ẋ 1 = 2x 1 + (sen 2 (x 1 ) + 1)x 2 + 2u (1) y = x 1

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "ẋ 1 = 2x 1 + (sen 2 (x 1 ) + 1)x 2 + 2u (1) y = x 1"

Transcript

1 Alcuni esercizi risolti su: - calcolo dell equilibrio di un sistema lineare e valutazione delle proprietà di stabilità dell equilibrio attraverso linearizzazione - calcolo del movimento dello stato e dell uscita per sistemi lineari Esercizio 1 Si consideri il sistema non lineare del 2 o ordine descritto dalle equazioni ẋ 1 = 2x 1 + (sen 2 (x 1 ) + 1)x 2 + 2u ẋ 2 = x 2 (1) 1.1 Si verifichi che x 1 = 0, x 2 = 0 è uno stato di equilibrio associato all ingresso u(t) = 0, t, per il sistema (1). Si scrivano le equazioni del sistema linearizzato attorno a tale stato di equilibrio. x 1 = 0, x 2 = 0 è uno stato di equilibrio per il sistema (1) associato all ingresso u(t) = 0 perchè le derivate delle variabili di stato con u posto uguale a 0 sono identicamente nulle quando x 1 = x 1 e x 2 = x 2 : 2 x 1 + (sen 2 ( x 1 ) + 1) x 2 = 0 x 2 = 0 Le equazioni del sistema linearizzato attorno all equilibrio x 1 = 0, x 2 = 0 associato all ingresso u(t) = 0 sono: x 1 = 2 x 1 + x u x 2 = x 2 y = x Si verifichi che lo stato di equilibrio x 1 = 0, x 2 = 0 associato all ingresso u(t) = 0 è instabile. La matrice dinamica del sistema linearizzato attorno all equilibrio x 1 = 0, x 2 = 0 associato all ingresso u(t) = 0 è A = [ ] Essa ha autovalori λ 1 = 2 e λ 2 = 1. Per il criterio degli autovalori, il sistema linearizzato è instabile. Inoltre, dato che λ 2 = 1 > 0, allora il movimento di equilibrio del sistema non lineare è instabile.

2 1.3 Si supponga che venga applicato in ingresso al sistema u(t) = 0.5x 2 (sen 2 (x 1 ) + 1) + v(t). Si scrivano le equazioni del sistema così ottenuto, con ingresso v ed uscita y. Sostituendo u(t) = 0.5x 2 (sen 2 (x 1 ) + 1) + v(t) nelle equazioni del sistema (1) si ottengono le equazioni del sistema: ẋ 1 = 2x 1 + 2v ẋ 2 = x Si determini il movimento dell uscita del sistema ottenuto al punto 1.3, quando la condizione iniziale è x 1 (0) = x 2 (0) = 0 e v(t) = 1, t 0. Dato che basta calcolare l andamento della variabile di stato x 1 (t) risolvendo l equazione differenziale: ẋ 1 = 2x 1 + 2v, v(t) = 1, t 0, x 1 (0) = 0. La sua soluzione si ricava nel modo seguente x 1 (t) = e 2t x 1 (0) + t 0 e 2(t τ) 2v(τ)dτ = 1 e 2t, t 0. Il movimento dell uscita cercato è quindi y(t) = x 1 (t) = 1 e 2t, t 0.

3 Esercizio 2 Si consideri il sistema non lineare descritto dalle seguenti equazioni: ẋ 1 = x x 1 + x 2 + u + 1 ẋ 2 = x 1 + x 2 + u + x Determinare il movimento di equilibrio associato all ingresso costante u(t) = 1, t, e scrivere le equazioni del sistema linearizzato attorno ad esso. Ponendo a zero le derivate ẋ 1 e ẋ 2 con u(t) = 1, t si ottiene il sistema di equazioni: x x 1 + x 2 = 0 x 1 + x 2 1 = 0 da cui si ricava lo stato di equilibrio x 1 = 1, x 2 = 0. L uscita di equilibrio corrispondente è ȳ = 1. Il movimento di equilibrio dello stato associato a u(t) = 1, t, è x 1 (t) = 1 t x 2 (t) = 0 Il movimento di equilibrio dell uscita è y(t) = 1, t. Le equazioni del sistema linearizzato attorno al movimento di equilibrio calcolato sono x 1 (t) = 2 x 1 (t) + x 2 (t) + u(t) x 2 (t) = x 1 (t) + x 2 (t) + u(t) y(t) = x 1 (t) + x 2 (t) 2.2 Valutare le proprietà di stabilità del movimento di equilibrio calcolato al punto 1.1. La matrice dinamica A del sistema linearizzato è: [ ] 2 1 A = 1 1 Il polinomio caratteristico di A è: det(λi A) = λ 2 + λ 3. Gli autovalori di A sono quindi λ 1,2 = 1/2 ± 13/2. Dato che uno di essi è a parte reale positiva, allora il movimento di equilibrio calcolato al punto 2.1 è instabile.

4 Esercizio 3 Si consideri il sistema lineare descritto dalle seguenti equazioni: ẋ 1 = 2x 1 + x 2 + u ẋ 2 = 3x 2 + 3u (2) y = x Determinare l espressione analitica del movimento dell uscita del sistema (3) quando l ingresso applicato è u(t) = 2, t 0, e x 1 (0) = 0, x 2 (0) = 1. Dato che y = x 2 e il movimento della variabile di stato x 2 non dipende da x 1, allora basta risolvere l equazione differenziale ẋ 2 (t) = 3x 2 (t) + 3u(t) con u(t) = 2, t 0 e x 2 (0) = 1. La soluzione è y(t) = x 2 (t) = e 3t + t 0 e 3(t τ) 6dτ = 2 e 3t, t 0

5 Esercizio 4 Si consideri un carrello di massa unitaria (m = 1) che si muove su di una guida rettilinea orizzontale soggetto ad una forza F, in presenza di una forza di attrito F a proporzionale alla velocità del carrello, con costante di proporzionalità α > 0. La posizione del carrello lungo la guida rettilinea è indicata con s. 4.1 Posto x 1 = s e x 2 = ṡ, si scrivano le equazioni nelle variabili di stato x 1 e x 2 del sistema carrello con ingresso u dato dalla forza F e uscita y data dalla sua posizione s lungo la guida rettilinea. ẋ 1 = x 2 ẋ 2 = αx 2 + u 4.2 Posto α = 2, si determini l espressione analitica del movimento libero dell uscita del sistema, a partire dalla condizione iniziale x 1 (0) = x 2 (0) = 2. ẋ 1 = x 2 ẋ 2 = 2x 2 + u Calcoliamo prima il movimento libero della componente x 2 risolvendo ẋ 2 = 2x 2, x 2 (0) = 2. Si ottiene: x 2 (t) = 2e 2t, t 0. Sostituiamo questa espressione nell equazione ẋ 1 = x 2

6 ottenendo l equazione che governa l evoluzione di x 1 ẋ 1 (t) = 2e 2t, x 1 (0) = 2 Risolvendo questa equazione differenziale si ottiene: x 1 (t) = da cui t 0 2e 2τ dτ + 2 = 3 e 2t, t 0, y(t) = x 1 (t) = 3 e 2t, t 0.

