PRIMA PROVA PARZIALE DI CONTROLLO DIGITALE A.A. 2005/ aprile 2006 TESTO E SOLUZIONE

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "PRIMA PROVA PARZIALE DI CONTROLLO DIGITALE A.A. 2005/ aprile 2006 TESTO E SOLUZIONE"

Transcript

1 PRIMA PROVA PARZIALE DI CONTROLLO DIGITALE A.A. 2005/ aprile 2006 TESTO E SOLUZIONE

2 Esercizio Assegnato il sistema dinamico, non lineare, tempo invariante x (k + ) = x (k) + x 2 (k) 2 + u(k) x 2 (k + ) = x 2 (k) + + x (k) x 2 (k) + u(k) y(k) = x (k) x 2 (k) 3 Domanda.. Si determinino gli stati e le uscite d equilibrio del sistema in corrispondenza dell ingresso costante u(k) = 2 (k). All equilibrio deve valere che { x (k + ) = x (k) x k x 2 (k + ) = x 2 (k) x 2 k quindi x = x + 3( x 2 ) 2 x 2 = x 2 + ( + x )( x 2 ) + 2 = ȳ = ( x x 2 ) 3 2 x = + x 2 = + ȳ = ( x x 2 ) 3 In definitiva si ottengono due stati d equilibrio, in corrispondenza dei quali l uscita assume due distinti vaslori d equilibrio: x = + x 2 = + ȳ = 0 x = x 2 = + ȳ = 8

3 Domanda.2. Determinare l espressione del sistema linearizzato in corrispondenza di tutti i punti di equilibrio calcolati nella risposta alla domanda precedente. Assegnato il sistema dinamico nonlineare a tempo discreto { x(k + ) = f (x(k), u(k)) y(k) = g (x(k), u(k)) nel generico stato d equilibrio ( x, ū), il sistema dinamico linearizzato è descritto dalle equazioni di stato seguenti δ x (k + ) = Aδ x (k) + B δ u (k) δ y (k) = C δ x (k) + D δ u (k) dove valgono le δ x (k) = δ (k) δ 2 (k) δ n (k) T, con δ i (k) = x i (k) x i,i =, 2 n. Inoltre δ u (k) = u(k) ū ed infine δ y (k) = y(k) ȳ. Per il sistema assegnato le matrici che compaiono nelle equazioni sono date da A = f i ( ) x j x, ū = 2( x 2 )( + ū) 2 x + ( x 2 ) x D = f i g( ) u x, ū = 0 B = f i ( ) u x, ū = ( x2 ) 2 C = g( ) x j x, ū = 3( x x 2 ) 2 3( x x 2 ) 2 In particolare, per i due stati d equilibrio trovati in precedenza, le matrici che compaiono nelle equazioni di stato del sistema linearizzato sono x = + x 2 = + ȳ = 0 = A = B = 0 C = 0 0 x = x 2 = + ȳ = 8 = A = B = 0 C = 2 2 essendo la matrice D identicamente nulla in entrambi i casi. Si noti, analizzando le matrici di stato del sistema linearizzato nei due stati d equilibrio considerati, che il primo stato d equilibrio risulta instabile (la matrice A possiede un autovalore di modulo maggiore dell unità), mentre per il secondo punto d equilibrio non si può decidere. Infatti la matrice A del linearizzato in questo caso possiede un autovalore stabile ed uno al limite della stabilità. Ciò autorizza ad affermare che il sistema linearizzato considerato è semplicemente stabile, ma non autorizza a stabilire alcunché a proposito della stabilità dello stato d equilibrio considerato per il sistema nonlineare di partenza.

4 Esercizio 2 Si consideri il seguente sistema dinamico a tempo discreto descritto dalle seguenti equazioni: x(k + ) = x(k) + 2 u(k) y(k) = 0 x(k) Domanda 2. Partendo dallo stato iniziale x 0 = T, si applica al sistema l ingresso u(k) = { 0 per k < 0 per k 0 Trovare l espressione analitica di y(k). Espressa tramite la Z trasformata, l espressione cercata è data da Y (z) = C z (z I A) x 0 + C (z I A) B U(z) dove chiaramente U(z) è la Z trasformata del segnale d ingresso e vale U(z) = z z Nel calcolo dell espressione di Y (z) è necessario determinare la matrice (zi A). Si noti che a causa della struttura sia della matrice C che della matrice B non è necessario determinare completamente la matrice (zi A), ma solamente gli elementi della prima ed ultima riga (z I A) = (z + ) 2 (z + 4) (z + )(z + 4) 2(z + ) 2(z + )??? 0 (z + ) (z + )(z + 5) A questo punto la risposta libera del sistema, a partire dalle condizioni iniziali assegnate, è calcolabile nel modo seguente Y L (z) = C z (z I A) z (7z + 3) x 0 = (z + )(z + 4) Antitrasformando l espressione appena trovata si arriva a y L (k) = 8( ) k ( 4) k (k), k N Per quanto riguarda la risposta forzata del sistema vale l espressione Antitrasformando si ottiene Y F (z) = C (z I A) B U(z) = y F (k) = 6z (z + )(z + 4)(z ) 3 5 ( )k ( 4)k (k), k N La risposta del sistema è la somma delle due espressioni trovate 3 y(k) = y L (k) + y F (k) = 5 + 7( )k 3 5 ( 4)k (k), k N

5 Domanda 2.2 Analizzare la stabilità e la stabilità BIBO del sistema. Alla luce dell analisi di stabilità effettuata, commentare il risultato della domanda 2.. Stabilità interna: il polinomio caratteristico del sistema è data da p(z) = (z + ) 2 (z + 4) in cui si nota la presenza di una radice di modulo superiore all unità (z = 4). Ciò permette di concludere che il sistema è internamente instabile. Stabilità BIBO: la funzione di trasferimento del sistema è pari a F(z) = 6 (z + )(z + 4) ed anche in essa compare il modo instabile. (z = 4). È possibile concludere allora che il sistema è anche BIBO instabile. Considerazioni: a conferma di quanto appena evidenziato si noti che sia la risposta libera y L (k) che quella forzata y F (k) divergono, al crescere di k, a causa del termine ( 4) k. La si è calcolata nel determinare la risposta forzata del sistema, nella risposta alla domanda precedente.

6 Esercizio 3 Si consideri il sistema dinamico descritto dallo schema a blocchi in figura. d d 2 u + + P(z) + y 2 ove = 0.5 z + 0.4, P(z) = z 0. z Domanda 3.. Determinare le espressioni delle funzioni di trasferimento tra gli ingressi u(k), d (k), d 2 (k) e l uscita y(k). Determinazione della FdT T u, y : facendo riferimento alla figura seguente S u + + P(z) + y 2 per quanto riguarda il sottosistema S in figura vale che T S = P(z) 2P(z) e quindi la funzione di trasferimento cercata è data da T u, y = P(z) 2P(z) + P(z)

7 Sostituendo le espressioni di e di P(z) si arriva a T u, y = 0.5(z + 0.4) z 2 0.3z 0.23 Determinazione della FdT T d, y: facendo riferimento alla figura seguente d + + y P(z) 2 si può scrivere che e sostituendo le espressioni di P(z) e : T d, y = P(z) (2 )P(z) (z + 0.4)(z 0.) T d, y = z 2 0.3z 0.23 Determinazione della FdT T d2, y: facendo riferimento alla figura seguente d y P(z) 2 vale l espressione ed in definitiva T d2, y = P(z)(2 ) T d2, y = (z 0.)(z + 0.5) z 2 0.3z 0.23

