CONTROLLO DI SISTEMI ROBOTICI STABILITA NEI SISTEMI LTI

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "CONTROLLO DI SISTEMI ROBOTICI STABILITA NEI SISTEMI LTI"

Transcript

1 CONTROLLO DI SISTEMI ROBOTICI Laurea Specialistica in Ingegneria Meccatronica CONTROLLO DI SISTEMI ROBOTICI STABILITA NEI SISTEMI LTI Ing. Cristian Secchi Tel Stabilità nei Sistemi Lineari Lo studio della stabilità risulta notevolmente semplificato nel caso di sistemi LTI. Una semplificazione notevole deriva dal fatto che mentre nel caso più generale non lineare il concetto di stabilità è riferito a un particolare movimento, nel caso di sistemi lineari (anche non tempo invarianti), è possibile parlare di stabilità del sistema. Infatti: Proposizione: In un sistema lineare un movimento è stabile (instabile) se e solo se tutti i movimenti sono stabili (instabili). Dimostrazione Si consideri un movimento nominale di un sistema lineare. Vale, quindi: Cristian Secchi Controllo di Sistemi Robotici Stabilità nei Sistemi LTI -- 2 Cristian Secchi Pag. 1

2 Stabilità nei Sistemi Lineari Consideriamo ora il movimento perturbato x(t), relativo allo stesso ingresso del movimento nominale. Posto: si ha che: Lo stato z=0 è uno stato di equilibrio. Pertanto, il movimento nominale considerato è stabile (instabile) se e solo se lo stato z=0 è stabile (instabile). Tuttavia, nel sistema: non vi è alcun riferimento allo specifico movimento nominale preso in considerazione. Infatti, a causa della linearità, si arriva allo stesso sistema in z considerando qualsiasi movimento nominale. Quindi se un movimento è stabile lo sono anche tutti gli altri. [QED] Cristian Secchi Controllo di Sistemi Robotici Stabilità nei Sistemi LTI -- 3 Stabilità nei sistemi lineari La stabilità di un sistema lineare dipende solamente dal movimento libero e dalla matrice di stato. Vale il seguente importante risultato: Proposizione: Il sistema lineare autonomo di dimensione n è stabile se e solo se, per ogni t 0, esiste un numero reale M>0 tale che sia: ed è asintoticamente stabile se e solo se è stabile ed inoltre vale la relazione dove Φ(t,t 0 )è la matrice di transizione dello stato. Cristian Secchi Controllo di Sistemi Robotici Stabilità nei Sistemi LTI -- 4 Cristian Secchi Pag. 2

3 Stabilità nei sistemi LTI Per i sistemi LTI le cose si semplificano ulteriormente. Infatti per i sistemi LTI la matrice di transizione dello stato è e At ed è costituita dai modi del sistema. Ricordando l analisi modale fatta per sistemi LTI e la proposizione appena enunciata è possibile legare la stabilità di un sistema lineare autonomo agli autovalori della matrice di stato ed enunciare il seguente: Criterio per la stabilità dei sistemi LTI: Il sistema LTI autonomo di dimensione n è: 1) asintoticamente stabile se e solo se gli autovalori di A hanno parte reale negativa 2) semplicemente stabile se e solo se gli autovalori di A hanno parte reale negativa o nulla e gli autovalori a parte reale nulla sono semplici 3) instabile, se esiste almeno un autovalore con parte reale positiva o un autovalore non semplice con parte reale nulla Cristian Secchi Controllo di Sistemi Robotici Stabilità nei Sistemi LTI -- 5 Interpretazione del criterio di stabilità Siccome gli elementi della matrice di transizione dello stato di un sistema LTI sono i modi del sistema, la norma della matrice di transizione di stato è determinata dai modi. La limitatezza della matrice di transizione dello stato, e, quindi, la stabilità del sistema, pertanto, sarà determinata dal carattere di convergenza dei modi del sistema. Siccome il carattere di convergenza dei modi dipende dall autovalore a cui sono associati, il sistema sarà asintoticamente stabile solo se la matrice di stato ha autovalori con parte reale negativa (cioè se vi sono solo modi convergenti), semplicemente stabile solo se eventuali autovalori a parte reale nulla non sono multipli (cioè se vi sono solo modi limitati o convergenti) e instabile se esiste almeno un autovalore con parte reale positiva (cioè se vi è almeno un modo divergente). Cristian Secchi Controllo di Sistemi Robotici Stabilità nei Sistemi LTI -- 6 Cristian Secchi Pag. 3

4 Interpretazione del criterio di stabilità In conclusione, per i sistemi LTI: Un movimento è stabile (instabile) se e solo se tutti i movimenti sono stabili (instabili). E pertanto possibile associare il concetto di stabilità al sistema anziché al singolo movimento. La stabilità dipende solo dalla matrice di stato A, in particolare dai modi della matrice di transizione dello stato e At Per determinare la stabilità basta testare gli autovalori della matrice di stato e non occorre procedere per tentativi nella ricerca di una funzione di Lyapunov. Testare la stabilità di un sistema LTI è semplice Cristian Secchi Controllo di Sistemi Robotici Stabilità nei Sistemi LTI -- 7 Equazione di Lyapunov La teoria generale continua a valere, ovviamente, anche nel caso particolare dei sistemi LTI. In particolare vale il seguente risultato: Proposizione: Condizione necessaria e sufficiente perché il sistema LTI: sia asintoticamente stabile è che per ogni matrice simmetrica e definita positiva Q esiste un matrice simmetrica e definita positiva P tale che sia soddisfatta la seguente equazione matricale, detta equazione di Lyapunov: Cristian Secchi Controllo di Sistemi Robotici Stabilità nei Sistemi LTI -- 8 Cristian Secchi Pag. 4

5 Equazione di Lyapunov Nel caso in cui il sistema sia asintoticamente stabile, la funzione è una funzione di Lyapunov per il sistema e la sua derivata,definita negativa, è Siccome V(x) è definita su tutto X e cioè V(x) è radialmente illimitata, il teorema di Barbashin-Krasowskii è soddisfatto per ogni sistema LTI asintoticamente stabile. Quindi: In un sistema LTI i concetti di stabilità asintotica e stabilità globale asintotica coincidono: se un sistema è asintoticamente stabile allora è automaticamente GAS. Cristian Secchi Controllo di Sistemi Robotici Stabilità nei Sistemi LTI -- 9 Esempio x 1 x2 F=u k y m b Il sistema ha uno stato di equilibrio in (x 1,x 2 )=(0,0). Il sistema è stabile? Cristian Secchi Controllo di Sistemi Robotici Stabilità nei Sistemi LTI Cristian Secchi Pag. 5

