AUTOMATICA I (Ingegneria Biomedica - Allievi da L a Z) Appello del 20 luglio 2006: testo e soluzione

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "AUTOMATICA I (Ingegneria Biomedica - Allievi da L a Z) Appello del 20 luglio 2006: testo e soluzione"

Transcript

1 AUTOMATICA I (Ingegneria Biomedica - Allievi da L a Z) Appello del 2 luglio 26: testo e soluzione Prof. Maria Prandini 1. Si consideri il sistema lineare con ingresso u ed uscita y descritto dalle seguenti equazioni: ẋ 1 (t) = αx 1 (t) ( α + 2 ) 2 x2 (t) + 2u(t) ẋ 2 (t) = x 1 (t) 4x 2 (t) + u(t) y(t) = x 1 (t) dove α è un parametro reale (α R). 1.1 Determinare per quali valori di α il sistema è asintoticamente stabile. La matrice dinamica del sistema è: [ ] α (α + 2) 2 A = 1 4 Verifichiamo per quali valori di α gli autovalori di A hanno tutti parte reale strettamente negativa. Il polinomio caratteristico di A è det(λi A) = λ 2 + (4 α)λ + α Dato che si tratta di un polinomio di grado 2, condizione necessaria e sufficiente perchè abbia radici a parte reale strettamente negativa è che tutti i coefficienti siano dello stesso segno e non nulli. Questa condizione si traduce nel sistema di equazioni: { 4 α > e quindi nella condizione α < 4 α > 1.2 Posto α = 2, determinare l espressione analitica del movimento libero dello stato e dell uscita del sistema associati alla condizione iniziale x 1 () = 1 e x 2 () =. Per α = 2, si ha Da ẋ 1 (t) = 2x 1 (t) + 2u(t) ẋ 2 (t) = x 1 (t) 4x 2 (t) + u(t) y(t) = x 1 (t) ẋ 1 (t) = 2x 1 (t) + 2u(t), x 1 () = 1, u(t) =, t ottengo: x 1 (t) = e 2t, t. Quindi il movimento libero dell uscita associato alla condizione iniziale x 1 () = 1 e x 2 () = è y(t) = x 1 (t) = e 2t, t. Per quanto riguarda il movimento dello stato, calcolo x 2 (t), t sostituendo nella seconda equazione di stato l epsressione di x 1 (t), t : ẋ 2 (t) = 4x 2 (t) + v(t), x 2 () =, v(t) = e 2t, t

2 e quindi ottengo x 2 (t) = e 4t x 2 () + t t t e 4(t τ) v(τ)dτ = e 4t e 4τ e 2τ dτ = e 4t e 2τ dτ = 1 2 [e 2t e 4t ], t. Da cui segue che il movimento libero dello stato associato alla condizione iniziale x 1 () = 1 e x 2 () = è x 1 (t) = e 2t t x 2 (t) = 1 2 [e 2t e 4t ] 1.3 Posto α = 2, determinare la funzione di trasferimento del sistema con ingresso u e uscita y. Applico la trasformata di Laplace ad ambo i membri della trasformazione di uscita ottenendo: Dala prima prima equazione di stato si ha Y (s) = X 1 (s). sx 1 (s) x 1 () = 2X 1 (s) + 2U(s), da cui, posto x 1 () = per il calcolo della funzione di trasferimento, segue che La fuzione di trasferimento è quindi: X 1 (s) = 2 s + 2 U(s) G(s) = 2 s Posto α = 2, tracciare l andamento qualitativo della risposta forzata allo scalino del sistema con ingresso u e uscita y (specificare nel grafico valore iniziale, valore asintotico, e tempo di assestamento). Si tratta della risposta forzata allo scalino di un sistema che ha come funzione di trasferimento quella calcolata al punto precedente, e cioè G(s) = 2 s+2. Dato che G(s) è propria, allora la risposta allo scalino partirà da zero. Dato che G(s) ha poli con parte reale strettamente negativa, allora la risposta allo scalino unitario tenderà al guadagno G() = 1. (nota: valore iniziale e finale possono essere determinati applicando il teorema del valore iniziale e del valore finale). Per quanto riguarda il tempo di assestamento, esso è determinato dalla costante di tempo dell unico polo ed è quindi T a 5τ = = 2.5. La modalità di risposta è esponenziale, data la presenza di un unico polo reale.

3 Si consideri un sistema dinamico lineare di ordine 3 con funzione di trasferimento G(s). In figura sono rappresentati i diagrammi di Bode (approssimati ed esatti) del modulo e della fase della risposta in frequenza associata alla funzione di trasferimento G(s). 2 Diagramma di Bode Modulo 4 6 db pulsazione Diagramma di Bode Fase 9 gradi pulsazione 2.1 Determinare il guadagno, il tipo, le singolarità (cioè i poli e gli zeri) della funzione di trasferimento G(s) sapendo che tutte le sue singolarità sono a valori reali. Scrivere l espressione di G(s). Tipo: g = (a basse pulsazioni, dove contribuiscono solo guadagno ed eventuali singolarità nell origine, il diagramma del modulo ha pendenza nulla) Guadagno: µ =.1 (a basse pulsazioni il modulo vale -2 db e la fase ). Zeri: nessuno (il diagramma del modulo è decrescente) Poli: p 1 = 1, p 2 = p 3 = 1 (il diagramma asintotico del modulo varia la sua pendenza da db/decade a -2 db/decade alla pulsazione ω = 1 e da -2 db/decade a -6 db/decade alla pulsazione

4 ω = 1, e corrispondentemente la fase asintotica si riduce di 9 o e 18 o. I poli sono tutti reali perchè viene detto nel testo dell esercizio.) G(s) =.1 (1 + s)(1 + s 1 )2 2.2 Determinare l espressione analitica della risposta a regime del sistema con funzione di trasferimento G(s) quando viene applicato in ingresso ad esso il segnale u(t) = sen(.1t) + 2sen(t), t. Dato che il sistema è del terzo ordine ed ha tre poli reali negativi, esso è asintoticamente stabile. La risposta di regime del sistema è data dal teorema della risposta in frequenza per ognuno dei due seganli sinuosidali di cui è somma l ingresso: y (t) = G(i.1) sen(.1t + arg G(i.1)) + 2 G(i1) sen(t + arg G(i1)). Posso leggere i valori di G(i.1) e G(i1) dal diagramma di Bode del modulo: G(i.1) db = 2 G(i.1) =.1 G(i1) db = 2 3 G(i.1) = e quelli di arg G(i.1) e arg G(i1) dal diagramma di Bode della fase: arg G(i.1) = o = radianti arg G(i1) = 45 o = π 4 radianti Allora y (t) =.1sen(.1t) +.14sen(t π 4 ). 3. Si consideri il sistema con ingresso u ed uscita y in figura, ottenuto mediante interconnessione di quattro sistemi lineari del 1 o ordine con funzione di trasferimento G 1 (s), G 2 (s), G 3 (s), e G 4 (s). 3.1 Determinare l espressione della funzione di trasferimento H(s) del sistema con ingresso u ed uscita y, in funzione di G 1 (s), G 2 (s), G 3 (s), e G 4 (s). G 2 (s) H(s) = G 1 (s) 1 G 2 (s)(g 3 (s) + G 4 (s))

