DIAGONALIZZAZIONE E FORME QUADRATICHE / ESERCIZI PROPOSTI

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "DIAGONALIZZAZIONE E FORME QUADRATICHE / ESERCIZI PROPOSTI"

Transcript

1 M.GUIDA, S.ROLANDO, 204 DIAGONALIZZAZIONE E FORME QUADRATICHE / ESERCIZI PROPOSTI L asterisco contrassegna gli esercizi più difficili o che possono considerarsi meno basilari. Autovalori, autospazi e diagonalizzazione ESERCIZIO. Sia A = (i) Stabilire se i vettori (,, ) e (, 0, ) sono autovettori di A, specificandone il relativo autovalore. (ii) Verificare che 0 è autovalore di A. (iii) Calcolare tutti gli autovalori di A, specificandone la relativa molteplicità algebrica. (iv) Calcolare gli autospazi di A, specificandone la relativa dimensione. (v) Dire se A è diagonalizzabile e, in caso affermativo, diagonalizzarla. ESERCIZIO 2. Ripetere i punti (iii), (iv) e (v) dell Esercizio per le matrici A = 2 2, A 2 = , A = ESERCIZIO. Al variare di k R, studiare la diagonalizzabilità della matrice A = 0 k ESERCIZIO 4. Se esistono, determinare i valori di k R tali che v =(, 2,k) sia autovettore per la matrice A = 02 22, 20 specificandone il relativo autovalore. ESERCIZIO 5. Sia A =. (i) Stabilire se i vettori (0,, ) e (, 0, ) sono autovettori di A, specificandone il relativo autovalore. (ii) Senza calcolare il polinomio caratterisitico di A, determinare la molteplicità algebrica dell autovalore trovato al punto (i) e trovare tutti gli autovalori di A. (iii) Dire se A è diagonalizzabile.

2 2 M.GUIDA, S.ROLANDO, 204 ESERCIZIO 6. Data la matrice A = 00 0 h, 0 determinare i valori di h R tali che sia autovalore di A. Postopoih =5, determinare: (i) il polinomio caratteristico p (t) di A, verificando poi che ne è una radice; (ii) tutti gli autovalori di A ed una base per ciascun autospazio; (iii) se esistono, una matrice invertibile P R, ed una matrice diagonale D R, tali che P AP = D; (iv) se esiste, una matrice P R, non nulla tale che AP = P ESERCIZIO 7. Sia f : R R l applicazione lineare definita da f (a, b, c) =(a + b, 2b, a + b +2c). (i) Determinare la matrice A R, di f rispetto alla base canonica di R. (ii) Verificare che A è invertibile. (iii) Calcolare autovalori e autospazi di f. (iv) Determinare, se esiste, una base di R composta da autovettori di f. (v) Determinare, se esistono, una matrice invertibile P R, ed una matrice diagonale D R, tali che P AP = D. ESERCIZIO 8. Sia V 2 il piano dei vettori ordinari riferito ad una base ortonormale positiva B =(i, j) esiaf : V 2 V 2 l endomorfismo che associa ad ogni vettore x V 2 il vettore f (x) V 2 ottenuto ruotando x in senso antiorario di un angolo pari a π 4 radianti. Scrivere la matrice M di f rispetto alla base B e determinare autovalori e autospazi di f. ESERCIZIO* 9. Diagonalizzare in R oinc, se possibile, la matrice A =. ESERCIZIO* 0. Sia A una matrice quadrata di ordine n esiaλ un suo autovalore. (i) Provare che λ 2 è autovalore di A 2. (ii) Provare che l autospazio V A,λ è incluso nell autospazio V A 2,λ 2. Diagonalizzazione di matrici simmetriche e forme quadratiche ESERCIZIO. Siadatalamatrice A = (i) Determinare, se possibile, una matrice invertibile P R, ed una matrice diagonale D R, tali che P AP = D. (ii) Determinare, se possibile, una matrice ortogonale N R, ed una matrice diagonale D R, tali che N T AN = D.

3 M.GUIDA, S.ROLANDO, 204 ESERCIZIO 2. Sia q : R R la forma quadratica definita da q (x, y, z) =2x 2 + y 2 4xy 4yz. (i) Studiare il segno di q. (ii) Scrivere una forma canonica di q. (iii)* Determinare un riferimento ortonormale positivo rispetto a cui q assume la forma canonica trovata al punto precedente e scrivere le equazioni del corrispondente cambiamento di coordinate. Risultati esercizio. (i) =4, quindi è autovettore, associato all autovalore =2, quindi 0 non è autovettore. 2 (ii) det (A 0I )=deta =0(due righe uguali), quindi 0 è autovalore. (iii) Gli autovalori di A sono λ =0con m 0 =e λ =4con m 4 =2. (iv) V 0 = L ((,, 0)) con dim V 0 =; V 4 = L ((,, 0), (0, 0, )) con dim V 4 =2. (v) A è diagonalizzabile e risulta P AP = D con P = 0 0, D = Risultati esercizio 2. Matrice A. (iii) Gli autovalori sono λ =0, λ =5e λ =, tuttisemplici. (iv) V 0 = L ((,, )), V 5 = L ((,, 2)) ed V = L ((, 2, )), tutti di dimensione. (v) A è diagonalizzabile e risulta P AP = D con P = 2 2, D = Matrice A 2. (iii) Gli autovalori sono λ =2con m 2 =e λ =4con m 4 =2. (iv) V 2 = L ((, 0, )) e V 4 = L ((, 0, )),entrambididimensione. (v) A 2 non è diagonalizzabile. Matrice A. (iii) Gli autovalori sono λ =2con m 2 =2e λ =4con m 4 =. (iv) V 2 = L ((,, 0), (, 0, )) con dim V 2 =2e V 4 = L ((, 0, )) con dim V 4 =. (v) A è diagonalizzabile e risulta P AP = D con P = 0 0, D =

