Autovettori e autovalori

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Autovettori e autovalori"

Transcript

1 Autovettori e autovalori Definizione 1 Sia A Mat(n, n), matrice a coefficienti reali. Si dice autovalore di A un numero λ R tale che v 0 R n Av = λv. Ogni vettore non nullo v che soddisfa questa relazione si dice autovettore di A, relativo all autovalore λ. Esso individua una direzione conservata dalla trasformazione che A rappresenta: infatti la matrice, operando su tale vettore, può modificarne il modulo e il verso, ma non la direzione. Definizione 2 L insieme V λ degli autovettori relativi all autovalore λ è detto autospazio associato a λ. Esercizio. Siano A, B, C Mat(n, n). Sia x R n tale che: ˆ x è autovettore di A associato all autovalore λ; ˆ x è autovettore di B associato all autovalore ρ; ˆ x è autovettore di C associato all autovalore µ. Dimostrare che: a. ABCx = λρµx; b. (A + B + C)x = (λ + ρ + µ)x; c. A n B m C r x = λ n ρ m µ r x, con n, m, r N. Il vettore x soddisfa: Ax = λx Bx = ρx Cx = µx a. ABCx = AB(Cx) = AB(µx) = Aµ(ρx) = µρλx. b. (A + B + C)x = Ax + Bx + Cx = (λ + ρ + µ)x. c. Osserviamo che C r = C } {{ C} ; dunque: r volte C r x = C r 1 Cx = C r 1 µx = C r 2 µcx = C r 2 µ 2 x = = µ r x. Procedendo analogamente per A e per B si ottiene la tesi. 1

2 Esercizio. Siano A, B M at(n, n), che ammettono entrambe l autovettore v relativo all autovalore λ. Verificare che la matrice A + B ammette anch essa v come autovettore, relativo all autovalore 2λ. Soluzione: (A + B)v = Av + Bv = λv + λv = (2λ)v. Esercizio. Determinare h R in modo che: 0 h 1 A b = 2h 1 h 1 h 1 3h 2 0 ammetta v = (1, 1, 2) come autovettore. Deve valere Av = λv per qualche λ R, cioè: h 2 = λ (2h 1) + (h 1) 2h = λ 1 + (3h 2) = 2λ Il sistema è risolto da (λ, h) = ( 1, 1), dunque A ammette v come autovettore relativo all autovalore 1, per h = 1. Teorema 1 (Caratterizzazione degli autovalori) Sia A M at(n, n). Allora: λ è autovalore di A det(λi n A) = 0. Il polinomio p(x) = det(xi n A) è detto polinomio caratteristico di A, le cui radici sono gli autovalori. n nota. det p(0) (polinomio caratteristico valutato in x = 0), dunque: det 0 p(0) = 0 0 è autovalore di A. In generale vale la regola: det λ 1 λ n (prodotto degli autovalori); i- noltre, se n = 2, si ha det λ 1 λ 2 e T r a + d = λ 1 + λ 2. n nota. p(x) = det(xi n A) è sempre monico, cioè il grado massimo ha coefficiente 1. 2

3 Esercizio. Trovare gli autovalori di A Mat(n, n), sapendo che: ˆ A è singolare; ˆ det(2i 3 A) = 0; ˆ det( I 3 A) = 0. A è singolare det 0 λ 1 = 0 è autovalore. det(2i 3 A) = p(2) = 0 λ 2 = 2 è autovalore. det( I 3 A) = p( 1) = 0 λ 3 = 1 è autovalore. Esercizio. Calcolare gli autovalori di A Mat(2, 2), sapendo che: det(i 2 A) = 1 e det 2. Gli autovalori sono le radici di p(λ), polinomio (monico) di grado 2: p(λ) = λ 2 + bλ + c p(1) = det(i 2 A) = 1 p(0) = det 2 Dunque otteniamo il sistema nelle incognite b, c: { p(1) = 1 + b + c = 1 p(0) = c = 2 da cui ricaviamo i coefficienti di p(λ): p(λ) = λ 2 4λ + 2 = (λ (2 + 2))(λ (2 2)). Gli autovalori sono λ 1 = e λ 2 = 2 2. Esercizio. Calcolare gli autovalori di A e i corrispondenti autospazi

4 autovalori. Scriviamo il polinomio caratteristico e troviamone le radici: p(λ) = det(a λi 3 ) = (2 λ)(2 λ)(1 λ) = 0, dunque λ 1 = λ 2 = 2 e λ 3 = 1 sono gli autovalori di A. autospazi. V λ = {v R 3 Av = λv} = {v (A λi 3 )v = 0} = ker(a λi 3 ). ˆ ˆ Per λ 1 = λ 2 = 2 abbiamo V 2 = ker(a 2I 3 ), cioè l insieme delle soluzioni del sistema omogeneo associato ad: A 2I 3 = 0 0 1, dunque V 2 = {(x, 0, 0), x R} e dim V 2 = 1. Per λ 3 = 1 si ha V 1 = ker(a I 3 ), cioè le soluzioni del sistema omogeneo associato ad: A I 3 = 0 1 1, dunque V 2 = {(4, 1, 1)z, z R} e dim V 1 = 1. n nota. Se diag(d 1,, d n ) è una matrice diagonale: d , d n allora p(λ) = det(λi n A) = (λ d 1 ) (λ d n ), dunque: n p(λ) = (λ d j ) = 0 λ j = d j ogni d j è autovalore di A. j=1 4

5 Esercizio. Scrivere almeno due matrici che abbiano gli stessi autovalori di A (vedi esercizio precedente). Basta scrivere due matrici diagonali che abbiano gli autovalori voluti come elementi della diagonale principale: B = diag(2, 2, 1) = 0 2 0, e C = diag(2, 1, 2) = Esercizio. Scrivere almeno tre matrici che abbiano il seguente polinomio caratteristico: p(λ) = (λ + 1)(λ 2 4)(λ 3)λ. Gli zeri di p(λ) sono gli autovalori delle matrici cercate: ogni matrice diagonale formata con essi li avrà come autovalori, e avrà il polinomio dato come caratteristico. p(λ) = 0 λ = 1 λ = ±2 λ = 3 λ = 0, dunque possiamo scegliere: diag( 1, 2, 2, 3, 0), B = diag( 2, 2, 1, 3, 0), C = diag( 2, 2, 3, 1, 0), eccetera... Definizione 3 Sia A Mat(n, n). Un autovalore λ di A si dice regolare se m g (λ) = m a (λ), dove: ˆ m g (λ) := dim V λ si dice molteplicità geometrica di λ (dimensione dell autospazio); ˆ m a (λ) = k p(x) = (x λ) k p(x), con p(λ) 0 è la molteplicità algebrica di λ (cioè la molteplicità di λ come zero del polinomio caratteristico). n nota. Vale la disuguaglianza: 1 m g (λ) m a (λ) per ogni λ autovalore. Esercizio. Data la matrice: a. trovare gli autovalori;

