Otto secoli di gerarchia di scala nelle lottizzazioni urbane 1

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "1215 1815 2015. Otto secoli di gerarchia di scala nelle lottizzazioni urbane 1"

Transcript

1 Parigi / New York Otto secoli di gerarchia di scala nelle lottizzazioni urbane 7 *Serge Salat Parigi / New York Otto secoli di gerarchia di scala nelle lottizzazioni urbane 1 DOI: /Ti_1_15_1i Parole chiave: Parigi, New York, frattali, multifrattali a scala urbana, emergenza, platting Abstract I cambiamenti della Parigi intra-muros (100 kmq) e della planimetria di Manhattan (66 kmq) elaborata dal Commissioners Plan (Piano regolatore) si inseriscono in due scale temporali diverse: due millenni nel caso di Parigi, due secoli nel caso di Manhattan. In apparenza molto diverse, la competitività dei poteri feudali da un lato, in una società chiusa, e la competitività del mercato dall altro, in una società aperta, hanno tuttavia fatto emergere gerarchie parcellari, contraddistinte da gerarchie di scala sorprendentemente simili, come ci fosse all opera una certa universalità. G E R AR C HI E, P A VI M E N T A Z IONI E UN I VE R S AL I TÀ La gerarchia di scala è il marchio della complessità frattale delle strutture urbane Nei sistemi urbani, le medie non hanno alcun significato se non rispetto ai valori rappresentati dai punti d intensità: la City di Londra si estende su un miglio quadrato (2,56 kmq) e produce l 8,5% del PIL del Regno Unito; i 25 kmq (1/4 della Parigi intra-muros) dei 23 ward di Tokyo (600 kmq e 9 milioni di abitanti) costituiscono il 18% del consumo energetico complessivo della città. Il paesaggio dei valori urbani non è piatto. Infatti, più le città sono attive, potenti, competitive, come New York, Tokyo, Londra, Parigi e più i valori di ricchezza, i prezzi del mercato immobiliare, le dimensioni degli elementi, la concentrazione di reti negli hub presentano forti disparità. A New York, la densità energetica in rapporto al suolo (ovvero il numero di Watt di energia operativa necessario al funzionamento della città per mq di suolo urbano, calcolata su scala del lotto fiscale), varia di un fattore pari a 100 tra i quartieri costituiti da torri/grattacieli/edifici multipiano di Lower Manhattan e Long Island. Le strutture frattali e le relative classi d universalità ben descrivono le regolarità matematiche di questi sistemi, molto disomogenei e irregolari quali le reti stradali, le parcellazioni e la densità energetica urbana. Il concetto base è una forma di simmetria: l invarianza di scala. È il risultato della complessità strutturale generata da un evoluzione dei sistemi urbani verso la complessità dovuta agli effetti di adattamento a vincoli esterni (Salat, 2011). 1 L'articolo sarà pubblicato in lingua francese sulla rivista Données Urbaines, dicembre L'autore ringrazia Denise Pumain, Brigitte Baccaïni, Marie-Flore Mattei e tutta la redazione per i loro preziosi commenti e approfondimenti. * Presidente dell'istituto di Morfologia Urbana e dei Sistemi Complessi, Parigi,

2 8 Serge Salat La simmetria della dilatazione, o invarianza di scala, è riscontrabile in un numero incalcolabile di fenomeni naturali e negli organismi viventi, la cui evoluzione ha favorito strutture a invarianza di scala per via della loro efficienza e della loro resilienza. Le leggi di potenza inversa mettono quindi in relazione le diverse scale: la frequenza di un elemento di dimensioni x è inversamente proporzionale alla sua dimensione elevata a un esponente m, caratteristica delle proprietà scalari di un sistema. Pochi sono gli elementi di grande scala, mentre gli elementi di medie dimensioni figurano in numero intermedio e gli elementi piccoli (una lunga coda), invece, sono moltissimi. La frequenza relativa di ciascun tipo è determinata dal parametro scalare della legge della potenza inversa. Questa profonda regolarità matematica emerge nelle città resilienti come in