4 4 M.GUIDA, S.ROLANDO, 204 Risultati esercizio. A è diagonalizzabile se e solo se k =. Risultati esercizio 4. v èautovettoredia se e solo se k =oppure k = 5. Nelprimocaso v è associato all autovalore λ = 5, nel secondo all autovalore λ =. Risultati esercizio 5. (i) 0 = 0 0 =0 0, quindi 0 è autovettore, di autovalore = 2 2, quindi 0 non è autovettore. 2 (ii) Da un lato si ha m 0 dim V 0 = ρ (A) =2; dall altro, non può essere m 0 =perché tr A =e quindi A non può avere solo l autovalore nullo; dunque m 0 =2. Detti λ, λ 2, λ gli autovalori di A in C, sihaλ = λ 2 =0(perché m 0 =2)eλ +λ 2 +λ = tr A, cioè0+0+λ =,dacuiλ =. (iii) A è diagonalizzabile, ad esempio perché è simmetrica reale. Risultati esercizio 6. (i) h =5. (ii) p (t) =det(a ti )= t t 2 +5t erisultap ( ) = 0. (iii) Usando la radice e la regola di Ruffini, si ottiene p (t) = (t +)(t ) 2,dacuigli autovalori t = e t 2 = t =.RisultapoiV = L ((, 2, )) e V = L ((, 2, )). (iv) Non esistono, perché A non è diagonalizzabile. (v) Ricordiamo il seguente fatto teorico: se A R n,n è una matrice quadrata che ha almeno un autovalore e v,...,v n R n sono n vettori tali che Av j = λ j v j per ogni j =,...,n, allora la matrice P R n,n che ha v,...,v n sulle colonne è tale che λ 0 AP = P λ n Osservazione. Se A non è diagonalizzabile, allora P non risulterà invertibile (altrimenti, moltiplicando per P a sinistra, si otterrebbe che P AP è diagonale). Nota che v,...,v n egliautovaloriλ,...,λ n possono anche essere tutti uguali tra loro. Dimostrazione. Basta verificare l uguaglianza AP = PD (dove D è la matrice di autovalori): da un lato, le colonne di AP sono Av,..., Av n,perchév,...,v n sono le colonne di P ; dall altro, le colonne di PD risultano essere λ v,..., λ n v n e quindi l uguaglianza vale perché Av j = λ j v j. Nel caso dell esercizio, si vuole una P non nulla tale che AP = P (dove ed sono autovalori di A), quindi basta prendere v V e v 2, v V non tutti nulli e disporli ordinatamente sulle colonne di P. Ad esempio, possiamo fare una qualsiasi delle seguenti scelte: P = 2 2 2,P= ,P= ,P= , ecc

5 M.GUIDA, S.ROLANDO, Risultati esercizio 7. (i) A = (ii) det A =4 = 0. (iii) Gli autovalori di f (ossia di A) sonoλ =con autospazio V = L ((, 0, )) e λ 2 = λ =2 con autospazio V 2 = L ((,, 0), (0, 0, )). (iv) Una base di R composta da autovettori di f è A = ((, 0, ), (,, 0), (0, 0, )). (v) Risulta P AP = D con P = 0 00, D = Risultati esercizio 8. Si ha f (i) = 2 (, ) e f (j) = 2 (, ), per cui M = Il polinomio carattertistico di M è P (λ) = λ 2/2 2 +/2, per cui f non ha autovalori, né, di conseguenza, autospazi. D altra parte, è geometricamente evidente che non esiste alcun x = 0 tale che f (x) sia multiplo di x. Risultati esercizio 9. Il polinomio carattertistico di A è P (λ) =(λ ) 2 +, quindi A non è diagonalizzabile in R. GliautovaloridiA in C sono distinti, quindi A è diagonalizzabile in C. Risulta P AP = i 0 0 +i con P = i. i Risultati esercizio 0. Sia X = 0tale che AX = λx (tale X esiste perché λ èautovaloredi A, per ipotesi). Allora si ha A 2 X = A (AX) =A (λx) =λ (AX) =λ (λx) =λ 2 X. Ciò prova che λ 2 è autovalore di A 2 echex V A,λ X V A 2,λ 2,cioècheV A,λ V A 2,λ 2. Risultati esercizio. 2 (i) P = 0, D = (ii) N = 6, D = Risultati esercizio 2. (i) La matrice di q ha gli autovalori, 2, 4, quindi q è indefinita. (ii) Una forma canonica di q è q (x, y, z) =x 2 2y 2 +4z 2. (iii) La forma canonica trovata al punto (ii) è assunta ad esempio rispetto al riferimento con base degli assi (i, j, k ) data da i = (2,, 2), j = (, 2, 2), k = (2, 2, ). Le equazioni del corrispondente cambiamento di coordinate (rotazione) sono x y z = x y z.

DIAGONALIZZAZIONE / ESERCIZI SVOLTI

DIAGONALIZZAZIONE / ESERCIZI SVOLTI M.GUIDA, S.ROLANDO, 015 1 DIAGONALIZZAZIONE / ESERCIZI SVOLTI L asterisco contrassegna gli esercizi meno basilari (perché più difficili o di approfondimento). Stabilire se la matrice A = 1 1 0 0 R 3,3

Dettagli

MATRICI ORTOGONALI. MATRICI SIMMETRICHE E FORME QUADRATICHE

MATRICI ORTOGONALI. MATRICI SIMMETRICHE E FORME QUADRATICHE DIAGONALIZZAZIONE 1 MATRICI ORTOGONALI. MATRICI SIMMETRICHE E FORME QUADRATICHE Matrici ortogonali e loro proprietà. Autovalori ed autospazi di matrici simmetriche reali. Diagonalizzazione mediante matrici

Dettagli

Corso di Geometria Meccanica, Elettrotecnica Esercizi 11: soluzioni

Corso di Geometria Meccanica, Elettrotecnica Esercizi 11: soluzioni Corso di Geometria 0- Meccanica Elettrotecnica Esercizi : soluzioni Esercizio Scrivere la matrice canonica di ciascuna delle seguenti trasformazioni lineari del piano: a) Rotazione di angolo π b) Rotazione

Dettagli

AUTOVALORI, AUTOVETTORI, AUTOSPAZI

AUTOVALORI, AUTOVETTORI, AUTOSPAZI AUTOVALORI, AUTOVETTORI, AUTOSPAZI. Esercizi Esercizio. Sia f : R 3 R 3 l endomorfismo definito da f(x, y, z) = (x+y, y +z, x+z). Calcolare gli autovalori ed una base per ogni autospazio di f. Dire se

Dettagli

Corso di Laurea in Matematica - Esame di Geometria 1. Prova scritta del 20 settembre 2013 Versione 1

Corso di Laurea in Matematica - Esame di Geometria 1. Prova scritta del 20 settembre 2013 Versione 1 Corso di Laurea in Matematica - Esame di Geometria 1 Prova scritta del 20 settembre 2013 Versione 1 Cognome Nome Numero di matricola Corso (A o B) Voto ATTENZIONE. Riportare lo svolgimento completo degli

Dettagli

SPAZI EUCLIDEI, APPLICAZIONI SIMMETRICHE, FORME QUADRATICHE

SPAZI EUCLIDEI, APPLICAZIONI SIMMETRICHE, FORME QUADRATICHE SPAZI EUCLIDEI, APPLICAZIONI SIMMETRICHE, FORME QUADRATICHE. Esercizi Esercizio. In R calcolare il modulo dei vettori,, ),,, ) ed il loro angolo. Esercizio. Calcolare una base ortonormale del sottospazio

Dettagli

Applicazioni lineari e diagonalizzazione. Esercizi svolti

Applicazioni lineari e diagonalizzazione. Esercizi svolti . Applicazioni lineari Esercizi svolti. Si consideri l applicazione f : K -> K definita da f(x,y) = x + y e si stabilisca se è lineare. Non è lineare. Possibile verifica: f(,) = 4; f(,4) = 6; quindi f(,4)

Dettagli

Applicazioni lineari simmetriche e forme quadratiche reali.