5 3.2 Posto G 1 (s) = 1 s 2, G 2(s) = s 2 s+7, G 3(s) = 2 s+2 e G 4(s) = 1 s+2 al punto precedente: (a) verificare che H(s) = s + 2 (s + 4) 2 ; (b) valutare le proprietà di stabilità del sistema con ingresso u ed uscita y. nell espressione di H(s) calcolata G a (s) = G 3 (s) + G 4 (s) = 1 s + 2 s 2 G 2 (s) G b (s) = 1 G 2 (s)g a (s) = s+7 1 s 2 H(s) = G 1 (s)g b (s) = 1 s 2 1 s+7 s+2 (s 2)(s + 2) (s + 4) 2 = = s 2 (s + 2)(s + 7) s + 7 s 2 + 9s + 14 s + 2 (s + 2) (s + 4) 2 = (s 2)(s + 2) (s + 4) 2 H(s) presenta due poli in 4. Essi sono anche autovaolri. Il sistema è però di ordine 4, e quindi non possiamo concludere nulla sulle proprietà di stabilità del sistema senza conoscere i due autovalori nascosti. Questi autovalori nascosti si sono generati nel parallelo tra i sistemi con funzione di trasferimento G 3 (s) e G 4 (s) (autovalore pari quindi a -2) e nella serie tra il sistema con funzione di trasferimento G 1 (s) e quello con funzione di trasferimento G b (s) (autovalore pari a 2). A causa di quest ultimo autovalore positivo, si può concludere che il sistema è instabile. 3.3 Determinare l espressione analitica dell uscita forzata y(t), t, del sistema con funzione di trasferimento H(s) = s + 2 (s + 4) 2 quando u(t) = e 2t, t. La trasformata di Laplace dell uscita forzata è Y (s) = H(s)U(s) = s + 2 (s + 4) 2 1 s + 2 = 1 (s + 4) 2 la cui antitrasformata è y(t) = te 4t, t.

6 4. Si consideri il sistema dinamico non lineare con ingresso u ed uscita y descritto dalle equazioni: ẋ(t) = [.1x 4 (t) + 9x 2 (t) ] u(t) y(t) = x(t) In figura è tracciato il grafico della funzione h(x) =.1x 4 + 9x Determinare gli stati di equilibrio associati all ingresso costante u(t) = 1, t, e valutarne le proprietà di stabilità. Il valore degli stati di equilibrio si ottiene uguagliando a zero il secondo membro dell equazione di stato calcolata ponendo x(t) = x e u(t) = 1, t: [.1 x x 2] 1 =. Tale equazione può essere riscritta in termini della funzione h(x) come: h( x) =, per cui gli stati di equilibrio si leggono dal grafico sopra riportato e sono x a = 3, x b = e x c = 3. Quando u(t) = 1, t, la derivata di x(t) è ẋ = h(x). Tramite il grafico di h(x) si può analizzare il segno della derivata in un intorno di ognuno degli stati di equilibro suddetti e dedurre che: x a = 3 e x b = sono instabili, mentre x c = 3 è asintoticamente stabile. 4.2 Dire, giustificando la risposta, se gli stati di equilibrio associati agli ingressi: (a) u(t) = 2, t, (b) u(t) = 1, t, e le loro proprietà di stabilità cambiano rispetto al caso trattato al punto precedente. In entrambi i casi gli stati di equilibrio non cambiano perchè sono ottenuti uguagliando a zero il secondo membro dell equazione di stato calcolata ponendo x(t) = x e u(t) = ū( ), t: [.1 x x 2] ū =, e quindi sono ancora gli annullanti di h(x): x a = 3, x b = e x c = 3. Per quanto riguarda le proprietà di stabilità, nel caso (a) la derivata di x(t) per u(t) = 2, t, è ẋ = 2h(x) e quindi ha lo stesso segno di h(x), da cui si deduce che le proprietà di stabilità degli stati

7 di equilibrio rimangono inalterate. Nel caso (b) la derivata di x(t) per u(t) = 1, t, è ẋ = h(x) e quindi ha segno opposto rispetto a h(x). Tracciando il grafico corrispondente, si deduce che le proprietà di stabilità degli stati di equilibrio cambiano e, in particolare, x a = 3 e x b = sono instabili, mentre x c = 3 è asintoticamente stabile. 5. Con riferimento alla classe dei sistemi lineari a tempo discreto: a) scrivere le equazioni del sistema in forma matriciale (equazione di stato e trasformazione di uscita); Si veda la dispensa del corso. b) scrivere l espressione del movimento dello stato associato alla condizione iniziale x e all ingresso ū(t), t, (formula di Lagrange a tempo discreto), evidenziando la componente libera e quella forzata del movimento. Si veda la dispensa del corso.

AUTOMATICA I (Ingegneria Biomedica - Allievi da L a Z) Appello del 4 luglio 2006: testo e soluzione

AUTOMATICA I (Ingegneria Biomedica - Allievi da L a Z) Appello del 4 luglio 2006: testo e soluzione AUTOMATICA I (Ingegneria Biomedica - Allievi da L a Z) Appello del 4 luglio 26: testo e soluzione Prof. Maria Prandini 1. Si consideri il sistema con ingresso u ed uscita y descritto dalle seguenti equazioni:

Dettagli

AUTOMATICA I (Ingegneria Biomedica - Allievi da L a Z) Appello del 10 settembre 2008: testo e soluzione. y = x 2. x 1 = 1 x 2 = 1

AUTOMATICA I (Ingegneria Biomedica - Allievi da L a Z) Appello del 10 settembre 2008: testo e soluzione. y = x 2. x 1 = 1 x 2 = 1 AUTOMATICA I (Ingegneria Biomedica - Allievi da L a Z) Appello del 1 settembre 28: testo e soluzione Prof. Maria Prandini 1. Si consideri il sistema non lineare descritto dalle seguenti equazioni: ẋ 1

Dettagli

AUTOMATICA I (Ingegneria Biomedica - Allievi da L a Z) Appello dell 8 luglio 2008: testo e soluzione

AUTOMATICA I (Ingegneria Biomedica - Allievi da L a Z) Appello dell 8 luglio 2008: testo e soluzione AUTOMATICA I (Ingegneria Biomedica - Allievi da L a Z) Appello dell 8 luglio 8: testo e soluzione Prof. Maria Prandini 1. Si consideri il sistema con ingresso u ed uscita y descritto dalle seguenti equazioni:

Dettagli

ẋ 1 = x x 1 + u ẋ 2 = 2x 2 + 2u y = x 2

ẋ 1 = x x 1 + u ẋ 2 = 2x 2 + 2u y = x 2 Testo e soluzione dell appello del 2 settembre 2. Si consideri il sistema descritto dalle seguenti equazioni: ẋ = x 2 2 + 2x + u ẋ 2 = 2x 2 + 2u y = x 2. Determinare l espressione analitica del movimento

Dettagli

FONDAMENTI DI AUTOMATICA (Ingegneria Biomedica) Appello del 16 febbraio 2010: testo e soluzione. y = x 1