tutti gli organismi viventi. Nelle città in continua evoluzione, è dovuta a millenni di stratificazione storica (è il caso di Parigi) o a intense forze di mercato (è il caso di New York). La distribuzione degli elementi e delle connessioni non obbedisce al teorema di Gauss (concentrazione attorno ai valori medi, Figura 1), ma alle leggi di potenza inversa a invarianza di scala (leggi di Pareto, Figura 2). Numero normalizzato di eventi Figura 1 Distribuzione secondo il teorema di Gauss, 68% dei valori si trovano in un intervallo di due distanze dal centro Figura 2 Distribuzione secondo la legge di potenza inversa, più l esponente scalare è elevato, più il gradiente tra i valori elevati e la lunga coda di valori deboli è in pendenza, in altri termini: più la distribuzione è sbilanciata La resilienza parcellare: correlazioni temporali di lunga portata Osservare la parcellazione è fondamentale per comprendere le strutture urbane perché è uno degli elementi più stabili di una città. Una volta stabilite, le distribuzioni parcellari presentano forti inerzie e correlazioni temporali su scale molto lunghe proprio in termini temporali. Roma è un esempio di tale permanenza. Alla caduta dell Impero, si sono osservati molteplici fenomeni concomitanti: la progressiva sparizione delle antiche forme di habitat, la reinterpretazione dei monumenti pubblici e, in particolare, dei templi, trasformati in chiese o demoliti e smembrati, la sovrapposizione, in modo che le strutture fondiarie e l antica frammentazione in lotti rimanessero molto presenti anche nella città medievale e moderna. Durante il grande incendio di Londra del 1666, durato dal 2 al 5 settembre, abitazioni, 87 chiese parrocchiali, la cattedrale di St. Paul e la maggior parte degli edifici delle autorità cittadine furono ridotti in cenere. L incendio costò la casa al 90% degli londinesi della City propriamente detta. Il tracciato stradale del centro urbano, con la sua rete di vie pavimentate, strette, tortuose e sovraffollate, era essenzialmente medievale. Furono proposti diversi piani per una ricostruzione radicalmente differente della City, movimento, questo, incoraggiato dal monarca, ma in assenza di una soluzione al problema della proprietà, nessuno dei piani grandiosi, degni di una città barocca, numerose piazze e viali, poté essere realizzato. Pertanto, l antico tracciato fu riprodotto, per la maggior parte, nella nuova City che conservò la lottizzazione e i tracciati medievali.

3 Parigi / New York Otto secoli di gerarchia di scala nelle lottizzazioni urbane 9 P A RIG I: OT T O SECOL I D I RESIL I E NZ A D EL L E S T R U T T UR E P AR C EL L A RI Una classe di universalità frattale Le trasformazioni spaziali di Parigi durante il Medioevo e alla fine del XIX secolo, così come quelle di Hong Kong o quelle di Manhattan, obbediscono a determinanti sociali ed economici molto diversi, sebbene la proprietà fondiaria presenti regolarità matematiche identiche nelle dimensioni delle frammentazioni. Abbiamo scoperto l esistenza di legami nascosti tra fenomeni urbani in apparenza molto diversi, che i fisici definiscono classi di universalità. Queste raggruppano fenomeni che, a priori, non hanno nulla in comune, ma che ciononostante adottano, da un certo punto di vista, comportamenti simili. Vedremo poi che la densità energetica di Manhattan, cioè la quantità di energia operativa necessaria agli edifici e alle attività umane (che è un approssimazione dell intensità dello sviluppo e della concentrazione economica), appartiene alla stessa classe d universalità del frammento parcellare. Cosa hanno in comune la densità energetica e il frammento parcellare? Cosa hanno in comune i lotti nella Parigi di Filippo II e nella Parigi di Haussmann, e cosa hanno in comune Parigi e Manhattan, Wall Street e Hong Kong? La geometria. Tutti questi frammenti seguono la legge dell invarianza di scala, il che significa che il loro aspetto non