Applicazioni lineari simmetriche e forme quadratiche reali. Applicazioni lineari simmetriche e forme quadratiche reali 1 Applicazioni lineari simmetriche Consideriamo lo spazio IR n col prodotto scalare canonico X Y = t XY = x 1 y 1 + + x n y n Definizione Un applicazione

Dettagli

Applicazioni lineari e diagonalizzazione pagina 1 di 5

Applicazioni lineari e diagonalizzazione pagina 1 di 5 pplicazioni lineari e diagonalizzazione pagina 1 di 5 PPLIZIONI LINERI 01. Dire quali delle seguenti applicazioni tra IR-spazi vettoriali sono lineari a. f :IR 2 IR 3 f(x y =(x y πy b. f :IR 3 IR 3 f(x

Dettagli

ALGEBRA E GEOMETRIA Esercizi Corso di Laurea in Chimica - anno acc. 2015/2016 docente: Elena Polastri,

ALGEBRA E GEOMETRIA Esercizi Corso di Laurea in Chimica - anno acc. 2015/2016 docente: Elena Polastri, ALGEBRA E GEOMETRIA Esercizi Corso di Laurea in Chimica - anno acc. 0/06 docente: Elena Polastri, plslne@unife.it Esercizi 6: DIAGONALIZZAZIONE e APPLICAZIONI LINEARI Matrici ortogonali.. Verificare che

Dettagli

0.1 Condizione sufficiente di diagonalizzabilità

0.1 Condizione sufficiente di diagonalizzabilità 0.1. CONDIZIONE SUFFICIENTE DI DIAGONALIZZABILITÀ 1 0.1 Condizione sufficiente di diagonalizzabilità È naturale porsi il problema di sapere se ogni matrice sia o meno diagonalizzabile. Abbiamo due potenziali

Dettagli

Algebra lineare. {ax 2 + bx + c R 2 [x] : 2a + 3b = 1} a b c d. M(2, 2) : a + c + d = 2. a b. c d

Algebra lineare. {ax 2 + bx + c R 2 [x] : 2a + 3b = 1} a b c d. M(2, 2) : a + c + d = 2. a b. c d Algebra lineare 1. Riconoscere se il seguente insieme costituisce uno spazio vettoriale. In caso affermativo trovarne la dimensione e una base. (R n [x] denota lo spazio dei polinomi nell indeterminata

Dettagli

Matrici simili. Matrici diagonalizzabili.

Matrici simili. Matrici diagonalizzabili. Matrici simili. Matrici diagonalizzabili. Definizione (Matrici simili) Due matrici quadrate A, B si dicono simili se esiste una matrice invertibile P tale che B = P A P. () interpretazione: cambio di base.

Dettagli

Algebra lineare e geometria AA Esercitazione del 14/6/2018

Algebra lineare e geometria AA Esercitazione del 14/6/2018 Algebra lineare e geometria AA. 2017-2018 Esercitazione del 14/6/2018 1) Siano A, B due matrici n n tali che 0 < rk(a) < rk(b) = n. (a) AB è invertibile. (b) rk(ab) = nrk(b). (c) det(ab) = det(a). (d)

Dettagli

APPUNTI SULLA DIAGONALIZZAZIONE Corso Prof. F.Podestà, a.a

APPUNTI SULLA DIAGONALIZZAZIONE Corso Prof. F.Podestà, a.a APPUNTI SULLA DIAGONALIZZAZIONE Corso Prof FPodestà, aa 003-004 Sia V uno spazio vettoriale e sia f : V V una applicazione lineare una tale applicazione da uno spazio vettoriale in se stesso è chiamata

Dettagli

Corso di Laurea in Matematica - Esame di Geometria 1. Prova scritta del 7 settembre 2015

Corso di Laurea in Matematica - Esame di Geometria 1. Prova scritta del 7 settembre 2015 Corso di Laurea in Matematica - Esame di Geometria 1 Prova scritta del 7 settembre 215 Cognome Nome Numero di matricola Voto ATTENZIONE. Riportare lo svolgimento completo degli esercizi. corretti, non

Dettagli

Università degli Studi Roma Tre - Corso di Laurea in Matematica Tutorato di Geometria 1

Università degli Studi Roma Tre - Corso di Laurea in Matematica Tutorato di Geometria 1 Università degli Studi Roma Tre - Corso di Laurea in Matematica Tutorato di Geometria 1 A.A. 28-29 - Docente: Prof. E. Sernesi Tutori: Andrea Abbate e Matteo Acclavio Soluzioni del tutorato numero 1 14

Dettagli

(2) Dato il vettore w = (1, 1, 1), calcolare T (w). (3) Determinare la matrice A associata a T rispetto alla base canonica.

(2) Dato il vettore w = (1, 1, 1), calcolare T (w). (3) Determinare la matrice A associata a T rispetto alla base canonica. 1. Applicazioni lineari Esercizio 1.1. Sia T : R 2 R 3 l applicazione lineare definita sulla base canonica di R 2 nel seguente modo: T (e 1 ) = (1, 2, 1), T (e 2 ) = (1, 0, 1). a) Esplicitare T (x, y).

Dettagli

Corso di Laurea in Matematica - Esame di Geometria UNO. Prova scritta del 22 gennaio 2015

Corso di Laurea in Matematica - Esame di Geometria UNO. Prova scritta del 22 gennaio 2015 Corso di Laurea in Matematica - Esame di Geometria UNO Prova scritta del 22 gennaio 2015 Cognome Nome Numero di matricola Corso (A o B) Voto ATTENZIONE. Riportare lo svolgimento completo degli esercizi.

Dettagli

SPAZI VETTORIALI CON PRODOTTO SCALARE A =

SPAZI VETTORIALI CON PRODOTTO SCALARE A = SPAZI VETTORIALI CON PRODOTTO SCALARE Esercizi Esercizio. Nello spazio euclideo standard (R 2,, ) sia data la matrice 2 3 A = 3 2 () Determinare una base rispetto alla quale A sia la matrice di un endomorfismo

Dettagli

LAUREA IN INGEGNERIA CIVILE ED AMBIENTE-TERRITORIO Corso di Matematica 2 Padova TEMA n.1

LAUREA IN INGEGNERIA CIVILE ED AMBIENTE-TERRITORIO Corso di Matematica 2 Padova TEMA n.1 LAUREA IN INGEGNERIA CIVILE ED AMBIENTE-TERRITORIO Corso di Matematica Padova -8-8 TEMA n.1 PARTE 1. Quesiti preliminari Stabilire se le seguenti affermazioni sono vere o false giustificando brevemente

Dettagli

I Compito di Geometria - Ingegneria Edile - 25 ottobre 2000 Tra parentesi [ ] è indicato il punteggio di ogni esercizio.