6 Esempio Il sistema considerato è un sistema LTI e, quindi, per vedere se è stabile basta analizzare gli autovalori della matrice di stato. Gli autovalori della matrice di stato sono: Supponiamo che m=1kg, b=1nsec/m e K=1 N/m. In tal caso: quindi il sistema è asintoticamente stabile Cristian Secchi Controllo di Sistemi Robotici Stabilità nei Sistemi LTI Esempio Vogliamo determinare una funzione di Lyapunov per il sistema: Con i valori prescelti, la matrice A ha la forma: Scelgo, come matrice Q simmetrica e definita positiva, per semplicità: Cerco una matrice P simmetrica e definita positiva tale che sia soddisfatta l equazione di Lyapunov. Cristian Secchi Controllo di Sistemi Robotici Stabilità nei Sistemi LTI Cristian Secchi Pag. 6

7 Esempio Impongo che P sia simmetrica: e che risolva l equazione di Lyapunov: da cui si ricava: che, come si può facilmente verificare, è definita positiva. Cristian Secchi Controllo di Sistemi Robotici Stabilità nei Sistemi LTI Esempio Quindi, la funzione: Cristian Secchi Controllo di Sistemi Robotici Stabilità nei Sistemi LTI Cristian Secchi Pag. 7

8 Linearizzazione di sistemi non lineari L analisi della stabilità per sistemi LTI si può ottenere semplicemente studiando la parte reale e la molteplicità degli autovalori ed esistono strumenti molto potenti (come ad esempio il criterio di Routh) per portarla avanti anche per sistemi di dimensioni elevate. Se fosse possibile ricondurre l analisi di stabilità di uno stato di equilibrio di un sistema non lineare all analisi della stabilità di un sistema LTI, il lavoro da fare sarebbe notevolmente semplificato. Sotto opportune ipotesi è possibile, nell intorno di un punto di equilibrio, considerare equivalenti il comportamento di un sistema non lineare e quello di un particolare sistema lineare. Il procedimento di linearizzazione ci consente di determinare l equivalente lineare di un sistema non lineare nell intorno di un punto di equilibrio. Cristian Secchi Controllo di Sistemi Robotici Stabilità nei Sistemi LTI Linearizzazione di sistemi non lineari Consideriamo il sistema non lineare regolare autonomo e descritto da: e supponiamo che l origine sia uno stato di equilibrio per tale sistema. Se f è sviluppabile in serie di Taylor, è possibile scrivere lo sviluppo di f nell intorno di 0: dove la matrice A è il jacobiano di f calcolato in x=0: e h(x) è un infinitesimo di ordine superiore rispetto a x Cristian Secchi Controllo di Sistemi Robotici Stabilità nei Sistemi LTI Cristian Secchi Pag. 8

9 Linearizzazione di sistemi non lineari Siccome f(0)=0 per definizione di stato di equilibrio, è possibile, trascurando i termini di ordine superiore, approssimare il comportamento del sistema nell intorno dello stato di equilibrio, con il sistema LTI: Tale procedimento è detto linearizzazione del sistema nell intorno dell origine. La matrice di stato dipende dal punto di equilibrio che si sta considerando. Se si cambia il punto di equilibrio attorno a cui è sviluppata la funzione di stato, in generale la matrice di stato cambia. E possibile studiare la stabilità di un punto di equilibrio mediante lo studio della stabilità del sistema lineare ottenuto tramite la linearizzazione di f( ). Cristian Secchi Controllo di Sistemi Robotici Stabilità nei Sistemi LTI Analisi della stabilità mediante linearizzazione Criterio ridotto di Lyapunov: Sia dato il sistema non lineare autonomo: e sia l origine un punto di equilibrio del sistema. Sia il sistema LTI ottenuto linearizzando il sistema intorno all origine. Allora: 1. Se gli autovalori di A hanno parte reale negativa, l origine è un punto di equilibrio asintoticamente stabile per il sistema non lineare 2. Se almeno uno degli autovalori di A ha parte reale positiva, l origine è un punto di equilibrio instabile per il sistema non lineare. 3. Se gli autovalori hanno parte reale negativa e alcuni hanno parte reale nulla, non è possibile concludere nulla sulla stabilità dell origine per il sistema non lineare. Cristian Secchi Controllo di Sistemi Robotici Stabilità nei Sistemi LTI Cristian Secchi Pag. 9

10 Analisi della stabilità mediante linearizzazione Il fatto che l instabilità o l asintotica stabilità del sistema linearizzato implichino quelle dell origine del sistema originario significa che l approssimazione è sufficientemente accurata per catturare queste caratteristiche La presenza di autovalori a parte reale nulla significa che il sistema linearizzato non è sufficientemente accurato per catturare le proprietà di stabilità del punto di equilibrio del sistema non lineare. Occorrerebbe rendere l approssimazione più accurata considerando, nello sviluppo in serie di f, termini successivi a quelli del primo ordine ma in tal modo l approssimazione sarebbe non lineare e perderebbe la sua utilità Nonostante per sistemi LTI stabilità asintotica e stabilità asintotica globale coincidano, questo non significa che se il sistema linearizzato è asintoticamente stabile, l origine del sistema non lineare sia GAS, in quanto l approssimazione lineare del sistema vale solo in un intorno dell origine. Cristian Secchi Controllo di Sistemi Robotici Stabilità nei Sistemi LTI Esempio Pendolo semplice smorzato Si consideri un pendolo semplice di massa m=1 Kg e lunghezza l=1 m sotto l azione della forza di gravità g=9.8 m/sec^2 e di un attrito viscoso con coefficiente b=1 Nsec/m: Il sistema ha due punti di equilibrio: (x 1,x 2 )=(0,0) e (x 1,x 2 )=(π,0). Supponiamo di voler studiare la stabilità del punto (0,0) mediante il criterio ridotto di Lyapunov. Cristian Secchi Controllo di Sistemi Robotici Stabilità nei Sistemi LTI Cristian Secchi Pag. 10

11 Esempio Pendolo semplice smorzato Gli autovalori di A sono: E, quindi, l origine è un punto di equilibrio asintoticamente stabile. Cristian Secchi Controllo di Sistemi Robotici Stabilità nei Sistemi LTI CONTROLLO DI SISTEMI ROBOTICI Laurea Specialistica in Ingegneria Meccatronica CONTROLLO DI SISTEMI ROBOTICI STABILITA NEI SISTEMI LTI Ing. Cristian Secchi Tel secchi.cristian@unimore.it Cristian Secchi Pag. 11

TEORIA DEI SISTEMI STABILITA

TEORIA DEI SISTEMI STABILITA TEORIA DEI SISTEMI Laurea Specialistica in Ingegneria Meccatronica Laurea Specialistica in Ingegneria Gestionale Indirizzo Gestione Industriale TEORIA DEI SISTEMI STABILITA Ing. Cristian Secchi Tel. 0522

Dettagli

TEORIA DEI SISTEMI ANALISI MODALE

TEORIA DEI SISTEMI ANALISI MODALE TEORIA DEI SISTEMI Laurea Specialistica in Ingegneria Meccatronica Laurea Specialistica in Ingegneria Gestionale Indirizzo Gestione Industriale TEORIA DEI SISTEMI ANALISI MODALE Ing. Cristian Secchi Tel.