FONDAMENTI DI AUTOMATICA (Ingegneria Biomedica) Appello del 16 febbraio 2010: testo e soluzione. y = x 1 FONDAMENTI DI AUTOMATICA (Ingegneria Biomedica) Appello del 16 febbraio 21: testo e soluzione Prof. Maria Prandini 1. Si consideri il sistema descritto dalle seguenti equazioni: ẋ 1 = x 2 2 + x 1 ẋ 2 =

Dettagli

ẋ 1 = 2x 1 + (sen 2 (x 1 ) + 1)x 2 + 2u (1) y = x 1

ẋ 1 = 2x 1 + (sen 2 (x 1 ) + 1)x 2 + 2u (1) y = x 1 Alcuni esercizi risolti su: - calcolo dell equilibrio di un sistema lineare e valutazione delle proprietà di stabilità dell equilibrio attraverso linearizzazione - calcolo del movimento dello stato e dell

Dettagli

FONDAMENTI DI AUTOMATICA. Prof. Maria Prandini

FONDAMENTI DI AUTOMATICA. Prof. Maria Prandini POLITECNICO DI MILANO FONDAMENTI DI AUTOMATICA Ingegneria Informatica e Ingegneria delle Telecomunicazioni Allievi da CM (incluso) a IM (escluso) Prof. Maria Prandini Anno Accademico 2017/18 Appello del

Dettagli

Esercitazione 05: Trasformata di Laplace e funzione di trasferimento

Esercitazione 05: Trasformata di Laplace e funzione di trasferimento Esercitazione 05: Trasformata di Laplace e funzione di trasferimento 28 marzo 208 (3h) Fondamenti di Automatica Prof. M. Farina Responsabile delle esercitazioni: Enrico Terzi Queste dispense sono state

Dettagli

FONDAMENTI DI AUTOMATICA 11 novembre 2018 Prima prova in itinere Cognome Nome Matricola

FONDAMENTI DI AUTOMATICA 11 novembre 2018 Prima prova in itinere Cognome Nome Matricola FONDAMENTI DI AUTOMATICA novembre 28 Prima prova in itinere Cognome Nome Matricola............ Verificare che il fascicolo sia costituito da 7 pagine compresi il foglio di carta semilogaritmica. Scrivere

Dettagli

PROVA SCRITTA DI FONDAMENTI DI AUTOMATICA A.A. 2003/ luglio Soluzione

PROVA SCRITTA DI FONDAMENTI DI AUTOMATICA A.A. 2003/ luglio Soluzione PROVA SCRITTA DI FONDAMENTI DI AUTOMATICA A.A. 23/24 2 luglio 24 Esercizio In riferimento allo schema a blocchi in figura. s r y 2 s y K s2 Domanda.. Determinare una realizzazione in equazioni di stato

Dettagli

Fondamenti di Automatica Prof. Luca Bascetta. Primo prova intermedia 27 Aprile 2018

Fondamenti di Automatica Prof. Luca Bascetta. Primo prova intermedia 27 Aprile 2018 Fondamenti di Automatica Prof. Luca Bascetta Primo prova intermedia 27 Aprile 28 ESERCIZIO E assegnato il sistema dinamico, a tempo continuo, lineare e invariante con ingresso u(t) e uscita y(t): { ẋ(t)

Dettagli

1. Si individuino tutti i valori del parametro α per i quali il sistema assegnato è asintoticamente stabile.

1. Si individuino tutti i valori del parametro α per i quali il sistema assegnato è asintoticamente stabile. Appello di Fondamenti di Automatica (Gestionale) a.a. 2017-18 7 Settembre 2018 Prof. SILVIA STRADA Tempo a disposizione: 2 h. ESERCIZIO 1 Si consideri il sistema dinamico lineare invariante a tempo continuo

Dettagli

PROVA SCRITTA DI FONDAMENTI DI AUTOMATICA A.A. 2003/ gennaio 2004

PROVA SCRITTA DI FONDAMENTI DI AUTOMATICA A.A. 2003/ gennaio 2004 PROVA SCRITTA DI FONDAMENTI DI AUTOMATICA A.A. 2003/2004 4 gennaio 2004 nome e cognome: numero di matricola: Note: Scrivere le risposte negli spazi appositi. Non consegnare fogli aggiuntivi. La chiarezza

Dettagli

Modellazione e controllo di sistemi dinamici/ca2 25/06/2010

Modellazione e controllo di sistemi dinamici/ca2 25/06/2010 Modellazione e controllo di sistemi dinamici/ca2 25/6/21 a) Si considerino i due sistemi dinamici S1 e S2 con ingresso u e uscita y descritti rispettivamente da S1 : { ẋ = 4x + 8u y = x u S2 : G(s) = 5

Dettagli

INGEGNERIA DELLE TELECOMUNICAZIONI

INGEGNERIA DELLE TELECOMUNICAZIONI INGEGNERIA DELLE TELECOMUNICAZIONI FONDAMENTI DI AUTOMATICA Prof. Marcello Farina TEMA D ESAME E SOLUZIONI 18 febbraio 2014 Anno Accademico 2012/2013 ESERCIZIO 1 Si consideri il sistema descritto dalle

Dettagli

Esercitazione 06: Sistemi interconnessi e funzioni di trasferimento

Esercitazione 06: Sistemi interconnessi e funzioni di trasferimento Esercitazione 06: Sistemi interconnessi e funzioni di trasferimento 20 aprile 2016 (3h) Alessandro Vittorio Papadopoulos alessandro.papadopoulos@polimi.it Fondamenti di Automatica Prof. M. Farina 1 Schema

Dettagli

B = Si studi, giustificando sinteticamente le proprie affermazioni, la stabilità del sistema. si A = G(s) = Y f (s) U(s) = 1.

B = Si studi, giustificando sinteticamente le proprie affermazioni, la stabilità del sistema. si A = G(s) = Y f (s) U(s) = 1. ESERCIZIO 1 Un sistema dinamico lineare invariante e a tempo continuo è descritto dall equazione differenziale che lega l ingresso all uscita:... y (t) + ÿ(t) + 4ẏ(t) + 4y(t) = u(t) 1. Si determinino le

Dettagli

Appello di Settembre (II)

Appello di Settembre (II) Appello di Settembre (II) 8 Settembre 22 Fondamenti di Automatica Ingegneria Gestionale Prof. Bruno Picasso Esercizio Sia dato il seguente sistema dinamico: { ẋ(t) = u(t)sin ( x(t) ) + u 3 (t) y(t) = e

Dettagli

Politecnico di Milano. Prof. SILVIA STRADA Cognomi LF - PO SOLUZIONE

Politecnico di Milano. Prof. SILVIA STRADA Cognomi LF - PO SOLUZIONE Politecnico di Milano Prof. SILVIA STRADA Cognomi LF - PO SOLUZIONE A.A. 25/6 Prima prova di Fondamenti di Automatica (CL Ing. Gestionale) 27 Novembre 25 ESERCIZIO punti: 8 su 32 Si consideri il sistema