8 Domanda 3.2. Sfruttando le espressioni delle funzioni di trasferimento calcolate nella risposta alla domanda 3., determinare l espressione analitica della sola risposta di regime, quando gli ingressi valgono rispettivamente u(k) = 2 (k) d (k) = 2 (k) d 2 (k) = (k) (k 5) Le funzioni di trasferimento da utilizzare sono T u, y = 0.5(z + 0.4) z 2 0.3z 0.23 (z + 0.4)(z 0.) T d, y = z 2 0.3z 0.23 (z 0.)(z + 0.5) T d2, y = z 2 0.3z 0.23 e sono tutte BIBO stabili. È possibile allora utilizzare il teorema del valore finale per trovare il valore di regime dell uscita, dato che gli ingressi applicati sono semplici segnali a gradino oppure combinazioni di segnali a gradino. In particolare si ha che dove y regime (k) = y,reg + y 2,reg + y 3,reg z y,reg = lim T u, y (z) 0.5z z z z = ed infine z 2z y 2,reg = lim T d, z y(z) z z = y 3,reg = 0 dato che la FdT T d2, y è BIBO stabile ed il segnale d ingresso considerato si annulla dopo i primi 5 campioni. In definitiva il valore di regime cercato è pari a y regime (k) = y,reg + y 2,reg + y 3,reg = 6.064

9 Esercizio 4 È assegnato il sistema rappresentato dalla funzione di trasferimento = z (z + 0.5) 2 (z 0.9) Domanda 4.. Determinare una FdT approssimante per il sistema, tramite l approssimazione a poli dominanti. Motivare le scelte fatte. La FdT considerata possiede tre poli ed un solo zero: la latenza (eccesso poli su zeri) è allora pari a 2. Inoltre il guadagno statico della FdT è dato da µ = G() = 56 9 Si può approssimare la FdT assegnata con una funzione di trasferimento approssimante G approx (z) che possieda un polo pari al polo dominante della, quindi in z = 0.9; nessuno zero ed un ulteriore polo nell origine, così da rispettare la latenza medesimo guadagno statico della funzione di trasferimento approssimata In definitiva la funzione di trasferimento approssimante che rispetta le specifiche appena elencate è G approx (z) = z (z 0.9) La bontà dell approssimazione è evidenziata dalla figura seguente, in cui sono sovrapposte la risposta al gradino unitario della funzione e della sua approssimante G approx (z) G approx (z) tempo Figura : Risposta al gradino della FdT originaria e di quella approssimante G approx (z).

10 Domanda 4.2. Si consideri ora un altro sistema dinamico, descritto dalla FdT seguente: F(z) = z 0.4 (z + 0.5) 2 Per questo sistema determinare una FdT approssimante di tipo FIR, di ordine opportuno. Motivare le scelte fatte. L spprossimante cercato G FIR (z) deve fornire una buona approssimazione sia alla risposta all impulso del sistema originario F(z), che della risposta al gradino dello stesso. Allo scopo di determinare i coefficienti del FIR approssimante, è necessario determinare i primi valori della risposta impulsiva del sistema dinamico descritto da. Per determinare i coefficienti della risposta all impulso del sistema si può utilizzare l algoritmo di divisione ripetuta ( long division ). Si noti che il sistema ha latenza pari a, il che significa che il primo campione della risposta impulsiva (all istante k = 0) è certamente nullo. L agoritmo di divisione ripetuta fornirà allora i campioni della risposta impulsiva a partire dal secondo campione della stessa (cioè dall istante k = ). () (+) 0.4 (2) ( ).4 (3) (+) (4) ( ) (5) (+) (6) ( ) (7) (+) () ( ) (8) ( ) (9) (+) (2) ( ) (0) ( ) Trascurando i termini successivi della risposta impulsiva del sistema 2 si può determinare la funzione di trasferimeto del FIR approssimante F FIR (z) =.036 z.4z 0 +.5z 9 0.8z z z z 2 La costante di guadagno introdotta nell espressione di F FIR consente di manterene anche per il sistema approssimante lo stesso guadagno statico del sistema originario. Nelle figure seguenti viene riportato rispettivamente il confronto tra la risposta all gradino del sistema originale e quello approssimante (nella prima figura) ed il confronto tra la risposta all impulso del sistema originale e di quello approssimante: 2 Quindi assumendo che siano identicamente nulli dall istante k = 3 compreso in poi...

11 .2 risposta al gradino G FIR (z) tempo Figura 2: Risposta al gradino della FdT originaria e di quella approssimante G FIR (z)..5 risposta all impulso G FIR (z) tempo Figura 3: Risposta all impulso della FdT originaria e di quella approssimante G FIR (z).

12 Esercizio 5 Con riferimento al sistema rappresentato dallo schema a blocchi in figura: u + P(z) y ove = z (z )(z 2), P(z) = z a, a, b IR (z b) Domanda 5.. Analizzare la stabilità a ciclo chiuso del sistema, al variare dei parametri a, b IR. Evidenziare, eventualmente anche facendo uso di grafici, le regioni di IR 2 in cui, al variare di a, b si ha stabilità asintotica oppure stabilità semplice od instabilità. Il polinomio caratteristico di ciclo chiuso è pari a: ossia, dopo alcuni passaggi (z ) (z 2) (z b) + z (z a) = 0 z 3 z 2 (2 + b) + z (2 a + 3b) 2b = 0 Per studiare la stabilità del sistema in funzione dei parametri a, b conviene applicare la trasformazione bilineare ed applicare il criterio di Routh Hurwitz. Applicazione della trasformazione bilineare z = w+ w primo passo dell algoritmo (2 + b) (2 + a + 3b) 2b ( + b) a + 2b ( + b) ( a + 2b) ( a) 2 0 b b ( a + b) ( b) 2 2

13 Secondo passo dell algoritmo ( a) (2 2a + 2b) 4 ab 8 a a 2b 6b a 3 a a + 2b 3 6b + a (6b a + 5) a 2b a 2b (3 8b + a) a ( a) (a + 2b ) In definitiva il polinomio trasformato è dato da ( a) w 3 + (a + 2b ) w 2 + (3 8b + a) w + (6b a + 5) = 0 Ora si può applicare il criterio di Routh Hurwitz al polinomio nella variabile w. La tabella di Routh è la seguente 3 ( a) (3 + a 8b) 2 (a + 2b ) (6b a + 5) 8 ( a + b 2b 2 ) a + 2b 0 (6b a + 5) La stabilià asintotica è garantita dal soddisfacimento delle condizioni espresse dai sistemi di disequazioni 3 a > 0 a < 0 a + 2b > 0 a + b 2b 2 a + 2b > 0 a + 6b + 5 > 0 oppure a + 2b < 0 a + b 2b 2 a + 2b < 0 a + 6b + 5 < 0 Graficamente le regioni nello spazio dei parametri (b, a) che garantiscono stabilità asintotica sono rappresentate nella figura seguente. 3 Ottenuti imponendo costanza di segno ai termini della prima colonna della tabella di Routh.

14 Soltanto il primo sistema di disequazioni ammette soluzione, quindi esiste una regione nel piano (b, a) all interno della quale è possibile scegliere i due parametri essendo certi che il sistema risultante sarà asintoticamente stabile. Al di fuori di tale regione (evidenziata in giallo in figura) per qualsiasi scelta dei parametri (b, a) certamente non si ha stabilità asintotica v 3 v 2 v v parametro a parametro b Figura 4: In figura la regione di asintotica stabilità in giallo nel piano dei parametri (b, a). Le curve rappresentano i vincoli individuati uguagliando a zero gli elementi nella prima colonna della tabella di Routh rispettivamente l elemento in riga 3, riga 2 ecc..