7 Esercizio 5 Si consideri il sistema descritto dalle seguenti equazioni: ẋ 1 = x 5 1 2x 1 + x 2 + u ẋ 2 = x 5 1 x 2 u 5.1 Dire, motivando la risposta, se il sistema è lineare o non lineare, statico o dinamico, proprio o improprio. Il sistema è: non lineare, perchè il secondo membro delle equazioni di stato non è una combinazione lineare delle variabili di stato e dell ingresso. dinamico, perchè l uscita al generico istante t non può essere determinata sulla base della conoscenza del solo ingresso allo stesso istante t. proprio, perchè nella trasformazione di uscita non compare l ingresso. 5.2 Determinare il movimento di equilibrio associato all ingresso costante u(t) = 2, t, e scrivere le equazioni del sistema linearizzato attorno ad esso. Il valore dell equilibrio si ottiene uguagliando a zero il secondo membro delle equazioni di stato calcolati ponendo x 1 (t) = x 1, x 2 (t) = x 2 e u(t) = 2, t. x x 1 + x = 0 x 5 1 x 2 2 = 0 da cui si ottiene x 1 = 0 x 2 = 2 Le equazioni del sistema linearizzato sono: x 1 = 2 x 1 + x 2 + u x 2 = x 2 u 5.3 Dire se è possibile valutare le proprietà di stabilità del movimento di equilibrio calcolato al punto 5.2 tramite l analisi di stabilità del sistema linearizzato corrispondente.

8 La matrice dinamica del sistema linearizzato è [ ] 2 1 A = 0 1 Gli autovalori di A sono reali negativi. Questa è condizione sufficiente per concludere che il movimento di equilibrio è asintoticamente stabile.

9 Esercizio 6 Si consideri il sistema lineare descritto dalle seguenti equazioni: ẋ 1 = 10x 1 x 2 + u ẋ 2 = x 2 + u (3) 6.1 Determinare l espressione analitica del movimento dell uscita del sistema (3) quando l ingresso applicato è u(t) = 3, t 0, e x 1 (0) = 2, x 2 (0) = 3. La seconda equazione di stato non dipende dalla prima. x 2 = 3 è il valore di equilibrio di x 2 associato a u(t) = 3, t. Il movimento di x 2 associato a u(t) = 3, t 0, e x 2 (0) = 3 è quindi x 2 (t) = 3, t 0. Sostituito nella prima equazione con u(t) = 3, t 0, si ha ẋ 1 = 10x 1. Il movimento di x 1 è quindi il movimento libero associato a x 1 (0) = 2, cioè Dalla trasformazione di uscita segue: x 1 (t) = 2e 10t, t 0. y(t) = 2e 10t, t 0.

Sistemi differenziali 2 2: esercizi svolti. 1 Sistemi lineari Stabilità nei sistemi lineari

Sistemi differenziali 2 2: esercizi svolti. 1 Sistemi lineari Stabilità nei sistemi lineari Sistemi differenziali : esercizi svolti 1 Sistemi lineari Stabilità nei sistemi lineari 14 1 Sistemi differenziali : esercizi svolti 1 Sistemi lineari Gli esercizi contrassegnati con il simbolo * presentano

Dettagli

Compito del 14 giugno 2004

Compito del 14 giugno 2004 Compito del 14 giugno 004 Un disco omogeneo di raggio R e massa m rotola senza strisciare lungo l asse delle ascisse di un piano verticale. Il centro C del disco è collegato da una molla di costante elastica

Dettagli

Consideriamo un sistema dinamico tempo-invariante descritto da:

Consideriamo un sistema dinamico tempo-invariante descritto da: IL PROBLEMA DELLA STABILITA Il problema della stabilità può essere affrontato in vari modi. Quella adottata qui, per la sua riconosciuta generalità ed efficacia, è l impostazione classica dovuta a M. A.

Dettagli

Risposta temporale: esempi

Risposta temporale: esempi ...4 Risposta temporale: esempi Esempio. Calcolare la risposta al gradino unitario del seguente sistema: x(t) = u(t) s + 5 (s + )(s + ) y(t) Il calcolo della trasformata del segnale di uscita è immediato:

Dettagli

1 a PROVA PARZIALE DI FONDAMENTI DI AUTOMATICA A.A. 2004/ novembre Soluzione

1 a PROVA PARZIALE DI FONDAMENTI DI AUTOMATICA A.A. 2004/ novembre Soluzione a PROVA PARZIAE DI FONDAMENTI DI AUTOMATIA A.A. 24/25 9 novembre 24 Esercizio on riferimento alla funzione di trasferimento G(s) = 7s2 + 36s + 48 (s + 3)(s + 4) 2 Domanda.. Indicare i valori del guadagno,

Dettagli

Introduzione ai sistemi dinamici

Introduzione ai sistemi dinamici Introduzione ai sistemi dinamici Prof. G. Ferrari Trecate, Prof. D.M. Raimondo Dipartimento di Ingegneria Industriale e dell Informazione (DIII) Università degli Studi di Pavia Fondamenti di Automatica

Dettagli

s + 6 s 3, b) i valori di K per i quali il sistema a ciclo chiuso risulta asintoticamente stabile;

s + 6 s 3, b) i valori di K per i quali il sistema a ciclo chiuso risulta asintoticamente stabile; 1 Esercizi svolti Esercizio 1. Con riferimento al sistema di figura, calcolare: ut) + K s s + 6 s 3 yt) a) la funzione di trasferimento a ciclo chiuso tra ut) e yt); b) i valori di K per i quali il sistema

Dettagli

Fondamenti di Automatica (10 cfu) Corso di Studi in Ingegneria Gestionale A.A. 2011/12 TESTI ESERCIZI PRIMA PARTE DEL CORSO