Dettagli

Consideriamo un sistema dinamico tempo-invariante descritto da:

Consideriamo un sistema dinamico tempo-invariante descritto da: IL PROBLEMA DELLA STABILITA Il problema della stabilità può essere affrontato in vari modi. Quella adottata qui, per la sua riconosciuta generalità ed efficacia, è l impostazione classica dovuta a M. A.

Dettagli

Parte 3, 1. Stabilità. Prof. Thomas Parisini. Fondamenti di Automatica

Parte 3, 1. Stabilità. Prof. Thomas Parisini. Fondamenti di Automatica Parte 3, 1 Stabilità Parte 3, 2 Stabilità: - del movimento (vedere libro ma non compreso nel programma) - dell equilibrio - del sistema (solo sistemi lineari) Analizzeremo separatamente sistemi a tempo

Dettagli

CONTROLLO DI SISTEMI ROBOTICI ANALISI MODALE

CONTROLLO DI SISTEMI ROBOTICI ANALISI MODALE CONTROLLO DI SISTEMI ROBOTICI Laurea Specialistica in Ingegneria Meccatronica CONTROLLO DI SISTEMI ROBOTICI ANALISI MODALE Ing. Cristian Secchi Tel. 0522 522235 e-mail: secchi.cristian@unimore.it http://www.dismi.unimo.it/members/csecchi

Dettagli

TEORIA DEI SISTEMI SISTEMI LINEARI

TEORIA DEI SISTEMI SISTEMI LINEARI TEORIA DEI SISTEMI Laurea Specialistica in Ingegneria Meccatronica Laurea Specialistica in Ingegneria Gestionale Indirizzo Gestione Industriale TEORIA DEI SISTEMI SISTEMI LINEARI Ing. Cristian Secchi Tel.

Dettagli

TEORIA DELLA STABILITÀ. Esercizi con soluzione. G. Oriolo Dipartimento di Informatica e Sistemistica Università di Roma La Sapienza

TEORIA DELLA STABILITÀ. Esercizi con soluzione. G. Oriolo Dipartimento di Informatica e Sistemistica Università di Roma La Sapienza TEORIA DELLA STABILITÀ Esercizi con soluzione G. Oriolo Dipartimento di Informatica e Sistemistica Università di Roma La Sapienza Esercizio 1 Si consideri il sistema non lineare descritto dalle seguenti

Dettagli

Stabilità per i sistemi dinamici a tempo discreto

Stabilità per i sistemi dinamici a tempo discreto Parte 3, 1 Stabilità per i sistemi dinamici a tempo discreto Parte 3, 2 Stabilità: Le definizioni delle proprietà di stabilità per i sistemi dinamici a tempo discreto sono analoghe a quelle viste per i

Dettagli

TEORIA DEI SISTEMI ANALISI DEI SISTEMI LTI

TEORIA DEI SISTEMI ANALISI DEI SISTEMI LTI TEORIA DEI SISTEMI Laurea Specialistica in Ingegneria Meccatronica Laurea Specialistica in Ingegneria Gestionale Indirizzo Gestione Industriale TEORIA DEI SISTEMI ANALISI DEI SISTEMI LTI Ing. Cristian

Dettagli

Calcolo del movimento di sistemi dinamici LTI

Calcolo del movimento di sistemi dinamici LTI Calcolo del movimento di sistemi dinamici LTI Analisi modale per sistemi dinamici LTI TC Modi naturali di un sistema dinamico Analisi modale Esercizio 1 Costante di tempo Esercizio 2 2 Analisi modale per

Dettagli

SECONDO METODO DI LYAPUNOV

SECONDO METODO DI LYAPUNOV SECONDO METODO DI LYAPUNOV Il Secondo Metodo di Lyapunov permette di studiare la stabilità degli equilibri di un sistema dinamico non lineare, senza ricorrere alla linearizzazione delle equazioni del sistema.

Dettagli

Sistemi LTI a tempo continuo

Sistemi LTI a tempo continuo Esercizi 4, 1 Sistemi LTI a tempo continuo Equazioni di stato, funzioni di trasferimento, calcolo di risposta di sistemi LTI a tempo continuo. Equilibrio di sistemi nonlineari a tempo continuo. Esercizi

Dettagli

Esercizi. Sistemi LTI a tempo continuo. Esempio. Funzioni di trasferimento

Esercizi. Sistemi LTI a tempo continuo. Esempio. Funzioni di trasferimento Esercizi 4, 1 Esercizi Funzioni di trasferimento Dato un sistema LTI descritto dalle equazioni di stato: Esercizi 4, 2 Sistemi LTI a tempo continuo Trasformando con Laplace si ottiene la seguente espressione

Dettagli

Pendolo senza attrito

Pendolo senza attrito Pendolo senza attrito l m ϕ equazione del moto : mlϕ '' = mg sinϕ ϕ '' = y'' = k sin y, k > 0 g sinϕ l Pendolo senza attrito Trasformiamo l equazione in un sistema autonomo bidimensionale conservativo

Dettagli

ẋ 1 = 2x 1 + (sen 2 (x 1 ) + 1)x 2 + 2u (1) y = x 1

ẋ 1 = 2x 1 + (sen 2 (x 1 ) + 1)x 2 + 2u (1) y = x 1 Alcuni esercizi risolti su: - calcolo dell equilibrio di un sistema lineare e valutazione delle proprietà di stabilità dell equilibrio attraverso linearizzazione - calcolo del movimento dello stato e dell

Dettagli

Proprietà Strutturali dei Sistemi Dinamici: Stabilità

Proprietà Strutturali dei Sistemi Dinamici: Stabilità Proprietà Strutturali dei Sistemi Dinamici: Stabilità Ingegneria dell'automazione Corso di Sistemi di Controllo Multivariabile - Prof. F. Amato Versione 2.2 Ottobre 2012 1 Stabilità Consideriamo il sistema

Dettagli

SISTEMI NON LINEARI. Sviluppo in serie SISTEMA LINEARIZZATO

SISTEMI NON LINEARI. Sviluppo in serie SISTEMA LINEARIZZATO Linearizzazione SISTEMI NON LINEARI & = f (, u) (t + ) = f((t),u(t) equilibrio ( u, ) δ ( t) = ( t) δu( t) = u( t) u Sviluppo in serie Termini di ordine superiore f f δ ( t) = & ( t) = f ( + δ ( t), u