Dettagli

s +6 s 3 s 2 +(K 3)s +6K. 6(s +6) s 2 +3s +36. (1) i) Prima di tutto fattorizziamo opportunamente la funzione di trasferimento (1)

s +6 s 3 s 2 +(K 3)s +6K. 6(s +6) s 2 +3s +36. (1) i) Prima di tutto fattorizziamo opportunamente la funzione di trasferimento (1) Esercizio. Con riferimento al sistema di figura, calcolare: u(t) + K s s +6 s 3 y(t) a) la funzione di trasferimento a ciclo chiuso tra u(t) e y(t); b) i valori di K per i quali il sistema a ciclo chiuso

Dettagli

INGEGNERIA DELLE TELECOMUNICAZIONI

INGEGNERIA DELLE TELECOMUNICAZIONI INGEGNERIA DELLE TELECOMUNICAZIONI FONDAMENTI DI AUTOMATICA Prof. Marcello Farina TEMA D ESAME E SOLUZIONI 26 luglio 213 Anno Accademico 212/213 ESERCIZIO 1 Si consideri il sistema descritto dalla equazione

Dettagli

INGEGNERIA INFORMATICA

INGEGNERIA INFORMATICA INGEGNERIA INFORMATICA FONDAMENTI DI AUTOMATICA 29/06/2017 Prof. Marcello Farina SOLUZIONI ESERCIZIO 1 Si consideri il sistema descritto dalle seguenti equazioni: A. Scrivere le equazioni del sistema linearizzato

Dettagli

s + 6 s 3, b) i valori di K per i quali il sistema a ciclo chiuso risulta asintoticamente stabile;

s + 6 s 3, b) i valori di K per i quali il sistema a ciclo chiuso risulta asintoticamente stabile; 1 Esercizi svolti Esercizio 1. Con riferimento al sistema di figura, calcolare: ut) + K s s + 6 s 3 yt) a) la funzione di trasferimento a ciclo chiuso tra ut) e yt); b) i valori di K per i quali il sistema

Dettagli

PROVA SCRITTA DI FONDAMENTI DI AUTOMATICA A.A. 2003/ giugno Soluzione

PROVA SCRITTA DI FONDAMENTI DI AUTOMATICA A.A. 2003/ giugno Soluzione PROVA SCRITTA DI FONDAMENTI DI AUTOMATICA A.A. 23/24 giugno 24 Esercizio In riferimento allo schema a blocchi in figura. y r s s s2 y 2 K s dove Domanda.. Determinare una realizzazione in equazioni di

Dettagli

COMPITO A: soluzione

COMPITO A: soluzione PROVA SCRITTA DI FONDAMENTI DI AUTOMATICA (PRIMA PARTE) A.A. 2005/2006 9 novembre 2005 nome e cognome: numero di matricola: Note: Scrivere le risposte negli spazi appositi. Non consegnare fogli aggiuntivi.

Dettagli

INGEGNERIA DELLE TELECOMUNICAZIONI

INGEGNERIA DELLE TELECOMUNICAZIONI INGEGNERIA DELLE TELECOMUNICAZIONI FONDAMENTI DI AUTOMATICA Prof. Marcello Farina TEMA D ESAME II prova in itinere 4 luglio 214 Anno Accademico 213/214 ESERCIZIO 1 Si consideri il sistema seguente Si ponga

Dettagli

Controlli Automatici - Parte A

Controlli Automatici - Parte A Cognome: Nome: N. Matr.: Ho seguito il corso con Prof Giarré Prof. Biagiotti Controlli Automatici - Parte A Ingegneria Meccanica e Ingegneria del Veicolo Compito del 12 gennaio 218 - Quiz Per ciascuno

Dettagli

FONDAMENTI DI AUTOMATICA. Prof. Maria Prandini

FONDAMENTI DI AUTOMATICA. Prof. Maria Prandini POLITECNICO DI MILANO FONDAMENTI DI AUTOMATICA Ingegneria Informatica e Ingegneria delle Telecomunicazioni Allievi da CM (incluso) a IM (escluso) Prof. Maria Prandini Anno Accademico 2017/18 Appello del

Dettagli

Controlli Automatici - Parte A

Controlli Automatici - Parte A Cognome: Nome: N. Matr.: Ho seguito il corso con Prof Giarré Prof. Biagiotti Controlli Automatici - Parte A Ingegneria Meccanica e Ingegneria del Veicolo Compito del 13 febbraio 19 - Quiz Per ciascuno

Dettagli

Esercitazione 07: Esercitazione di ripasso per la prima prova in itinere

Esercitazione 07: Esercitazione di ripasso per la prima prova in itinere Esercitazione 07: Esercitazione di ripasso per la prima prova in itinere 29 aprile 2016 (2h) Prof. Marcello Farina marcello.farina@polimi.it Fondamenti di Automatica 1 Sistemi a tempo discreto Un azienda

Dettagli

INGEGNERIA DELLE TELECOMUNICAZIONI

INGEGNERIA DELLE TELECOMUNICAZIONI INGEGNERIA DELLE TELECOMUNICAZIONI FONDAMENTI DI AUTOMATICA Prof. Marcello Farina TEMA D ESAME Prima prova in itinere 07 maggio 014 Anno Accademico 013/014 ESERCIZIO 1 Si consideri il sistema S descritto

Dettagli

INGEGNERIA INFORMATICA

INGEGNERIA INFORMATICA ESERCIZIO Si consideri il seguente sistema S. INGEGNERIA INFORMATICA FONDAMENTI DI AUTOMATICA 7/06/09 Prof. Marcello Farina TESTO DEGLI ESERCIZI E SOLUZIONI x = u (sin(πx)) A. Si scrivano le equazioni

Dettagli

Diagrammi asintotici di Bode: esercizi. Tracciare i diagrammi asintotici di Bode della seguente funzione G(s): s 2. s(s 30)(1+ s

Diagrammi asintotici di Bode: esercizi. Tracciare i diagrammi asintotici di Bode della seguente funzione G(s): s 2. s(s 30)(1+ s .. 3.2 1 Nyquist: Diagrammi asintotici di Bode: esercizi Tracciare i diagrammi asintotici di Bode della seguente funzione G(s): 6(s2 +.8s+4) s(s 3)(1+ s 2 )2. Pendenza iniziale: -2 db/dec. Pulsazioni critiche:

Dettagli

Controlli Automatici - Parte A

Controlli Automatici - Parte A Cognome: Nome: N. Matr.: Controlli Automatici - Parte A Ingegneria Meccanica e Ingegneria del Veicolo Compito del 2 febbraio 217 - Quiz Per ciascuno dei seguenti quesiti, segnare con una crocetta le risposte

Dettagli

Appello di Febbraio di Fondamenti di Automatica A.A Febbraio 2011 Prof. SILVIA STRADA Tempo a disposizione: 2 h. 30 m.