6 b. stabilire per ciascun autovalore se è regolare; c. trovare gli autospazi. a. Scriviamo il polinomio caratteristico: λ 6 0 p(λ) = det 1 λ 1 = λ(λ 3)(λ + 2) 1 0 λ 1 da cui λ 1 = 0, λ 2 = 3, λ 3 = 2; sono tre autovalori semplici, cioè ciascuno con molteplicità algebrica pari a 1: m a (λ i ) = 1 i. b. c. Essendo semplici gli autovalori, sono necessariamente tutti regolari (per tutti e tre vale m g (λ) = m a (λ) = 1); troviamo i relativi autospazi. ˆ V 0 = ker A : (a conferma della regolarità osserviamo che rg 2 m g (0) = dim ker 3 2 = 1), il sistema è risolto dagli elementi di:, V 0 = {( z, 0, z), z R}. ˆ V 3 = ker(a 3I 3 ): A 3I 3 = , (anche in questo caso rg(a 3I 3 ) = 2 ci conferma la regolarità dell autovalore), la soluzione del sistema è: ˆ Infine, V 2 = ker(a + 2I 3 ): V 3 = {(2, 1, 1)y, y R}. A + 2I 3 = , (ancora una matrice di rango 2), la soluzione è: 3 V 2 = { 1 z, z R}. 1 6

7 n nota. Abbiamo trovato che: A 1 = possiede un autovalore reale doppio e non regolare λ 1 = λ 2 = 2 e un autovalore reale semplice (e perciò regolare) λ 3 = 1; in altre parole, è possibile individuare in R 3 due direzioni conservate da A 1, che sono le due rette (non parallele), autospazi di A 1 : V λ1 = { t 0 0, t R} e V λ3 = { 4s s s, s R}, sottospazi di R 3 che A 1 trasforma in se stessi. Per la linearità di A 1, anche il piano contenente queste due rette viene trasformato in se stesso, infatti: ma allora anche v piano v = av 1 + bv 3, con v 1 V λ1 e v 3 V λ3, Av = A(av 1 + bv 3 ) = aav 1 + bav 3 = (aλ 1 )v 1 + (bλ 3 )v 3 piano. Dunque le direzioni conservate da A 1 (cioè i suoi autovettori) generano un sottospazio proprio (un piano) di R 3. Nel caso, invece, della matrice A 2 = essendoci tre autovalori reali distinti, e perciò regolari, λ 1 = 0, λ 2 = 3 e λ 3 = 2, ci sono 3 direzioni conservate da A 2 : le tre rette non parallele che sono autospazi relativi ai tre λ i : V λ1 = { t 0 t }; V λ2 = { 2s s s, }; V λ3 = { 3r r r }. Si verifica facilmente che le tre direzioni sono l.i., pertanto in questo caso (autovalori tutti regolari) è possibile generare, con le direzioni conservate (autovettori) da A 2, tutto lo spazio R 3. n nota bene. Qualora nella definizione di autovalore si comprendano anche quelli complessi, cioè quei λ C tali che Av = λv, l equivalenza tra autovettori e direzioni conservate non sarebbe più vera. In questo caso diremmo che le direzioni conservate da A sono gli autovettori relativi ai soli autovalori reali (con parte immaginaria nulla). 7

8 Esercizio. a. Scrivere la matrice A che rappresenta rispetto alla base canonica la trasformazione f : R 2 R 2 che conserva le direzioni della base B = {b 1, b 2 } = {(1, 1), ( 1, 1)} nel modo seguente: f(b 1 ) = b 1 e f(b 2 ) = 2b 2. b. Qual è la matrice che rappresenta f sulla base B? a. La trasformazione cercata è definita dalle relazioni: f(b 1 ) = Ab 1 = b 1 e f(b 2 ) = Ab 2 = 2b 2, dove [ f(e1 ) f(e 2 ) ] Per calcolare le immagini degli e i, conoscendo quelle dei b i, dobbiamo rappresentare gli e i sulla base B (cioè effettuare un cambio di base, da quella canonica a B); osserviamo che: b 1 b 2 = 2e 1 e 1 = 1 2 (b 1 b 2 ) b 1 + b 2 = 2e 2 e 2 = 1 2 (b 1 + b 2 ) (Il procedimento equivale a calcolare i vettori e i - le cui componenti danno la rappresentazione degli e i sulla base B - tramite la matrice del cambio di base: e i = B 1 e i, dove B contiene sulle colonne i b i.) Dunque otteniamo: da cui: f(e 1 ) = 1 2 [f((b 1) f(b 2 ))] f(e 2 ) = 1 2 [f(b 1) + f(b 2 )], 1 2 [ b. La matrice cercata A B è quella che rappresenta la trasformazione rispetto alla base dei suoi autovettori. Essa contiene sulle colonne le immagini dei b i ]. 8

9 rappresentate sui b i stessi; poiché sappiamo che f(b 1 ) = b 1 = 1 b b 2 e f(b 2 ) = 2b 2 = 0 b b 2, otteniamo immediatamente: [ ] 1 0 A B = = diag(λ 0 2 1, λ 2 ), che è la matrice diagonale degli autovalori. Esercizio. Individuare, se esistono, le direzioni conservate dalle seguenti trasformazioni lineari del piano in se stesso: a. f : R 2 R 2, tale che f(x, y) = (4x + 3y, x + 2y); b. f : R 2 R 2, tale che f(1, 0) = (1, 1) e f(0, 1) = ( 1, 3); c. f : R 2 R 2, rotazione di un angolo di π 4 in senso antiorario. Le direzioni conservate sono gli autospazi degli eventuali autovalori reali delle matrici che rappresentano le trasformazioni date. a. Nel primo caso, la matrice rappresentativa è: [ ] 4 3, 1 2 che ammette i due autovalori reali λ 1 = 1 e λ 2 = 5, con corrispondenti autospazi: V λ1 = ker(a I 2 ) = {( y, y), y R} e V λ2 = ker(a 5I 2 ) = {(3y, y), y R}, dunque la trasformazione conserva due direzioni, quelle delle rette y = x e y = 1 3 x. b. La matrice rappresentativa [ ] possiede l autovalore reale doppio λ = 2. L autospazio relativo è: V λ = ker(a 2I 2 ) = {( y, y), y R}, di dimensione 1: in questo caso c è una sola direzione conservata (quella della retta y = x). 9

10 c. Otteniamo la matrice rappresentativa di una rotazione di un angolo θ, per esempio, calcolando i trasformati dei vettori della base canonica: 2 2 f(e 1 ) = f(1, 0) = (cos θ, sin θ) = ( 2, 2 ) e da cui: f(e 2 ) = f(0, 1) = ( sin θ, cos θ) = ( 2 2 [ ] , 2 ), Gli autovalori di questa matrice sono entrambi complessi: dunque non ci sono direzioni invariate: d altra parte, sarebbe stato ragionevole attendersi un risultato simile fin dall inizio, trattandosi di una rotazione. 10

Applicazioni lineari tra spazi euclidei. Cambi di base.