Fondamenti di Automatica (10 cfu) Corso di Studi in Ingegneria Gestionale A.A. 2011/12 TESTI ESERCIZI PRIMA PARTE DEL CORSO Fondamenti di Automatica (10 cfu) Corso di Studi in Ingegneria Gestionale A.A. 2011/12 TESTI ESERCIZI PRIMA PARTE DEL CORSO Prof. SILVIA STRADA Esercitatore ANDREA G. BIANCHESSI ESERCIZIO 1 1. Scrivere

Dettagli

TEORIA DEI SISTEMI ANALISI DEI SISTEMI LTI

TEORIA DEI SISTEMI ANALISI DEI SISTEMI LTI TEORIA DEI SISTEMI Laurea Specialistica in Ingegneria Meccatronica Laurea Specialistica in Ingegneria Gestionale Indirizzo Gestione Industriale TEORIA DEI SISTEMI ANALISI DEI SISTEMI LTI Ing. Cristian

Dettagli

I. Foglio di esercizi su vettori linearmente dipendenti e linearmente indipendenti. , v 2 = α v 1 + β v 2 + γ v 3. α v 1 + β v 2 + γ v 3 = 0. + γ.

I. Foglio di esercizi su vettori linearmente dipendenti e linearmente indipendenti. , v 2 = α v 1 + β v 2 + γ v 3. α v 1 + β v 2 + γ v 3 = 0. + γ. ESERCIZI SVOLTI DI ALGEBRA LINEARE (Sono svolti alcune degli esercizi proposti nei fogli di esercizi su vettori linearmente dipendenti e vettori linearmente indipendenti e su sistemi lineari ) I. Foglio

Dettagli

01. Modelli di Sistemi

01. Modelli di Sistemi Controlli Automatici 01. Modelli di Sistemi Prof. Cesare Fantuzzi Ing. Cristian Secchi Ing. Federica Ferraguti ARSControl - DISMI - Università di Modena e Reggio Emilia E-mail: {nome.cognome}@unimore.it

Dettagli

FONDAMENTI DI ALGEBRA LINEARE E GEOMETRIA

FONDAMENTI DI ALGEBRA LINEARE E GEOMETRIA Cognome Nome Matricola FONDAMENTI DI ALGEBRA LINEARE E GEOMETRIA Ciarellotto, Esposito, Garuti Prova del 21 settembre 2013 Dire se è vero o falso (giustificare le risposte. Bisogna necessariamente rispondere

Dettagli

Controlli Automatici I

Controlli Automatici I Ingegneria Elettrica Politecnico di Torino Luca Carlone Controlli Automatici I LEZIONE V Sommario LEZIONE V Proprietà strutturali Controllabilità e raggiungibilità Raggiungibilità nei sistemi lineari Forma

Dettagli

Controlli e Regolazione Automatica Prova scritta del 26 maggio 2005

Controlli e Regolazione Automatica Prova scritta del 26 maggio 2005 Controlli e Regolazione Automatica Prova scritta del 26 maggio 2005 Domanda Disegnare lo schema a blocchi di un sistema di controllo in retroazione, descrivendo sinteticamente il ruolo di tutti i suoi

Dettagli

Raggiungibilità, Controllabilità, Osservabilità e Determinabilità

Raggiungibilità, Controllabilità, Osservabilità e Determinabilità Raggiungibilità, Controllabilità, Osservabilità e Determinabilità Si determini se i sistemi lineari tempo invarianti ẋ(t) = Ax(t) + Bu(t), Σ c : y(t) = Cx(t) + Du(t). x(k + ) = Ax(k) + Bu(k), Σ d : y(k)

Dettagli

TEMI D ESAME DI ANALISI MATEMATICA I

TEMI D ESAME DI ANALISI MATEMATICA I TEMI D ESAME DI ANALISI MATEMATICA I Corso di laurea quadriennale) in Fisica a.a. 003/04 Prova scritta del 3 aprile 003 ] Siano a, c parametri reali. Studiare l esistenza e, in caso affermativo, calcolare

Dettagli

Introduzione alla Fisica Moderna - a.a

Introduzione alla Fisica Moderna - a.a Introduzione alla Fisica Moderna - a.a. 015-16 7/9/016 Nome Cognome Matricola: 1) Si consideri il sistema di equazioni del primo ordine ẋ = y, ẏ = η y sin x, determinando i punti di equilibrio, il loro

Dettagli

Elementi di Teoria dei Sistemi. Definizione di sistema dinamico. Cosa significa Dinamico? Sistema dinamico a tempo continuo

Elementi di Teoria dei Sistemi. Definizione di sistema dinamico. Cosa significa Dinamico? Sistema dinamico a tempo continuo Parte 2, 1 Parte 2, 2 Elementi di Teoria dei Sistemi Definizione di sistema dinamico Parte 2, 3 Sistema dinamico a tempo continuo Cosa significa Dinamico? Parte 2, 4? e` univocamente determinata? Ingresso

Dettagli

Equazioni differenziali lineari a coefficienti costanti

Equazioni differenziali lineari a coefficienti costanti Equazioni differenziali lineari a coefficienti costanti Generalità Il modello matematico di un qualsiasi sistema fisico in regime variabile conduce alla scrittura di una o più equazioni differenziali.

Dettagli

15 luglio Soluzione esame di geometria - Ing. gestionale - a.a COGNOME... NOME... N. MATRICOLA... ISTRUZIONI

15 luglio Soluzione esame di geometria - Ing. gestionale - a.a COGNOME... NOME... N. MATRICOLA... ISTRUZIONI 15 luglio 01 - Soluzione esame di geometria - Ing. gestionale - a.a. 01-01 COGNOME.......................... NOME.......................... N. MATRICOLA............. La prova dura ore. ISTRUZIONI Ti sono

Dettagli

Formulazione delle equazioni del moto per un sistema lineare a tre gradi di libertà. Proprietà delle matrici di rigidezza e di flessibilità

Formulazione delle equazioni del moto per un sistema lineare a tre gradi di libertà. Proprietà delle matrici di rigidezza e di flessibilità Formulazione delle equazioni del moto per un sistema lineare a tre gradi di libertà Proprietà delle matrici di rigidezza e di flessibilità Prof. Adolfo Santini - Dinamica delle Strutture Introduzione In

Dettagli

Forma canonica di Jordan

Forma canonica di Jordan Capitolo INTRODUZIONE Forma canonica di Jordan Siano λ i, per i =,, h, gli autovalori distinti della matrice A e siano r i i corrispondenti gradi di molteplicità all interno del polinomio caratteristico:

Dettagli

Elementi di Algebra Lineare. Spazio Vettoriale (lineare)

Elementi di Algebra Lineare. Spazio Vettoriale (lineare) Elementi di Algebra Lineare Spazio Vettoriale (lineare) Uno spazio vettoriale su un corpo F è una quadrupla (X, F, +, ) costituita da: un insieme di elementi X, detti vettori, un corpo F, i cui elementi

Dettagli

Esercitazioni di Matematica

Esercitazioni di Matematica Università degli Studi di Udine Anno Accademico 009/00 Facoltà di Agraria Corsi di Laurea in VIT e STAL Esercitazioni di Matematica novembre 009 Trovare le soluzioni della seguente disequazione: x + +

Dettagli

Alcuni esercizi sulla diagonalizzazione di matrici. campo dei reali. Se lo è calcolare una base spettrale e la relativa forma diagonale di A.