Sistemi LTI a tempo continuo

Sistemi LTI a tempo continuo Esercizi 4, 1 Sistemi LTI a tempo continuo Equazioni di stato, funzioni di trasferimento, calcolo di risposta di sistemi LTI a tempo continuo. Equilibrio di sistemi nonlineari a tempo continuo. Esercizi

Dettagli

Esercizi. Sistemi LTI a tempo continuo. Esempio. Funzioni di trasferimento

Esercizi. Sistemi LTI a tempo continuo. Esempio. Funzioni di trasferimento Esercizi 4, 1 Esercizi Funzioni di trasferimento Dato un sistema LTI descritto dalle equazioni di stato: Esercizi 4, 2 Sistemi LTI a tempo continuo Trasformando con Laplace si ottiene la seguente espressione

Dettagli

PROVA SCRITTA DI FONDAMENTI DI AUTOMATICA A.A. 2004/ settembre 2005 TESTO E SOLUZIONE

PROVA SCRITTA DI FONDAMENTI DI AUTOMATICA A.A. 2004/ settembre 2005 TESTO E SOLUZIONE PROVA SCRITTA DI FONDAMENTI DI AUTOMATICA A.A. 4/5 settembre 5 TESTO E Esercizio In riferimento allo schema a blocchi in figura. y y u - s5 sk y k s y 4 Domanda.. Determinare una realizzazione in equazioni

Dettagli

COMPITO A: soluzione

COMPITO A: soluzione PROVA SCRITTA DI FONDAMENTI DI AUTOMATICA (PRIMA PARTE) A.A. 2005/2006 9 novembre 2005 nome e cognome: numero di matricola: Note: Scrivere le risposte negli spazi appositi. Non consegnare fogli aggiuntivi.

Dettagli

Stabilità per i sistemi dinamici a tempo discreto

Stabilità per i sistemi dinamici a tempo discreto Parte 3, 1 Stabilità per i sistemi dinamici a tempo discreto Parte 3, 2 Stabilità: Le definizioni delle proprietà di stabilità per i sistemi dinamici a tempo discreto sono analoghe a quelle viste per i

Dettagli

AUTOMATICA I (Ingegneria Biomedica - Allievi da L a Z) Appello dell 8 luglio 2008: testo e soluzione

AUTOMATICA I (Ingegneria Biomedica - Allievi da L a Z) Appello dell 8 luglio 2008: testo e soluzione AUTOMATICA I (Ingegneria Biomedica - Allievi da L a Z) Appello dell 8 luglio 8: testo e soluzione Prof. Maria Prandini 1. Si consideri il sistema con ingresso u ed uscita y descritto dalle seguenti equazioni:

Dettagli

Esercizi 3, 1. Prof. Thomas Parisini. Esercizi 3, 3 Regola:

Esercizi 3, 1. Prof. Thomas Parisini. Esercizi 3, 3 Regola: Esercizi 3, 1 Esercizi 3, 2 Esercizi Stabilità per sistemi a tempo continuo Analisi degli autovalori Analisi del polinomio caratteristico, criterio di Routh-Hurwitz Stabilità per sistemi a tempo continuo

Dettagli

Stabilità per sistemi a tempo continuo

Stabilità per sistemi a tempo continuo Esercizi 3, 1 Stabilità per sistemi a tempo continuo Analisi degli autovalori Analisi del polinomio caratteristico, criterio di Routh-Hurwitz Calcolo di Esercizi 3, 2 Esercizi Stabilità per sistemi a tempo

Dettagli

Esercizi. Funzioni di trasferimento. Dato un sistema LTI descritto dalle equazioni di stato:

Esercizi. Funzioni di trasferimento. Dato un sistema LTI descritto dalle equazioni di stato: Esercizi 4, 1 Esercizi Funzioni di trasferimento Dato un sistema LTI descritto dalle equazioni di stato: Trasformando con Laplace si ottiene la seguente espressione per l uscita: Risposta libera Risposta

Dettagli

PROVA SCRITTA DI FONDAMENTI DI AUTOMATICA A.A. 2005/ febbraio 2006 TESTO E SOLUZIONE

PROVA SCRITTA DI FONDAMENTI DI AUTOMATICA A.A. 2005/ febbraio 2006 TESTO E SOLUZIONE PROVA SCRITTA DI FONDAMENTI DI AUTOMATICA A.A. 25/26 13 febbraio 26 TESTO E SOLUZIONE Esercizio 1 Si consideri il sistema lineare descritto dalle equazioni di stato seguenti: ẋ 1 (t) = 2x 1 (t) αx 2 (t)

Dettagli

Parte 3, 1. Stabilità. Prof. Thomas Parisini. Fondamenti di Automatica

Parte 3, 1. Stabilità. Prof. Thomas Parisini. Fondamenti di Automatica Parte 3, 1 Stabilità Parte 3, 2 Stabilità: - del movimento (vedere libro ma non compreso nel programma) - dell equilibrio - del sistema (solo sistemi lineari) Analizzeremo separatamente sistemi a tempo

Dettagli

1 a PROVA PARZIALE DI FONDAMENTI DI AUTOMATICA A.A. 2004/ novembre Soluzione

1 a PROVA PARZIALE DI FONDAMENTI DI AUTOMATICA A.A. 2004/ novembre Soluzione a PROVA PARZIAE DI FONDAMENTI DI AUTOMATIA A.A. 24/25 9 novembre 24 Esercizio on riferimento alla funzione di trasferimento G(s) = 7s2 + 36s + 48 (s + 3)(s + 4) 2 Domanda.. Indicare i valori del guadagno,

Dettagli

PROVA SCRITTA DI FONDAMENTI DI AUTOMATICA A.A. 2004/ luglio 2005 TESTO E SOLUZIONE

PROVA SCRITTA DI FONDAMENTI DI AUTOMATICA A.A. 2004/ luglio 2005 TESTO E SOLUZIONE PROVA SCRITTA DI FONDAMENTI DI AUTOMATICA A.A. 24/25 2 luglio 25 TESTO E SOLUZIONE Esercizio In riferimento allo schema a blocchi in figura. d s y 2 r y s2 s K Domanda.. Determinare una realizzazione in

Dettagli

Studio di sistemi dinamici a tempo discreto tramite FdT. Risposta allo scalino

Studio di sistemi dinamici a tempo discreto tramite FdT. Risposta allo scalino Parte 6, 1 Studio di sistemi dinamici a tempo discreto tramite FdT Risposta allo scalino Risposta allo scalino Parte 6, 2 Valore iniziale e finale Parte 6, 3 Valore iniziale Uso il teorema del valore iniziale

Dettagli

Fondamenti di Automatica - Ingegneria Gestionale (H-PO) Prof. Silvia Strada Prima prova in itinere del 25 Novembre 2016 Tempo a disposizione: 1.30 h.

Fondamenti di Automatica - Ingegneria Gestionale (H-PO) Prof. Silvia Strada Prima prova in itinere del 25 Novembre 2016 Tempo a disposizione: 1.30 h. Politecnico di Milano Fondamenti di Automatica - Ingegneria Gestionale (H-PO) Prof. Silvia Strada Prima prova in itinere del 25 Novembre 206 Tempo a disposizione:.30 h. Nome e Cognome................................................................................