Applicazioni lineari tra spazi euclidei. Cambi di base. pplicazioni lineari tra spazi euclidei. Cambi di base. Esercizio. Data la seguente applicazione lineare f : R R : f(x, y, z) = (x z, x + y, y + z), scrivere la matrice B, rappresentativa di f rispetto

Dettagli

Definizione 1 Una applicazione f : V W, con V, W spazi vettoriali sul campo K si dice lineare se conserva le combinazioni lineari:

Definizione 1 Una applicazione f : V W, con V, W spazi vettoriali sul campo K si dice lineare se conserva le combinazioni lineari: Applicazioni lineari Definizione Una applicazione f : V W, con V, W spazi vettoriali sul campo K si dice lineare se conserva le combinazioni lineari: f(αv + βv 2 ) = αf(v ) + βf(v 2 ) v, v 2 V, α, β K.

Dettagli

Corso di Geometria Ing. Informatica e Automatica Test 1: soluzioni

Corso di Geometria Ing. Informatica e Automatica Test 1: soluzioni Corso di Geometria Ing. Informatica e Automatica Test : soluzioni k Esercizio Data la matrice A = k dipendente dal parametro k, si consideri il k sistema lineare omogeneo AX =, con X = x x. Determinare

Dettagli

(P x) (P y) = x P t (P y) = x (P t P )y = x y.

(P x) (P y) = x P t (P y) = x (P t P )y = x y. Matrici ortogonali Se P è una matrice reale n n, allora (P x) y x (P t y) per ogni x,y R n (colonne) Dim (P x) y (P x) t y (x t P t )y x t (P t y) x (P t y), CVD Ulteriori caratterizzazioni delle matrici

Dettagli

15 luglio Soluzione esame di geometria - Ing. gestionale - a.a COGNOME... NOME... N. MATRICOLA... ISTRUZIONI

15 luglio Soluzione esame di geometria - Ing. gestionale - a.a COGNOME... NOME... N. MATRICOLA... ISTRUZIONI 15 luglio 01 - Soluzione esame di geometria - Ing. gestionale - a.a. 01-01 COGNOME.......................... NOME.......................... N. MATRICOLA............. La prova dura ore. ISTRUZIONI Ti sono

Dettagli

FONDAMENTI DI ALGEBRA LINEARE E GEOMETRIA

FONDAMENTI DI ALGEBRA LINEARE E GEOMETRIA Cognome Nome Matricola FONDAMENTI DI ALGEBRA LINEARE E GEOMETRIA Ciarellotto, Esposito, Garuti Prova del 21 settembre 2013 Dire se è vero o falso (giustificare le risposte. Bisogna necessariamente rispondere

Dettagli

Applicazioni lineari e diagonalizzazione. Esercizi svolti

Applicazioni lineari e diagonalizzazione. Esercizi svolti . Applicazioni lineari Esercizi svolti. Si consideri l applicazione f : K -> K definita da f(x,y) = x + y e si stabilisca se è lineare. Non è lineare. Possibile verifica: f(,) = 4; f(,4) = 6; quindi f(,4)

Dettagli

Alcuni esercizi sulla diagonalizzazione di matrici. campo dei reali. Se lo è calcolare una base spettrale e la relativa forma diagonale di A.

Alcuni esercizi sulla diagonalizzazione di matrici. campo dei reali. Se lo è calcolare una base spettrale e la relativa forma diagonale di A. Alcuni esercii sulla diagonaliaione di matrici Eserciio Dire se la matrice A 4 8 è diagonaliabile sul 3 3 campo dei reali Se lo è calcolare una base spettrale e la relativa forma diagonale di A Svolgimento

Dettagli

I. Foglio di esercizi su vettori linearmente dipendenti e linearmente indipendenti. , v 2 = α v 1 + β v 2 + γ v 3. α v 1 + β v 2 + γ v 3 = 0. + γ.

I. Foglio di esercizi su vettori linearmente dipendenti e linearmente indipendenti. , v 2 = α v 1 + β v 2 + γ v 3. α v 1 + β v 2 + γ v 3 = 0. + γ. ESERCIZI SVOLTI DI ALGEBRA LINEARE (Sono svolti alcune degli esercizi proposti nei fogli di esercizi su vettori linearmente dipendenti e vettori linearmente indipendenti e su sistemi lineari ) I. Foglio

Dettagli

Tempo a disposizione: 150 minuti. 1 È dato l endomorfismo f : R 3 R 3 definito dalle relazioni

Tempo a disposizione: 150 minuti. 1 È dato l endomorfismo f : R 3 R 3 definito dalle relazioni Università degli Studi di Catania Anno Accademico 2014-2015 Corso di Laurea in Informatica Prova in itinere di Matematica Discreta (12 CFU) 17 Aprile 2015 Prova completa Tempo a disposizione: 150 minuti

Dettagli

Elementi di Algebra Lineare. Spazio Vettoriale (lineare)

Elementi di Algebra Lineare. Spazio Vettoriale (lineare) Elementi di Algebra Lineare Spazio Vettoriale (lineare) Uno spazio vettoriale su un corpo F è una quadrupla (X, F, +, ) costituita da: un insieme di elementi X, detti vettori, un corpo F, i cui elementi

Dettagli

Endomorfismi e matrici simmetriche

Endomorfismi e matrici simmetriche CAPITOLO Endomorfismi e matrici simmetriche Esercizio.. [Esercizio 5) cap. 9 del testo Geometria e algebra lineare di Manara, Perotti, Scapellato] Calcolare una base ortonormale di R 3 formata da autovettori

Dettagli

(c) Stabilire per quali valori di h is sistema ammette un unica soluzione:

(c) Stabilire per quali valori di h is sistema ammette un unica soluzione: ognome e Nome: orso di Laurea: 4 settembre 3. Sia L: R 3! R 3 l applicazione lineare x x y + z L @ ya = @ x + y +za. z x y z (a) Scrivere la matrice A che rappresenta L nella base canonica di R 3 : (b)

Dettagli

Appunti di Geometria - 5

Appunti di Geometria - 5 Appunti di Geometria - 5 Samuele Mongodi - s.mongodi@sns.it Segnatura di un prodotto scalare Richiami Sia V uno spazio vettoriale reale di dimensione n; sia, : V V R un prodotto scalare. Data una base

Dettagli

Esercizi sulle coniche (prof.ssa C. Carrara)

Esercizi sulle coniche (prof.ssa C. Carrara) Esercizi sulle coniche prof.ssa C. Carrara Alcune parti di un esercizio possono ritrovarsi in un altro esercizio, insieme a parti diverse. È un occasione per affrontarle più volte.. Stabilire il tipo di

Dettagli

Esercizi per Geometria II Geometria euclidea e proiettiva

Esercizi per Geometria II Geometria euclidea e proiettiva Esercizi per Geometria II Geometria euclidea e proiettiva Filippo F. Favale 8 aprile 014 Esercizio 1 Si consideri E dotato di un riferimento cartesiano ortonormale di coordinate (x, y) e origine O. Si

Dettagli

Sapienza Università di Roma Corso di laurea in Ingegneria Energetica Geometria A.A ESERCIZI DA CONSEGNARE prof.