Alcuni esercizi sulla diagonalizzazione di matrici. campo dei reali. Se lo è calcolare una base spettrale e la relativa forma diagonale di A. Alcuni esercii sulla diagonaliaione di matrici Eserciio Dire se la matrice A 4 8 è diagonaliabile sul 3 3 campo dei reali Se lo è calcolare una base spettrale e la relativa forma diagonale di A Svolgimento

Dettagli

Soluzioni. 152 Roberto Tauraso - Analisi Risolvere il problema di Cauchy. { y (x) + 2y(x) = 3e 2x y(0) = 1

Soluzioni. 152 Roberto Tauraso - Analisi Risolvere il problema di Cauchy. { y (x) + 2y(x) = 3e 2x y(0) = 1 5 Roberto Tauraso - Analisi Soluzioni. Risolvere il problema di Cauchy y (x) + y(x) = 3e x y() = R. Troviamo la soluzione generale in I = R. Una primitiva di a(x) = è A(x) = a(x) dx = dx = x e il fattore

Dettagli

Esercizi di Fondamenti di Sistemi Dinamici

Esercizi di Fondamenti di Sistemi Dinamici Giuseppe Fusco Esercizi di Fondamenti di Sistemi Dinamici ARACNE Copyright MMVIII ARACNE editrice S.r.l. www.aracneeditrice.it info@aracneeditrice.it via Raffaele Garofalo, 133 a/b 00173 Roma (06 93781065

Dettagli

ECONOMIA APPLICATA ALL INGEGNERIA (Docente: Prof. Ing. Donato Morea)

ECONOMIA APPLICATA ALL INGEGNERIA (Docente: Prof. Ing. Donato Morea) ESERCIZIO n. 1 - La produzione ed i costi di produzione (1 ) Un impresa utilizza una tecnologia descritta dalla seguente funzione di produzione: I prezzi dei fattori lavoro e capitale sono, rispettivamente,

Dettagli

Analisi Numerica. Debora Botturi ALTAIR. Debora Botturi. Laboratorio di Sistemi e Segnali

Analisi Numerica. Debora Botturi ALTAIR.  Debora Botturi. Laboratorio di Sistemi e Segnali Analisi Numerica ALTAIR http://metropolis.sci.univr.it Argomenti Argomenti Argomenti Rappresentazione di sistemi con variabili di stato; Tecniche di integrazione numerica Obiettivo: risolvere sistemi di

Dettagli

Compito di Meccanica Razionale M-Z

Compito di Meccanica Razionale M-Z Compito di Meccanica Razionale M-Z 11 giugno 213 1. Tre piastre piane omogenee di massa m aventi la forma di triangoli rettangoli con cateti 4l e 3l sono saldate lungo il cateto più lungo come in figura

Dettagli

Reti nel dominio del tempo. Lezione 7 1

Reti nel dominio del tempo. Lezione 7 1 Reti nel dominio del tempo Lezione 7 1 Poli (o frequenze naturali) di una rete Lezione 7 2 Definizione 1/2 Il comportamento qualitativo di una rete dinamica dipende dalle sue frequenze naturali o poli

Dettagli

DEDUZIONE DEL TEOREMA DELL'ENERGIA CINETICA DELL EQUAZIONE SIMBOLICA DELLA DINAMICA

DEDUZIONE DEL TEOREMA DELL'ENERGIA CINETICA DELL EQUAZIONE SIMBOLICA DELLA DINAMICA DEDUZIONE DEL TEOREMA DELL'ENERGIA CINETICA DELL EQUAZIONE SIMBOLICA DELLA DINAMICA Sia dato un sistema con vincoli lisci, bilaterali e FISSI. Ricaviamo, dall equazione simbolica della dinamica, il teorema

Dettagli

Esame di FONDAMENTI DI AUTOMATICA (9 crediti) SOLUZIONE

Esame di FONDAMENTI DI AUTOMATICA (9 crediti) SOLUZIONE Esame di FONDAMENTI DI AUTOMATICA (9 crediti) Prova scritta 16 luglio 2014 SOLUZIONE ESERCIZIO 1. Dato il sistema con: si determinino gli autovalori della forma minima. Per determinare la forma minima

Dettagli

Analisi dei Sistemi Esercitazione 1

Analisi dei Sistemi Esercitazione 1 Analisi dei Sistemi Esercitazione Soluzione 0 Ottobre 00 Esercizio. Sono dati i seguenti modelli matematici di sistemi dinamici. ÿ(t) + y(t) = 5 u(t)u(t). () t ÿ(t) + tẏ(t) + y(t) = 5sin(t)ü(t). () ẋ (t)

Dettagli

SISTEMI LINEARI A COEFFICIENTE COSTANTE

SISTEMI LINEARI A COEFFICIENTE COSTANTE SISTEMI LINEARI A COEFFICIENTE COSTANTE Per studiare la velocità, la precisione e la stabilità di un sistema bisogna individuare il modello matematico del sistema Abbiamo visto che un sistema di controllo

Dettagli

CLASSIFICAZIONE DELLE CONICHE AFFINI

CLASSIFICAZIONE DELLE CONICHE AFFINI CLASSIFICAZIONE DELLE CONICHE AFFINI Pre-requisiti necessari. Elementi di geometria analitica punti e rette nel piano cartesiano, conoscenza delle coniche in forma canonica). Risoluzione di equazioni e

Dettagli

CIRCUITI IN CORRENTE CONTINUA

CIRCUITI IN CORRENTE CONTINUA IUITI IN ONT ONTINUA Un induttanza e tre resistenze 2 J J 2 L Il circuito sta funzionando da t = con l interruttore aperto. Al tempo t = 0 l interruttore viene chiuso. alcolare le correnti. Per t 0 circola

Dettagli

PROBLEMA 15. ATTENZIONE: nelle figure gli angoli e i segmenti non sono in scala con i valori assegnati, ma ciò non pregiudica la soluzione.