Dettagli

Spazio degli Stati e Linearizzazione di Sistemi Nonlineari. Prof. Laura Giarré

Spazio degli Stati e Linearizzazione di Sistemi Nonlineari. Prof. Laura Giarré Spazio degli Stati e Linearizzazione di Sistemi Nonlineari Prof. Laura Giarré Laura.Giarre@UNIMORE.IT https://giarre.wordpress.com/ca/ Sistemi Lineari Tempo varianti Supponiamo dim(x) = n, dim(u) = m e

Dettagli

1 Sistemi Dinamici Esercizio del Parziale del 29/11/2010

1 Sistemi Dinamici Esercizio del Parziale del 29/11/2010 1 Sistemi Dinamici Esercizio del Parziale del 29/11/2010 Si consideri il sistema dinamico con { ẋ = y ẏ = d U(x) U(x) = 2 ( x 2 3 x + 4 ) e x/2. (2) 1. Tracciare qualitativamente le curve di fase del sistema

Dettagli

Equilibrio di sistemi dinamici Esercizi proposti. 1 Esercizio (derivato dall es. #8 del 18/09/2002) 2 Esercizio (proposto il 10/02/2003, es.

Equilibrio di sistemi dinamici Esercizi proposti. 1 Esercizio (derivato dall es. #8 del 18/09/2002) 2 Esercizio (proposto il 10/02/2003, es. Equilibrio di sistemi dinamici Esercizio (derivato dall es. #8 del 8/9/22) Dato il sistema dinamico, non lineare, a tempo continuo, descritto dalle seguenti equazioni: ẋ (t) = x (t).5x 2 2 (t)+4u(t) ẋ

Dettagli

Esercizi di teoria dei sistemi

Esercizi di teoria dei sistemi Esercizi di teoria dei sistemi Controlli Automatici LS (Prof. C. Melchiorri) Esercizio Dato il sistema lineare tempo continuo: ẋ(t) 2 y(t) x(t) x(t) + u(t) a) Determinare l evoluzione libera dello stato

Dettagli

ANALISI E SIMULAZIONE DI SISTEMI DINAMICI. Lezione XI: Stabilità interna

ANALISI E SIMULAZIONE DI SISTEMI DINAMICI. Lezione XI: Stabilità interna ANALISI E SIMULAZIONE DI SISTEMI DINAMICI Lezione XI: Stabilità interna Stabilità interna e esterna Stabilità alla Lyapunov Stabilità asintotica I sistemi lineari Esempi 11-1 Tipi di Stabilità Idea intuitiva

Dettagli

Fondamenti di Automatica

Fondamenti di Automatica Fondamenti di Automatica Analisi dei sistemi dinamici Dott. Ing. Marcello Bonfè Dipartimento di Ingegneria - Università di Ferrara Tel. +39 0532 974839 E-mail: marcello.bonfe@unife.it pag. 1 Analisi dei

Dettagli

Esercizi di Fondamenti di Automatica

Esercizi di Fondamenti di Automatica Esercizi di Fondamenti di Automatica Bruno Picasso Esercizio Sia dato il sistema lineare { ẋ(t) = Ax(t), x R n x() = x.. Mostrare che se x è tale che Ax = λx, λ R, allora il corrispondente movimento dello

Dettagli

un sistema è stabile se, in conseguenza di una sollecitazione esterna limitata, la sua risposta (variazione dell uscita) è limitata (Bounded Input

un sistema è stabile se, in conseguenza di una sollecitazione esterna limitata, la sua risposta (variazione dell uscita) è limitata (Bounded Input un sistema è stabile se, in conseguenza di una sollecitazione esterna limitata, la sua risposta (variazione dell uscita) è limitata (Bounded Input Bounded Output) Un sistema si dice asintoticamente stabile

Dettagli

INGEGNERIA DELLE TELECOMUNICAZIONI

INGEGNERIA DELLE TELECOMUNICAZIONI INGEGNERIA DELLE TELECOMUNICAZIONI FONDAMENTI DI AUTOMATICA Prof. Marcello Farina TEMA D ESAME E SOLUZIONI 18 febbraio 2014 Anno Accademico 2012/2013 ESERCIZIO 1 Si consideri il sistema descritto dalle

Dettagli

Proprietà strutturali e leggi di controllo

Proprietà strutturali e leggi di controllo Proprietà strutturali e leggi di controllo Retroazione statica dallo stato La legge di controllo Esempi di calcolo di leggi di controllo Il problema della regolazione 2 Retroazione statica dallo stato

Dettagli

CONTROLLI AUTOMATICI LS Ingegneria Informatica. Analisi modale

CONTROLLI AUTOMATICI LS Ingegneria Informatica. Analisi modale CONTROLLI AUTOMATICI LS Ingegneria Informatica Analisi modale Prof. Claudio Melchiorri DEIS-Università di Bologna Tel. 5 9334 e-mail: claudio.melchiorri@unibo.it http://www-lar.deis.unibo.it/~cmelchiorri

Dettagli

Controlli Automatici LA Introduzione all'analisi dei sistemi dinamici

Controlli Automatici LA Introduzione all'analisi dei sistemi dinamici Introduzione all'analisi dei sistemi dinamici lineari Prof. Carlo Rossi DEIS-Università di Bologna Tel. 5 2932 Email: crossi@deis.unibo.it URL: www-lar.deis.unibo.it/~crossi. 2. movimento e stabilità del

Dettagli

Esercizi 3, 1. Prof. Thomas Parisini. Esercizi 3, 3 Regola:

Esercizi 3, 1. Prof. Thomas Parisini. Esercizi 3, 3 Regola: Esercizi 3, 1 Esercizi 3, 2 Esercizi Stabilità per sistemi a tempo continuo Analisi degli autovalori Analisi del polinomio caratteristico, criterio di Routh-Hurwitz Stabilità per sistemi a tempo continuo

Dettagli

Stabilità per sistemi a tempo continuo

Stabilità per sistemi a tempo continuo Esercizi 3, 1 Stabilità per sistemi a tempo continuo Analisi degli autovalori Analisi del polinomio caratteristico, criterio di Routh-Hurwitz Calcolo di Esercizi 3, 2 Esercizi Stabilità per sistemi a tempo

Dettagli

Stabilità dei sistemi dinamici

Stabilità dei sistemi dinamici Stabilità - 1 Corso di Laurea in Ingegneria Meccanica Stabilità dei sistemi dinamici DEIS-Università di Bologna Tel. 051 2093020 Email: crossi@deis.unibo.it URL: www-lar.deis.unibo.it/~crossi Stabilità