dipende dalla scala in cui li si osserva. Sono, infatti, frattali, cioè che, contrariamente alle linee e alle superfici abituali che hanno una o due dimensioni, hanno una dimensione frazionaria secondo la teoria geometrica sviluppata da Benoît Mandelbrot per descrivere questo tipo di oggetti. L elemento interessante in questo caso è che le proprietà di queste superfici urbane non dipendono da fattori economici e sociali, almeno per quanto riguarda la forma che assumono. Abbiamo a che fare con una nuova forma di universalità, diversa da quella cui la fisica ci ha abituati e secondo cui le leggi della natura sono universali nel senso che sono applicabili ovunque allo stesso modo. In questo caso l universalità si manifesta con il fatto che tali sistemi, sebbene di diversa natura, adottino apparenze simili in quanto possiedono la stessa dimensione frattale. Un analisi della gerarchia di scala condotta su due quartieri di Parigi molto differenti tra loro mostra l universalità dei parametri gerarchici del sistema urbano parigino. La città si fa più complessa in sé o si estende, dilatandosi in nuovi quartieri secondo una gerarchia di scala stabile. La lottizzazione della piazza de l Étoile (Figure 5 e 6) sembra, considerato il punto di vista della struttura scalare, semplicemente una versione dilatata di Rue Mouffetard (Figure 3 e 4) risalente all alto Medioevo. Sono passati oltre sette secoli dal primo di questi due sviluppi urbani e i meccanismi sociali ed economici della speculazione borghese del XIX secolo sono molto diversi da quelli feudali esistenti ai tempi di Filippo II. Eppure ritroviamo lo stesso fattore scalare di -0,5 nelle lottizzazioni di Hong Kong e in quelle di Lower Manhattan, dove la finanza internazionale si è concentrata nei modelli stradali della Nuova Amsterdam del XVII secolo. Il fattore scalare della lottizzazione sembra attraversare immutato epoche e continenti, determinato non da fattori economici e sociali, ma da una forma di universalità geometrica delle superfici delle particelle. Figura 3 e Figura 4: Parigi, Rue Mouffetard. In questa lottizzazione che risale all alto Medioevo, la frequenza delle dimensioni parcellari (in mq e in unità logaritmiche) è distribuita secondo la legge di potenza inversa con un esponente scalare di -0,5. Le analisi sulla classificazione/dimensione parcellare sono qui mostrate su scala logaritmica in cui la pendenza a destra corrisponde all esponente della legge di potenza inversa (Fonte: Loeiz Bourdic, Istituto di Morfologia Urbana e dei Sistemi Complessi, 2014)

4 10 Serge Salat Figura 5 e Figura 6: Parigi, Étoile. In questa lottizzazione del XIX secolo, la frequenza delle dimensioni delle parcelle (in mq e in unità logaritmiche) è ugualmente distribuita secondo una legge di potenza inversa con esponente scalare pari a -0,5, che indica l esistenza di una classe di universalità frattale (Fonte: Loeiz Bourdic, Istituto di Morfologia Urbana e dei Sistemi Complessi, 2014) La classe di universalità frattale della planimetria parigina è definita da un esponente -1/2 cioè il contrario della dimensione topologica di una superficie. Un palinsesto multifrattale Le classi di universalità non rappresentano che un primo approccio, ma rendono omogenee le irregolarità locali discrete derivate dalla lunga e movimentata storia morfologica delle città. Quindi è necessario trovare un modello descrittivo che conservi il dettaglio delle irregolarità in tutte le scale. A Parigi, dall alto Medioevo fino alla Rivoluzione, il suolo si trovava diviso tra varie signorie. I signori hanno poco a poco concesso agli individui insediati sui propri terreni delle mezzadrie, di cui percepivano una tassa annuale, il censo livellare (da cui deriva il nome di censive dato alle signorie parigine). La frammentazione medievale del suolo parigino nasce dallo sviluppo multicellulare della città a partire dalle lottizzazioni di quei feudi signorili