PROBLEMA 15. ATTENZIONE: nelle figure gli angoli e i segmenti non sono in scala con i valori assegnati, ma ciò non pregiudica la soluzione. PROBLEMA 15 E dato il stema di piani inclinati della figura qui sotto dove α = 35,0, β = 40,0, AB =,00 m e BC = 1,50 m. Un corpo di massa m =,00 kg è posto in A e tra il corpo e il pia, lungo tutto il

Dettagli

Esercizi-equazioni Esercizi equazioni di stato:

Esercizi-equazioni Esercizi equazioni di stato: Esercizi-equazioni Esercizi equazioni di stato: 1. Determinare le equazioni di stato per il seguente sistema termico: Esercizi 2, 1 Hp. Modellistica a) Trascuriamo la temperatura di parete : Si scrive

Dettagli

Trasformazioni Logaritmiche

Trasformazioni Logaritmiche Trasformazioni Logaritmiche Una funzione y = f(x) può essere rappresentata in scala logaritmica ponendo Si noti che y = f(x) diventa ossia Quando mi conviene? X = log α x, Y = log α y. log α (x) = log

Dettagli

Correzione 1 a provetta del corso di Fisica 1,2

Correzione 1 a provetta del corso di Fisica 1,2 Correzione 1 a provetta del corso di Fisica 1, novembre 005 1. Primo Esercizio (a) Indicando con r (t) il vettore posizione del proiettile, la legge oraria del punto materiale in funzione del tempo t risulta

Dettagli

CONTROLLO DI SISTEMI ROBOTICI Laurea Specialistica in Ingegneria Meccatronica

CONTROLLO DI SISTEMI ROBOTICI Laurea Specialistica in Ingegneria Meccatronica CONTROLLO DI SISTEMI ROBOTICI Laurea Specialistica in Ingegneria Meccatronica CONTROLLO DI SISTEMI ROBOTICI ANALISI DEI SISTEMI LTI Ing. Tel. 0522 522235 e-mail: secchi.cristian@unimore.it http://www.dismi.unimo.it/members/csecchi

Dettagli

RICHIAMI MATEMATICI. x( t)

RICHIAMI MATEMATICI. x( t) 0.0. 0.1 1 RICHIAMI MATEMATICI Funzioni reali del tempo: (t) : t (t) (t) ( t) Funzioni reali dell ingresso: y() t t y( ) y() : y() Numeri complessi. Un numero complesso è una coppia ordinata di numeri

Dettagli

SECONDO METODO DI LYAPUNOV

SECONDO METODO DI LYAPUNOV SECONDO METODO DI LYAPUNOV Il Secondo Metodo di Lyapunov permette di studiare la stabilità degli equilibri di un sistema dinamico non lineare, senza ricorrere alla linearizzazione delle equazioni del sistema.

Dettagli

DERIVATE E LORO APPLICAZIONE

DERIVATE E LORO APPLICAZIONE DERIVATE E LORO APPLICAZIONE SIMONE ALGHISI 1. Applicazione del calcolo differenziale 1 Abbiamo visto a lezione che esiste un importante legame tra la continuità di una funzione y = f(x) in un punto x

Dettagli

Esercizi: circuiti dinamici con generatori costanti

Esercizi: circuiti dinamici con generatori costanti ezione Esercizi: circuiti dinamici con generatori costanti ezione n. Esercizi: circuiti dinamici con generatori costanti. Esercizi con circuiti del I ordine in transitorio con generatori costanti. ircuiti..

Dettagli

Università degli Studi di Bergamo Matematica II (5 e 7,5 crediti) 18 febbraio 2010 Tema A

Università degli Studi di Bergamo Matematica II (5 e 7,5 crediti) 18 febbraio 2010 Tema A Università degli Studi di Bergamo Matematica II (5 e 7,5 crediti) 18 febbraio 21 Tema A Tempo a disposizione: 2 ore. Calcolatrici, libri e appunti non sono ammessi. Ogni esercizio va iniziato all inizio

Dettagli

Esercizi per Geometria II Geometria euclidea e proiettiva

Esercizi per Geometria II Geometria euclidea e proiettiva Esercizi per Geometria II Geometria euclidea e proiettiva Filippo F. Favale 8 aprile 014 Esercizio 1 Si consideri E dotato di un riferimento cartesiano ortonormale di coordinate (x, y) e origine O. Si

Dettagli

Funzioni implicite - Esercizi svolti

Funzioni implicite - Esercizi svolti Funzioni implicite - Esercizi svolti Esercizio. È data la funzione di due variabili F (x, y) = y(e y + x) log x. Verificare che esiste un intorno I in R del punto di ascissa x 0 = sul quale è definita

Dettagli

Sistemi di Equazioni Differenziali

Sistemi di Equazioni Differenziali Sistemi di Equazioni Differenziali Nota introduttiva: Lo scopo di queste dispense non è trattare la teoria riguardo ai sistemi di equazioni differenziali, ma solo dare un metodo risolutivo pratico utilizzabile

Dettagli

Appunti sulla circonferenza

Appunti sulla circonferenza 1 Liceo Falchi Montopoli in Val d Arno - Classe 3 a I - Francesco Daddi - 16 aprile 010 Appunti sulla circonferenza In queste pagine sono trattati gli argomenti riguardanti la circonferenza nel piano cartesiano

Dettagli

ANALISI MATEMATICA PER IL CdL IN INFORMATICA ESERCIZI SULLE DISEQUAZIONI

ANALISI MATEMATICA PER IL CdL IN INFORMATICA ESERCIZI SULLE DISEQUAZIONI ANALISI MATEMATICA PER IL CdL IN INFORMATICA ESERCIZI SULLE DISEQUAZIONI Risolvere le seguenti disequazioni: ( 1 ) x < x + 1 1) 4x + 4 x ) x + 1 > x 4x x 10 ) x 4 x 5 4x + > ; 4) ; 5) 0; ) x 1 x + 1 x

Dettagli

Esercitazioni di Fisica 1

Esercitazioni di Fisica 1 Esercitazioni di Fisica 1 Ultima versione: 6 novembre 2013 Paracadutista (attrito viscoso). Filo con massa che pende da un tavolo. 1 Studio del moto di un paracadutista Vogliamo studiare il moto di un

Dettagli

Esercitazione Scritta di Controlli Automatici

Esercitazione Scritta di Controlli Automatici Esercitazione Scritta di Controlli Automatici --6 Il velivolo VTOL (Vertical Takeoff and Landing) riportato in figura puó decollare e atterrare lungo la verticale. Figure : odello di velivolo in grado

Dettagli

1) Per quale valore minimo della velocità angolare iniziale il cilindro riesce a compiere un giro completo.