I Compito di Geometria - Ingegneria Edile - 25 ottobre 2000 Tra parentesi [ ] è indicato il punteggio di ogni esercizio. I Compito di Geometria - Ingegneria Edile - 25 ottobre 2000 Tra parentesi [ ] è indicato il punteggio di ogni esercizio. A [8] Sono date le matrici A M 34 (IR) e b M 31 (IR) A = 1 0 2 2 0 k 1 k, b = 1

Dettagli

Diagonalizzabilità di endomorfismi

Diagonalizzabilità di endomorfismi Capitolo 16 Diagonalizzabilità di endomorfismi 16.1 Introduzione Nei capitoli precedenti abbiamo definito gli endomorfismi su uno spazio vettoriale E. Abbiamo visto che, dato un endomorfismo η di E, se

Dettagli

ESAME DI GEOMETRIA. 6 febbraio 2002 CORREZIONE QUIZ

ESAME DI GEOMETRIA. 6 febbraio 2002 CORREZIONE QUIZ ESAME DI GEOMETRIA 6 febbraio CORREZIONE QUIZ. La parte reale di ( + i) 9 è positiva. QUIZ Si può procedere in due modi. Un primo modo è osservare che ( + i) =i, dunque ( + i) 9 =(+i)(i) 4 = 4 ( + i) :

Dettagli

Endomorfismi e matrici simmetriche

Endomorfismi e matrici simmetriche CAPITOLO Endomorfismi e matrici simmetriche Esercizio.. [Esercizio 5) cap. 9 del testo Geometria e algebra lineare di Manara, Perotti, Scapellato] Calcolare una base ortonormale di R 3 formata da autovettori

Dettagli

Tempo a disposizione. 120 minuti. 1 Sia dato l endomorfismo f : R 3 R 3 la cui matrice rispetto alla base canonica di R 3 è.

Tempo a disposizione. 120 minuti. 1 Sia dato l endomorfismo f : R 3 R 3 la cui matrice rispetto alla base canonica di R 3 è. Dipartimento di Matematica e Informatica Anno Accademico 2015-2016 Corso di Laurea in Informatica (L-31) Prova in itinere di Matematica Discreta (12 CFU) 13 Giugno 2016 B2 Tempo a disposizione. 120 minuti

Dettagli

Esame di Geometria - 9 CFU (Appello del 26 gennaio 2016)

Esame di Geometria - 9 CFU (Appello del 26 gennaio 2016) Esame di Geometria - 9 CFU (Appello del 26 gennaio 206) Cognome: Nome: Nr.matricola: Corso di laurea: Esercizio. Al variare del parametro α R, si considerino la retta { x + y z = r : 2x + αy + z = 0 ed

Dettagli

LEZIONE 16 A = Verifichiamo se qualcuna fra le entrate a di A è suo autovalore. determinare per quale entrata a di A risulta rk(a ai 2 ) 1.

LEZIONE 16 A = Verifichiamo se qualcuna fra le entrate a di A è suo autovalore. determinare per quale entrata a di A risulta rk(a ai 2 ) 1. LEZIONE 16 16.1. Autovalori, autovettori ed autospazi di matrici. Introduciamo la seguente definizione. Definizione 16.1.1. Siano k = R, C e A k n,n. Un numero λ k si dice autovalore di A su k) se rka

Dettagli

Compiti di geometria & algebra lineare. Anno: 2004

Compiti di geometria & algebra lineare. Anno: 2004 Compiti di geometria & algebra lineare Anno: 24 Anno: 24 2 Primo compitino di Geometria e Algebra 7 novembre 23 totale tempo a disposizione : 3 minuti Esercizio. [8pt.] Si risolva nel campo complesso l

Dettagli

FONDAMENTI DI ALGEBRA LINEARE E GEOMETRIA INGEGNERIA INDUSTRIALE 27 GENNAIO 2014

FONDAMENTI DI ALGEBRA LINEARE E GEOMETRIA INGEGNERIA INDUSTRIALE 27 GENNAIO 2014 FONDAMENTI DI ALGEBRA LINEARE E GEOMETRIA INGEGNERIA INDUSTRIALE 27 GENNAIO 2014 DOCENTE: MATTEO LONGO Rispondere alle domande di Teoria in modo esauriente e completo. Svolgere il maggior numero di esercizi

Dettagli

Algebra Lineare Corso di Ingegneria Biomedica Compito del

Algebra Lineare Corso di Ingegneria Biomedica Compito del Algebra Lineare Corso di Ingegneria Biomedica Compito del -- - È obbligatorio consegnare tutti i fogli, anche il testo del compito e i fogli di brutta. - Le risposte senza giustificazione sono considerate

Dettagli

(a) 8x 9y = 2, (b) 28x + 6y = 33.

(a) 8x 9y = 2, (b) 28x + 6y = 33. Dipartimento di Matematica e Informatica Anno Accademico 2016-2017 Corso di Laurea in Informatica (L-31) Prova scritta di Matematica Discreta (12 CFU) 28 Giugno 2017 Parte A A1 1 [10 punti] Dimostrare

Dettagli

ESERCIZI DI ALGEBRA LINEARE (D) A = A = A = R 2,2. D5 Dire come bisogna scegliere i parametri h e k affinché la

ESERCIZI DI ALGEBRA LINEARE (D) A = A = A = R 2,2. D5 Dire come bisogna scegliere i parametri h e k affinché la ESERCIZI DI ALGEBRA LINEARE (D) D1 Nello spazio vettoriale R 2,2 si consideri l insieme { V = X R 2,2 XA = AX, A = ( 1 1 1 2 )} delle matrici che commutano con A. Verifiare che V = L(I 2, A). Verificare

Dettagli

ESERCIZI DI ALGEBRA LINEARE (D) V = 1 2. Verificare che V è un sottospazio e determinarne una base. A =

ESERCIZI DI ALGEBRA LINEARE (D) V = 1 2. Verificare che V è un sottospazio e determinarne una base. A = ESERCIZI DI ALGEBRA LINEARE (D) D1 Nello spazio vettoriale R 2,2 si consideri l insieme V = { X R 2,2 XA = AX, A = ( 1 1 1 2 )} delle matrici che commutano con A. Verifiare che V = L(I 2, A). Verificare

Dettagli

Capitolo 8 Forme quadratiche e loro applicazioni Esercizi svolti Tutorato di geometria e algebra lineare. Marco Robutti

Capitolo 8 Forme quadratiche e loro applicazioni Esercizi svolti Tutorato di geometria e algebra lineare. Marco Robutti Capitolo 8 Forme quadratiche e loro applicazioni Esercizi svolti Tutorato di geometria e algebra lineare Marco Robutti 5 Ottobre 2017 1 Introduzione Gli esercizi di questo capitolo riguardano i seguenti

Dettagli

Algebra lineare e geometria AA Appunti sul cambio di base in uno spazio vettoriale

Algebra lineare e geometria AA Appunti sul cambio di base in uno spazio vettoriale Algebra lineare e geometria AA. 8-9 Appunti sul cambio di base in uno spazio vettoriale Matrice di un applicazione lineare Siano V e W due spazi vettoriali su un campo K {R, C}, entrambi finitamente generati,

Dettagli

1 Addendum su Diagonalizzazione

1 Addendum su Diagonalizzazione Addendum su Diagonalizzazione Vedere le dispense per le definizioni di autovettorre, autovalore e di trasformazione lineare (o matrice) diagonalizzabile. In particolare, si ricorda che una condizione necessaria

Dettagli

Autovalori ed autovettori di un endomorfismo

Autovalori ed autovettori di un endomorfismo Autovalori ed autovettori di un endomorfismo Endomorfismo = applicazione (funzione) lineare da un spazio vettoriale V in sé stesso 1. Data una funzione lineare, scriverne la matrice associata dei coefficienti:

Dettagli

Parte 7. Autovettori e autovalori

Parte 7. Autovettori e autovalori Parte 7. Autovettori e autovalori A. Savo Appunti del Corso di Geometria 23-4 Indice delle sezioni Endomorfismi, 2 Cambiamento di base, 3 3 Matrici simili, 6 4 Endomorfismi diagonalizzabili, 7 5 Autovettori

Dettagli

CORSO DI ALGEBRA (M-Z) Prof. A. Venezia

CORSO DI ALGEBRA (M-Z) Prof. A. Venezia CORSO DI ALGEBRA (M-Z) Prof. A. Venezia 2015-16 Complementi ed Esercizi 1. AUTOVETTORI e AUTOVALORI di ENDOMORFISMI e MATRICI Una applicazione lineare avente per dominio e condominio lo stesso spazio vettoriale

Dettagli

Autovalori e autovettori, matrici simmetriche e forme quadratiche (cenni) (prof. M. Salvetti)

Autovalori e autovettori, matrici simmetriche e forme quadratiche (cenni) (prof. M. Salvetti) Autovalori e autovettori, matrici simmetriche e forme quadratiche (cenni) (prof. M. Salvetti) April 14, 2011 (alcune note non complete sugli argomenti trattati: eventuali completamenti saranno aggiunti)

Dettagli

LAUREA IN INGEGNERIA CIVILE Corso di Matematica 2 II a prova di accertamento Padova Docenti: Chiarellotto - Cantarini TEMA n.

LAUREA IN INGEGNERIA CIVILE Corso di Matematica 2 II a prova di accertamento Padova Docenti: Chiarellotto - Cantarini TEMA n. LAUREA IN INGEGNERIA CIVILE Corso di Matematica II a prova di accertamento Padova 10-1-07 Docenti: Chiarellotto - Cantarini TEMA n.1 PARTE 1. Quesiti preliminari Stabilire se le seguenti affermazioni sono

Dettagli

Corso di Laurea in Matematica - Esame di Geometria 1. Prova scritta del 15 settmbre 2011 Versione 1

Corso di Laurea in Matematica - Esame di Geometria 1. Prova scritta del 15 settmbre 2011 Versione 1 Corso di Laurea in Matematica - Esame di Geometria Prova scritta del 5 settmbre 20 Versione Esercizio Sia S(R 22 lo spazio vettoriale reale delle matrici simmetriche di ordine 3. a. Verificare che ponendo

Dettagli

Università degli Studi di Bergamo Corso integrato di Analisi 1 (Geometria e Algebra Lineare) 24 giugno 2009 Tema A. Parte comune

Università degli Studi di Bergamo Corso integrato di Analisi 1 (Geometria e Algebra Lineare) 24 giugno 2009 Tema A. Parte comune Università degli Studi di Bergamo Corso integrato di Analisi 1 (Geometria e Algebra Lineare) 4 giugno 009 Tema A Tempo a disposizione: ore. Calcolatrici, libri e appunti non sono ammessi. Ogni esercizio

Dettagli

Esame di Geometria - 9 CFU (Appello del 26 gennaio A)

Esame di Geometria - 9 CFU (Appello del 26 gennaio A) Esame di Geometria - 9 CFU (Appello del 26 gennaio 25 - A) Cognome: Nome: Nr.matricola: Corso di laurea: Esercizio. In R 3, siano dati il punto P = (, 2, 3) e la retta r : (,, ) + t(, 2), t R.. Determinare

Dettagli

Prodotto scalare e matrici < PX,PY >=< X,Y >

Prodotto scalare e matrici < PX,PY >=< X,Y > Prodotto scalare e matrici Matrici ortogonali Consideriamo in R n il prodotto scalare canonico < X,Y >= X T Y = x 1 y 1 + +x n y n. Ci domandiamo se esistono matrici P che conservino il prodotto scalare,

Dettagli

0.1 Coordinate in uno spazio vettoriale

0.1 Coordinate in uno spazio vettoriale 0.. COORDINATE IN UNO SPAZIO VETTORIALE 0. Coordinate in uno spazio vettoriale Sia V uno spazio vettoriale di dimensione finita n costruito sul campo K. D ora in poi, ogni volta che sia fissata una base

Dettagli

Corso di Geometria Ing. Informatica e Automatica Test 1: soluzioni

Corso di Geometria Ing. Informatica e Automatica Test 1: soluzioni Corso di Geometria Ing. Informatica e Automatica Test : soluzioni k Esercizio Data la matrice A = k dipendente dal parametro k, si consideri il k sistema lineare omogeneo AX =, con X = x x. Determinare

Dettagli

PROVA SCRITTA DEL 10 LUGLIO 2008 e SOLUZIONI. Per ognuno dei seguenti quiz indicare l unica risposta corretta tra le quattro proposte.

PROVA SCRITTA DEL 10 LUGLIO 2008 e SOLUZIONI. Per ognuno dei seguenti quiz indicare l unica risposta corretta tra le quattro proposte. Geometria B1-02efe Geometria - 13bcg PROVA SCRITTA DEL 10 LUGLIO 2008 e SOLUZIONI Per ognuno dei seguenti quiz indicare l unica risposta corretta tra le quattro proposte. Esercizio 1. Sia u, v, w vettori

Dettagli

Autovalori e autovettori di una matrice quadrata

Autovalori e autovettori di una matrice quadrata Autovalori e autovettori di una matrice quadrata Data la matrice A M n (K, vogliamo stabilire se esistono valori di λ K tali che il sistema AX = λx ammetta soluzioni non nulle. Questo risulta evidentemente

Dettagli

Università degli Studi di Bergamo Modulo di Geometria e Algebra Lineare (vecchio programma) 24 gennaio 2013 Tema A

Università degli Studi di Bergamo Modulo di Geometria e Algebra Lineare (vecchio programma) 24 gennaio 2013 Tema A Università degli Studi di Bergamo Modulo di Geometria e Algebra Lineare (vecchio programma) 24 gennaio 23 Tema A Tempo a disposizione: 2 ore. Calcolatrici, libri e appunti non sono ammessi. Ogni esercizio

Dettagli

GEOMETRIA. 25 GENNAIO ore. Istruzioni: Scrivere cognome, nome, numero di matricola in stampatello negli appositi spazi.

GEOMETRIA. 25 GENNAIO ore. Istruzioni: Scrivere cognome, nome, numero di matricola in stampatello negli appositi spazi. GEOMETRIA 25 GENNAIO 2008 2 ore Istruzioni: Scrivere cognome, nome, numero di matricola in stampatello negli appositi spazi. Trascrivere i risultati dei quiz della prima parte nella tabella in questa pagina.