ed ecclesiastici (Noizet et al. 2013). È contrassegnata dalle fratture morfologiche delle cinte murarie medievali successive, dalla distruzione delle mura erette da Filippo II, per esempio, che crea asimmetrie ancora più percepibili nelle lottizzazioni, a cinque secoli dal catasto napoleonico di Vasserot del Al tempo in cui Filippo II, tra il 1190 e il 1215 (data del completamento della cinta muraria in cui inizia questa nostra storia), faceva costruire il muro di fortificazione, il re espresse chiaramente il desiderio di vedere tutta la superficie, così racchiusa, occupata dalle case dei nuovi abitanti. Era questa, infatti, una città nuova, costruita pezzo per pezzo dai Templari, quando decisero di attribuire un certo valore ai propri terreni feudali del Marais, ancora poco popolati. I cavalieri fecero aprire una nuova porta nell antica cinta reale (la porta dello Chaume) e tracciare una nuova via tra Rue du Temple e Rue Vieille-du-Temple, asse mediano della lottizzazione, detta Rue de la Porte-Neuve (oggi Rue des Archives). Sei secoli dopo, le asimmetrie esistenti all epoca di Filippo II sono ancora percepibili sulla carta di Vasserot del Hélène Noizet ed Étienne Lallau (Noizet et al. 2013) hanno osservato in questa mappa le dimensioni delle parcelle lungo Rue du Temple, Porte-du-Chaume e Rue Vieille-du- Temple, rilevando che nel 1836 vi era un asimmetria spaziale legata all asimmetria temporale riguardante le porte costruite all epoca di Filippo II. Le due vie più antiche mostrano una forte densità di lotti più piccoli (20,3 parcelle per ettaro lungo Rue due Temple; 15,5 per ettaro lungo Rue Vieille-du- Temple, aperta nel 1203) rispetto alla parcellazione esistente lungo Rue Porte-du-Chaume, aperta nel 1288 (11,3 parcelle per ettaro con una dimensione media due volte inferiore alle parcelle lungo Rue du Temple). Attraverso il tempo, le asimmetrie parcellari trasmettono il ricordo di sedimentazioni successive alla morfogenesi urbana. La fondazione di nuovi borghi ottenuta tramite la lottizzazione di terreni feudali fu molto frequente, intercalando, tanto sulla riva sinistra quanto sulla riva destra, negli spazi lasciati tra i tessuti organici dei primi centri abitati, terreni disposti in maniera regolare, molto spesso lungo una via assiale. Queste lottizzazioni dall aspetto geometrico ricollegavano tra loro quelle più antiche, dall aspetto più complesso. Il risultato di questa costante riscrittura creatrice della città su se stessa è una molteplicità di frattali incastrati fra loro, cioè dei multifrattali.

5 Parigi / New York Otto secoli di gerarchia di scala nelle lottizzazioni urbane 11 Nella metà degli anni Ottanta, i matematici hanno cominciato a interessarsi a funzioni che sembrano molto irregolari in alcune regioni e molto più regolari in altre, senza che a tali regioni si possano assegnare chiaramente delle frontiere perché al centro di una zona piuttosto regolare si trovano zone irregolari e viceversa, una combinazione che compare in tutte le scale. Tale complessità multiscalare fa pensare invariabilmente ai frattali. L analisi multifrattale in fisica intende comprendere e analizzare funzioni molto complesse e introdurre nuovi parametri quantitativi che ne permettano la classificazione. Il fine di questa analisi è lo studio delle funzioni in base a cui la regolarità puntiforme varia da un punto all altro. I primi strumenti di misurazione della regolarità sono noti a tutti: continuità, derivabilità in un punto. L esponente di Hölder introduce un continuum tra queste nozioni e permette di rilevare con precisione la regolarità, grazie ad un parametro positivo reale. Viene introdotta così la nozione di singolarità sotto forma dell esponente di Hölder. La regolarità puntiforme qui risulta molto utile, ma è necessario aggiungervi informazioni strutturali. L analisi locale è completata da una descrizione globale, di livello più alto, che consiste nel