1) Per quale valore minimo della velocità angolare iniziale il cilindro riesce a compiere un giro completo. Esame di Fisica per Ingegneria Elettronica e delle Telecomunicazioni (Parte I): 04-02-2016 Problema 1. Un punto materiale si muove nel piano su una guida descritta dall equazione y = sin kx [ = 12m, k

Dettagli

Esercizi 2, 1. continuo. Modelli in equazioni di stato Linearizzazione. Prof. Thomas Parisini. Fondamenti di Automatica

Esercizi 2, 1. continuo. Modelli in equazioni di stato Linearizzazione. Prof. Thomas Parisini. Fondamenti di Automatica Esercizi 2, 1 Esercizi sistemi dinamici a tempo continuo Modelli in equazioni di stato Linearizzazione Equazioni di stato: Esercizi 2, 2 1. Determinare le equazioni di stato per il seguente sistema termico:

Dettagli

Algebra lineare Geometria 1 11 luglio 2008

Algebra lineare Geometria 1 11 luglio 2008 Algebra lineare Geometria 1 11 luglio 2008 Esercizio 1. Si considerino la funzione: { R f : 3 R 3 (α, β, γ) ( 2β α γ, (k 1)β + (1 k)γ α, 3β + (k 2)γ ) dove k è un parametro reale, e il sottospazio U =

Dettagli

Simulazione dei sistemi: esercitazione 1

Simulazione dei sistemi: esercitazione 1 Simulazione dei sistemi: esercitazione 1 Esempio 1: studio di un sistema massa-molla Si consideri il sistema di figura 1 in cui ad un corpo di massa M, vincolato ad un riferimento tramite una molla di

Dettagli

1 Equazioni Differenziali

1 Equazioni Differenziali Equazioni Differenziali Un equazione differenziale è un equazione che esprime un legame tra una variabile indipendente x (o t, quando ci riferiamo al tempo) una variabile dipendente y o incognita che sta

Dettagli

Costruzioni in zona sismica

Costruzioni in zona sismica Costruzioni in zona sismica Lezione 7 Sistemi a più gradi di libertà Il problema dinamico viene formulato con riferimento a strutture con un numero finito di gradi di libertà. Consideriamo le masse concentrate

Dettagli

Inflazione, disoccupazione e moneta

Inflazione, disoccupazione e moneta Macroeconomia (Clamm) - a.a. 2011/2012 Contenuto Curva di Phillips e aspettative 1 Curva di Phillips e aspettative 2 3 4 Curva di Phillips Offerta aggregata: con: P t livello generale dei prezzi; P e t

Dettagli

Capitolo 6. Sistemi lineari di equazioni differenziali. 1

Capitolo 6. Sistemi lineari di equazioni differenziali. 1 Capitolo 6 Sistemi lineari di equazioni differenziali L integrale generale In questo capitolo utilizzeremo la forma canonica di Jordan per studiare alcuni tipi di equazioni differenziali Un sistema lineare

Dettagli

Scomposizione in fratti semplici

Scomposizione in fratti semplici 0.0.. Scomposizione in fratti semplici La determinazione dell evoluzione libera e dell evoluzione forzata di un sistema lineare stazionario richiedono l antitrasformazione di una funzione razionale fratta

Dettagli

Calcolo del movimento di sistemi dinamici LTI

Calcolo del movimento di sistemi dinamici LTI Calcolo del movimento di sistemi dinamici LTI Analisi modale per sistemi dinamici LTI TC Modi naturali di un sistema dinamico Analisi modale Esercizio 1 Costante di tempo Esercizio 2 2 Analisi modale per

Dettagli

2 2 2 A = Il Det(A) = 2 quindi la conica è non degenere, di rango 3.

2 2 2 A = Il Det(A) = 2 quindi la conica è non degenere, di rango 3. Studio delle coniche Ellisse Studiare la conica di equazione 2x 2 + 4xy + y 2 4x 2y + 2 = 0. Per prima cosa dobbiamo classificarla. La matrice associata alla conica è: 2 2 2 A = 2 2 2 Il DetA = 2 quindi

Dettagli

SISTEMI LINEARI. x y + 2t = 0 2x + y + z t = 0 x z t = 0 ; S 3 : ; S 5x 2y z = 1 4x 7y = 3

SISTEMI LINEARI. x y + 2t = 0 2x + y + z t = 0 x z t = 0 ; S 3 : ; S 5x 2y z = 1 4x 7y = 3 SISTEMI LINEARI. Esercizi Esercizio. Verificare se (,, ) è soluzione del sistema x y + z = x + y z = 3. Trovare poi tutte le soluzioni del sistema. Esercizio. Scrivere un sistema lineare di 3 equazioni

Dettagli

Stabilità e retroazione

Stabilità e retroazione 0.0. 4.1 1 iagramma Stabilità e retroazione Stabilità dei sistemi dinamici lineari: Un sistema G(s) è asintoticamente stabile se tutti i suoi poli sono a parte reale negativa. Un sistema G(s) è stabile

Dettagli

LEZIONE 23. ax 2 + bxy + cy 2 + dx + ey + f

LEZIONE 23. ax 2 + bxy + cy 2 + dx + ey + f LEZIONE 23 23.1. Riduzione delle coniche a forma canonica. Fissiamo nel piano un sistema di riferimento Oxy e consideriamo un polinomio di grado 2 in x, y a meno di costanti moltiplicative non nulle, diciamo

Dettagli

Le Derivate. Appunti delle lezioni di matematica di A. Pisani Liceo Classico Dante Alighieri

Le Derivate. Appunti delle lezioni di matematica di A. Pisani Liceo Classico Dante Alighieri Le Derivate Appunti delle lezioni di matematica di A. Pisani Liceo Classico Dante Alighieri Nota bene Questi appunti sono da intendere come guida allo studio e come riassunto di quanto illustrato durante

Dettagli

Equazioni differenziali lineari del secondo ordine a coefficienti costanti

Equazioni differenziali lineari del secondo ordine a coefficienti costanti Equazioni differenziali lineari del secondo ordine a coefficienti costanti 0.1 Introduzione Una equazione differenziale del secondo ordine è una relazione del tipo F (t, y(t), y (t), y (t)) = 0 (1) Definizione

Dettagli

Fisica Generale per Ing. Gestionale e Civile (Prof. F. Forti) A.A. 2010/2011 Prova in itinere del 4/3/2011.