Dettagli

CORSO DI GEOMETRIA APPLICAZIONI LINEARI E MATRICI A.A. 2018/2019 PROF. VALENTINA BEORCHIA

CORSO DI GEOMETRIA APPLICAZIONI LINEARI E MATRICI A.A. 2018/2019 PROF. VALENTINA BEORCHIA CORSO DI GEOMETRIA APPLICAZIONI LINEARI E MATRICI AA 2018/2019 PROF VALENTINA BEORCHIA INDICE 1 Matrici associate a un applicazione lineare 1 2 Cambiamenti di base 4 3 Diagonalizzazione 6 1 MATRICI ASSOCIATE

Dettagli

Esame di Geometria - 9 CFU (Appello del 14 gennaio A)

Esame di Geometria - 9 CFU (Appello del 14 gennaio A) Esame di Geometria - 9 CFU (Appello del 4 gennaio 24 - A) Cognome: Nome: Nr.matricola: Corso di laurea: Esercizio. Si considerino le rette s : { x x 2 2x 3 = 2 3x x 2 =, { x + x s 2 : 2 x 3 = x 2 =.. Stabilire

Dettagli

0 0 c. d 1. det (D) = d 1 d n ;

0 0 c. d 1. det (D) = d 1 d n ; Registro Lezione di Algebra lineare del 23 novembre 216 1 Matrici diagonali 2 Autovettori e autovalori 3 Ricerca degli autovalori, polinomio caratteristico 4 Ricerca degli autovettori, autospazi 5 Matrici

Dettagli

4 Autovettori e autovalori

4 Autovettori e autovalori 4 Autovettori e autovalori 41 Cambiamenti di base Sia V uno spazio vettoriale tale che dim V n Si è visto in sezione 12 che uno spazio vettoriale ammette basi distinte, ma tutte con la medesima cardinalità

Dettagli

GEOMETRIA 1 Autovalori e autovettori

GEOMETRIA 1 Autovalori e autovettori GEOMETRIA 1 Autovalori e autovettori Gilberto Bini - Anna Gori - Cristina Turrini 2018/2019 Gilberto Bini - Anna Gori - Cristina Turrini (2018/2019) GEOMETRIA 1 1 / 28 index Matrici rappresentative "semplici"

Dettagli

Matematica per Chimica, Chimica Industriale e Scienze dei Materiali Primo appello 7/02/2012 Tema A

Matematica per Chimica, Chimica Industriale e Scienze dei Materiali Primo appello 7/02/2012 Tema A Matematica per Chimica, Chimica Industriale e Scienze dei Materiali Primo appello 7/02/202 Tema A NOME:..................................................... COGNOME:.....................................................

Dettagli

1 Il polinomio minimo.

1 Il polinomio minimo. Abstract Il polinomio minimo, così come il polinomio caratterisico, è un importante invariante per le matrici quadrate. La forma canonica di Jordan è un approssimazione della diagonalizzazione, e viene

Dettagli

formano una base B di R 3. Scrivere la matrice di passaggio dalla base B alla base canonica e dire se tale matrice è ortogonale.

formano una base B di R 3. Scrivere la matrice di passaggio dalla base B alla base canonica e dire se tale matrice è ortogonale. ) Mostrare che i 3 vettori v=, u=, w= 3 formano una base B di R 3. Scrivere la matrice di passaggio dalla base B alla base canonica e dire se tale matrice è ortogonale. ) Sia f : R 4 R 4 la seguente applicazione

Dettagli

Lezione Diagonalizzazione di matrici

Lezione Diagonalizzazione di matrici Lezione 2 2. Diagonalizzazione di matrici Come visto nella precedente lezione, in generale, data una matrice A 2 K n,n con K = R, C,nonèimmediatocheesistasempreunabasecostituitadasuoiautovettori. Definizione

Dettagli

Soluzione. (a) L insieme F 1 e linearmente indipendente; gli insiemi F 2 ed F 3 sono linearmente

Soluzione. (a) L insieme F 1 e linearmente indipendente; gli insiemi F 2 ed F 3 sono linearmente 1. Insiemi di generatori, lineare indipendenza, basi, dimensione. Consideriamo nello spazio vettoriale R 3 i seguenti vettori: v 1 = (0, 1, ), v = (1, 1, 1), v 3 = (, 1, 0), v 4 = (3, 3, ). Siano poi F

Dettagli

Autovettori e autovalori

Autovettori e autovalori Autovettori e autovalori Definizione 1 Sia A Mat(n, n), matrice a coefficienti reali. Si dice autovalore di A un numero λ R tale che v 0 R n Av = λv. Ogni vettore non nullo v che soddisfa questa relazione

Dettagli

Diagonalizzazione di matrici: autovalori, autovettori e costruzione della matrice diagonalizzante 1 / 13

Diagonalizzazione di matrici: autovalori, autovettori e costruzione della matrice diagonalizzante 1 / 13 Diagonalizzazione di matrici: autovalori, autovettori e costruzione della matrice diagonalizzante 1 / 13 Matrici diagonali 2 / 13 Ricordiamo che una matrice quadrata si dice matrice diagonale se a ij =

Dettagli

CORSO DI LAUREA IN INGEGNERIA MECCANICA A.A PROVA SCRITTA DI GEOMETRIA DEL Corsi dei Proff. M. BORDONI, A.

CORSO DI LAUREA IN INGEGNERIA MECCANICA A.A PROVA SCRITTA DI GEOMETRIA DEL Corsi dei Proff. M. BORDONI, A. CORSO DI LAUREA IN INGEGNERIA MECCANICA A.A. - PROVA SCRITTA DI GEOMETRIA DEL -- Corsi dei Proff. M. BORDONI, A. FOSCHI Esercizio. E data l applicazione lineare L : R 4 R 3 definita dalla matrice A = 3

Dettagli

(VX) (F) Se A e B sono due matrici simmetriche n n allora anche A B è una matrice simmetrica.

(VX) (F) Se A e B sono due matrici simmetriche n n allora anche A B è una matrice simmetrica. 5 luglio 010 - PROVA D ESAME - Geometria e Algebra T NOME: MATRICOLA: a=, b=, c= Sostituire ai parametri a, b, c rispettivamente la terzultima, penultima e ultima cifra del proprio numero di matricola

Dettagli

Definizione. Sia f : V V un endomorfismo e λ R. Se esiste v V non nullo tale che

Definizione. Sia f : V V un endomorfismo e λ R. Se esiste v V non nullo tale che Autovalori ed autovettori [Abate, 131] Sia f : V V un endomorfismo e λ R Se esiste v V non nullo tale che f(v) = λv, diremo che λ è un autovalore di f e che v è un autovettore di f associato a λ Lezioni

Dettagli

Esame di Geometria e Algebra Lineare Politecnico di Milano Ingegneria informatica Appello 10 Febbraio 2015 Cognome: Nome: Matricola:

Esame di Geometria e Algebra Lineare Politecnico di Milano Ingegneria informatica Appello 10 Febbraio 2015 Cognome: Nome: Matricola: Esame di Geometria e Algebra Lineare Politecnico di Milano Ingegneria informatica Appello Febbraio 25 Cognome: Nome: Matricola: Tutte le risposte devono essere motivate Gli esercizi vanno svolti su questi

Dettagli

Corsi di laurea in Matematica e Matematica per le Applicazioni Esame scritto di Algebra Lineare del 7/2/2002