Dettagli

Esercizi sul luogo delle radici

Esercizi sul luogo delle radici FA Esercizi 6, 1 Esercizi sul luogo delle radici Analisi di prestazioni a ciclo chiuso, progetto di regolatori facendo uso del luogo delle radici. Analisi di prestazioni FA Esercizi 6, 2 Consideriamo il

Dettagli

Teoria dei Sistemi s + 1 (s + 1)(s s + 100)

Teoria dei Sistemi s + 1 (s + 1)(s s + 100) Teoria dei Sistemi 03-07-2015 A Dato il sistema dinamico rappresentato dalla funzione di trasferimento 10s + 1 (s + 1)(s 2 + 16s + 100) A.1 Si disegnino i diagrammi di Bode, Nyquist e i luoghi delle radici.

Dettagli

PROVA SCRITTA DI FONDAMENTI DI AUTOMATICA A.A. 2013/ giugno 2014

PROVA SCRITTA DI FONDAMENTI DI AUTOMATICA A.A. 2013/ giugno 2014 PROVA SCRITTA DI FONDAMENTI DI AUTOMATICA A.A. 2013/2014 30 giugno 2014 nome e cognome: numero di matricola: prova d esame da CFU : 6 CFU 9 CFU Note: Scrivere le risposte negli spazi appositi. Non consegnare

Dettagli

Esame di FONDAMENTI DI AUTOMATICA (9 crediti) SOLUZIONE

Esame di FONDAMENTI DI AUTOMATICA (9 crediti) SOLUZIONE Esame di FONDAMENTI DI AUTOMATICA (9 crediti) Prova scritta 16 luglio 2014 SOLUZIONE ESERCIZIO 1. Dato il sistema con: si determinino gli autovalori della forma minima. Per determinare la forma minima

Dettagli

PROVA SCRITTA DI FONDAMENTI DI AUTOMATICA A.A. 2005/ giugno 2006 TESTO E SOLUZIONE

PROVA SCRITTA DI FONDAMENTI DI AUTOMATICA A.A. 2005/ giugno 2006 TESTO E SOLUZIONE PROVA SCRITTA DI FONDAMENTI DI AUTOMATICA A.A. 25/26 5 giugno 26 TESTO E SOLUZIONE Esercizio 1 Si consideri il sistema dinamico descritto dalle equazioni di stato ẋ 1 (t) = x 1 (t) + 2x 2 (t) + u(t) ẋ

Dettagli

ẋ 1 = 2x 1 + (sen 2 (x 1 ) + 1)x 2 + 2u (1) y = x 1

ẋ 1 = 2x 1 + (sen 2 (x 1 ) + 1)x 2 + 2u (1) y = x 1 Alcuni esercizi risolti su: - calcolo dell equilibrio di un sistema lineare e valutazione delle proprietà di stabilità dell equilibrio attraverso linearizzazione - calcolo del movimento dello stato e dell

Dettagli

Stabilità di sistemi interconnessi

Stabilità di sistemi interconnessi Parte 6, 1 Stabilità di sistemi interconnessi Parte 6, 2 Introduzione Assegnato un sistema dinamico LTI descritto tramite uno schema a blocchi (a tempo continuo oppure a tempo discreto), che cosa si può

Dettagli

INGEGNERIA DELLE TELECOMUNICAZIONI

INGEGNERIA DELLE TELECOMUNICAZIONI INGEGNERIA DELLE TELECOMUNICAZIONI FONDAMENTI DI AUTOMATICA Prof. Marcello Farina TEMA D ESAME E SOLUZIONI 18 febbraio 2014 Anno Accademico 2012/2013 ESERCIZIO 1 Si consideri il sistema descritto dalle

Dettagli

rapporto tra ingresso e uscita all equilibrio.

rapporto tra ingresso e uscita all equilibrio. Sistemi Dinamici: Induttore: Condensatore: Massa: Oscillatore meccanico: Pendolo: Serbatoio cilindrico: Serbatoio cilindrico con valvola d efflusso: Funzione di Trasferimento: Stabilità del sistema: (N.B.

Dettagli

Esercitazione 05: Trasformata di Laplace e funzione di trasferimento

Esercitazione 05: Trasformata di Laplace e funzione di trasferimento Esercitazione 05: Trasformata di Laplace e funzione di trasferimento 28 marzo 208 (3h) Fondamenti di Automatica Prof. M. Farina Responsabile delle esercitazioni: Enrico Terzi Queste dispense sono state

Dettagli

AUTOMATICA I (Ingegneria Biomedica - Allievi da L a Z) Appello del 20 luglio 2006: testo e soluzione

AUTOMATICA I (Ingegneria Biomedica - Allievi da L a Z) Appello del 20 luglio 2006: testo e soluzione AUTOMATICA I (Ingegneria Biomedica - Allievi da L a Z) Appello del 2 luglio 26: testo e soluzione Prof. Maria Prandini 1. Si consideri il sistema lineare con ingresso u ed uscita y descritto dalle seguenti

Dettagli

SISTEMI DIGITALI DI CONTROLLO

SISTEMI DIGITALI DI CONTROLLO Sistemi Digitali di Controllo A.A. 2009-2010 p. 1/27 SISTEMI DIGITALI DI CONTROLLO Prof. Alessandro De Luca DIS, Università di Roma La Sapienza deluca@dis.uniroma1.it Lucidi tratti dal libro C. Bonivento,

Dettagli

TEORIA DEI SISTEMI e IDENTIFICAZIONE DEI MODELLI (IMC - 12 CFU) COMPITO DI TEORIA DEI SISTEMI 20 Giugno A.A

TEORIA DEI SISTEMI e IDENTIFICAZIONE DEI MODELLI (IMC - 12 CFU) COMPITO DI TEORIA DEI SISTEMI 20 Giugno A.A TEORIA DEI SISTEMI e IDENTIFICAZIONE DEI MODELLI (IMC - CFU) COMPITO DI TEORIA DEI SISTEMI Giugno - A.A. - Esercizio. Si consideri il sistema a tempo continuo descritto dalle seguenti equazioni: x(t +

Dettagli

Esame di FONDAMENTI DI AUTOMATICA (6 CFU) / CONTROLLI AUTOMATICI SOLUZIONE

Esame di FONDAMENTI DI AUTOMATICA (6 CFU) / CONTROLLI AUTOMATICI SOLUZIONE Esame di FONDAMENTI DI AUTOMATICA (6 CFU) / CONTROLLI AUTOMATICI Prova scritta 8 settembre 2017 SOLUZIONE ESERCIZIO 1. Si consideri il seguente circuito elettrico passivo: Applicando le leggi di Kirchhoff

Dettagli

Esercizi di Fondamenti di Automatica

Esercizi di Fondamenti di Automatica Esercizi di Fondamenti di Automatica Bruno Picasso Esercizio Sia dato il sistema lineare { ẋ(t) = Ax(t), x R n x() = x.. Mostrare che se x è tale che Ax = λx, λ R, allora il corrispondente movimento dello

Dettagli

Politecnico di Milano. Prof. SILVIA STRADA Cognomi LF - PO SOLUZIONE

Politecnico di Milano. Prof. SILVIA STRADA Cognomi LF - PO SOLUZIONE Politecnico di Milano Prof. SILVIA STRADA Cognomi LF - PO SOLUZIONE A.A. 25/6 Prima prova di Fondamenti di Automatica (CL Ing. Gestionale) 27 Novembre 25 ESERCIZIO punti: 8 su 32 Si consideri il sistema

Dettagli

B = Si studi, giustificando sinteticamente le proprie affermazioni, la stabilità del sistema. si A = G(s) = Y f (s) U(s) = 1.