Appello di Febbraio di Fondamenti di Automatica A.A Febbraio 2011 Prof. SILVIA STRADA Tempo a disposizione: 2 h. 30 m. Appello di Febbraio di Fondamenti di Automatica A.A. 1-11 Febbraio 11 Prof. SILVIA STRADA Tempo a disposizione: h. 3 m. Nome e Cognome: Matricola: Firma: N.B. Svolgere i vari punti nello spazio che segue

Dettagli

Controlli Automatici - Parte A

Controlli Automatici - Parte A Cognome: Nome: N. Matr.: Ho seguito il corso con Prof Giarré Prof. Biagiotti Controlli Automatici - Parte A Ingegneria Meccanica e Ingegneria del Veicolo Compito del 9 giugno 29 - Quiz Per ciascuno dei

Dettagli

INGEGNERIA INFORMATICA

INGEGNERIA INFORMATICA INGEGNERIA INFORMATICA FONDAMENTI DI AUTOMATICA 09/02/2017 Prof. Marcello Farina SOLUZIONI Anno Accademico 2015/2016 ESERCIZIO 1 Si consideri il sistema a tempo discreto non lineare descritto dalle seguenti

Dettagli

Appello di Febbraio. 17 Febbraio Fondamenti di Automatica Ingegneria Gestionale. Prof. Bruno Picasso

Appello di Febbraio. 17 Febbraio Fondamenti di Automatica Ingegneria Gestionale. Prof. Bruno Picasso Appello di Febbraio 7 Febbraio 22 Fondamenti di Automatica Ingegneria Gestionale Prof. Bruno Picasso Esercizio Sia dato il seguente sistema dinamico: { ẋt) 2ut)xt) + e ut) x 2 t) + u 2 t) yt) xt).. Determinare

Dettagli

PROVA SCRITTA DI FONDAMENTI DI AUTOMATICA A.A. 2005/ febbraio 2006 TESTO E SOLUZIONE

PROVA SCRITTA DI FONDAMENTI DI AUTOMATICA A.A. 2005/ febbraio 2006 TESTO E SOLUZIONE PROVA SCRITTA DI FONDAMENTI DI AUTOMATICA A.A. 25/26 13 febbraio 26 TESTO E SOLUZIONE Esercizio 1 Si consideri il sistema lineare descritto dalle equazioni di stato seguenti: ẋ 1 (t) = 2x 1 (t) αx 2 (t)

Dettagli

PROVA SCRITTA DI FONDAMENTI DI AUTOMATICA A.A. 2004/ settembre 2005 TESTO E SOLUZIONE

PROVA SCRITTA DI FONDAMENTI DI AUTOMATICA A.A. 2004/ settembre 2005 TESTO E SOLUZIONE PROVA SCRITTA DI FONDAMENTI DI AUTOMATICA A.A. 4/5 settembre 5 TESTO E Esercizio In riferimento allo schema a blocchi in figura. y y u - s5 sk y k s y 4 Domanda.. Determinare una realizzazione in equazioni

Dettagli

Modellazione e controllo Ca1 (a,b,c) Ca2 (d,e,f,g) Mec(a,c,d,e,g)

Modellazione e controllo Ca1 (a,b,c) Ca2 (d,e,f,g) Mec(a,c,d,e,g) Modellazione e controllo Ca1 (a,b,c) Ca (d,e,f,g) Mec(a,c,d,e,g) 13 Luglio 011 a) Una corpo di massa M e soggetto a una forza di richiamo elastica F el = K(x)x, una forza di attrito F att = hẋ e una forza

Dettagli

FONDAMENTI DI AUTOMATICA I - Ingegneria Elettronica Appello del 15 luglio 2015

FONDAMENTI DI AUTOMATICA I - Ingegneria Elettronica Appello del 15 luglio 2015 FONDAMENTI DI AUTOMATICA I - Ingegneria Elettronica Appello del 15 luglio 2015 Prof.ssa Mara Tanelli 1. Si consideri il sistema dinamico non lineare con ingresso u ed uscita y descritto dalle seguenti

Dettagli

INGEGNERIA INFORMATICA

INGEGNERIA INFORMATICA INGEGNERIA INFORMATICA FONDAMENTI DI AUTOMATICA 21/09/2016 - Soluzioni Prof Marcello Farina Anno Accademico 2015/2016 ESERCIZIO 1 Si consideri il sistema descritto dalle seguenti equazioni: A Spiegare

Dettagli

Fondamenti di Automatica (CL Ing. Gestionale) a.a Prof. Silvia Strada 16 Luglio 2014

Fondamenti di Automatica (CL Ing. Gestionale) a.a Prof. Silvia Strada 16 Luglio 2014 Politecnico di Milano Fondamenti di Automatica (CL Ing. Gestionale) a.a.2013-14 Prof. Silvia Strada 16 Luglio 2014 Nome e Cognome:........................... Matricola........................... Firma............................................................................

Dettagli

SOLUZIONE. Fondamenti di Automatica (CL Ing. Gestionale) a.a Prof. Silvia Strada Seconda prova intermedia 12 Febbraio 2015

SOLUZIONE. Fondamenti di Automatica (CL Ing. Gestionale) a.a Prof. Silvia Strada Seconda prova intermedia 12 Febbraio 2015 Politecnico di Milano Fondamenti di Automatica (CL Ing. Gestionale) a.a.24-5 Prof. Silvia Strada Seconda prova intermedia 2 Febbraio 25 SOLUZIONE ESERCIZIO punti: 8 su 32 Si consideri un sistema dinamico,

Dettagli

Fondamenti di Automatica per Ing. Elettrica

Fondamenti di Automatica per Ing. Elettrica 1 Fondamenti di Automatica per Ing. Elettrica Prof. Patrizio Colaneri 2 Prima prova in itinere del 14 Novembre 217 Cognome Nome Matricola Firma Durante la prova non è consentita la consultazione di libri,

Dettagli

Controlli Automatici - Parte A

Controlli Automatici - Parte A Cognome: Nome: N. Matr.: Ho seguito il corso con Prof Giarré Prof. Biagiotti Controlli Automatici - Parte A Ingegneria Meccanica e Ingegneria del Veicolo Compito del 3 luglio 19 - Quiz Per ciascuno dei

Dettagli

Controlli Automatici - Parte A

Controlli Automatici - Parte A Cognome: Nome: N. Matr.: Ho seguito il corso con Prof Giarré Prof. Biagiotti Controlli Automatici - Parte A Ingegneria Meccanica e Ingegneria del Veicolo Compito del 5 settembre 218 - Quiz Per ciascuno

Dettagli

COMPITO DI CONTROLLI AUTOMATICI 7 Febbraio 2013

COMPITO DI CONTROLLI AUTOMATICI 7 Febbraio 2013 COMPITO DI CONTROLLI AUTOMATICI 7 Febbraio 213 Esercizio 1. Si consideri il modello ingresso/uscita a tempo continuo avente la seguente funzione di trasferimento: G(s) = 1 1 (s.1)(s + 1) 2 s(s +.1) 2 (s

Dettagli

Controlli Automatici - Parte A

Controlli Automatici - Parte A Cognome: Nome: N. Matr.: Ho seguito il corso con Prof Giarré Prof. Biagiotti Controlli Automatici - Parte A Ingegneria Meccanica e Ingegneria del Veicolo Compito del 5 settembre 219 - Quiz Per ciascuno

Dettagli

COMPITO DI FONDAMENTI E APPLICAZIONI DI CONTROLLI AUTOMATICI 19 Luglio 2012

COMPITO DI FONDAMENTI E APPLICAZIONI DI CONTROLLI AUTOMATICI 19 Luglio 2012 COMPITO DI FONDAMENTI E APPLICAZIONI DI CONTROLLI AUTOMATICI 9 Luglio 22 Esercizio. Si consideri il modello ingresso/uscita a tempo continuo avente la seguente funzione di trasferimento: G(s) = (s + )

Dettagli

Controlli Automatici

Controlli Automatici Controlli Automatici (Prof. Casella) Prova in Itinere 8 Maggio 2014 SOLUZIONI Domanda 1 Con rifermento a sistemi lineari tempo-invarianti, dimostrare che la connessione in cascata preserva la stabilità

Dettagli

Fondamenti di Automatica - Ingegneria Gestionale (H-PO) Prof. Silvia Strada Prima prova in itinere del 25 Novembre 2016 Tempo a disposizione: 1.30 h.