misurare la dimensione frattale di Haussdorff di insiemi di punti aventi la stessa regolarità ( isohölder ), che sono insiemi frattali. La nozione della dimensione di Hausdorff amplia la nozione dimensionale naturale di curve e superfici regolari applicata agli insiemi frattali (la cui dimensione potrebbe essere non intera). Gli insiemi isohölder corrispondono ai diversi periodi morfologici della città. Tali periodi si incastrano nei vuoti lasciati dai periodi precedenti, deformati ma mai completamente eliminati, succedendosi a un ritmo più o meno rapido, più o meno intermittente, esso stesso caratteristico di una temporaneità frattale legata alle evoluzioni economiche. Due assi morfogenetici strutturanti La superficie delle parcelle in età preindustriale è generalmente compresa tra i 50 e i 100 mq. La presenza di lotti dalla superficie inferiore a 300 mq sulla carta di Vasserot del , individuata dal progetto ALPAGE (Noizet et al., 2013), rivela una densità parcellare più grande (11 lotti per ettaro) sulla sponda destra, asse privilegiato dello sviluppo medievale rispetto alla sponda sinistra, rimasta più rurale nel Medioevo (8 lotti per ettaro). L estratto grafico di parcelle più piccole nella Parigi napoleonica rivela, come conseguenza del passato medievale, un immagine frattale (Figura 7) dell espansione chiaramente inserita tra due assi perpendicolari formanti un angolo con l est geografico. Figura 7 Estratto della carta Vasserot ( ) delle parcelle di superficie inferiore a 300 mq. Insieme frattale che mostra Parigi com era cinque secoli fa. Fonte: APUR, ALPAGE, 2011 Figura 8 Carta di orientamento dei segmenti della parcellazione Vasserot ( ) e delle strutture archeologiche di Parigi. Fonte: ALPAGE, E. Grosso, P. Chareille, S. Robert, H. Noizet, A.L. Bethe, 2010 L orientamento della lottizzazione conferma la distribuzione parcellare in base a due assi perpendicolari dominanti (Figura 8), a un angolo compreso tra 60 e 74 rispetto all est cartografico,

6 12 Serge Salat che rappresenta soltanto il 36% del totale dei segmenti della parcellazione di Vasserot. Questo orientamento poggia su due assi morfogenetici, che possono cioè generare e trasmettere forme: l allineamento formato da Rue Saint-Martin e Rue Saint-Jacques e la Senna (Noizet et al. 2013). Da tempo gli archeologi hanno identificato la dominanza di tale orientamento in epoca antica. L asse morfogenetico della suddivisione ortogonale regolare antica è l allineamento Saint-Martin - Saint- Jacques, che corrisponde in parte al cardo dell antica fondazione e poggia su antiche isole presenti una volta nel letto della Senna. Tale orientamento domina anche la rete stradale che esisteva alla fine del XIV secolo. Si conclude quindi che il Medioevo ha avuto un ruolo essenziale nella resilienza del principale orientamento romano, diffondendola ampiamente sulla sponda destra (Noizet et al. 2013). N E W Y O RK: L A SCAC C HI E RA E L IN T E RR U ZI O N E DI SIMMETRIA Caselle di una scacchiera La partita giocatasi sulla scacchiera di Manhattan, che a Parigi è durata otto secoli, si è conclusa nel giro di una generazione. A New York infatti, tutto comincia con il collasso finanziario della città nel 1776, al termine della Guerra d Indipendenza. Gli elementi fondamentali di Manhattan alla fine della Rivoluzione Americana del 1776 erano rimasti per lo più immutati dai tempi della scoperta dell isola da parte di Hudson, ad eccezione di una piccola cittadina di abitanti, nella parte meridionale dell isola. La città in rovina economica decide di vendere il proprio demanio, circa 5 km² di terreno roccioso, completamente indesiderabile, situato nel centro dell isola (Figura 9), proprio il luogo in cui oggi si concentrano le più grandi ricchezze globali. Figura 9 Mappa del British Headquarters di New York, Long Island, Hudson River, East River riportante le fortificazioni britanniche e americane e risalente al 1782 