B = Si studi, giustificando sinteticamente le proprie affermazioni, la stabilità del sistema. si A = G(s) = Y f (s) U(s) = 1. ESERCIZIO 1 Un sistema dinamico lineare invariante e a tempo continuo è descritto dall equazione differenziale che lega l ingresso all uscita:... y (t) + ÿ(t) + 4ẏ(t) + 4y(t) = u(t) 1. Si determinino le

Dettagli

Corso di Controllo DigitaleAntitrasformate Zeta e calcolo della risposta p.1/32

Corso di Controllo DigitaleAntitrasformate Zeta e calcolo della risposta p.1/32 Corso di Controllo Digitale Antitrasformate Zeta e calcolo della risposta Università degli Studi della Calabria Corso di Laurea in Ingegneria Elettronica. Ing. Domenico Famularo Istituto per la Sistemistica

Dettagli

Elaborazione di segnali e immagini: modulo segnali

Elaborazione di segnali e immagini: modulo segnali Elaborazione di segnali e immagini: modulo segnali 30 gennaio 014 Esame parziale con soluzioni Esercizio 1 Dato un sistema LTI descritto dalla seguente equazione alle differenze: v(k) + v(k 1) 10v(k )

Dettagli

ANALISI IN FREQUENZA DEI SISTEMI A TEMPO DISCRETO

ANALISI IN FREQUENZA DEI SISTEMI A TEMPO DISCRETO ANALISI IN FREQUENZA DEI SISTEMI A TEMPO DISCRETO Funzione di trasferimento Risposta allo scalino Schemi a blocchi Risposta in frequenza Illustrazioni dal Testo di Riferimento per gentile concessione degli

Dettagli

Fondamenti di Automatica (10 cfu) Corso di Studi in Ingegneria Gestionale A.A. 2011/12 TESTI ESERCIZI PRIMA PARTE DEL CORSO

Fondamenti di Automatica (10 cfu) Corso di Studi in Ingegneria Gestionale A.A. 2011/12 TESTI ESERCIZI PRIMA PARTE DEL CORSO Fondamenti di Automatica (10 cfu) Corso di Studi in Ingegneria Gestionale A.A. 2011/12 TESTI ESERCIZI PRIMA PARTE DEL CORSO Prof. SILVIA STRADA Esercitatore ANDREA G. BIANCHESSI ESERCIZIO 1 1. Scrivere

Dettagli

Stabilità dei sistemi dinamici

Stabilità dei sistemi dinamici Stabilità - 1 Corso di Laurea in Ingegneria Meccanica Stabilità dei sistemi dinamici DEIS-Università di Bologna Tel. 051 2093020 Email: crossi@deis.unibo.it URL: www-lar.deis.unibo.it/~crossi Stabilità

Dettagli

Studio dei sistemi dinamici tramite FdT. Risposta allo scalino. Risposta allo scalino di sistemi LTI a tempo continuo.

Studio dei sistemi dinamici tramite FdT. Risposta allo scalino. Risposta allo scalino di sistemi LTI a tempo continuo. Parte 7, 1 Parte 7, 2 Introduzione Studio dei sistemi dinamici tramite FdT Risposta allo scalino Assegnato un sistema dinamico LTI descritto tramite una Funzione di Trasferimento (a tempo continuo oppure

Dettagli

Studio dei sistemi dinamici tramite FdT. Risposta allo scalino

Studio dei sistemi dinamici tramite FdT. Risposta allo scalino Parte 7, 1 Studio dei sistemi dinamici tramite FdT Risposta allo scalino Parte 7, 2 Introduzione Assegnato un sistema dinamico LTI descritto tramite una Funzione di Trasferimento (a tempo continuo oppure

Dettagli

Nome: Nr. Mat. Firma: C.L.: Info. Elet. Telec. Altro.

Nome: Nr. Mat. Firma: C.L.: Info. Elet. Telec. Altro. Controlli Automatici A 22 Giugno 11 - Esercizi Si risolvano i seguenti esercizi. Nome: Nr. Mat. Firma: C.L.: Info. Elet. Telec. Altro. a.1) Calcolare la trasformata di Laplace X(s) dei seguenti segnali

Dettagli

Esercitazione 06: Sistemi interconnessi e funzioni di trasferimento

Esercitazione 06: Sistemi interconnessi e funzioni di trasferimento Esercitazione 06: Sistemi interconnessi e funzioni di trasferimento 20 aprile 2016 (3h) Alessandro Vittorio Papadopoulos alessandro.papadopoulos@polimi.it Fondamenti di Automatica Prof. M. Farina 1 Schema

Dettagli

INGEGNERIA INFORMATICA

INGEGNERIA INFORMATICA INGEGNERIA INFORMATICA FONDAMENTI DI AUTOMATICA 09/02/2017 Prof. Marcello Farina SOLUZIONI Anno Accademico 2015/2016 ESERCIZIO 1 Si consideri il sistema a tempo discreto non lineare descritto dalle seguenti

Dettagli

PROVA SCRITTA DI FONDAMENTI DI AUTOMATICA A.A. 2003/ gennaio 2004

PROVA SCRITTA DI FONDAMENTI DI AUTOMATICA A.A. 2003/ gennaio 2004 PROVA SCRITTA DI FONDAMENTI DI AUTOMATICA A.A. 2003/2004 4 gennaio 2004 nome e cognome: numero di matricola: Note: Scrivere le risposte negli spazi appositi. Non consegnare fogli aggiuntivi. La chiarezza

Dettagli

ESERCIZIO 1 Si consideri il sistema con ingresso u(t) ed uscita y(t) descritto dalle seguenti equazioni

ESERCIZIO 1 Si consideri il sistema con ingresso u(t) ed uscita y(t) descritto dalle seguenti equazioni ESERCIZIO 1 Si consideri il sistema con ingresso u(t) ed uscita y(t) descritto dalle seguenti equazioni ẋ 1 (t) x 1 (t) + 3x 2 (t) + u(t) ẋ 2 (t) 2u(t) y(t) x 1 (t) + x 2 (t) 1. Si classifichi il sistema

Dettagli

Controlli Automatici - Parte A

Controlli Automatici - Parte A Cognome: Nome: N. Matr.: Controlli Automatici - Parte A Ingegneria Meccanica e Ingegneria del Veicolo Compito del 8 giugno 217 - Quiz Per ciascuno dei seguenti quesiti, segnare con una crocetta le risposte

Dettagli

Fondamenti di Automatica Prof. Luca Bascetta. Primo prova intermedia 27 Aprile 2018

Fondamenti di Automatica Prof. Luca Bascetta. Primo prova intermedia 27 Aprile 2018 Fondamenti di Automatica Prof. Luca Bascetta Primo prova intermedia 27 Aprile 28 ESERCIZIO E assegnato il sistema dinamico, a tempo continuo, lineare e invariante con ingresso u(t) e uscita y(t): { ẋ(t)

Dettagli

FONDAMENTI DI AUTOMATICA I - Ingegneria Elettronica Appello del 15 luglio 2015

FONDAMENTI DI AUTOMATICA I - Ingegneria Elettronica Appello del 15 luglio 2015 FONDAMENTI DI AUTOMATICA I - Ingegneria Elettronica Appello del 15 luglio 2015 Prof.ssa Mara Tanelli 1. Si consideri il sistema dinamico non lineare con ingresso u ed uscita y descritto dalle seguenti

Dettagli

TEORIA DELLA STABILITÀ. Esercizi con soluzione. G. Oriolo Dipartimento di Informatica e Sistemistica Università di Roma La Sapienza