Dettagli

CONTROLLO DI SISTEMI ROBOTICI Laurea Specialistica in Ingegneria Meccatronica

CONTROLLO DI SISTEMI ROBOTICI Laurea Specialistica in Ingegneria Meccatronica CONTROLLO DI SISTEMI ROBOTICI Laurea Specialistica in Ingegneria Meccatronica CONTROLLO DI SISTEMI ROBOTICI ANALISI DEI SISTEMI LTI Ing. Tel. 0522 522235 e-mail: secchi.cristian@unimore.it http://www.dismi.unimo.it/members/csecchi

Dettagli

PRIMA PROVA PARZIALE DI CONTROLLO DIGITALE A.A. 2005/ aprile 2006 TESTO E SOLUZIONE

PRIMA PROVA PARZIALE DI CONTROLLO DIGITALE A.A. 2005/ aprile 2006 TESTO E SOLUZIONE PRIMA PROVA PARZIALE DI CONTROLLO DIGITALE A.A. 2005/2006 2 aprile 2006 TESTO E SOLUZIONE Esercizio Assegnato il sistema dinamico, non lineare, tempo invariante x (k + ) = x (k) + x 2 (k) 2 + u(k) x 2

Dettagli

4. Linearità e Linearizzazione

4. Linearità e Linearizzazione 4. Linearità e Linearizzazione 4 Linearità e Linearizzazione Principio di sovrapposizione degli effetti Considera il sistema lineare tempo-discreto, tempo-invariante: < : x(k +) = Ax(k)+Bu(k) x() = x La

Dettagli

2.1 Osservazioni sull esercitazione del

2.1 Osservazioni sull esercitazione del ¾ ½¾º¼ º¾¼½ Queste note (attualmente, e probabilmente per un bel po ) sono altamente provvisorie e (molto probabilmente) non prive di errori. 2.1 Osservazioni sull esercitazione del 5.3.214 2.1.1 Equazione

Dettagli

Stabilita` dei sistemi dinamici

Stabilita` dei sistemi dinamici Parte 3, 1 Stabilita` dei sistemi dinamici Parte 3, 2 Stabilita`: - del movimento - dell equilibrio - dei sistemi lineari Stabilita`del movimento Parte 3, 3 Consideriamo un sistema dinamico avente funzione

Dettagli

Controlli Automatici LA Introduzione all'analisi dei sistemi dinamici lineari

Controlli Automatici LA Introduzione all'analisi dei sistemi dinamici lineari Controlli Automatici LA Introduzione all'analisi dei sistemi dinamici lineari Prof. Carlo Rossi DEIS-Università di Bologna Tel. 051 2093020 Email: crossi@deis.unibo.it URL: www-lar.deis.unibo.it/~crossi

Dettagli

CONTROLLI AUTOMATICI Ingegneria della Gestione Industriale e della Integrazione di Impresa

CONTROLLI AUTOMATICI Ingegneria della Gestione Industriale e della Integrazione di Impresa CONTROLLI AUTOMATICI Ingegneria della Gestione Industriale e della Integrazione di Impresa http://www.automazione.ingre.unimore.it/pages/corsi/controlliautomaticigestionale.htm CRITERIO DI ROUTH-HURWITZ

Dettagli

CRITERIO DI ROUTH-HURWITZ

CRITERIO DI ROUTH-HURWITZ CONTROLLI AUTOMATICI Ingegneria Meccanica e Ingegneria del Veicolo http://www.dii.unimore.it/~lbiagiotti/controlliautomatici.html CRITERIO DI ROUTH-HURWITZ Ing. e-mail: luigi.biagiotti@unimore.it http://www.dii.unimore.it/~lbiagiotti

Dettagli

COMPITO A: soluzione

COMPITO A: soluzione PROVA SCRITTA DI FONDAMENTI DI AUTOMATICA (PRIMA PARTE) A.A. 2005/2006 9 novembre 2005 nome e cognome: numero di matricola: Note: Scrivere le risposte negli spazi appositi. Non consegnare fogli aggiuntivi.

Dettagli

ANALISI VETTORIALE COMPITO IN CLASSE DEL 8/11/2013

ANALISI VETTORIALE COMPITO IN CLASSE DEL 8/11/2013 ANALISI VETTORIALE COMPITO IN CLASSE DEL 8//3 Premessa (Cfr. gli Appunti di Analisi Vettoriale / del Prof. Troianiello) Nello studio degli integrali impropri il primo approccio all utilizzo del criterio

Dettagli

1 Punti di equilibrio e stabilità: definizioni

1 Punti di equilibrio e stabilità: definizioni ASPETTI QUALITATIVI DELLA TEORIA DELLE EQUAZIONI DIFFERENZIALI (Schema del contenuto delle lezioni e riferimenti bibliografici) Testi [HS] M. Hirsch and S. Smale Differential Equations, Dynamical Systems

Dettagli

Laurea Triennale in Matematica Fisica Matematica ore 14:30 15 Giugno 2017 Durata: 3 ore

Laurea Triennale in Matematica Fisica Matematica ore 14:30 15 Giugno 2017 Durata: 3 ore Laurea Triennale in Matematica Fisica Matematica ore 14:30 15 Giugno 2017 Durata: 3 ore Attenzione: Riconsegnerete DUE fogli (protocollo bianco, a 4 facciate), scriverete chiaramente cognome e nome, data

Dettagli

Esercitazione 05: Trasformata di Laplace e funzione di trasferimento

Esercitazione 05: Trasformata di Laplace e funzione di trasferimento Esercitazione 05: Trasformata di Laplace e funzione di trasferimento 28 marzo 208 (3h) Fondamenti di Automatica Prof. M. Farina Responsabile delle esercitazioni: Enrico Terzi Queste dispense sono state

Dettagli

Fondamenti di Automatica

Fondamenti di Automatica Fondamenti di Automatica Controllo con retroazione dello stato Dott. Ing. Marcello Bonfè Dipartimento di Ingegneria - Università di Ferrara Tel. 39 0532 974839 E-mail: marcello.bonfe@unife.it pag. 1 Controllo

Dettagli

Punti di equilibrio: sistemi tempo continui

Punti di equilibrio: sistemi tempo continui Capitolo 3 ANALISI DELLA STABILITÀ 31 Punti di equilibrio: sistemi tempo continui Si consideri il seguente sistema tempo continuo: ẋ(t) A x(t) + B u(t) y(t) C x(t) + D u(t) I punti di equilibrio x 0 del

Dettagli

Esercitazione Sistemi e Modelli n.6

Esercitazione Sistemi e Modelli n.6 Esercitaione Sistemi e Modelli n.6 Eserciio Si consideri un allevamento di conigli con il numero di maschi uguale al numero delle femmine. Come variabili di stato si consideri il numero di coppie di conigli

Dettagli

Metodi di Iterazione Funzionale

Metodi di Iterazione Funzionale Appunti di Matematica Computazionale Lezione Metodi di Iterazione Funzionale Il problema di calcolare il valore per cui F() = si può sempre trasformare in quello di trovare il punto fisso di una funzione

Dettagli

AUTOMATICA I (Ingegneria Biomedica - Allievi da L a Z) Appello del 20 luglio 2006: testo e soluzione

AUTOMATICA I (Ingegneria Biomedica - Allievi da L a Z) Appello del 20 luglio 2006: testo e soluzione AUTOMATICA I (Ingegneria Biomedica - Allievi da L a Z) Appello del 2 luglio 26: testo e soluzione Prof. Maria Prandini 1. Si consideri il sistema lineare con ingresso u ed uscita y descritto dalle seguenti

Dettagli

Queste note (attualmente, e probabilmente per un bel po ) sono altamente provvisorie e (molto probabilmente) non prive di errori.