Sapienza Università di Roma Corso di laurea in Ingegneria Energetica Geometria A.A ESERCIZI DA CONSEGNARE prof. Sapienza Università di Roma Corso di laurea in Ingegneria Energetica Geometria A.A. 2015-2016 ESERCIZI DA CONSEGNARE prof. Cigliola Consegna per Martedì 6 Ottobre Esercizio 1. Una matrice quadrata A si

Dettagli

ESERCIZI SUI SISTEMI LINEARI

ESERCIZI SUI SISTEMI LINEARI ESERCIZI SUI SISTEMI LINEARI Consideriamo ora il sistema lineare omogeneo a coefficienti costanti associato alla matrice A M n n, cioè SLO Vale il seguente = A. Teorema. Sia v R n \ } e sia λ C. Condizione

Dettagli

DIAGONALIZZAZIONE. M(f) =

DIAGONALIZZAZIONE. M(f) = DIAGONALIZZAZIONE Esercizi Esercizio 1. Sia f End(R 3 ) associato alla matrice M(f) = 0 1 2 0. 2 (1) Determinare gli autovalori di f e le relative molteplicità. (2) Determinare gli autospazi di f e trovare,

Dettagli

Esame di Geometria - 9 CFU (Appello del 14 gennaio A)

Esame di Geometria - 9 CFU (Appello del 14 gennaio A) Esame di Geometria - 9 CFU (Appello del 4 gennaio 24 - A) Cognome: Nome: Nr.matricola: Corso di laurea: Esercizio. Si considerino le rette s : { x x 2 2x 3 = 2 3x x 2 =, { x + x s 2 : 2 x 3 = x 2 =.. Stabilire

Dettagli

Prodotto scalare e ortogonalità

Prodotto scalare e ortogonalità Prodotto scalare e ortogonalità 12 Novembre 1 Il prodotto scalare 1.1 Definizione Possiamo estendere la definizione di prodotto scalare, già data per i vettori del piano, ai vettori dello spazio. Siano

Dettagli

Geometria BIAR Esercizi 2

Geometria BIAR Esercizi 2 Geometria BIAR 0- Esercizi Esercizio. a Si consideri il generico vettore v b R c (a) Si trovi un vettore riga x (x, y, z) tale che x v a (b) Si trovi un vettore riga x (x, y, z) tale che x v kb (c) Si

Dettagli

a + 2b + c 3d = 0, a + c d = 0 c d

a + 2b + c 3d = 0, a + c d = 0 c d SPAZI VETTORIALI 1. Esercizi Esercizio 1. Stabilire quali dei seguenti sottoinsiemi sono sottospazi: V 1 = {(x, y, z) R 3 /x = y = z} V = {(x, y, z) R 3 /x = 4} V 3 = {(x, y, z) R 3 /z = x } V 4 = {(x,

Dettagli

POTENZE DI MATRICI QUADRATE

POTENZE DI MATRICI QUADRATE POTENZE DI MATRICI QUADRATE In alcune applicazioni pratiche, quali lo studio di sistemi dinamici discreti, può essere necessario calcolare le potenze A k, per k N\{0}, di una matrice quadrata A M n n (R)

Dettagli

LEZIONE 23. ax 2 + bxy + cy 2 + dx + ey + f

LEZIONE 23. ax 2 + bxy + cy 2 + dx + ey + f LEZIONE 23 23.1. Riduzione delle coniche a forma canonica. Fissiamo nel piano un sistema di riferimento Oxy e consideriamo un polinomio di grado 2 in x, y a meno di costanti moltiplicative non nulle, diciamo

Dettagli

Complementi di Algebra e Fondamenti di Geometria

Complementi di Algebra e Fondamenti di Geometria Complementi di Algebra e Fondamenti di Geometria Capitolo 3 Forma canonica di Jordan M. Ciampa Ingegneria Elettrica, a.a. 29/2 Capitolo 3 Forma canonica di Jordan Nel Capitolo si è discusso il problema

Dettagli

1 Ampliamento del piano e coordinate omogenee

1 Ampliamento del piano e coordinate omogenee 1 Ampliamento del piano e coordinate omogenee Vogliamo dare una idea, senza molte pretese, dei concetti che stanno alla base di alcuni calcoli svolti nella classificazione delle coniche. Supponiamo di

Dettagli

1) Applicando la definizione di derivata, calcolare la derivata in x = 0 delle funzioni: c) x + 1 d)x sin x.

1) Applicando la definizione di derivata, calcolare la derivata in x = 0 delle funzioni: c) x + 1 d)x sin x. Funzioni derivabili Esercizi svolti 1) Applicando la definizione di derivata, calcolare la derivata in x = 0 delle funzioni: a)2x 5 b) x 3 x 4 c) x + 1 d)x sin x. 2) Scrivere l equazione della retta tangente

Dettagli

Autovalori ed autovettori di una matrice

Autovalori ed autovettori di una matrice Autovalori ed autovettori di una matrice Lucia Gastaldi DICATAM http://www.ing.unibs.it/gastaldi/ Indice 1 Definizioni di autovalori ed autovettori Autovalori ed autovettori 2 Metodo delle potenze 3 Calcolo

Dettagli

Geometria BATR-BCVR Esercizi 9

Geometria BATR-BCVR Esercizi 9 Geometria BATR-BCVR 2015-16 Esercizi 9 Esercizio 1. Per ognuna delle matrici A i si trovi una matrice ortogonale M i tale che Mi ta im sia diagonale. ( ) 1 1 2 3 2 A 1 = A 2 1 2 = 1 1 0 2 0 1 Esercizio

Dettagli

CONICHE. Esercizi Esercizio 1. Nel piano con riferimento cartesiano ortogonale Oxy sia data la conica C di equazione

CONICHE. Esercizi Esercizio 1. Nel piano con riferimento cartesiano ortogonale Oxy sia data la conica C di equazione CONICHE Esercizi Esercizio 1. Nel piano con riferimento cartesiano ortogonale Oy sia data la conica C di equazione 7 2 + 2 3y + 5y 2 + 32 3 = 0. Calcolare le equazioni di una rototraslazione che riduce

Dettagli

Applicazioni lineari e diagonalizzazione pagina 1 di 5

Applicazioni lineari e diagonalizzazione pagina 1 di 5 pplicazioni lineari e diagonalizzazione pagina 1 di 5 PPLIZIONI LINERI 01. Dire quali delle seguenti applicazioni tra IR-spazi vettoriali sono lineari a. f :IR 2 IR 3 f(x y =(x y πy b. f :IR 3 IR 3 f(x

Dettagli

MATRICI E SISTEMI LINEARI

MATRICI E SISTEMI LINEARI - - MATRICI E SISTEMI LINEARI ) Calcolare i seguenti determinanti: a - c - d - e - f - g - 8 7 8 h - ) Calcolare per quali valori di si annullano i seguenti determinanti: a - c - ) Calcolare il rango delle

Dettagli

1 Disquazioni di primo grado

1 Disquazioni di primo grado 1 Disquazioni di primo grado 1 1 Disquazioni di primo grado Si assumono assodate le regole per la risoluzione delle equazioni lineari Ricordando che una disuguaglianza è una scrittura tra due espressioni

Dettagli

LEZIONE 15. (15.1.2) p(x) = a 0 x n + a 1 x n a n 1 x + a n = a h x n h.