TEORIA DELLA STABILITÀ. Esercizi con soluzione. G. Oriolo Dipartimento di Informatica e Sistemistica Università di Roma La Sapienza TEORIA DELLA STABILITÀ Esercizi con soluzione G. Oriolo Dipartimento di Informatica e Sistemistica Università di Roma La Sapienza Esercizio 1 Si consideri il sistema non lineare descritto dalle seguenti

Dettagli

COMPITO DI CONTROLLI AUTOMATICI 20 Febbraio 2014

COMPITO DI CONTROLLI AUTOMATICI 20 Febbraio 2014 COMPITO DI CONTROLLI AUTOMATICI Febbraio 14 Esercizio 1. [11 punti] Si consideri il modello ingresso/uscita a tempo continuo avente la seguente funzione di trasferimento: G(s) = 1 3 s(s + 1)(s + 1) (s

Dettagli

COMPITO DI ANALISI DEI SISTEMI 21 Settembre 2005

COMPITO DI ANALISI DEI SISTEMI 21 Settembre 2005 COMPITO DI ANALISI DEI SISTEMI 21 Settembre 2005 Esercizio 1. Si consideri il sistema a tempo continuo descritto dalle seguenti equazioni: ẋ(t) = Fx(t) + [ g 1 g 2 ] u(t) = 0 1 0 2 1 0 x(t) + 0 0 1 1 u(t)

Dettagli

SISTEMI ELEMENTARI DEL 1 o E 2 o ORDINE

SISTEMI ELEMENTARI DEL 1 o E 2 o ORDINE CONTROLLI AUTOMATICI Ingegneria Meccanica e Ingegneria del Veicolo http://www.dii.unimore.it/~lbiagiotti/controlliautomatici.html SISTEMI ELEMENTARI DEL 1 o E 2 o ORDINE Ing. e-mail: luigi.biagiotti@unimore.it

Dettagli

x 2 (t) K 1 K 2 2z + z 2 z 3 + 2z 2 z 2 = z(z + 2)

x 2 (t) K 1 K 2 2z + z 2 z 3 + 2z 2 z 2 = z(z + 2) 1 1. CONNESSIONI Esercizio 1.1. Si consideri lo schema di figura, in cui i sistemi e Σ 2 sono sistemi discreti connessi in serie e i segnali di retroazione dallo stato di e dallo stato di Σ 2 vengono iniettati

Dettagli

s + 6 s 3, b) i valori di K per i quali il sistema a ciclo chiuso risulta asintoticamente stabile;

s + 6 s 3, b) i valori di K per i quali il sistema a ciclo chiuso risulta asintoticamente stabile; 1 Esercizi svolti Esercizio 1. Con riferimento al sistema di figura, calcolare: ut) + K s s + 6 s 3 yt) a) la funzione di trasferimento a ciclo chiuso tra ut) e yt); b) i valori di K per i quali il sistema

Dettagli

Studio di sistemi dinamici tramite FdT. Risposta transitoria e risposta a regime

Studio di sistemi dinamici tramite FdT. Risposta transitoria e risposta a regime Parte 8, 1 Studio di sistemi dinamici tramite FdT Risposta transitoria e risposta a regime Parte 8, 2 Alcune definizioni e richiami! Consideriamo un sistema LTI, a tempo continuo oppure a tempo discreto,

Dettagli

Stabilità e retroazione

Stabilità e retroazione 0.0. 4.1 1 iagramma Stabilità e retroazione Stabilità dei sistemi dinamici lineari: Un sistema G(s) è asintoticamente stabile se tutti i suoi poli sono a parte reale negativa. Un sistema G(s) è stabile

Dettagli

u = quantità di proteina B, y = misura dell attività della proteina A

u = quantità di proteina B, y = misura dell attività della proteina A Esercizio [0 punti] Si vuole descrivere con un sistema dinamico a tempo continuo l evoluzione nel tempo della quantità di una proteina A. La produzione di tale proteina dipende dalla quantità di RNA messaggero

Dettagli

COMPITO DI CONTROLLI AUTOMATICI - 7 CFU e 9 CFU 16 Febbraio 2010

COMPITO DI CONTROLLI AUTOMATICI - 7 CFU e 9 CFU 16 Febbraio 2010 COMPITO DI CONTROLLI AUTOMATICI - 7 CFU e 9 CFU 6 Febbraio Esercizio. Si consideri il modello ingresso/uscita a tempo continuo e causale descritto dalla seguente equazione differenziale: d 3 y(t) dt 3

Dettagli

Quattro sistemi dinamici presentano poli e zeri disposti nel piano complesso come indicato nelle seguenti figure

Quattro sistemi dinamici presentano poli e zeri disposti nel piano complesso come indicato nelle seguenti figure -Es Stab Quattro sistemi dinamici presentano poli e zeri disposti nel piano complesso come indicato nelle seguenti figure Per ciascuno di essi si dica, giustificando la risposta, se il sistema e: a) asintoticamente

Dettagli

Fondamenti di Automatica (CL Ing. Gestionale) a.a Prof. Silvia Strada Prima prova intermedia 28 Novembre 2014

Fondamenti di Automatica (CL Ing. Gestionale) a.a Prof. Silvia Strada Prima prova intermedia 28 Novembre 2014 Politecnico di Milano Fondamenti di Automatica (CL Ing. Gestionale) a.a.2014-15 Prof. Silvia Strada Prima prova intermedia 28 Novembre 2014 Nome e Cognome:........................... Matricola...........................

Dettagli

COMPITO DI FONDAMENTI E APPLICAZIONI DI CONTROLLI AUTOMATICI 21 Febbraio 2012

COMPITO DI FONDAMENTI E APPLICAZIONI DI CONTROLLI AUTOMATICI 21 Febbraio 2012 COMPITO DI FONDAMENTI E APPLICAZIONI DI CONTROLLI AUTOMATICI 21 Febbraio 212 Esercizio 1. Si consideri il modello ingresso/uscita a tempo continuo avente la seguente funzione di trasferimento: G(s) = 1

Dettagli

Esercizi di teoria dei sistemi

Esercizi di teoria dei sistemi Esercizi di teoria dei sistemi Controlli Automatici LS (Prof. C. Melchiorri) Esercizio Dato il sistema lineare tempo continuo: ẋ(t) 2 y(t) x(t) x(t) + u(t) a) Determinare l evoluzione libera dello stato

Dettagli

COMPITO DI CONTROLLI AUTOMATICI 26 Settembre 2008

COMPITO DI CONTROLLI AUTOMATICI 26 Settembre 2008 COMPITO DI CONTROLLI AUTOMATICI 26 Settembre 28 Esercizio 1. Si consideri il modello ingresso/uscita a tempo continuo descritto dalla seguente equazione differenziale: a d2 y(t) 2 con a parametro reale.