circa, National Archives, Regno Unito, MR 1/463 Figura 10 La carta del Commissioners' Plan ( ) che sovrappone una griglia di rettangoli, in apparenza uniformi, sul territorio dissestato dell'isola La griglia di Manhattan (Figura 10) fu innanzitutto uno strumento per facilitare la vendita dei terreni e lo sviluppo edilizio. Nella griglia, infatti, l isola reale è stata svuotata da qualsiasi particolare locale e topografico, rendendola pura superficie astratta. Le colline furono appiattite, in un movimento irresistibile di viali che si aprono verso nord e che lascia provvisoriamente alcune case, quelle dei primi coloni, come sospese in aria. La griglia trasformò così l isola in puro concetto, reinterpretandola nei termini di un mercato immobiliare infinitamente duttile, misto, aperto ad una speculazione infinita, che

7 Parigi / New York Otto secoli di gerarchia di scala nelle lottizzazioni urbane 13 si ricrea incessantemente, grazie ad una crescita costante dei valori fondiari e immobiliari: nel 1807, il valore immobiliare di New York ammontava a 25 milioni di $, nel 1887, lo stesso valore arrivò a 2 miliardi di $: un fattore moltiplicativo di 80! Dalla griglia in apparenza omogenea, isotropa, che appiana tutte le differenze, sarebbe nata un incredibile diversità e strutture gerarchizzate: quartieri con identità completamente diverse, come la Washington Square di Henry James, Soho, Tribecca o l Upper East Side o ancora la Brooklyn di Woody Allen. Come fanno tali varietà, diversità e gerarchia scalare a emergere da una griglia? Grazie a sottili differenziazioni, a interruzioni nella simmetria che, come accade in fisica, creano strutture che diventano poi sempre più complesse. La griglia di Manhattan contiene innanzitutto due modelli metrici che creano varietà. Uno di questi è rappresentato dalla larghezza delle strade: 30 metri per i viali orientati in direzione nord-sud, 20 metri per le vie traverse standard, con 15 strade principali, larghe anch esse 30 metri, poste a intervalli irregolari. Il secondo modello riguarda la varietà di dimensione degli isolati urbani. Ogni isolato misura 60 metri in larghezza, da nord a sud, mentre la lunghezza, da est a ovest, varia, riducendosi man mano che, dal centro, si va verso il litorale. Per cui dalla Terza alla Sesta Strada gli isolati misurano 280 metri di lunghezza, verso est si riducono a 189, 198, 195 metri di lunghezza, e verso ovest si accorciano uniformemente fino a 244 metri di lunghezza. La griglia è gerarchica anche rispetto alle proprietà topologiche delle strade. La teoria dei grafi definisce la continuità stradale come la serie di segmenti della stessa strada tra le varie intersezioni e definisce la connettività stradale come il numero delle altre strade che questa interseca. Siccome i viali di Manhattan sono connessi a 155 strade, mentre le strade collegano circa 11 viali, vi è un importante variazione nella scala topologica tra viali e strade. Queste prime interruzioni nella simmetria planimetrica saranno sufficienti a contribuire ad una crescita vertiginosa della complessità, creando una forma d ordine sottile e complessa, in grado allo stesso tempo di stabilità e di evoluzione, e generando nuove strutture per adattarsi a condizioni sempre mutevoli. Manhattan quindi non è un cristallo. Il suo ordine, contrariamente a quello della Ville Radieuse di Le Corbusier, non è cristallizzato nelle tre dimensioni, la sua forma è definita solo dalla griglia di una mappa. Il trasferimento dei permessi edilizi lascia una libertà pressoché infinita allo sviluppo nella terza dimensione. Si tratta di una scacchiera su cui lo spostamento dei pezzi permette un numero di partite infinito. Ma chi sono i giocatori? Interagendo quotidianamente con le forme fisiche della città, i giocatori sono gli esseri umani, le cui interazioni, costantemente riconfigurate, gli scambi e le trasformazioni di denaro, di segni simbolici, di materie e