Queste note (attualmente, e probabilmente per un bel po ) sono altamente provvisorie e (molto probabilmente) non prive di errori. ËÈÇÆ Æ Á Ä Á Å ÌÊÁ Á Queste note (attualmente e probabilmente per un bel po ) sono altamente provvisorie e (molto probabilmente) non prive di errori 31 Sistemi lineari Consideriamo un sistema lineare nella

Dettagli

CRITERIO DI ROUTH-HURWITZ

CRITERIO DI ROUTH-HURWITZ CONTROLLI AUTOMATICI Ingegneria della Gestione Industriale CRITERIO DI ROUTH-HURWITZ HURWITZ Ing. Luigi Biagiotti Tel. 051 2093034 / 051 2093068 e-mail: lbiagiotti@deis.unibo.it http://www-lar.deis.unibo.it/~lbiagiotti

Dettagli

Massimi e minimi relativi in R n

Massimi e minimi relativi in R n Massimi e minimi relativi in R n Si consideri una funzione f : A R, con A R n, e sia x A un punto interno ad A. Definizione: si dice che x è un punto di massimo relativo per f se B(x, r) A tale che f(y)

Dettagli

11 Piccole oscillazioni attorno a posizioni stabili

11 Piccole oscillazioni attorno a posizioni stabili 11 Piccole oscillazioni attorno a posizioni stabili Consideriamo un sistema con l gradi di libertà descrivibile mediante le coordinate lagrangiane (q 1,..., q l ). Supponiamo che i vincoli siano lisci

Dettagli

Elementi di Teoria dei Sistemi

Elementi di Teoria dei Sistemi Parte 2, 1 Elementi di Teoria dei Sistemi Parte 2, 2 Definizione di sistema dinamico Parte 2, 3 Sistema dinamico a tempo continuo Ingresso Uscita Parte 2, 4 Cosa significa Dinamico?? e` univocamente determinata?

Dettagli

FONDAMENTI DI AUTOMATICA (Ingegneria Biomedica) Appello del 16 febbraio 2010: testo e soluzione. y = x 1

FONDAMENTI DI AUTOMATICA (Ingegneria Biomedica) Appello del 16 febbraio 2010: testo e soluzione. y = x 1 FONDAMENTI DI AUTOMATICA (Ingegneria Biomedica) Appello del 16 febbraio 21: testo e soluzione Prof. Maria Prandini 1. Si consideri il sistema descritto dalle seguenti equazioni: ẋ 1 = x 2 2 + x 1 ẋ 2 =

Dettagli

Elementi di Teoria dei Sistemi. Definizione di sistema dinamico. Cosa significa Dinamico? Sistema dinamico a tempo continuo

Elementi di Teoria dei Sistemi. Definizione di sistema dinamico. Cosa significa Dinamico? Sistema dinamico a tempo continuo Parte 2, 1 Parte 2, 2 Elementi di Teoria dei Sistemi Definizione di sistema dinamico Parte 2, 3 Sistema dinamico a tempo continuo Cosa significa Dinamico? Parte 2, 4? e` univocamente determinata? Ingresso

Dettagli

ANTITRAFORMATE DI LAPLACE MODI DI UN SISTEMA

ANTITRAFORMATE DI LAPLACE MODI DI UN SISTEMA FONDAMENTI DI CONTROLLI AUTOMATICI Ingegneria Meccanica http://web.ing.unimo.it/~lbiagiotti/fondamenticontrolli1415.html ANTITRAFORMATE DI LAPLACE MODI DI UN SISTEMA Ing. e-mail: luigi.biagiotti@unimore.it

Dettagli

Parte 1. Fisica Matematica I Compitino 7 Maggio 2015 Durata: 3 ore

Parte 1. Fisica Matematica I Compitino 7 Maggio 2015 Durata: 3 ore Fisica Matematica I Compitino 7 Maggio 015 Durata: 3 ore Scrivete cognome e nome in ogni foglio consegnato. Consegnate lo svolgimento della parte 1 (il FRONTE di questo foglio) nella pila etichettata 1,

Dettagli

Tutorato Calcolo 2 Simone La Cesa, 15/11/2017

Tutorato Calcolo 2 Simone La Cesa, 15/11/2017 1 Tutorato Calcolo Simone La Cesa, 15/11/017 Esercizi stabilità dei sistemi di equazioni differenziali e Funzioni di Lyapunov 1. Si consideri l equazione: mx + k(x + x 3 ) = 0 moto di una particella di

Dettagli

Fondamenti di Automatica - Ingegneria Gestionale (H-PO) Prof. Silvia Strada Prima prova in itinere del 25 Novembre 2016 Tempo a disposizione: 1.30 h.

Fondamenti di Automatica - Ingegneria Gestionale (H-PO) Prof. Silvia Strada Prima prova in itinere del 25 Novembre 2016 Tempo a disposizione: 1.30 h. Politecnico di Milano Fondamenti di Automatica - Ingegneria Gestionale (H-PO) Prof. Silvia Strada Prima prova in itinere del 25 Novembre 206 Tempo a disposizione:.30 h. Nome e Cognome................................................................................

Dettagli

Scrivere il numero della risposta sopra alla corrispondente domanda. (voti: 2,0,-1, min=14 sulle prime 10) , C = [3 2 2], D =

Scrivere il numero della risposta sopra alla corrispondente domanda. (voti: 2,0,-1, min=14 sulle prime 10) , C = [3 2 2], D = n. 101 cognome nome corso di laurea Analisi e Simulazione di Sistemi Dinamici 18/11/2003 Risposte Domande 1 2 3 4 5 6 7 8 9 10 N. matricola Scrivere il numero della risposta sopra alla corrispondente domanda.