Dettagli

Esame di FONDAMENTI DI AUTOMATICA (9 CFU) SOLUZIONE

Esame di FONDAMENTI DI AUTOMATICA (9 CFU) SOLUZIONE Esame di FONDAMENTI DI AUTOMATICA (9 CFU) Prova scritta 29 gennaio 2018 SOLUZIONE ESERCIZIO 1. Si vuole realizzare un sistema robotico, costituito da un attuatore lineare che integra il circuito elettronico

Dettagli

Modellazione e controllo Ca1 (a,b,c) Ca2 (d,e,f,g) Mec(a,c,d,e,g)

Modellazione e controllo Ca1 (a,b,c) Ca2 (d,e,f,g) Mec(a,c,d,e,g) Modellazione e controllo Ca1 (a,b,c) Ca (d,e,f,g) Mec(a,c,d,e,g) 13 Luglio 011 a) Una corpo di massa M e soggetto a una forza di richiamo elastica F el = K(x)x, una forza di attrito F att = hẋ e una forza

Dettagli

COMPITO DI CONTROLLI AUTOMATICI 7 Febbraio 2013

COMPITO DI CONTROLLI AUTOMATICI 7 Febbraio 2013 COMPITO DI CONTROLLI AUTOMATICI 7 Febbraio 213 Esercizio 1. Si consideri il modello ingresso/uscita a tempo continuo avente la seguente funzione di trasferimento: G(s) = 1 1 (s.1)(s + 1) 2 s(s +.1) 2 (s

Dettagli

Sistemi Elementari. Prof. Laura Giarré https://giarre.wordpress.com/ca/

Sistemi Elementari. Prof. Laura Giarré https://giarre.wordpress.com/ca/ Sistemi Elementari Prof. Laura Giarré Laura.Giarre@UNIMORE.IT https://giarre.wordpress.com/ca/ Rappresentazioni di una funzione di trasferimento Una funzione di trasferimento espressa in forma polinomiale

Dettagli

Esame di FONDAMENTI DI AUTOMATICA (9 CFU) SOLUZIONE

Esame di FONDAMENTI DI AUTOMATICA (9 CFU) SOLUZIONE Esame di FONDAMENTI DI AUTOMATICA (9 CFU) Prova scritta 20 giugno 2017 SOLUZIONE ESERCIZIO 1. Si vuole realizzare un sistema di sorveglianza costituito da una flotta di droni di tipologia quadricottero.

Dettagli

Compitino di Fondamenti di Automatica del 18/11/2011- TEMA A

Compitino di Fondamenti di Automatica del 18/11/2011- TEMA A Compitino di Fondamenti di Automatica del 18/11/2011- TEMA A Cognome e nome: Matr.: Non è ammessa la consultazione di libri o quaderni. Scrivere in modo chiaro e ordinato, motivare ogni risposta e fornire

Dettagli

Si considerino i sistemi elettrici RL rappresentati nella seguente figura: L u 1 (t)

Si considerino i sistemi elettrici RL rappresentati nella seguente figura: L u 1 (t) Esercizio Circuiti R in serie). Si considerino i sistemi elettrici R rappresentati nella seguente figura: + + + + u t) R y t) u t) R y t) Si consideri inoltre il sistema ottenuto collegando in serie i

Dettagli

PROVA SCRITTA DI FONDAMENTI DI AUTOMATICA A.A. 2011/ settembre 2012

PROVA SCRITTA DI FONDAMENTI DI AUTOMATICA A.A. 2011/ settembre 2012 PROVA SCRITTA DI FONDAMENTI DI AUTOMATICA A.A. 2011/2012 10 settembre 2012 nome e cognome: numero di matricola: prova d esame da CFU : 6 CFU 9 CFU Note: Scrivere le risposte negli spazi appositi. Non consegnare

Dettagli

Controlli Automatici - Parte A

Controlli Automatici - Parte A Cognome: Nome: N. Matr.: Ho seguito il corso con Prof Giarré Prof. Biagiotti Controlli Automatici - Parte A Ingegneria Meccanica e Ingegneria del Veicolo Compito del 12 gennaio 218 - Quiz Per ciascuno

Dettagli

SISTEMI LINEARI E STAZIONARI A TEMPO CONTINUO

SISTEMI LINEARI E STAZIONARI A TEMPO CONTINUO SISTEMI LINEARI E STAZIONARI A TEMPO CONTINUO Movimento ed equilibrio Stabilità Illustrazioni dal Testo di Riferimento per gentile concessione degli Autori MOVIMENTO ED EQUILIBRIO Sistema lineare e stazionario

Dettagli

PROVA SCRITTA DI FONDAMENTI DI AUTOMATICA A.A. 2010/ gennaio 2012

PROVA SCRITTA DI FONDAMENTI DI AUTOMATICA A.A. 2010/ gennaio 2012 PROVA SCRITTA DI FONDAMENTI DI AUTOMATICA A.A. 2010/2011 10 gennaio 2012 nome e cognome: numero di matricola: prova d esame da CFU : 6 CFU 9 CFU Note: Scrivere le risposte negli spazi appositi. Non consegnare

Dettagli

FONDAMENTI DI AUTOMATICA 11 novembre 2018 Prima prova in itinere Cognome Nome Matricola

FONDAMENTI DI AUTOMATICA 11 novembre 2018 Prima prova in itinere Cognome Nome Matricola FONDAMENTI DI AUTOMATICA novembre 28 Prima prova in itinere Cognome Nome Matricola............ Verificare che il fascicolo sia costituito da 7 pagine compresi il foglio di carta semilogaritmica. Scrivere

Dettagli

Regolazione e Controllo dei Sistemi Meccanici 23 Novembre 2005

Regolazione e Controllo dei Sistemi Meccanici 23 Novembre 2005 Regolazione e Controllo dei Sistemi Meccanici 23 Novembre 25 Numero di matricola A) Si consideri la risposta al gradino unitario riportata in fig. e si determini qualitativamente la funzione di trasferimento

Dettagli

COMPITO DI SEGNALI E SISTEMI 2 febbraio 2017

COMPITO DI SEGNALI E SISTEMI 2 febbraio 2017 COMPITO DI SEGNALI E SISTEMI 2 febbraio 2017 NOTA: Tutte le risposte vanno adeguatamente giustificate. Risposte errate e/o con motivazioni errate avranno valore negativo nella valutazione Teoria 1. Si

Dettagli

Controllabilità e raggiungibilità

Controllabilità e raggiungibilità TDSC Parte 4, 1 Controllabilità e raggiungibilità Definizioni e proprietà per i sistemi dinamici TDSC Parte 4, 2 Definizioni generali Che cosa si intende per controllabilità o per raggiungibilità?! Facendo

Dettagli

Esame di FONDAMENTI DI AUTOMATICA (9 CFU) SOLUZIONE

Esame di FONDAMENTI DI AUTOMATICA (9 CFU) SOLUZIONE Esame di FONDAMENTI DI AUTOMATICA (9 CFU) Prova scritta 9 giugno 2017 SOLUZIONE ESERCIZIO 1. Si consideri un altoparlante ad attrazione magnetica per la riproduzione sonora, rappresentato dalla seguente

Dettagli

ANTITRAFORMATE DI LAPLACE MODI DI UN SISTEMA

ANTITRAFORMATE DI LAPLACE MODI DI UN SISTEMA CONTROLLI AUTOMATICI Ingegneria della Gestione Industriale e della Integrazione di Impresa http://www.automazione.ingre.unimore.it/pages/corsi/controlliautomaticigestionale.htm La determinazione dell'evoluzione

Dettagli

Punti di equilibrio: sistemi tempo continui

Punti di equilibrio: sistemi tempo continui Capitolo 3 ANALISI DELLA STABILITÀ 31 Punti di equilibrio: sistemi tempo continui Si consideri il seguente sistema tempo continuo: ẋ(t) A x(t) + B u(t) y(t) C x(t) + D u(t) I punti di equilibrio x 0 del

Dettagli

Controlli Automatici - Parte A

Controlli Automatici - Parte A Cognome: Nome: N. Matr.: Controlli Automatici - Parte A Ingegneria Meccanica e Ingegneria del Veicolo Compito del 9 gennaio 217 - Quiz Per ciascuno dei seguenti quesiti, segnare con una crocetta le risposte

Dettagli

FONDAMENTI DI SISTEMI DINAMICI (prof. Vincenzo LIPPIELLO A.A ) Corso di Laurea in Ingegneria Elettronica e delle Telecomunicazioni - II anno