di energia, aumentano incessantemente la quantità di informazioni algoritmiche del sistema urbano. La varietà delle posizioni possibili è fondamentale e permette di giocare queste partite. Semplici calcoli dimostrano che la dimensione delle caselle elementari della scacchiera, a New York come a Barcellona, i lotti, è volte inferiore rispetto ai super blocchi della Ville Radieuse di Le Corbusier. Tale cifra conduce a differenze vertiginose in termini di connettività e di varietà di percorso nella struttura urbana e anche in termini di potenziale d interazione e di diversità e varietà di posizioni possibili. Grazie a combinazioni matematiche, connettività, diversità e varietà aumentano quasi all infinito, mentre il reticolo urbano diventa finissimo, in funzione di fattori che esprimono il numero di posizioni possibili e di connessioni tra i pezzi sulle caselle della scacchiera. Il mercato immobiliare crea la gerarchia scalare In questo immenso spazio di configurazioni, le attività umane non comportano un aumento dell entropia fino al caos, ma si sovrappongono alla griglia omogenea creando un altra struttura, dall ordine molto più flessibile e mobile, che, allo stesso tempo, mostra permanenze e stabilità. Questo secondo ordine trasforma costantemente l organizzazione spaziale pur conservandola. Ed è proprio questa la complessità. A Manhattan, gli isolati furono inizialmente suddivisi per la vendita in lotti identici

8 14 Serge Salat di 205 m², che, sotto l influenza delle forze di mercato, furono poi consolidati creando un gigantesco mosaico dalla combinazione di circa parcelle. La lottizzazione di Manhattan, nella sua straordinaria diversità frattale inserita in una griglia euclidea, ibridazione perfetta di ordine e novità, fu essenzialmente completa verso il 1835, una generazione dopo il piano dei Commissioners. Il mercato fondiario di Manhattan fu un acceleratore temporale formidabile per la differenziazione e per la nascita di strutture a invarianza di scala. Un esempio è rappresentato dalla strategia di Charles Moore per lo sviluppo edilizio della sua vasta proprietà, che sarebbe diventata poi il quartiere di Chelsea (Figura 11). L interruzione della simmetria creata da Chelsea Square, dalla chiesa e dal giardino pubblico ha provocato una differenziazione a cascata nella dimensione e nel valore delle parcelle in base alla loro posizione in prossimità della chiesa. Figura 11 Mappa della proprietà di Charles Moore nel 1835, che sarebbe diventata poi il quartiere di Chelsea. Collezione della New York Historical Society. A partire dal 1835, la mappa mostra le strategie di vendita per le grosse proprietà immobiliari Moore centrò l intero quartiere di Chelsea su Chelsea Square, costituita da due isolati di Manhattan, che donò alla chiesa episcopale nel Dal 1835 in poi, i lotti attorno alla piazza, il cui valore immobiliare era molto più elevato, furono consolidati da ricchi compratori per formare lotti più grandi. Nel 1820 Moore stimò la sua proprietà per un valore di $. Il valore totale fu stimato a $ nel 1845 e a $ nel 1855, che rappresenta un fattore moltiplicativo di 35 in 35 anni. La differenziazione e l asimmetria nei prezzi dei terreni emersero molto rapidamente nella griglia planimetrica. Nel 1860, il valore delle proprietà lungo la Quarta Strada oscillava tra i e i $, mentre i lotti lungo Madison Avenue erano valutati tra i e i $, in base alla prossimità a Madison Square. In un sistema morfologico a invarianza di scala come la griglia e la parcellazione di Manhattan, la forma e il prezzo di ciascun elemento sono influenzati dalle interazioni che questo ha, in scale diverse,