Dettagli

Oscillazioni. Si produce un oscillazione quando un sistema viene perturbato rispetto a una posizione di equilibrio stabile

Oscillazioni. Si produce un oscillazione quando un sistema viene perturbato rispetto a una posizione di equilibrio stabile Oscillazioni Si produce un oscillazione quando un sistema viene perturbato rispetto a una posizione di equilibrio stabile Caratteristica più evidente del moto oscillatorio è di essere un moto periodico,

Dettagli

4.1 Sulla linearizzazione attorno agli equilibri

4.1 Sulla linearizzazione attorno agli equilibri ½¾º¼ º¾¼½ Queste note (attualmente, e probabilmente per un bel po ) sono altamente provvisorie e (molto probabilmente) non prive di errori 41 Sulla linearizzazione attorno agli equilibri Come abbiamo già

Dettagli

Stabilizzazione di Sistemi Non Lineari via Retroazione dallo Stato

Stabilizzazione di Sistemi Non Lineari via Retroazione dallo Stato Stabilizzazione di Sistemi Non Lineari via Retroazione dallo Stato G. Oriolo Sapienza Università di Roma Introduzione consideriamo un generico sistema dinamico non lineare stazionario ẋ = f(x, u) y = g(x)

Dettagli

Il modello preda predatore. Modellistica Ambientale, 2013/14 Dinamiche di Crescita: 2 popo

Il modello preda predatore. Modellistica Ambientale, 2013/14 Dinamiche di Crescita: 2 popo Modellistica Ambientale, 2013/14 Dinamiche di Crescita: 2 popolazioni Il modello preda predatore Interazione di due popolazioni: il modello Preda-Predatore Il modello Preda-Predatore è stato sviluppato

Dettagli

Corso di Calcolo Numerico

Corso di Calcolo Numerico Corso di Calcolo Numerico Dott.ssa M.C. De Bonis Università degli Studi della Basilicata, Potenza Facoltà di Ingegneria Corso di Laurea in Ingegneria Meccanica Risoluzione di Equazioni Algebriche Le equazioni

Dettagli

AUTOMATICA I (Ingegneria Biomedica - Allievi da L a Z) Appello dell 8 luglio 2008: testo e soluzione

AUTOMATICA I (Ingegneria Biomedica - Allievi da L a Z) Appello dell 8 luglio 2008: testo e soluzione AUTOMATICA I (Ingegneria Biomedica - Allievi da L a Z) Appello dell 8 luglio 8: testo e soluzione Prof. Maria Prandini 1. Si consideri il sistema con ingresso u ed uscita y descritto dalle seguenti equazioni:

Dettagli

Controlli Automatici e Teoria dei Sistemi Stabilità dei Moti e delle Risposte nei Sistemi a Stato Vettore

Controlli Automatici e Teoria dei Sistemi Stabilità dei Moti e delle Risposte nei Sistemi a Stato Vettore Controlli Automatici e Teoria dei Sistemi Stabilità dei Moti e delle Risposte nei Sistemi a Stato Vettore Prof. Roberto Guidorzi Dipartimento di Elettronica, Informatica e Sistemistica Università di Bologna

Dettagli

Serie numeriche e serie di potenze

Serie numeriche e serie di potenze Serie numeriche e serie di potenze Sommare un numero finito di numeri reali è senza dubbio un operazione che non può riservare molte sorprese Cosa succede però se ne sommiamo un numero infinito? Prima

Dettagli

Modelli nello spazio degli stati

Modelli nello spazio degli stati Modelli nello spazio degli stati Modelli nello spazio degli stati Stato: informazione che riassume, in ogni istante, l effetto della storia passata del sistema sul suo comportamento futuro. x(t) stato

Dettagli

FM210 - Fisica Matematica I

FM210 - Fisica Matematica I FM21 - Fisica Matematica I Seconda Prova Scritta [16-2-212] Soluzioni Problema 1 1. Chiamiamo A la matrice del sistema e cerchiamo anzitutto gli autovalori della matrice: l equazione secolare è (λ + 2β)λ

Dettagli

Soluzione nel dominio del tempo

Soluzione nel dominio del tempo Soluzione nel dominio del tempo Prof. Laura Giarré Laura.Giarre@UNIMORE.IT https://giarre.wordpress.com/ca/ Antitrasformate CA 2017 2018 Prof. Laura Giarré 1 Risposta nel dominio trasformato Ricordo che

Dettagli

Sistemi del 2 ordine e stabilità in grande

Sistemi del 2 ordine e stabilità in grande Teoria dei sistemi - Capitolo 7 Sistemi tempo-continui del ordine... Introduzione... Quadro di stato... Classificazione degli stati di equilibrio...4 Classificazione dei cicli...5 Esempio...7 Determinazione

Dettagli

Funzione di trasferimento

Funzione di trasferimento Funzione ditrasferimento - 1 Corso di Laurea in Ingegneria Meccanica Funzione di trasferimento DEIS-Università di Bologna Tel. 51 2932 Email: crossi@deis.unibo.it URL: www-lar.deis.unibo.it/~crossi Definizione

Dettagli

CALCOLO NUMERICO Laurea di base in Ingegneria Elettronica, delle Comunicazioni

CALCOLO NUMERICO Laurea di base in Ingegneria Elettronica, delle Comunicazioni CALCOLO NUMERICO Laurea di base in Ingegneria Elettronica, delle Comunicazioni Prof.ssa Laura Pezza (A.A. 2017-2018) V Lezione del 15.03.2018 http://www.dmmm.uniroma1.it/ laura.pezza 1 Metodo di Newton:

Dettagli

Punti di massimo o di minimo per funzioni di n variabili reali

Punti di massimo o di minimo per funzioni di n variabili reali Punti di massimo o di minimo per funzioni di n variabili reali Dati f : A R n R ed X 0 A, X 0 si dice : punto di minimo assoluto se X A, f ( x ) f ( X 0 ) punto di massimo assoluto se X A, f ( x ) f (

Dettagli

Studio di sistemi dinamici a tempo discreto tramite FdT. Risposta allo scalino

Studio di sistemi dinamici a tempo discreto tramite FdT. Risposta allo scalino Parte 6, 1 Studio di sistemi dinamici a tempo discreto tramite FdT Risposta allo scalino Risposta allo scalino Parte 6, 2 Valore iniziale e finale Parte 6, 3 Valore iniziale Uso il teorema del valore iniziale

Dettagli

Sistemi differenziali 2 2: esercizi svolti. 1 Sistemi lineari Stabilità nei sistemi lineari

Sistemi differenziali 2 2: esercizi svolti. 1 Sistemi lineari Stabilità nei sistemi lineari Sistemi differenziali : esercizi svolti 1 Sistemi lineari Stabilità nei sistemi lineari 14 1 Sistemi differenziali : esercizi svolti 1 Sistemi lineari Gli esercizi contrassegnati con il simbolo * presentano