FONDAMENTI DI SISTEMI DINAMICI (prof. Vincenzo LIPPIELLO A.A ) Corso di Laurea in Ingegneria Elettronica e delle Telecomunicazioni - II anno Voto Cognome/Nome & No. Matricola FONDAMENTI DI SISTEMI DINAMICI prof. Vincenzo LIPPIELLO A.A. 05 06) Corso di Laurea in Ingegneria Elettronica e delle Telecomunicazioni - II anno PROVA DEL MARZO 07 Rispondere

Dettagli

Uso della trasformata Zeta per il calcolo della risposta

Uso della trasformata Zeta per il calcolo della risposta Uso della trasformata Zeta per il calcolo della risposta Consigli generali (Aggiornato 07//004) ) Si vuole qui richiamare l attenione sullo stesso fatto già segnalato per l uso della trasformata di Laplace:

Dettagli

k 2 m 1 u 2 Figura 1 z 1 β m 1 ż 1 + β m 1 ż m 2 z 2 β m 2 ẋ = A x + B u y = C x + D u

k 2 m 1 u 2 Figura 1 z 1 β m 1 ż 1 + β m 1 ż m 2 z 2 β m 2 ẋ = A x + B u y = C x + D u Esercizio Si consideri il sistema meccanico riportato in Figura, dove m e m sono le masse dei carrelli, z e z sono le rispettive posizioni, k e k sono i coefficienti elastici delle molle, e β è un coefficiente

Dettagli

Controlli Automatici - Parte A

Controlli Automatici - Parte A Cognome: Nome: N. Matr.: Ho seguito il corso con Prof Giarré Prof. Biagiotti Controlli Automatici - Parte A Ingegneria Meccanica e Ingegneria del Veicolo Compito del 1 febbraio 18 - Quiz Per ciascuno dei

Dettagli

CONCETTO DI STABILITÀ NEI SISTEMI DI CONTROLLO. Sistema in condizioni di equilibrio a t = 0. d(t) = 0. u(t) = 0. y(t) = 0. Sistema

CONCETTO DI STABILITÀ NEI SISTEMI DI CONTROLLO. Sistema in condizioni di equilibrio a t = 0. d(t) = 0. u(t) = 0. y(t) = 0. Sistema CONCETTO DI STABILITÀ NEI SISTEMI DI CONTROLLO Sistema in condizioni di equilibrio a t = 0. d(t) = 0 u(t) = 0 Sistema y(t) = 0 Tipi di perturbazione. Perturbazione di durata limitata: u(t) = 0, t > T u

Dettagli

Equilibrio di sistemi dinamici Esercizi proposti. 1 Esercizio (derivato dall es. #8 del 18/09/2002) 2 Esercizio (proposto il 10/02/2003, es.

Equilibrio di sistemi dinamici Esercizi proposti. 1 Esercizio (derivato dall es. #8 del 18/09/2002) 2 Esercizio (proposto il 10/02/2003, es. Equilibrio di sistemi dinamici Esercizio (derivato dall es. #8 del 8/9/22) Dato il sistema dinamico, non lineare, a tempo continuo, descritto dalle seguenti equazioni: ẋ (t) = x (t).5x 2 2 (t)+4u(t) ẋ

Dettagli

3. Trovare, se esiste, una funzione di ingresso che porti il sistema da x(0) = x allo stato 0.

3. Trovare, se esiste, una funzione di ingresso che porti il sistema da x(0) = x allo stato 0. Esempio Per il sistema a tempo discreto x(k + ) = Ax(k) + Bu(k) avente: A =, B =, si considerino i seguenti quesiti:. Il sistema è raggiungibile? è controllabile?. Lo stato x = [ ] è raggiungibile? è controllabile?.

Dettagli

Controlli Automatici - Parte A

Controlli Automatici - Parte A Cognome: Nome: N. Matr.: Controlli Automatici - Parte A Ingegneria Meccanica e Ingegneria del Veicolo Compito del 2 febbraio 217 - Quiz Per ciascuno dei seguenti quesiti, segnare con una crocetta le risposte

Dettagli

1 Il polinomio minimo.

1 Il polinomio minimo. Abstract Il polinomio minimo, così come il polinomio caratterisico, è un importante invariante per le matrici quadrate. La forma canonica di Jordan è un approssimazione della diagonalizzazione, e viene

Dettagli

Soluzione nel dominio del tempo

Soluzione nel dominio del tempo Soluzione nel dominio del tempo Prof. Laura Giarré Laura.Giarre@UNIMORE.IT https://giarre.wordpress.com/ca/ Antitrasformate CA 2017 2018 Prof. Laura Giarré 1 Risposta nel dominio trasformato Ricordo che

Dettagli

Proprietà strutturali e leggi di controllo

Proprietà strutturali e leggi di controllo Proprietà strutturali e leggi di controllo Retroazione statica dallo stato La legge di controllo Esempi di calcolo di leggi di controllo Il problema della regolazione 2 Retroazione statica dallo stato

Dettagli

Esercitazione Sistemi e Modelli n.6

Esercitazione Sistemi e Modelli n.6 Esercitaione Sistemi e Modelli n.6 Eserciio Si consideri un allevamento di conigli con il numero di maschi uguale al numero delle femmine. Come variabili di stato si consideri il numero di coppie di conigli

Dettagli

01AYS / 07AYS - FONDAMENTI DI AUTOMATICA Tipologia degli esercizi proposti nel compito del 16/XI/2007

01AYS / 07AYS - FONDAMENTI DI AUTOMATICA Tipologia degli esercizi proposti nel compito del 16/XI/2007 1 01AYS / 07AYS - FONDAMENTI DI AUTOMATICA Tipologia degli esercizi proposti nel compito del 16/XI/2007 Esercizio 1 - Date le matrici A = 2p 1 1 2p 2 C = 1 p di un modello LTI in variabili di stato a tempo

Dettagli

ANALISI DEI SISTEMI DI CONTROLLO A TEMPO CONTINUO. Schema generale di controllo in retroazione

ANALISI DEI SISTEMI DI CONTROLLO A TEMPO CONTINUO. Schema generale di controllo in retroazione ANALISI DEI SISTEMI DI CONTROLLO A TEMPO CONTINUO Schema generale di controllo in retroazione Requisiti di un sistema di controllo Stabilità in condizioni nominali Margine di guadagno e margine di fase

Dettagli

Esame di FONDAMENTI DI AUTOMATICA (6 CFU) / CONTROLLI AUTOMATICI SOLUZIONE

Esame di FONDAMENTI DI AUTOMATICA (6 CFU) / CONTROLLI AUTOMATICI SOLUZIONE Esame di FONDAMENTI DI AUTOMATICA (6 CFU) / CONTROLLI AUTOMATICI Prova scritta 20 giugno 2017 SOLUZIONE ESERCIZIO 1. Si vuole realizzare un sistema di sorveglianza costituito da una flotta di droni di

Dettagli

Stimatori dello stato

Stimatori dello stato Capitolo. TEORIA DEI SISTEMI 5. Stimatori dello stato La retroazione statica dello stato u(k) = K x(k) richiede la conoscenza di tutte le componenti del vettore di stato. Tipicamente le uniche variabili

Dettagli

Dispensa n.1. Sul legame tra autovalori della matrice A e poli della funzione di trasferimento

Dispensa n.1. Sul legame tra autovalori della matrice A e poli della funzione di trasferimento Dispensa n.1 Sul legame tra autovalori della matrice A e poli della funzione di trasferimento E dato un sistema lineare, avente un solo ingresso, una sola uscita e uno spazio di stato a dimensione n. Tale

Dettagli