Fisica Generale per Ing. Gestionale e Civile (Prof. F. Forti) A.A. 2010/2011 Prova in itinere del 4/3/2011. Cognome Nome Numero di matricola Fisica Generale per Ing. Gestionale e Civile (Prof. F. Forti) A.A. 00/0 Prova in itinere del 4/3/0. Tempo a disposizione: h30 Modalità di risposta: scrivere la formula

Dettagli

Controlli Automatici e Teoria dei Sistemi Esempi di sistemi dinamici

Controlli Automatici e Teoria dei Sistemi Esempi di sistemi dinamici Controlli Automatici e Teoria dei Sistemi Esempi di sistemi dinamici Prof. Roberto Guidorzi Dipartimento di Elettronica, Informatica e Sistemistica Università di Bologna Viale del Risorgimento 2, 40136

Dettagli

Il moto uniformemente accelerato. Prof. E. Modica

Il moto uniformemente accelerato. Prof. E. Modica Il moto uniformemente accelerato! Prof. E. Modica www.galois.it La velocità cambia... Quando andiamo in automobile, la nostra velocità non si mantiene costante. Basta pensare all obbligo di fermarsi in

Dettagli

Sia y una grandezza che varia, in funzione del tempo, secondo la legge

Sia y una grandezza che varia, in funzione del tempo, secondo la legge Il tasso di crescita Sia y una grandezza che varia, in funzione del tempo, secondo la legge dove è un numero reale positivo diverso da 1 e è il valore che y assume nell istante t=0. Se a>1 la funzione

Dettagli

TEORIA DEI SISTEMI SISTEMI LINEARI

TEORIA DEI SISTEMI SISTEMI LINEARI TEORIA DEI SISTEMI Laurea Specialistica in Ingegneria Meccatronica Laurea Specialistica in Ingegneria Gestionale Indirizzo Gestione Industriale TEORIA DEI SISTEMI SISTEMI LINEARI Ing. Cristian Secchi Tel.

Dettagli

C I R C O N F E R E N Z A...

C I R C O N F E R E N Z A... C I R C O N F E R E N Z A... ESERCITAZIONI SVOLTE 3 Equazione della circonferenza di noto centro C e raggio r... 3 Equazione della circonferenza di centro C passante per un punto A... 3 Equazione della

Dettagli

Equazioni differenziali ordinarie (ODE) lineari del secondo ordine a coefficienti costanti

Equazioni differenziali ordinarie (ODE) lineari del secondo ordine a coefficienti costanti Equazioni differenziali ordinarie (ODE) lineari del secondo ordine a coefficienti costanti Fulvio Bisi Corso di Analisi Matematica A (ca) Università di Pavia Facoltà di Ingegneria 1 ODE lineari del secondo

Dettagli

Risposta al gradino di un sistema del primo ordine

Risposta al gradino di un sistema del primo ordine 0.0..4 Risposta al gradino di un sistema del primo ordine Diagramma Si consideri il seguente sistema lineare del primo ordine: G(s) = +τ s L unico parametro che caratterizza il sistema è la costante di

Dettagli

Esercitazione ENS su processi casuali (13 e 14 Maggio 2008)

Esercitazione ENS su processi casuali (13 e 14 Maggio 2008) Esercitazione ES su processi casuali ( e 4 Maggio 2008) D. Donno Esercizio : Calcolo di autovalori e autovettori Si consideri un processo x n somma di un segnale e un disturbo: x n = Ae π 2 n + w n, n

Dettagli

Mutue posizioni della parabola con gli assi cartesiani

Mutue posizioni della parabola con gli assi cartesiani Mutue posizioni della parabola con gli assi cartesiani L equazione di una parabola generica è data da: Consideriamo l equazione che definisce i punti di intersezione della parabola con l asse delle ascisse

Dettagli

Applicazioni delle leggi della meccanica: moto armnico

Applicazioni delle leggi della meccanica: moto armnico Applicazioni delle leggi della meccanica: moto armnico Discutiamo le caratteristiche del moto armonico utilizzando l esempio di una molla di costante k e massa trascurabile a cui è fissato un oggetto di

Dettagli

FONDAMENTI DI AUTOMATICA

FONDAMENTI DI AUTOMATICA Corso di laurea in Ingegneria delle Telecomunicazioni Guido Guardabassi FONDAMENTI DI AUTOMATICA NOTE COMPLEMENTARI LEZ. II : Sistemi POLITECNICO DI MILANO 4. Sistemi dinamici Il connotato qualificante

Dettagli

LUISS Laurea specialistica in Economia e Finanza Anno Accademico 2010/2011

LUISS Laurea specialistica in Economia e Finanza Anno Accademico 2010/2011 LUISS Laurea specialistica in Economia e Finanza Anno Accademico 1/11 Corso di Metodi Matematici per la Finanza Prof. Fausto Gozzi, Dr. Davide Vergni Soluzioni esercizi 4,5,6 esame scritto del 13/9/11

Dettagli

LE EQUAZIONI DIFFERENZIALI DEL PRIMO ORDINE

LE EQUAZIONI DIFFERENZIALI DEL PRIMO ORDINE LE EQUAZIONI DIFFERENZIALI DEL PRIMO ORDINE 1. EQUAZIONI DIFFERENZIALI LE EQUAZIONI DIFFERENZIALI DEL PRIMO ORDINE ESEMPIO Della funzione y = f(x) si sa che y' 2x = 1. Che cosa si può dire della funzione

Dettagli

ESERCIZI SULLE DISEQUAZIONI I

ESERCIZI SULLE DISEQUAZIONI I ESERCIZI SULLE DISEQUAZIONI I Risolvere le seguenti disequazioni: 1 1) { x < x + 1 4x + 4 x ) { x + 1 > x 4x x 10 ) x 4 x 5 4x + > ; 4) ; 5) x 1 x + 1 x + 1 0 ) x > x 0 7) x > 4x + 1; 8) 4 5 x 1 < 1 x

Dettagli

Esercizi di Algebra lineare

Esercizi di Algebra lineare Esercizi di Algebra lineare G. Romani December, 006 1. Esercizi sulle n-ple 1) Eseguire i seguenti calcoli. (, 1) + (1 3); 4(, ) + 3(4, ); 3(1,, 3) + ( )(,, 1) (3, 3, 3) + (4,, 1) + ( )(1, 4, ); (1, 4,