Fondamenti di Automatica - Ingegneria Gestionale (H-PO) Prof. Silvia Strada Prima prova in itinere del 25 Novembre 2016 Tempo a disposizione: 1.30 h. Politecnico di Milano Fondamenti di Automatica - Ingegneria Gestionale (H-PO) Prof. Silvia Strada Prima prova in itinere del 25 Novembre 206 Tempo a disposizione:.30 h. Nome e Cognome................................................................................

Dettagli

INGEGNERIA INFORMATICA

INGEGNERIA INFORMATICA INGEGNERIA INFORMATICA FONDAMENTI DI AUTOMATICA 21/06/2018 Prof Marcello Farina TRACCIA DELLE SOLUZIONI ESERCIZIO 1 Si consideri il sistema descritto dalle seguenti equazioni: A Derivare e scrivere le

Dettagli

Controlli Automatici - Parte A

Controlli Automatici - Parte A Cognome: Nome: N. Matr.: Ho seguito il corso con Prof Giarré Prof. Biagiotti Controlli Automatici - Parte A Ingegneria Meccanica e Ingegneria del Veicolo Compito del 17 luglio 18 - Quiz Per ciascuno dei

Dettagli

Controlli Automatici - Parte A

Controlli Automatici - Parte A Cognome: Nome: N. Matr.: Controlli Automatici - Parte A Ingegneria Meccanica e Ingegneria del Veicolo Compito del 8 giugno 217 - Quiz Per ciascuno dei seguenti quesiti, segnare con una crocetta le risposte

Dettagli

INGEGNERIA DELLE TELECOMUNICAZIONI

INGEGNERIA DELLE TELECOMUNICAZIONI INGEGNERIA DELLE TELECOMUNICAZIONI FONDAMENTI DI AUTOMATICA Prof. Marcello Farina TEMA D ESAME E SOLUZIONI 20 settembre 2013 Anno Accademico 2012/2013 ESERCIZIO 1 Si consideri il sistema descritto dalle

Dettagli

Esercitazione 09: Analisi di stabilità dei sistemi di controllo 23 maggio 2016 (3h)

Esercitazione 09: Analisi di stabilità dei sistemi di controllo 23 maggio 2016 (3h) Esercitazione 9: Analisi di stabilità dei sistemi di controllo 23 maggio 216 (3h) Alessandro Vittorio Papadopoulos alessandro.papadopoulos@polimi.it Fondamenti di Automatica Prof. M. Farina 1 Cruise control

Dettagli

Prof. SILVIA STRADA Cognomi LF - PO

Prof. SILVIA STRADA Cognomi LF - PO Politecnico di Milano Prof. SILVIA STRADA Cognomi LF - PO A.A. 2015/16 Appello di Fondamenti di Automatica (CL Ing. Gestionale) 1 Marzo 2016 Tempo a disposizione: 2.00 h. Nome e Cognome:... Matricola...

Dettagli

Controlli Automatici - Parte A

Controlli Automatici - Parte A Cognome: Nome: N. Matr.: Controlli Automatici - Parte A Ingegneria Meccanica e Ingegneria del Veicolo Compito del 9 gennaio 217 - Quiz Per ciascuno dei seguenti quesiti, segnare con una crocetta le risposte

Dettagli

Teoria dei Sistemi s + 1 (s + 1)(s s + 100)

Teoria dei Sistemi s + 1 (s + 1)(s s + 100) Teoria dei Sistemi 03-07-2015 A Dato il sistema dinamico rappresentato dalla funzione di trasferimento 10s + 1 (s + 1)(s 2 + 16s + 100) A.1 Si disegnino i diagrammi di Bode, Nyquist e i luoghi delle radici.

Dettagli

Esercitazione 08: Analisi di stabilità dei sistemi di controllo

Esercitazione 08: Analisi di stabilità dei sistemi di controllo Esercitazione 8: Analisi di stabilità dei sistemi di controllo 6 maggio 219 (3h) Fondamenti di Automatica Prof. M. Farina Responsabile delle esercitazioni: Enrico Terzi Queste dispense sono state scritte

Dettagli

Controlli Automatici - Parte A

Controlli Automatici - Parte A Cognome: Nome: N. Matr.: Ho seguito il corso con Prof Giarré Prof. Biagiotti Controlli Automatici - Parte A Ingegneria Meccanica e Ingegneria del Veicolo Compito del 1 febbraio 18 - Quiz Per ciascuno dei

Dettagli

Nome: Nr. Mat. Firma:

Nome: Nr. Mat. Firma: Fondamenti di Controlli Automatici - A.A. 6/7 Marzo 7 - Esercizi Compito B Nr. Nome: Nr. Mat. Firma: a) Determinare la trasformata di Laplace X i (s) dei seguenti segnali temporali x i (t): x (t) = sin(3

Dettagli

Fondamenti di Automatica

Fondamenti di Automatica Fondamenti di Automatica Corso di Laurea in Ingegneria Gestionale Prof. Silvia Strada Anno accademico 2018/2019 Appello del 15 Gennaio 2019 Nome: Matricola: Firma:... Avvertenze: Il presente fascicolo

Dettagli

Controlli Automatici - Parte A

Controlli Automatici - Parte A Cognome: Nome: N. Matr.: Ho seguito il corso con Prof Giarré Prof. Biagiotti Controlli Automatici - Parte A Ingegneria Meccanica e Ingegneria del Veicolo Compito del 9 gennaio 29 - Quiz Per ciascuno dei

Dettagli

COMPITO DI FONDAMENTI E APPLICAZIONI DI CONTROLLI AUTOMATICI 18 Settembre 2012

COMPITO DI FONDAMENTI E APPLICAZIONI DI CONTROLLI AUTOMATICI 18 Settembre 2012 COMPITO DI FONDAMENTI E APPLICAZIONI DI CONTROLLI AUTOMATICI 8 Settembre 22 Esercizio. Si consideri il modello ingresso/uscita a tempo continuo e causale descritto dalla seguente equazione differenziale:

Dettagli

ESERCIZIO 1 Si consideri il sistema con ingresso u(t) ed uscita y(t) descritto dalle seguenti equazioni