Dettagli

Richiami di topologia di R n e di calcolo differenziale in più variabili

Richiami di topologia di R n e di calcolo differenziale in più variabili Anno accademico: 2016-2017 Corso di laurea in Ingegneria Aerospaziale e Ingegneria dell Autoveicolo Programma di Analisi Matematica II (6 CFU) (codice: 22ACILZ e 22ACILN) Docente: Lancelotti Sergio Richiami

Dettagli

Successioni numeriche (II)

Successioni numeriche (II) Successioni numeriche (II) Hynek Kovarik Università di Brescia Analisi A Hynek Kovarik (Università di Brescia) Successioni (II) Analisi A 1 / 52 Forme indeterminate associate a funzioni razionali fratte:

Dettagli

Elementi di Teoria dei Sistemi. Definizione di sistema dinamico. Cosa significa Dinamico? Sistema dinamico a tempo continuo

Elementi di Teoria dei Sistemi. Definizione di sistema dinamico. Cosa significa Dinamico? Sistema dinamico a tempo continuo Parte 2, 1 Parte 2, 2 Elementi di Teoria dei Sistemi Definizione di sistema dinamico Parte 2, 3 Sistema dinamico a tempo continuo Cosa significa Dinamico? Parte 2, 4? e` univocamente determinata? Ingresso

Dettagli

FONDAMENTI DI AUTOMATICA (Ingegneria Gestionale) Prof. Matteo Corno

FONDAMENTI DI AUTOMATICA (Ingegneria Gestionale) Prof. Matteo Corno POLITECNICO DI MILANO FONDAMENTI DI AUTOMATICA (Ingegneria Gestionale) Anno Accademico 2014/15 Prima prova in itinere 28/11/2014 COGNOME... NOME... MATRICOLA... FIRMA.... Verificare che il fascicolo sia

Dettagli

a j n + convergente divergente irregolare.

a j n + convergente divergente irregolare. Serie numeriche Definizione Data una successione reale {a j } + successione delle somme parziali n esime come: n s n a j, jj il cui limite, per n + : jj R, si definisce la s lim s n n + jj a j è detto

Dettagli

Considerare il moto di un punto materiale di massa m = 1 soggetto ad un potenziale V (x):

Considerare il moto di un punto materiale di massa m = 1 soggetto ad un potenziale V (x): sercizio Considerare il moto di un punto materiale di massa m = soggetto ad un potenziale V (x): ẍ = V (x), dove V (x) = x x.. Scrivere esplicitamente l equazione del moto e verificare esplicitamente la

Dettagli

INGEGNERIA INFORMATICA

INGEGNERIA INFORMATICA INGEGNERIA INFORMATICA FONDAMENTI DI AUTOMATICA 09/02/2017 Prof. Marcello Farina SOLUZIONI Anno Accademico 2015/2016 ESERCIZIO 1 Si consideri il sistema a tempo discreto non lineare descritto dalle seguenti

Dettagli

TECNICHE DI CONTROLLO

TECNICHE DI CONTROLLO TECNICHE DI CONTROLLO Richiami di Teoria dei Sistemi Dott. Ing. SIMANI SILVIO con supporto del Dott. Ing. BONFE MARCELLO Sistemi e Modelli Concetto di Sistema Sistema: insieme, artificialmente isolato

Dettagli

7.4 Massimi e minimi vincolati. Moltiplicatori di Lagrange

7.4 Massimi e minimi vincolati. Moltiplicatori di Lagrange 4 7.4 Massimi e minimi vincolati. Moltiplicatori di Lagrange Sia f (,,, n ) una funzione delle n variabili,,, n, supponiamo che esse non siano indipendenti, cioè che siano legate da p < n equazioni: ϕ(,,,

Dettagli

Politecnico di Milano. Prof. SILVIA STRADA Cognomi LF - PO SOLUZIONE

Politecnico di Milano. Prof. SILVIA STRADA Cognomi LF - PO SOLUZIONE Politecnico di Milano Prof. SILVIA STRADA Cognomi LF - PO SOLUZIONE A.A. 25/6 Prima prova di Fondamenti di Automatica (CL Ing. Gestionale) 27 Novembre 25 ESERCIZIO punti: 8 su 32 Si consideri il sistema

Dettagli

Teoria dei Sistemi

Teoria dei Sistemi Teoria dei Sistemi 13-06-2016 Esercizio 1 In Figura sono riportati un sottomarino telecomandato da remoto (ROV) ed il suo modello nel piano di pitch (beccheggio). Il sistema ha massa M e momento di inerzia

Dettagli

SISTEMI DI EQUAZIONI DIFFERENZIALI- ESERCIZI SVOLTI

SISTEMI DI EQUAZIONI DIFFERENZIALI- ESERCIZI SVOLTI SISTEMI DI EQUAZIONI DIFFERENZIALI- ESERCIZI SVOLTI Generalità sui sistemi Sia xt, yt la soluzione del problema di Cauchy Posto vt = e xtyt, calcolare v x = 3x x = y = x y = 0 Sia x = 3x y y = x + y Scrivere

Dettagli

Sistemi Dinamici 2. Esercitazioni

Sistemi Dinamici 2. Esercitazioni Sistemi Dinamici Laurea Triennale in Matematica Applicata - II anno - II semestre Esercitazioni Es. 1 Stabilità Esercizio 1 Dimostrare che per un sistema autonomo ẋ = f(x) in R valgono le seguenti proprietà:

Dettagli

Analisi della Stabilità: stabilità del movimento.

Analisi della Stabilità: stabilità del movimento. Capitolo. INTRODUZIONE 3. Analisi della Stabilità: stabilità del movimento. Un sistema viene detto stabile se manifesta un comportamento insensibile nei confronti di particolari perturbazioni esterne.

Dettagli

Fondamenti di Automatica (10 cfu) Corso di Studi in Ingegneria Gestionale A.A. 2011/12 TESTI ESERCIZI PRIMA PARTE DEL CORSO

Fondamenti di Automatica (10 cfu) Corso di Studi in Ingegneria Gestionale A.A. 2011/12 TESTI ESERCIZI PRIMA PARTE DEL CORSO Fondamenti di Automatica (10 cfu) Corso di Studi in Ingegneria Gestionale A.A. 2011/12 TESTI ESERCIZI PRIMA PARTE DEL CORSO Prof. SILVIA STRADA Esercitatore ANDREA G. BIANCHESSI ESERCIZIO 1 1. Scrivere

Dettagli

La funzione di risposta armonica

La funzione di risposta armonica Funzione di risposta armonica - Corso di Laurea in Ingegneria Meccanica Controlli Automatici L La funzione di risposta armonica DEIS-Università di Bologna Tel. 5 2932 Email: crossi@deis.unibo.it URL: www-lar.deis.unibo.it/~crossi

Dettagli