Corsi di laurea in Matematica e Matematica per le Applicazioni Esame scritto di Algebra Lineare del 7/2/2002 Esame scritto di Algebra Lineare del 7/2/2002 Esercizio 1 Sia h R e sia f : R[x] 3 R 3 l applicazione lineare tale che f(1) = (1, 1, h) f(1 + x) = (h + 2, 0, h) f(x 2 ) = (0, 0, 1) f(1 + x + x 3 ) = (h

Dettagli

Geometria BAER Canale A-K Esercizi 8

Geometria BAER Canale A-K Esercizi 8 Geometria BAER Canale A-K Esercizi 8 Esercizio. Si consideri il sottospazio U = L v =, v, v 3 =. (a) Si trovino le equazioni cartesiane ed una base ortonormale di U. (b) Si trovi una base ortonormale di

Dettagli

Applicazioni lineari e diagonalizzazione

Applicazioni lineari e diagonalizzazione Applicazioni lineari e diagonalizzazione Autospazi Autovettori e indipendenza lineare Diagonalizzabilità e autovalori 2 2006 Politecnico di Torino 1 Esempio (1/6) Utilizzando un esempio già studiato, cerchiamo

Dettagli

ESERCIZI DI GEOMETRIA E ALGEBRA LINEARE (II PARTE) In ogni sezione gli esercizi sono tendenzialmente ordinati per difficoltà crescente.

ESERCIZI DI GEOMETRIA E ALGEBRA LINEARE (II PARTE) In ogni sezione gli esercizi sono tendenzialmente ordinati per difficoltà crescente. ESERCIZI DI GEOMETRIA E ALGEBRA LINEARE (II PARTE) versione: 24 maggio 27 In ogni sezione gli esercizi sono tendenzialmente ordinati per difficoltà crescente Autovettori e autovalori Esercizio Trova gli

Dettagli

GEOMETRIA 28 Giugno minuti

GEOMETRIA 28 Giugno minuti GEOMETRIA 28 Giugno 2017 90 minuti A Istruzioni: Scrivere cognome, nome, matricola in STAMPATELLO negli appositi spazi. Per ogni quiz nella prima parte, indicare l affermazione giudicata corretta nella

Dettagli

FONDAMENTI DI ALGEBRA LINEARE E GEOMETRIA INGEGNERIA CHIMICA E DEI MATERIALI 8 SETTEMBRE 2015 VERSIONE A

FONDAMENTI DI ALGEBRA LINEARE E GEOMETRIA INGEGNERIA CHIMICA E DEI MATERIALI 8 SETTEMBRE 2015 VERSIONE A FONDAMENTI DI ALGEBRA LINEARE E GEOMETRIA INGEGNERIA CHIMICA E DEI MATERIALI 8 SETTEMBRE 015 VERSIONE A DOCENTE: MATTEO LONGO 1. Domande. Esercizi Esercizio 1 (8 punti). Al variare del parametro a R, considerare

Dettagli

Algebra lineare e geometria AA Appunti sul cambio di base in uno spazio vettoriale

Algebra lineare e geometria AA Appunti sul cambio di base in uno spazio vettoriale Algebra lineare e geometria AA. -7 Appunti sul cambio di base in uno spazio vettoriale Matrice di un applicazione lineare Siano V e W due spazi vettoriali su un campo K {R, C}, entrambi finitamente generati,

Dettagli

Spazi euclidei, endomorfismi simmetrici, forme quadratiche. R. Notari

Spazi euclidei, endomorfismi simmetrici, forme quadratiche. R. Notari Spazi euclidei, endomorfismi simmetrici, forme quadratiche R. Notari 14 Aprile 2006 1 1. Proprietà del prodotto scalare. Sia V = R n lo spazio vettoriale delle n-uple su R. Il prodotto scalare euclideo

Dettagli

Geometria e Algebra Lineare

Geometria e Algebra Lineare Università di Bergamo Primo anno di Ingegneria Geometria e Algebra Lineare Anno accademico 0809 Domande su: Autovalori e autovettori. Forme quadratiche, coniche e quadriche Autovettori e autovalori Esercizio

Dettagli

Esercizi di ripasso: geometria e algebra lineare.

Esercizi di ripasso: geometria e algebra lineare. Esercizi di ripasso: geometria e algebra lineare. Esercizio. Sia r la retta passante per i punti A(2,, 3) e B(,, 2) in R 3. a. Scrivere l equazione cartesiana del piano Π passante per A e perpendicolare

Dettagli

1. Sia L: R 3 R 3 l applicazione lineare definita dalla matrice. (a) Calcolare: dimkerl = dimiml = (b) Scrivere una base per KerL e una per ImL:

1. Sia L: R 3 R 3 l applicazione lineare definita dalla matrice. (a) Calcolare: dimkerl = dimiml = (b) Scrivere una base per KerL e una per ImL: . Sia L: R 3 R 3 l applicazione lineare definita dalla matrice 3 A =. (a) Calcolare: dimkerl = dimiml = (b) Scrivere una base per KerL e una per ImL: (c) Trovare le equazioni cartesiane per KerL e ImL:

Dettagli

=. Il vettore non è della forma λ, dunque non è un. 2. Il vettore 8 2 non è della forma λ 1

=. Il vettore non è della forma λ, dunque non è un. 2. Il vettore 8 2 non è della forma λ 1 a.a. 2005-2006 Esercizi. Autovalori e autovettori. Soluzioni. Sia A = e sia x =. Dire se x è autovettore di A. Se si dire per quale 8 autovalore. Sol. Si ha =. Il vettore non è della forma λ dunque 8 29

Dettagli

Autovalori, Autovettori, Diagonalizzazione.

Autovalori, Autovettori, Diagonalizzazione. Autovalori Autovettori Diagonalizzazione Autovalori e Autovettori Definizione Sia V uno spazio vettoriale sul campo K = R o C e sia T : V V un endomorfismo Un vettore non nullo v V \ {O} si dice autovettore

Dettagli

Per le risposte utilizza gli spazi predisposti. Quando richiesto, il procedimento va esposto brevemente, ma in maniera comprensibile.

Per le risposte utilizza gli spazi predisposti. Quando richiesto, il procedimento va esposto brevemente, ma in maniera comprensibile. COGNOME............................... NOME..................................... Punti ottenuti Esame di geometria Scrivi cognome e nome negli spazi predisposti in ciascuno dei tre fogli. Per ogni domanda

Dettagli

Algebra e Geometria 2 per Informatica Primo Appello 23 giugno 2006 Tema A W = { A M 2 (R) A T = A }

Algebra e Geometria 2 per Informatica Primo Appello 23 giugno 2006 Tema A W = { A M 2 (R) A T = A } Algebra e Geometria per Informatica Primo Appello 3 giugno 6 Tema A Sia M (R lo spazio vettoriale delle matrici a coefficienti reali Sia W = { A M (R A T = A } il sottospazio vettoriale delle matrici simmetriche

Dettagli

Parte 8. Prodotto scalare, teorema spettrale

Parte 8. Prodotto scalare, teorema spettrale Parte 8. Prodotto scalare, teorema spettrale A. Savo Appunti del Corso di Geometria 3-4 Indice delle sezioni Prodotto scalare in R n, Basi ortonormali, 4 3 Algoritmo di Gram-Schmidt, 7 4 Matrici ortogonali,

Dettagli

Esame di GEOMETRIA 27 giugno ore 11

Esame di GEOMETRIA 27 giugno ore 11 Esame di GEOMETRIA 27 giugno 2011 - ore 11 Istruzioni: Scrivere cognome, nome, matricola in STAMPATELLO negli appositi spazi. Per ogni quiz nella prima parte, indicare l affermazione giudicata corretta

Dettagli

Corso di Laurea in Matematica - Esame di Geometria UNO. Prova scritta del 4 settembre 2014

Corso di Laurea in Matematica - Esame di Geometria UNO. Prova scritta del 4 settembre 2014 Corso di Laurea in Matematica - Esame di Geometria UNO Prova scritta del 4 settembre 014 Cognome Nome Numero di matricola Corso (A o B) Voto ATTENZIONE. Riportare lo svolgimento completo degli esercizi.