Dettagli

Fasci di Coniche. Salvino Giuffrida. 2. Determinare e studiare il fascio Φ delle coniche che passano per A (1, 0) con tangente

Fasci di Coniche. Salvino Giuffrida. 2. Determinare e studiare il fascio Φ delle coniche che passano per A (1, 0) con tangente 1 Fasci di Coniche Salvino Giuffrida 1. Determinare e studiare il fascio Φ delle coniche che passano per O = (0, 0), con tangente l asse y, e per i punti (1, 0), (1, ). Determinare vertice e asse della

Dettagli

Disequazioni di secondo grado

Disequazioni di secondo grado Disequazioni di secondo grado. Disequazioni Definizione: una disequazione è una relazione di disuguaglianza tra due espressioni. Detti p() e g() due polinomi definiti in un insieme A, una disequazione

Dettagli

Fondamenti di Automatica

Fondamenti di Automatica Fondamenti di Automatica Analisi dei sistemi dinamici Dott. Ing. Marcello Bonfè Dipartimento di Ingegneria - Università di Ferrara Tel. +39 0532 974839 E-mail: marcello.bonfe@unife.it pag. 1 Analisi dei

Dettagli

Soluzione esercizi sulle funzioni - 5 a E Liceo Scientifico - 04/11/ 13

Soluzione esercizi sulle funzioni - 5 a E Liceo Scientifico - 04/11/ 13 Soluzione esercizi sulle funzioni - 5 a E Liceo Scientifico - 04// 3 Esercizio. Si consideri la funzione ) se 0 f) e se 0. e si verifichi che non è continua in 0. Che tipo di discontinuità presenta in

Dettagli

Equazioni e disequazioni algebriche. Soluzione. Si tratta del quadrato di un binomio. Si ha pertanto. (x m y n ) 2 = x 2m 2x m y n + y 2n

Equazioni e disequazioni algebriche. Soluzione. Si tratta del quadrato di un binomio. Si ha pertanto. (x m y n ) 2 = x 2m 2x m y n + y 2n Si tratta del quadrato di un binomio. Si ha pertanto (x m y n ) 2 = x 2m 2x m y n + y 2n 4. La divisione (x 3 3x 2 + 5x 2) : (x 2) ha Q(x) = x 2 x + 3 e R = 4 Dalla divisione tra i polinomi risulta (x

Dettagli

SISTEMI ELEMENTARI DEL 1 o E 2 o ORDINE

SISTEMI ELEMENTARI DEL 1 o E 2 o ORDINE CONTROLLI AUTOMATICI Ingegneria Meccanica e Ingegneria del Veicolo http://www.dii.unimore.it/~lbiagiotti/controlliautomatici.html SISTEMI ELEMENTARI DEL 1 o E 2 o ORDINE Ing. e-mail: luigi.biagiotti@unimore.it

Dettagli

ECONOMIA APPLICATA ALL INGEGNERIA (Docente: Prof. Ing. Donato Morea) Microeconomia Esercitazione n. 1 - I FONDAMENTI DI DOMANDA E DI OFFERTA

ECONOMIA APPLICATA ALL INGEGNERIA (Docente: Prof. Ing. Donato Morea) Microeconomia Esercitazione n. 1 - I FONDAMENTI DI DOMANDA E DI OFFERTA ESERCIZIO n. 1 - Equilibrio di mercato e spostamenti delle curve di domanda e di offerta La quantità domandata di un certo bene è descritta dalla seguente funzione: p (D) mentre la quantità offerta è descritta

Dettagli

SISTEMI LINEARI MATRICI E SISTEMI 1

SISTEMI LINEARI MATRICI E SISTEMI 1 MATRICI E SISTEMI SISTEMI LINEARI Sistemi lineari e forma matriciale (definizioni e risoluzione). Teorema di Rouché-Capelli. Sistemi lineari parametrici. Esercizio Risolvere il sistema omogeneo la cui

Dettagli

Esercitazione 03: Sistemi a tempo discreto

Esercitazione 03: Sistemi a tempo discreto 0 aprile 06 (h) Alessandro Vittorio Papadopoulos alessandro.papadopoulos@polimi.it Fondamenti di Automatica Prof. M. Farina Analisi di investimenti Una banca propone un tasso d interesse i = 3% trimestrale

Dettagli

Matematica II. Risolvere o integrare una e.d. significa trovarne tutte le soluzione, che costituiscono il cosidetto integrale generale.

Matematica II. Risolvere o integrare una e.d. significa trovarne tutte le soluzione, che costituiscono il cosidetto integrale generale. Definizione Si dice equazione differenziale di ordine n nella funzione incognita y = y (x) una relazione fra y, le sue derivate y,..., y (n), e la variabila indipendente x Risolvere o integrare una e.d.

Dettagli

COME CALCOLARE LA COMBINAZIONE DI MINIMO COSTO DEI FATTORI

COME CALCOLARE LA COMBINAZIONE DI MINIMO COSTO DEI FATTORI COME CALCOLARE LA COMBINAZIONE DI MINIMO COSTO DEI FATTORI In questa Appendice, mostreremo come un impresa possa individuare la sua combinazione di minimo costo dei fattori produttivi attraverso il calcolo

Dettagli

Anno 2. Risoluzione di sistemi di primo grado in due incognite

Anno 2. Risoluzione di sistemi di primo grado in due incognite Anno Risoluzione di sistemi di primo grado in due incognite Introduzione In questa lezione impareremo alcuni metodi per risolvere un sistema di due equazioni in due incognite. Al termine di questa lezione

Dettagli

Sistemi vibranti ad 1 gdl

Sistemi vibranti ad 1 gdl Università degli Studi di Bergamo Dipartimento di Ingegneria Sistemi vibranti ad 1 gdl - vibrazioni forzate - rev. 1. Le vibrazioni forzate di un sistema ad 1 gdl sono descritte dall equazione: mẍ + cẋ

Dettagli

Esercizi sulla retta. Gruppo 1 (4A TSS SER, 4B TSS SER, 4A AM )

Esercizi sulla retta. Gruppo 1 (4A TSS SER, 4B TSS SER, 4A AM ) Esercizi sulla retta. Gruppo 1 (4A TSS SER, 4B TSS SER, 4A AM ) 1. Scrivere l'equazione della retta passante per i punti P1(-3,1), P2(2,-2). Dobbiamo applicare l'equazione di una retta passante per due

Dettagli