16 febbraio 2016 - Soluzioni compito 1

ANALISI MATEMATICA II Sapienza Università di Roma - Laurea in Ingegneria Informatica Esame del 16 febbraio 2016 - Soluzioni compito 1 ANALISI MATEMATICA II Sapienza Università di Roma - Laurea in Ingegneria Informatica Esame del 6 febbraio 206 - Soluzioni compito E Calcolare, usando i metodi della variabile complessa, il seguente integrale

Dettagli

Metodi di Distanza. G.Allegrucci riproduzione vietata

Metodi di Distanza. G.Allegrucci riproduzione vietata Metodi di Distanza La misura più semplice della distanza tra due sequenze nucleotidiche è contare il numero di siti nucleotidici che differiscono tra le due sequenze Quando confrontiamo siti omologhi in

Dettagli

I costi d impresa (R. Frank, Capitolo 10)

I costi d impresa (R. Frank, Capitolo 10) I costi d impresa (R. Frank, Capitolo 10) COSTI Per poter realizzare la produzione l impresa sostiene dei costi Si tratta di scegliere la combinazione ottimale dei fattori produttivi per l impresa È bene

Dettagli

Capitolo 6. Il processo decisionale delle imprese: la massimizzazione del profitto

Capitolo 6. Il processo decisionale delle imprese: la massimizzazione del profitto Capitolo 6 Il processo decisionale delle imprese: la massimizzazione del profitto Per raggiungere l'obiettivo del massimo profitto, le imprese devono risolvere una serie di problemi. Dove produrre? Quanti

Dettagli

ALGEBRA: LEZIONI DAL 13 OTTOBRE AL 3 NOVEMBRE

ALGEBRA: LEZIONI DAL 13 OTTOBRE AL 3 NOVEMBRE ALGEBRA: LEZIONI DAL 13 OTTOBRE AL 3 NOVEMBRE 1 DIPENDENZA E INDIPENDENZA LINEARE Se ho alcuni vettori v 1, v 2,, v n in uno spazio vettoriale V, il sottospazio 1 W = v 1,, v n di V da loro generato è

Dettagli

Macroeconomia. Equilibrio in Economia Aperta. Esercitazione del 27.04.2016 (+ soluzioni) (a cura della dott.ssa Gessica Vella)

Macroeconomia. Equilibrio in Economia Aperta. Esercitazione del 27.04.2016 (+ soluzioni) (a cura della dott.ssa Gessica Vella) Dipartimento di Economia, Statistica e Finanza Corso di Laurea in ECONOMIA Esercizio 1 Macroeconomia Equilibrio in Economia Aperta Esercitazione del 27.04.2016 (+ soluzioni) (a cura della dott.ssa Gessica

Dettagli

Ripasso di Calcolo Scientifico: Giulio Del Corso

Ripasso di Calcolo Scientifico: Giulio Del Corso Ripasso di Calcolo Scientifico: Giulio Del Corso Queste dispense sono tratte dalle lezioni del Prof. Gemignani e del Prof. Bini del corso di Calcolo Scientifico (2014/2015) dell università di Pisa. Non

Dettagli

TEST DI INGRESSO. Al seguente indirizzo puoi trovare il test di matematica di base per scienze biotecnologiche http://www.testingressoscienze.

TEST DI INGRESSO. Al seguente indirizzo puoi trovare il test di matematica di base per scienze biotecnologiche http://www.testingressoscienze. TEST DI INGRESSO http://www.smfn.unipi.it/prova_ingresso/verifica2009.aspx Al precedente sito internet puoi trovare un esempio pubblico di test di matematica di base e un test di matematica di base del

Dettagli

Teoria dei Giochi. Dr. Giuseppe Rose Università degli Studi della Calabria Corso di Laurea Magistrale in Economia Applicata a.a 2011/2012 Handout 7

Teoria dei Giochi. Dr. Giuseppe Rose Università degli Studi della Calabria Corso di Laurea Magistrale in Economia Applicata a.a 2011/2012 Handout 7 Teoria dei Giochi Dr. Giuseppe Rose Università degli Studi della Calabria Corso di Laurea Magistrale in Economia Applicata a.a 20/202 Handout 7 I Giochi Ripetuti I giochi ripetuti rappresentano una particolare

Dettagli

Allenamento di matematica Simulazione di San Valentino Brescia - 12 febbraio 2016 Soluzioni commentate

Allenamento di matematica Simulazione di San Valentino Brescia - 12 febbraio 2016 Soluzioni commentate Allenamento di matematica Simulazione di San Valentino Brescia - febbraio 06 Soluzioni commentate. La lotteria di San Valentino. La probabilità di uscita di un multiplo di vale 8 probabilità richiesta

Dettagli

TEORIA RELAZIONALE: INTRODUZIONE

TEORIA RELAZIONALE: INTRODUZIONE TEORIA RELAZIONALE: INTRODUZIONE Tre metodi per produrre uno schema relazionale: a) Partire da un buon schema a oggetti e tradurlo b) Costruire direttamente le relazioni e poi correggere quelle che presentano

Dettagli

Energia dal sole: come sfruttarla?

Energia dal sole: come sfruttarla? Energia dal sole: come sfruttarla? Plus: abbondante, gratuita, democratica, rinnovabile Minus: discontinua, aleatoria, bassa densità energetica Tecnologie: Solare Termico Solare Termodinamico Solare Fotovoltaico

Dettagli

ESAME 13 Gennaio 2011

ESAME 13 Gennaio 2011 ESAME 13 Gennaio 2011 Esercizio 1. Si consideri un operazione finanziaria che ha valore x 0 = 120 in t 0 = 0 e restituisce x 1 = 135 all istante t. Supponendo che l operazione in esame sia soggetta ad

Dettagli

Introduzione alle macchine a stati (non definitivo)

Introduzione alle macchine a stati (non definitivo) Introduzione alle macchine a stati (non definitivo) - Introduzione Il modo migliore per affrontare un problema di automazione industriale (anche non particolarmente complesso) consiste nel dividerlo in

Dettagli

FISICA. isoterma T f. T c. Considera il ciclo di Stirling, in cui il fluido (=sistema) è considerato un gas ideale.