LEZIONE 15. (15.1.2) p(x) = a 0 x n + a 1 x n a n 1 x + a n = a h x n h. LEZIONE 15 15.1. Polinomi a coefficienti complessi e loro e loro radici. In questo paragrafo descriveremo alcune proprietà dei polinomi a coefficienti complessi e delle loro radici. Già nel precedente

Dettagli

Parte 12a. Trasformazioni del piano. Forme quadratiche

Parte 12a. Trasformazioni del piano. Forme quadratiche Parte 12a Trasformazioni del piano Forme quadratiche A Savo Appunti del Corso di Geometria 2013-14 Indice delle sezioni 1 Trasformazioni del piano, 1 2 Cambiamento di coordinate, 8 3 Forme quadratiche,

Dettagli

APPLICAZIONI LINEARI

APPLICAZIONI LINEARI APPLICAZIONI LINEARI 1 APPLICAZIONI LINEARI Applicazioni lineari tra spazi R n spazi di matrici spazi di polinomi e matrice associata rispetto ad una coppia di basi Endomorismi e matrice associata rispetto

Dettagli

0.1 Spazi Euclidei in generale

0.1 Spazi Euclidei in generale 0.1. SPAZI EUCLIDEI IN GENERALE 1 0.1 Spazi Euclidei in generale Sia V uno spazio vettoriale definito su R. Diremo, estendendo una definizione data in precedenza, che V è uno spazio vettoriale euclideo

Dettagli

TEN Radici quadrate modulo p e modulo p k. Radici quadrate modulo p, con p > 2.

TEN Radici quadrate modulo p e modulo p k. Radici quadrate modulo p, con p > 2. TEN 2008. Radici quadrate modulo p e modulo p k. Radici quadrate modulo p, con p > 2. Lemma 1. Sia n Z. Sia p > 2 un numero primo. (a) n è un quadrato modulo p se e solo se n p 1 2 1 mod p; (b) Sia n 0

Dettagli

SOTTOSPAZI E OPERAZIONI IN SPAZI DIVERSI DA R n

SOTTOSPAZI E OPERAZIONI IN SPAZI DIVERSI DA R n SPAZI E SOTTOSPAZI 1 SOTTOSPAZI E OPERAZIONI IN SPAZI DIVERSI DA R n Spazi di matrici. Spazi di polinomi. Generatori, dipendenza e indipendenza lineare, basi e dimensione. Intersezione e somma di sottospazi,

Dettagli

6. Spazi euclidei ed hermitiani

6. Spazi euclidei ed hermitiani 6. Spazi euclidei ed hermitiani 6.1 In [GA] 5.4 abbiamo definito il prodotto scalare fra vettori di R n (che d ora in poi chiameremo prodotto scalare standard su R n ) e abbiamo considerato le seguenti

Dettagli

Equazioni algebriche di terzo grado: ricerca delle soluzioni

Equazioni algebriche di terzo grado: ricerca delle soluzioni Equazioni algebriche di terzo grado: ricerca delle soluzioni 1 Caso particolare: x 3 + px + q = 0....................... Caso generale: x 3 + bx + cx + d = 0..................... 4 3 Esercizi.....................................

Dettagli

Esercizi di GEOMETRIA e ALGEBRA LINEARE (Ingegneria Ambientale e Civile - Curriculum Ambientale)

Esercizi di GEOMETRIA e ALGEBRA LINEARE (Ingegneria Ambientale e Civile - Curriculum Ambientale) Esercizi di GEOMETRIA e ALGEBRA LINEARE (Ingegneria Ambientale e Civile - Curriculum Ambientale). Tra le seguenti matrici, eseguire tutti i prodotti possibili: 2 ( ) A = 0 3 4 B = C = 2 2 0 0 2 D = ( 0

Dettagli

SISTEMI LINEARI MATRICI E SISTEMI 1

SISTEMI LINEARI MATRICI E SISTEMI 1 MATRICI E SISTEMI SISTEMI LINEARI Sistemi lineari e forma matriciale (definizioni e risoluzione). Teorema di Rouché-Capelli. Sistemi lineari parametrici. Esercizio Risolvere il sistema omogeneo la cui

Dettagli

Risoluzione di ax 2 +bx+c = 0 quando a, b, c sono numeri complessi.

Risoluzione di ax 2 +bx+c = 0 quando a, b, c sono numeri complessi. LeLing14: Ancora numeri complessi e polinomi Ārgomenti svolti: Risoluzione di ax + bx + c = 0 quando a, b, c sono numeri complessi La equazione di Eulero: e i θ = cos(θ) + i sin(θ) La equazione x n = a,

Dettagli

Corso di Matematica II Anno Accademico Esercizi di Algebra Lineare. Calcolo di autovalori ed autovettori

Corso di Matematica II Anno Accademico Esercizi di Algebra Lineare. Calcolo di autovalori ed autovettori Esercizio 1 Corso di Matematica II Anno Accademico 29 21. Esercizi di Algebra Lineare. Calcolo di autovalori ed autovettori May 7, 21 Commenti e correzioni sono benvenuti. Mi scuso se ci fosse qualche

Dettagli

Soluzioni. 1. Calcolare la parte reale e immaginaria del numero complesso. z = i i. 3 (2 + i) = i i = i.

Soluzioni. 1. Calcolare la parte reale e immaginaria del numero complesso. z = i i. 3 (2 + i) = i i = i. 20 Roberto Tauraso - Analisi 2 Soluzioni 1. Calcolare la parte reale e immaginaria del numero complesso R. z = i + 3 2 i. z = i + 3 2 i 2 i = 6 5 + ( 1 + 3 5 3 (2 + i) = i + 2 4 + 1 ) i = 6 5 + 8 5 i.

Dettagli

Noi ci occuperemo esclusivamente dei casi n = 2 e n = 3. Se n = 2, la quadrica Q p sarà detta conica di equazione p, e indicata con C p.

Noi ci occuperemo esclusivamente dei casi n = 2 e n = 3. Se n = 2, la quadrica Q p sarà detta conica di equazione p, e indicata con C p. Durante il corso abbiamo studiato insiemi (rette e piani) che possono essere descritti come luogo di zeri di equazioni (o sistemi) di primo grado. Adesso vedremo come applicare quanto visto per studiare

Dettagli

Esercizi di Geometria Affine

Esercizi di Geometria Affine Esercizi di Geometria Affine Sansonetto Nicola dicembre 01 Geometria Affine nel Piano Esercizio 1. Nel piano affine standard A (R) dotato del riferimento canonico, si consideri la retta τ di equazione

Dettagli

Sottospazi vettoriali. Nota Bene: Questo materiale non deve essere considerato come sostituto delle lezioni.

Sottospazi vettoriali. Nota Bene: Questo materiale non deve essere considerato come sostituto delle lezioni. Politecnico di Torino. Sottospazi vettoriali. Nota Bene: Questo materiale non deve essere considerato come sostituto delle lezioni. Argomenti: Sottospazi. Generatori. Confrontando sottospazi: intersezione.

Dettagli

Forme quadratiche e coniche. Nota Bene: Questo materiale non deve essere considerato come sostituto delle lezioni.