ESERCIZIO 1 Si consideri il sistema con ingresso u(t) ed uscita y(t) descritto dalle seguenti equazioni ESERCIZIO 1 Si consideri il sistema con ingresso u(t) ed uscita y(t) descritto dalle seguenti equazioni ẋ 1 (t) x 1 (t) + 3x 2 (t) + u(t) ẋ 2 (t) 2u(t) y(t) x 1 (t) + x 2 (t) 1. Si classifichi il sistema

Dettagli

PROVA SCRITTA DI FONDAMENTI DI AUTOMATICA A.A. 2013/ giugno 2014

PROVA SCRITTA DI FONDAMENTI DI AUTOMATICA A.A. 2013/ giugno 2014 PROVA SCRITTA DI FONDAMENTI DI AUTOMATICA A.A. 2013/2014 30 giugno 2014 nome e cognome: numero di matricola: prova d esame da CFU : 6 CFU 9 CFU Note: Scrivere le risposte negli spazi appositi. Non consegnare

Dettagli

Nome: Nr. Mat. Firma:

Nome: Nr. Mat. Firma: Fondamenti di Controlli Automatici - A.A. 1/13 1 giugno 13 - Domande Teoriche Nome: Nr. Mat. Firma: Per ciascuno dei test a soluzione multipla segnare con una crocetta tutte le affermazioni che si ritengono

Dettagli

INGEGNERIA INFORMATICA FONDAMENTI DI AUTOMATICA 06/09/2016 SOLUZIONI. Prof. Marcello Farina

INGEGNERIA INFORMATICA FONDAMENTI DI AUTOMATICA 06/09/2016 SOLUZIONI. Prof. Marcello Farina INGEGNERIA INFORMATICA FONDAMENTI DI AUTOMATICA 6/9/26 SOLUZIONI Prof. Marcello Farina f(x,) ESERCIZIO Si consideri il sistema descritto dalle seguenti equazioni: A. Scrivere l equazione del sistema linearizzato

Dettagli

Fondamenti di Automatica (CL Ing. Gestionale) a.a Prof. Silvia Strada Seconda prova intermedia 12 Febbraio 2015

Fondamenti di Automatica (CL Ing. Gestionale) a.a Prof. Silvia Strada Seconda prova intermedia 12 Febbraio 2015 Politecnico di Milano Fondamenti di Automatica (CL Ing. Gestionale) a.a.2014-15 Prof. Silvia Strada Seconda prova intermedia 12 Febbraio 2015 Nome e Cognome:........................... Matricola...........................

Dettagli

Controlli Automatici Compito del - Esercizi

Controlli Automatici Compito del - Esercizi Compito del - Esercizi. Data la funzione di trasferimento G(s) = s (s +),sicalcoli a) La risposta impulsiva g(t); b) L equazione differenziale associata al sistema G(s); c) Si commenti la stabilità del

Dettagli

CONCETTO DI STABILITÀ NEI SISTEMI DI CONTROLLO. Sistema in condizioni di equilibrio a t = 0. d(t) = 0. u(t) = 0. y(t) = 0. Sistema

CONCETTO DI STABILITÀ NEI SISTEMI DI CONTROLLO. Sistema in condizioni di equilibrio a t = 0. d(t) = 0. u(t) = 0. y(t) = 0. Sistema CONCETTO DI STABILITÀ NEI SISTEMI DI CONTROLLO Sistema in condizioni di equilibrio a t = 0. d(t) = 0 u(t) = 0 Sistema y(t) = 0 Tipi di perturbazione. Perturbazione di durata limitata: u(t) = 0, t > T u

Dettagli

Nome: Nr. Mat. Firma: C.L.: Info. Elet. Telec. Altro.

Nome: Nr. Mat. Firma: C.L.: Info. Elet. Telec. Altro. Controlli Automatici - Prima parte Aprile 8 - Esercizi Si risolvano i seguenti esercizi. Nome: Nr. Mat. Firma: C.L.: Info. Elet. Telec. Altro. a.) Calcolare la trasformata di Laplace X(s) dei seguenti

Dettagli

Si considerino i sistemi elettrici RL rappresentati nella seguente figura: L u 1 (t)

Si considerino i sistemi elettrici RL rappresentati nella seguente figura: L u 1 (t) Esercizio Circuiti R in serie). Si considerino i sistemi elettrici R rappresentati nella seguente figura: + + + + u t) R y t) u t) R y t) Si consideri inoltre il sistema ottenuto collegando in serie i

Dettagli

ANALISI IN FREQUENZA DEI SISTEMI A TEMPO DISCRETO

ANALISI IN FREQUENZA DEI SISTEMI A TEMPO DISCRETO ANALISI IN FREQUENZA DEI SISTEMI A TEMPO DISCRETO Funzione di trasferimento Risposta allo scalino Schemi a blocchi Risposta in frequenza Illustrazioni dal Testo di Riferimento per gentile concessione degli

Dettagli

Fondamenti di Automatica per Ing. Elettrica

Fondamenti di Automatica per Ing. Elettrica Fondamenti di Automatica per Ing. Elettrica Prof. Patrizio Colaneri 2, Prof. Gian Paolo Incremona Esame del 7 Settembre 28 Cognome Nome Matricola Firma Durante la prova non è consentita la consultazione

Dettagli

Controlli Automatici - Parte A

Controlli Automatici - Parte A Cognome: Nome: N. Matr.: Ho seguito il corso con Prof Giarré Prof. Biagiotti Controlli Automatici - Parte A Ingegneria Meccanica e Ingegneria del Veicolo Compito del 9 giugno 28 - Quiz Per ciascuno dei

Dettagli

Cognome Nome Matricola Corso

Cognome Nome Matricola Corso Fondamenti di Controlli Automatici - A.A. 23/4 23 luglio 24 - Quiz di Teoria Cognome Nome Matricola Corso Per ciascuno dei test a soluzione multipla segnare con una crocetta tutte le affermazioni che si

Dettagli

SOLUZIONE della Prova TIPO F per:

SOLUZIONE della Prova TIPO F per: SOLUZIONE della Prova TIPO F per: Esame di FONDAMENTI DI AUTOMATICA (9 crediti): 6 dei 10 esercizi numerici (nell effettiva prova d esame verranno selezionati a priori dal docente) + domande a risposta

Dettagli

PROVA SCRITTA DI FONDAMENTI DI AUTOMATICA A.A. 2011/ gennaio 2013

PROVA SCRITTA DI FONDAMENTI DI AUTOMATICA A.A. 2011/ gennaio 2013 PROVA SCRITTA DI FONDAMENTI DI AUTOMATICA A.A. 2011/2012 14 gennaio 2013 nome e cognome: numero di matricola: prova d esame da CFU : 6 CFU 9 CFU Note: Scrivere le risposte negli spazi appositi. Non consegnare

Dettagli

Fondamenti di Automatica

Fondamenti di Automatica Fondamenti di Automatica Prof. Rocco 17 Aprile 2019 cognome e nome: matricola: firma: Avvertenze: Il presente fascicolo si compone di 8 pagine (compresa la copertina). Tutte le pagine utilizzate vanno

Dettagli

Cognome Nome: Matricola: Corso di Laurea: Fondamenti di Controlli Automatici - A.A. 2011/12 20 settembre Domande Teoriche

Cognome Nome: Matricola: Corso di Laurea: Fondamenti di Controlli Automatici - A.A. 2011/12 20 settembre Domande Teoriche Fondamenti di Controlli Automatici - A.A. / settembre - Domande Teoriche Cognome Nome: Matricola: Corso di Laurea: Per ciascuno dei test a soluzione multipla segnare con una crocetta tutte le affermazioni

Dettagli

Nome: Nr. Mat. Firma: C.L.: Info. Elet. Telec. Altro.