Dettagli

ATTENZIONE: : giustificate le vostre argomentazioni! Geometria Canale 3. Lettere J-PE (Prof P. Piazza) Esame scritto del 12/02/2014. Compito A.

ATTENZIONE: : giustificate le vostre argomentazioni! Geometria Canale 3. Lettere J-PE (Prof P. Piazza) Esame scritto del 12/02/2014. Compito A. Geometria Canale. Lettere J-PE (Prof P. Piazza) Esame scritto del 12/02/2014. Compito A. Nome e Cognome: Numero di Matricola: Esercizio Punti totali Punteggio 1 7 2 6 6 4 6+1 5 6+2 Totale 1+ ATTENZIONE:

Dettagli

Geometria e algebra lineare 7/2/2018 Corso di laurea in Ing. Elett. Tel., Ing. Inf. Org. e Informatica Correzione

Geometria e algebra lineare 7/2/2018 Corso di laurea in Ing. Elett. Tel., Ing. Inf. Org. e Informatica Correzione Geometria e algebra lineare 7//08 Corso di laurea in Ing. Elett. Tel., Ing. Inf. Org. e Informatica Correzione A Esercizio A Siano r la retta passante per i punti A = (0,, 0) e B = (,, ) ed s la retta

Dettagli

Si deve verificare (sulla brutta copia) che (1 i 3)z dà lo stesso risultato usando l espressione del testo e la soluzione trovata.

Si deve verificare (sulla brutta copia) che (1 i 3)z dà lo stesso risultato usando l espressione del testo e la soluzione trovata. Università degli Studi di Bergamo Corso integrato di Analisi 1 (Geometria e Algebra Lineare 18 febbraio 1 Tema A Tempo a disposizione: ore. Calcolatrici, libri e appunti non sono ammessi. Ogni esercizio

Dettagli

{Geometria per [Fisica e (Fisica e Astrofisica)]}

{Geometria per [Fisica e (Fisica e Astrofisica)]} {Geometria per [Fisica e (Fisica e Astrofisica)]} Foglio 9 - Soluzioni Esercizio (facoltativo) Un quadrato magico reale di ordine n è una matrice di M n n (R) tale che sommando gli elementi di ogni sua

Dettagli

Prova scritta di Geometria 1 Docente: Giovanni Cerulli Irelli 20 Gennaio 2017

Prova scritta di Geometria 1 Docente: Giovanni Cerulli Irelli 20 Gennaio 2017 Prova scritta di Geometria Docente: Giovanni Cerulli Irelli Gennaio 7 Esercizio. Si considerino i seguenti tre punti dello spazio euclideo: P :=, Q :=, R :=.. Dimostrare che P, Q ed R non sono collineari.

Dettagli

NOME COGNOME MATRICOLA CANALE

NOME COGNOME MATRICOLA CANALE NOME COGNOME MATRICOLA CANALE Fondamenti di Algebra Lineare e Geometria Proff. R. Sanchez - T. Traetta - C. Zanella Ingegneria Gestionale, Meccanica e Meccatronica, dell Innovazione del Prodotto, Meccatronica

Dettagli

UNIVERSITÀ DEGLI STUDI ROMA TRE Corso di Laurea in Matematica GE110 - Geometria 1 a.a Prova scritta del TESTO E SOLUZIONI

UNIVERSITÀ DEGLI STUDI ROMA TRE Corso di Laurea in Matematica GE110 - Geometria 1 a.a Prova scritta del TESTO E SOLUZIONI UNIVERSITÀ DEGLI STUDI ROMA TRE Corso di Laurea in Matematica GE110 - Geometria 1 a.a. 2011-2012 Prova scritta del 28-1-2013 TESTO E SOLUZIONI 1. Per k R considerare il sistema lineare X 1 X 2 + kx 3 =

Dettagli

(V) (FX) L unione di due basi di uno spazio vettoriale è ancora una base dello spazio vettoriale.

(V) (FX) L unione di due basi di uno spazio vettoriale è ancora una base dello spazio vettoriale. 8 gennaio 2009 - PROVA D ESAME - Geometria e Algebra T NOME: MATRICOLA: a=, b=, c= Sostituire ai parametri a, b, c rispettivamente la terzultima, penultima e ultima cifra del proprio numero di matricola

Dettagli

GEOMETRIA. 2 Febbraio ore. Istruzioni: Scrivere cognome, nome, numero di matricola in stampatello negli appositi spazi.

GEOMETRIA. 2 Febbraio ore. Istruzioni: Scrivere cognome, nome, numero di matricola in stampatello negli appositi spazi. GEOMETRIA 2 Febbraio 2007 2 ore Istruzioni: Scrivere cognome, nome, numero di matricola in stampatello negli appositi spazi. Trascrivere i risultati dei quiz della prima parte nella tabella in questa pagina.

Dettagli

Esame scritto di Geometria I

Esame scritto di Geometria I Esame scritto di Geometria I Università degli Studi di Trento Corso di laurea in Fisica A.A. 26/27 Appello di febbraio 27 Esercizio Sia f h : R R l applicazione lineare definita da f h (e ) = 2e + (2 h)e

Dettagli

Prova scritta di Geometria 1 Docente: Giovanni Cerulli Irelli 15 Febbraio 2017

Prova scritta di Geometria 1 Docente: Giovanni Cerulli Irelli 15 Febbraio 2017 Prova scritta di Geometria Docente: Giovanni Cerulli Irelli 5 Febbraio 7 Esercizio. Si considerino i due sottospazi π e π di R dati dalle seguenti equazioni: π : x y + z = ; π : x + y z =.. Trovare una

Dettagli

Complemento ortogonale e proiezioni

Complemento ortogonale e proiezioni Complemento ortogonale e proiezioni Dicembre 9 Complemento ortogonale di un sottospazio Sie E un sottospazio di R n Definiamo il complemento ortogonale di E come l insieme dei vettori di R n ortogonali

Dettagli

Esame di Geometria e Algebra Lineare

Esame di Geometria e Algebra Lineare Esame di Geometria e Algebra Lineare Esame scritto: 28 Luglio 2014 Esame orale: Cognome: Nome: Matricola: Tutte le risposte devono essere motivate. Gli esercizi vanno svolti su questi fogli, nello spazio

Dettagli