Forme quadratiche e coniche. Nota Bene: Questo materiale non deve essere considerato come sostituto delle lezioni. Forme quadratiche e coniche. Nota Bene: Questo materiale non deve essere considerato come sostituto delle lezioni. Argomenti: Prodotto scalare. Matrici simmetriche e forme quadratiche. Diagonalizzazione

Dettagli

Esercitazione di Geometria I 13 dicembre Esercizio 1. Esercizio 2. Esercizio 3

Esercitazione di Geometria I 13 dicembre Esercizio 1. Esercizio 2. Esercizio 3 Esercitazione di Geometria I 13 dicembre 2008 a. Completa la seguente definizione: i vettori v 1, v 2,..., v n del K-spazio vettoriale V si dicono linearmente dipendenti se... b. Siano w 1, w 2, w 3 vettori

Dettagli

Ingegneria Civile. Compito di Geometria del 06/09/05. E assegnato l endomorfismo f : R 3 R 3 mediante le relazioni

Ingegneria Civile. Compito di Geometria del 06/09/05. E assegnato l endomorfismo f : R 3 R 3 mediante le relazioni Ingegneria Civile. Compito di Geometria del 06/09/05 E assegnato l endomorfismo f : R 3 R 3 mediante le relazioni I f(,, 0) = (h +,h+, ) f(,, ) = (h,h, h) f(0,, ) = (,h, h) con h parametro reale. ) Studiare

Dettagli

Esercitazioni di Geometria A: curve algebriche

Esercitazioni di Geometria A: curve algebriche Esercitazioni di Geometria A: curve algebriche 24-25 maggio 2016 Esercizio 1 Sia P 2 il piano proiettivo complesso munito delle coordinate proiettive (x 0 : x 1 : x 2 ). Sia r la retta proiettiva di equazione

Dettagli

Sistemi differenziali 2 2: esercizi svolti. 1 Sistemi lineari Stabilità nei sistemi lineari

Sistemi differenziali 2 2: esercizi svolti. 1 Sistemi lineari Stabilità nei sistemi lineari Sistemi differenziali : esercizi svolti 1 Sistemi lineari Stabilità nei sistemi lineari 14 1 Sistemi differenziali : esercizi svolti 1 Sistemi lineari Gli esercizi contrassegnati con il simbolo * presentano

Dettagli

RETTE E PIANI. ove h R. Determinare i valori di h per cui (1) r h e α sono incidenti ed, in tal caso, determinare l angolo ϑ h da essi formato;

RETTE E PIANI. ove h R. Determinare i valori di h per cui (1) r h e α sono incidenti ed, in tal caso, determinare l angolo ϑ h da essi formato; RETTE E PIANI Esercizi Esercizio 1. Nello spazio con riferimento cartesiano ortogonale Oxyz si considerino la retta r h ed il piano α rispettivamente di equazioni x = 1 + t r h : y = 1 t α : x + y + z

Dettagli

Universita degli Studi di Ancona - Facolta di Ingegneria Laurea in Ing. Elettronica (VO) Ing. Informatica e Automatica - Ing. delle Telecomunicazioni

Universita degli Studi di Ancona - Facolta di Ingegneria Laurea in Ing. Elettronica (VO) Ing. Informatica e Automatica - Ing. delle Telecomunicazioni Universita degli Studi di Ancona - Facolta di Ingegneria Laurea in Ing. Elettronica (VO) Ing. Informatica e Automatica - Ing. delle Telecomunicazioni ANALISI NUMERICA - Primo Parziale - TEMA A (Prof. A.M.Perdon)

Dettagli

Dipendenza e indipendenza lineare

Dipendenza e indipendenza lineare Dipendenza e indipendenza lineare Luciano Battaia Questi appunti () ad uso degli studenti del corso di Matematica (A-La) del corso di laurea in Commercio Estero dell Università Ca Foscari di Venezia campus

Dettagli

Capitolo IV SPAZI VETTORIALI EUCLIDEI

Capitolo IV SPAZI VETTORIALI EUCLIDEI Capitolo IV SPAZI VETTORIALI EUCLIDEI È ben noto che in VO 3 si possono considerare strutture più ricche di quella di spazio vettoriale; si pensi in particolare all operazioni di prodotto scalare di vettori.

Dettagli

Studio generale di una conica

Studio generale di una conica Studio generale di una conica Manlio De Domenico 19 Giugno 2003 Definizione 1 Si definisce conica C un equazione algebrica F (x 1, x 2, x 3 ) = 0 del secondo ordine omogenea. Detta A la matrice simmetrica

Dettagli

Metodi per la risoluzione di sistemi lineari

Metodi per la risoluzione di sistemi lineari Metodi per la risoluzione di sistemi lineari Sistemi di equazioni lineari. Rango di matrici Come è noto (vedi [] sez.0.8), ad ogni matrice quadrata A è associato un numero reale det(a) detto determinante

Dettagli

Equazioni e disequazioni. M.Simonetta Bernabei, Horst Thaler

Equazioni e disequazioni. M.Simonetta Bernabei, Horst Thaler Equazioni e disequazioni M.Simonetta Bernabei, Horst Thaler A(x)=0 x si chiama incognita dell equazione. Se oltre all incognita non compaiono altre lettere l equazione si dice numerica, altrimenti letterale.

Dettagli

La riduzione a gradini e i sistemi lineari (senza il concetto di rango)

La riduzione a gradini e i sistemi lineari (senza il concetto di rango) CAPITOLO 4 La riduzione a gradini e i sistemi lineari (senza il concetto di rango) Esercizio 4.1. Risolvere il seguente sistema non omogeneo: 2x+4y +4z = 4 x z = 1 x+3y +4z = 3 Esercizio 4.2. Risolvere

Dettagli

Autovalori e autovettori di una matrice quadrata

Autovalori e autovettori di una matrice quadrata rgomento bis utovalori e autovettori di una matrice quadrata Trasformazioni di R n Consideriamo una matrice quadrata di ordine n a coefficienti, ad esempio, in R. Essa rappresenta una trasformazione di

Dettagli

Esercizi di GEOMETRIA I - Algebra Lineare B = , calcolare A A t A + I

Esercizi di GEOMETRIA I - Algebra Lineare B = , calcolare A A t A + I Esercizi di GEOMETRIA I - Algebra Lineare. Tra le seguenti matrici, eseguire tutti i prodotti possibili: 2 ( ) A = 0 3 4 B = 2 0 0 2 D = ( 0 ) E = ( ) 4 4 2 C = 2 0 5 F = 4 2 6 2. Data la matrice A = 0

Dettagli

Forma canonica di Jordan

Forma canonica di Jordan Capitolo INTRODUZIONE Forma canonica di Jordan Siano λ i, per i =,, h, gli autovalori distinti della matrice A e siano r i i corrispondenti gradi di molteplicità all interno del polinomio caratteristico:

Dettagli

Prodotto interno (prodotto scalare definito positivo)

Prodotto interno (prodotto scalare definito positivo) Contenuto Prodotto scalare. Lunghezza, ortogonalità. Sistemi e basi ortonormali. Somma diretta: V = U U. Proiezioni. Teorema di Pitagora, disuguaglianza di Cauchy-Schwarz. Angoli. Federico Lastaria. Analisi

Dettagli

1.1 Coordinate sulla retta e nel piano; rette nel piano

1.1 Coordinate sulla retta e nel piano; rette nel piano 1 Sistemi lineari 11 Coordinate sulla retta e nel piano; rette nel piano Coordinate sulla retta Scelti su una retta un primo punto O (origine) ed un diverso secondo punto U (unita ), l identificazione