Nome: Nr. Mat. Firma: C.L.: Info. Elet. Telec. Altro. Controlli Automatici A 22 Giugno 11 - Esercizi Si risolvano i seguenti esercizi. Nome: Nr. Mat. Firma: C.L.: Info. Elet. Telec. Altro. a.1) Calcolare la trasformata di Laplace X(s) dei seguenti segnali

Dettagli

Nome: Nr. Mat. Firma: C.L.: Info. Elet. Telec. Altro.

Nome: Nr. Mat. Firma: C.L.: Info. Elet. Telec. Altro. Controlli Automatici - Prima parte 18 Aprile 216 - Esercizi Si risolvano i seguenti esercizi. Nome: Nr. Mat. Firma: C.L.: Info. Elet. Telec. Altro. a.1) Calcolare la trasformata di Laplace X(s) dei seguenti

Dettagli

Fondamenti di Automatica Prof. Luca Bascetta. Soluzioni della seconda prova scritta intermedia 25 giugno 2018

Fondamenti di Automatica Prof. Luca Bascetta. Soluzioni della seconda prova scritta intermedia 25 giugno 2018 Fondamenti di Automatica Prof. Luca Bascetta Soluzioni della seconda prova scritta intermedia 25 giugno 28 ESERCIZIO Si consideri il sistema di controllo di figura, con y variabile controllata e y o riferimento:

Dettagli

1 a PROVA PARZIALE DI FONDAMENTI DI AUTOMATICA A.A. 2004/ novembre Soluzione

1 a PROVA PARZIALE DI FONDAMENTI DI AUTOMATICA A.A. 2004/ novembre Soluzione a PROVA PARZIAE DI FONDAMENTI DI AUTOMATIA A.A. 24/25 9 novembre 24 Esercizio on riferimento alla funzione di trasferimento G(s) = 7s2 + 36s + 48 (s + 3)(s + 4) 2 Domanda.. Indicare i valori del guadagno,

Dettagli

Fondamenti di Controlli Automatici. 1 Temi d'esame. Politecnico di Torino CeTeM. Politecnico di Torino Pagina 1 di 25 Data ultima revisione 19/09/00

Fondamenti di Controlli Automatici. 1 Temi d'esame. Politecnico di Torino CeTeM. Politecnico di Torino Pagina 1 di 25 Data ultima revisione 19/09/00 etem Fondamenti di ontrolli Automatici Temi d'esame ATTENZONE: i temi d esame e gli esercizi proposti riguardano (per ora) solo la parte di analisi di sistemi di controllo; per quanto riguarda il progetto,

Dettagli

Fondamenti di Automatica

Fondamenti di Automatica Fondamenti di Automatica (Prof. Rocco) Anno accademico 2016/2017 Appello del 23 Febbraio 2018 Nome: Matricola: Firma:... Avvertenze: Il presente fascicolo si compone di 10 pagine (compresa la copertina).

Dettagli

PROVA SCRITTA DI FONDAMENTI DI AUTOMATICA A.A. 2011/ settembre 2012

PROVA SCRITTA DI FONDAMENTI DI AUTOMATICA A.A. 2011/ settembre 2012 PROVA SCRITTA DI FONDAMENTI DI AUTOMATICA A.A. 2011/2012 10 settembre 2012 nome e cognome: numero di matricola: prova d esame da CFU : 6 CFU 9 CFU Note: Scrivere le risposte negli spazi appositi. Non consegnare

Dettagli

Compito di Analisi e simulazione dei sistemi dinamici - 06/02/2003. p 2 3 x p 2 y = [1 1 0] x

Compito di Analisi e simulazione dei sistemi dinamici - 06/02/2003. p 2 3 x p 2 y = [1 1 0] x Compito di Analisi e simulazione dei sistemi dinamici - 06/02/2003 Esercizio 1. Dato il seguente sistema lineare tempo invariante, SISO: p 2 3 ẋ = 0 p 2 1 x + 0 1 p 2 y = [1 1 0] x 1 p 3 0 u Si calcoli

Dettagli

Nome: Nr. Mat. Firma:

Nome: Nr. Mat. Firma: Fondamenti di Controlli Automatici - A.A. 212/13 9 novembre 212 - Domande Teoriche Nome: Nr. Mat. Firma: Per ciascuno dei test a soluzione multipla segnare con una crocetta tutte le affermazioni che si

Dettagli

Scrivere il numero della risposta sopra alla corrispondente domanda. (voti: 2,0,-1, min=14 sulle prime 10) , C = [3 2 2], D =

Scrivere il numero della risposta sopra alla corrispondente domanda. (voti: 2,0,-1, min=14 sulle prime 10) , C = [3 2 2], D = n. 101 cognome nome corso di laurea Analisi e Simulazione di Sistemi Dinamici 18/11/2003 Risposte Domande 1 2 3 4 5 6 7 8 9 10 N. matricola Scrivere il numero della risposta sopra alla corrispondente domanda.

Dettagli

Analisi dei Sistemi Lineari e Tempo Invarianti nel Dominio del Tempo

Analisi dei Sistemi Lineari e Tempo Invarianti nel Dominio del Tempo 1 Corso di Fondamenti di Automatica A.A. 2017/18 Analisi dei Sistemi Lineari e Tempo Invarianti nel Dominio del Tempo Prof. Carlo Cosentino Dipartimento di Medicina Sperimentale e Clinica Università degli

Dettagli

Controlli Automatici

Controlli Automatici Controlli Automatici (Prof. Casella) Appello 3 Luglio 2014 TRACCIA DELLA SOLUZIONE Domanda 1 Enunciare con precisione come si può determinare la stabilità esterna di un sistema lineare descritto dalla

Dettagli

rapporto tra ingresso e uscita all equilibrio.

rapporto tra ingresso e uscita all equilibrio. Sistemi Dinamici: Induttore: Condensatore: Massa: Oscillatore meccanico: Pendolo: Serbatoio cilindrico: Serbatoio cilindrico con valvola d efflusso: Funzione di Trasferimento: Stabilità del sistema: (N.B.

Dettagli

Fondamenti di Automatica per Ing. Elettrica

Fondamenti di Automatica per Ing. Elettrica 1 Fondamenti di Automatica per Ing. Elettrica Prof. Patrizio Colaneri 2 Esame del 22 Gennaio 2018 Cognome Nome Matricola Firma Durante la prova non è consentita la consultazione di libri, dispense e quaderni.

Dettagli