FISICA. isoterma T f. T c. Considera il ciclo di Stirling, in cui il fluido (=sistema) è considerato un gas ideale. Serie 10: ermodinamica X FISICA II liceo Esercizio 1 Ciclo di Carnot Considera il ciclo di Carnot, in cui il fluido (=sistema) è considerato un gas ideale. Si considerano inoltre delle trasformazioni reversibili.

Dettagli

Prof.ssa Laura Pagnozzi Prof. Ivano Coccorullo. Calcolo Combinatorio

Prof.ssa Laura Pagnozzi Prof. Ivano Coccorullo. Calcolo Combinatorio Prof.ssa Laura Pagnozzi Prof. Ivano Coccorullo Calcolo Combinatorio Calcolo Combinatorio ü Molti dei problemi classici di calcolo delle probabilità si riducono al calcolo dei casi favorevoli e di quelli

Dettagli

Il Metodo Scientifico

Il Metodo Scientifico Unita Naturali Il Metodo Scientifico La Fisica si occupa di descrivere ed interpretare i fenomeni naturali usando il metodo scientifico. Passi del metodo scientifico: Schematizzazione: modello semplificato

Dettagli

Esercitazioni di statistica

Esercitazioni di statistica Esercitazioni di statistica Misure di associazione: Indipendenza assoluta e in media Stefania Spina Universitá di Napoli Federico II stefania.spina@unina.it 22 ottobre 2014 Stefania Spina Esercitazioni

Dettagli

La in verifica forma teoria normale della normalizzazione fornisce comunque uno strumento di già

La in verifica forma teoria normale della normalizzazione fornisce comunque uno strumento di già Le dati Presenza Complicazioni forme relazionale normaliverificano di ridondanze la qualitàdi uno schema di una base di Forme La forma normalizzazionepermette nella gestione di degli ottenere aggiornamenti

Dettagli

ESAME DI ECONOMIA INTERNAZIONALE Università di Bari - Facoltà di Economia

ESAME DI ECONOMIA INTERNAZIONALE Università di Bari - Facoltà di Economia ESAME DI ECONOMIA INTERNAZIONALE Università di Bari - Facoltà di Economia 04/05/2005 Corso Unico VERSIONE 11 ISTRUZIONI Riempire i campi relativi a nome, cognome, matricola e corso di laurea sia su questo

Dettagli

Applicazioni lineari

Applicazioni lineari CAPITOLO 8 Applicazioni lineari Esercizio 8.. Sia T : R 3 R 3 l applicazione definita da T(x,x,x 3 ) = (x,x,x 3 ). Stabilire se T è lineare. Esercizio 8.. Verificare che la funzione determinante definita

Dettagli

Calibrazione di modelli matematici

Calibrazione di modelli matematici Capitolo 4 Calibrazione di modelli matematici Supponiamo che siano disponibili conteggi o stime di una data popolazione in stagioni successive. Ad esempio, consideriamo i dati per la quantità di piante

Dettagli

Esercizi sulle funzioni classi IV e V (indirizzo afm)

Esercizi sulle funzioni classi IV e V (indirizzo afm) (questi esercizi sono stati scelti da una dispensa del dipartimento di Matematica Applicata dell università di Venezia e adattati al programma che abbiamo svolto fino ad ora) Esercizi sulle funzioni classi

Dettagli

x 1 + x 2 3x 4 = 0 x1 + x 2 + x 3 = 0 x 1 + x 2 3x 4 = 0.

x 1 + x 2 3x 4 = 0 x1 + x 2 + x 3 = 0 x 1 + x 2 3x 4 = 0. Problema. Sia W il sottospazio dello spazio vettoriale R 4 dato da tutte le soluzioni dell equazione x + x 2 + x = 0. (a. Sia U R 4 il sottospazio dato da tutte le soluzioni dell equazione Si determini

Dettagli

7 Disegni sperimentali ad un solo fattore. Giulio Vidotto Raffaele Cioffi

7 Disegni sperimentali ad un solo fattore. Giulio Vidotto Raffaele Cioffi 7 Disegni sperimentali ad un solo fattore Giulio Vidotto Raffaele Cioffi Indice: 7.1 Veri esperimenti 7.2 Fattori livelli condizioni e trattamenti 7.3 Alcuni disegni sperimentali da evitare 7.4 Elementi

Dettagli

Siano V e W due spazi vettoriali. La definizione seguente é è tra quelle basilari per il corso di Matematica B. L : V W

Siano V e W due spazi vettoriali. La definizione seguente é è tra quelle basilari per il corso di Matematica B. L : V W Matematica B - a.a 2006/07 p. 1 Siano V e W due spazi vettoriali. La definizione seguente é è tra quelle basilari per il corso di Matematica B. Definizione 1. La funzione L : V W si dice una applicazione

Dettagli

Classe IV specializzazione elettronica. Elettrotecnica ed elettronica

Classe IV specializzazione elettronica. Elettrotecnica ed elettronica Macro unità n 1 Classe IV specializzazione elettronica Elettrotecnica ed elettronica Reti elettriche, segnali e diodi Leggi fondamentali: legge di Ohm, principi di Kirchhoff, teorema della sovrapposizione

Dettagli