Dettagli

Esercizi di MATEMATICA PER RCHITETTURA prima parte: Algebra Lineare e Geometria

Esercizi di MATEMATICA PER RCHITETTURA prima parte: Algebra Lineare e Geometria Esercizi di MATEMATICA PER RCHITETTURA prima parte: Algebra Lineare e Geometria Avvertenze In quanto segue tutti i vettori hanno il medesimo punto d origine O l origine dello spazio cartesiano. Possiamo

Dettagli

CONTROLLO DI SISTEMI ROBOTICI Laurea Specialistica in Ingegneria Meccatronica

CONTROLLO DI SISTEMI ROBOTICI Laurea Specialistica in Ingegneria Meccatronica CONTROLLO DI SISTEMI ROBOTICI Laurea Specialistica in Ingegneria Meccatronica CONTROLLO DI SISTEMI ROBOTICI ANALISI DEI SISTEMI LTI Ing. Tel. 0522 522235 e-mail: secchi.cristian@unimore.it http://www.dismi.unimo.it/members/csecchi

Dettagli

Esercizi di Geometria - 2

Esercizi di Geometria - 2 Esercizi di Geometria - 2 Samuele Mongodi - s.mongodi@sns.it La prima sezione contiene alcune domande aperte e alcune domande verofalso, come quelle che potrebbero capitare nel test. E consigliabile, nel

Dettagli

Corso di Matematica B - Ingegneria Informatica Testi di Esercizi

Corso di Matematica B - Ingegneria Informatica Testi di Esercizi A. Languasco - Esercizi Matematica B - 1. Sistemi lineari e Matrici 1 A: Sistemi lineari: eliminazione gaussiana Corso di Matematica B - Ingegneria Informatica Testi di Esercizi A1. Determinare, con il

Dettagli

0.1 Numeri complessi C

0.1 Numeri complessi C 0.1. NUMERI COMPLESSI C 1 0.1 Numeri complessi C Abbiamo visto sopra come l introduzione dei numeri irrazionali può essere motivata dalla necessità di trovare soluzione all equazione x = 0 che non ha soluzioni

Dettagli

UNIVERSITA DEGLI STUDI LA SAPIENZA DI ROMA POLO DI RIETI FACOLTA DI INGEGNERIA CORSO DI LAUREA IN INGEGNERIA DELL AMBIENTE E DEL TERRITORIO

UNIVERSITA DEGLI STUDI LA SAPIENZA DI ROMA POLO DI RIETI FACOLTA DI INGEGNERIA CORSO DI LAUREA IN INGEGNERIA DELL AMBIENTE E DEL TERRITORIO UNIVERSITA DEGLI STUDI LA SAPIENZA DI ROMA POLO DI RIETI FACOLTA DI INGEGNERIA CORSO DI LAUREA IN INGEGNERIA DELL AMBIENTE E DEL TERRITORIO Geometria III esonero pariale A.A. 6 Cognome Nome Matricola Codice

Dettagli

STUDIO DELLE RADICI DI UNA EQUAZIONE ALGEBRICA DI TERZO GRADO A COEFFICIENTI REALI

STUDIO DELLE RADICI DI UNA EQUAZIONE ALGEBRICA DI TERZO GRADO A COEFFICIENTI REALI M. G. BUSATO STUDIO DELLE RADICI DI UNA EQUAZIONE ALGEBRICA DI TERZO GRADO A COEFFICIENTI REALI mgbstudio.net PAGINA INTENZIONALMENTE VUOTA SOMMARIO In questo scritto viene compiuto lo studio dettagliato

Dettagli

Esercizi Riepilogativi Svolti. = 1 = Or(v, w)

Esercizi Riepilogativi Svolti. = 1 = Or(v, w) Universita degli Studi di Roma - "Tor Vergata" - Facolta Ingegneria Esercizi GEOMETRIA (Edile-Architettura e dell Edilizia FORMULE DI GEOMETRIA IN R TRASFORMAZIONI DI R CIRCONFERENZE Docente: Prof F Flamini

Dettagli

SISTEMI LINEARI: APPROFONDIMENTI ED ESEMPI

SISTEMI LINEARI: APPROFONDIMENTI ED ESEMPI SISTEMI LINEARI: APPROFONDIMENTI ED ESEMPI Appunti presi dalle lezioni del prof. Nedo Checcaglini Liceo Scientifico di Castiglion Fiorentino (Classe 4B) January 17, 005 1 SISTEMI LINEARI Se a ik, b i R,

Dettagli

EQUAZIONI DIFFERENZIALI Esercizi svolti. y = xy. y(2) = 1.

EQUAZIONI DIFFERENZIALI Esercizi svolti. y = xy. y(2) = 1. EQUAZIONI DIFFERENZIALI Esercizi svolti 1. Determinare la soluzione dell equazione differenziale (x 2 + 1)y + y 2 =. y + x tan y = 2. Risolvere il problema di Cauchy y() = 1 2 π. 3. Risolvere il problema

Dettagli

3. Vettori, Spazi Vettoriali e Matrici

3. Vettori, Spazi Vettoriali e Matrici 3. Vettori, Spazi Vettoriali e Matrici Vettori e Spazi Vettoriali Operazioni tra vettori Basi Trasformazioni ed Operatori Operazioni tra Matrici Autovalori ed autovettori Forme quadratiche, quadriche e

Dettagli

Esercizi di Complementi di Matematica (L-Z) a.a. 2015/2016

Esercizi di Complementi di Matematica (L-Z) a.a. 2015/2016 Esercizi di Complementi di Matematica (L-Z) a.a. 2015/2016 Prodotti scalari e forme bilineari simmetriche (1) Sia F : R 2 R 2 R un applicazione definita da F (x, y) = x 1 y 1 + 3x 1 y 2 5x 2 y 1 + 2x 2

Dettagli

Il concetto delle equazioni reciproche risale ad A. De Moivre ( ) ed il nome è dovuto a L. Euler ( ).

Il concetto delle equazioni reciproche risale ad A. De Moivre ( ) ed il nome è dovuto a L. Euler ( ). Il concetto delle equazioni reciproche risale ad A. De Moivre (1667-1754) ed il nome è dovuto a L. Euler (1707-1783). Girard nel 1629 enunciò, e Gauss poi dimostrò rigorosamente nel 1799, che un equazione

Dettagli

x 1 Fig.1 Il punto P = P =

x 1 Fig.1 Il punto P = P = Geometria di R 2 In questo paragrafo discutiamo le proprietà geometriche elementari del piano Per avere a disposizione delle coordinate nel piano, fissiamo un punto, che chiamiamo l origine Scegliamo poi

Dettagli

Analisi Matematica 1 e Matematica 1 Geometria Analitica: Rette

Analisi Matematica 1 e Matematica 1 Geometria Analitica: Rette Analisi Matematica 1 e Matematica 1 Geometria Analitica: Rette Annalisa Amadori e Benedetta Pellacci amadori@uniparthenope.it pellacci@uniparthenope.it Università di Napoli Parthenope Contenuti Nel Piano

Dettagli

Esercitazione n 6. Esercizio 1: Determinare i punti di massimo e minimo relativo delle seguenti funzioni: (b)f(x, y) = 4y 4 16x 2 y + x

Esercitazione n 6. Esercizio 1: Determinare i punti di massimo e minimo relativo delle seguenti funzioni: (b)f(x, y) = 4y 4 16x 2 y + x Esercitazione n 6 1 Massimi e minimi di funzioni di più variabili Esercizio 1: Determinare i punti di massimo e minimo relativo delle seguenti funzioni: (a)f(x, y) = x 3 + y 3 + xy (b)f(x, y) = 4y 4 16x

Dettagli

Si consideri il sistema a coefficienti reali di m equazioni lineari in n incognite

Si consideri il sistema a coefficienti reali di m equazioni lineari in n incognite 3 Sistemi lineari 3 Generalità Si consideri il sistema a coefficienti reali di m equazioni lineari in n incognite ovvero, in forma matriciale, a x + a 2 x 2 + + a n x n = b a 2 x + a 22 x 2 + + a 2n x

Dettagli

Algebra Lineare e Geometria

Algebra Lineare e Geometria Algebra Lineare e Geometria Corso di Laurea in Ingegneria Elettronica A.A. 2013-2014 Prova d esame del 16/06/2014. 1) a) Determinare la matrice associata all applicazione lineare T : R 3 R 4 definita da

Dettagli

Esercizi svolti per Geometria 1 per Fisici 2008/09

Esercizi svolti per Geometria 1 per Fisici 2008/09 Esercizi svolti per Geometria 1 per Fisici 2008/09 F.Pugliese January 25, 2009 Abstract In queste note svolgerò alcuni esercizi sulla parte del corso che mi riguarda; si tenga presente che si tratta solo

Dettagli

Equazioni, funzioni e algoritmi: il metodo delle secanti

Equazioni, funzioni e algoritmi: il metodo delle secanti Equazioni, funzioni e algoritmi: il metodo delle secanti Christian Ferrari 1 Introduzione La risoluzione di equazioni in R ci ha mostrato che solo per le equazioni polinomiali di primo e secondo grado,

Dettagli

1.1 Intersezione di un piano e una quadrica. I punti d intersezione di una quadrica con un piano hanno coordinate fornite dalle soluzioni del sistema

1.1 Intersezione di un piano e una quadrica. I punti d intersezione di una quadrica con un piano hanno coordinate fornite dalle soluzioni del sistema 1 Quadriche Studieremo le quadriche nello spazio riferito ad un sistema di riferimento cartesiano ortogonale fissato, oppure nel completamento proiettivo di questo spazio, ottenuto con l introduzione delle

Dettagli

Equazioni differenziali lineari del secondo ordine a coefficienti costanti

Equazioni differenziali lineari del secondo ordine a coefficienti costanti Equazioni differenziali lineari del secondo ordine a coefficienti costanti 0.1 Introduzione Una equazione differenziale del secondo ordine è una relazione del tipo F (t, y(t), y (t), y (t)) = 0 (1) Definizione

Dettagli

Riassumiamo le proprietà dei numeri reali da noi utilizzate nel corso di Geometria.

Riassumiamo le proprietà dei numeri reali da noi utilizzate nel corso di Geometria. Capitolo 2 Campi 2.1 Introduzione Studiamo ora i campi. Essi sono una generalizzazione dell insieme R dei numeri reali con le operazioni di addizione e di moltiplicazione. Nel secondo paragrafo ricordiamo

Dettagli

Massimi e minimi vincolati

Massimi e minimi vincolati Massimi e minimi vincolati Data una funzione G C 1 (D), dove D è un aperto di R 2, sappiamo bene dove andare a cercare gli eventuali punti di massimo e minimo relativi. Una condizione necessaria affinché

Dettagli

Corso di Laurea in Fisica. Geometria. a.a Canale 3 Prof. P. Piazza Magiche notazioni

Corso di Laurea in Fisica. Geometria. a.a Canale 3 Prof. P. Piazza Magiche notazioni Corso di Laurea in Fisica. Geometria. a.a. 23-4. Canale 3 Prof. P. Piazza Magiche notazioni Siano V e W due spazi vettoriali e sia T : V W un applicazione lineare. Fissiamo una base B per V ed una base

Dettagli

II Esonero di Matematica Discreta - a.a. 06/07. Versione B

II Esonero di Matematica Discreta - a.a. 06/07. Versione B II Esonero di Matematica Discreta - a.a. 06/07 1. Nell anello dei numeri interi Z: Versione B a. Determinare la scrittura posizionale in base 9 del numero che in base 10 si scrive) 5293 e la scrittura

Dettagli

1. Calcolare gli invarianti ortogonali e riconoscere le seguenti quadriche.

1. Calcolare gli invarianti ortogonali e riconoscere le seguenti quadriche. Algebra Lineare e Geometria Analitica Politecnico di Milano Ingegneria Quadriche Esercizi 1. Calcolare gli invarianti ortogonali e riconoscere le seguenti quadriche. (a) x + y + z + xy xz yz 6x 4y + z

Dettagli

REGISTRO DELLE LEZIONI

REGISTRO DELLE LEZIONI UNIVERSITA DEGLI STUDI DI GENOVA FACOLTA DI SCIENZE MATEMATICHE, FISICHE E NATURALI REGISTRO DELLE LEZIONI del Corso UFFICIALE di GEOMETRIA B tenute dal prof. Domenico AREZZO nell anno accademico 2006/2007

Dettagli

Università degli Studi di Roma Tor Vergata. Corso di Laurea in Ingegneria Meccanica

Università degli Studi di Roma Tor Vergata. Corso di Laurea in Ingegneria Meccanica Università degli Studi di Roma Tor Vergata. Corso di Laurea in Ingegneria Meccanica Esame di Geometria (Prof. F. Tovena) Argomenti: Proprietà di nucleo e immagine di una applicazione lineare. dim V = dim

Dettagli

Diagonalizzazione di matrici e applicazioni lineari

Diagonalizzazione di matrici e applicazioni lineari CAPITOLO 9 Diagonalizzazione di matrici e applicazioni lineari Esercizio 9.1. Verificare che v = (1, 0, 0, 1) è autovettore dell applicazione lineare T così definita T(x 1,x 2,x 3,x 4 ) = (2x 1 2x 3, x

Dettagli

Elementi di Algebra Lineare Spazi Vettoriali

Elementi di Algebra Lineare Spazi Vettoriali Elementi di Algebra Lineare Spazi Vettoriali Antonio Lanteri e Cristina Turrini UNIMI - 2015/2016 Antonio Lanteri e Cristina Turrini (UNIMI - 2015/2016) Elementi di Algebra Lineare 1 / 37 index Spazi vettoriali

Dettagli

Matematica B - a.a 2006/07 p. 0

Matematica B - a.a 2006/07 p. 0 Matematica B - a.a 2006/07 p. 0 Prodotto scalare Definizione 1. Sia V uno spazio vettoriale su R. Si chiama prodotto scalare una funzione che ad ogni coppia di vettori (u, v) associa un numero (reale)

Dettagli