9 Parigi / New York Otto secoli di gerarchia di scala nelle lottizzazioni urbane 15 con tutti gli altri elementi. Quando il risultato di tali interazioni crea una forma, questa non è mai né fissa né simmetrica, ma presenta un grado di plasticità che le permette di evolvere. Figura 12 Parcellazione di Manhattan attorno a Madison Square (a sinistra) e a Brooklyn (a destra). Partendo da unità modulari identiche di piccola scala, la parcellazione di Manhattan è stata ricreata dalla nuova suddivisione, costituendo così una gerarchia di scala. Analisi di classificazione e dimensione (in mq e in unità logaritmiche): in basso a sinistra Madison Square, in basso a destra Brooklyn (Fonte: Loeiz Bourdic, Istituto di Morfologia Urbana e dei Sistemi Complessi, 2014) Le analisi di classificazione/dimensione della lottizzazione (Figura 12, qui mostrate in scala logaritmica, in cui la pendenza di destra corrisponde all esponente della legge di potenza inversa) mostrano l universalità frattale tra Madison Square, molto sviluppata, e Brooklyn, in cui l 80% dei lotti ha ancora oggi la forma e la dimensione che aveva all inizio del XIX secolo. Certo, col tempo, la gerarchia di Madison Square è aumentata, ma questo è avvenuto come se la classe d universalità di New York fosse caratterizzata da un esponente dell ordine di -0,6, ad eccezione di Lower Manhattan, la parte più antica e la più irregolare, quella precedente cioè alla griglia del Commissioners Plan. Come abbiamo visto nella Figura 2, più l esponente scalare è elevato, più il gradiente tra i valori elevati e la lunga coda di valori deboli si inclina, in altri termini: più la distribuzione è sbilanciata. Infatti, il mercato immobiliare a Manhattan e a Brooklyn si distribuisce in maniera più sbilanciata (la struttura di scala è più accentuata) rispetto a Lower Manhattan o a Parigi. La domanda è se tale disparità sia dovuta a una competitività più dura delle forze di mercato presenti a New York rispetto a Parigi. Se osserviamo le

10 Dimensione 16 Serge Salat cartine e gli istogrammi, constatiamo però che non è così. Le forze di mercato hanno trasformato Manhattan molto di più rispetto a Brooklyn, che presenta pertanto la stessa gerarchia di scala. Attorno a Madison Square, solo il 40% delle parcelle è quello dell inizio del XIX secolo, mentre Brooklyn è rimasta quasi immutata dall'epoca di Henry James, con l'80% di parcelle risalenti al XIX secolo. I sistemi parcellari di Brooklyn e di Manhattan nella griglia del Commissioners Plan, che avevano ben conosciuto evoluzioni diverse, hanno adottato una geometria simile, dalla stessa dimensione frattale. Come spiegare quindi che Wall Street, capitale finanziaria mondiale, Rue Mouffetard nella Parigi di Filippo II e Hong Kong, con i suoi reticoli stradali risalenti al XIX secolo, appartengono tutte alla stessa classe d universalità frattale con un esponente pari a 0,5, che si distingue da quello della griglia del Commissioners' Plan? Ancora una volta, con la geometria. Le superfici urbane aventi un esponente di 0,5 sono presenti nei reticoli stradali irregolari che costituiscono la sovrastruttura geometrica della forma degli isolati tramite rettangoli regolari, come quelli di Madison Square o di Brooklyn. Wall Street domina la finanza globale partendo da una strada sinuosa, tracciata da emigrati olandesi nel XVII secolo. Sembra dunque che la scacchiera euclidea aumenti la gerarchia frattale in rapporto a superfici urbane la cui irregolarità, come a Parigi o a Lower Manhattan, non sia inserita in una geometria ortogonale. In compenso, sebbene la parcellazione non si inserisca in una griglia euclidea come avviene per Lower Manhattan (Figura 13), che presenta ancora pressoché immutato il tracciato stradale della Nuova Amsterdam, si riscontra anche qui la classe d universalità frattale con l esponente di -1/2 che caratterizza Parigi intra-muros e Hong Kong nelle parcellazioni irregolari, evolutesi in maniera organica per via di incastri multifrattali y = 2971,2x -0,508 R² = 0, Classificazione Figura 13 Analisi classificazione/dimensione (in mq e in unità logaritmiche) della parcellazione di Lower Manhattan (Fonte: Loeiz Bourdic, Istituto di Morfologia Urbana e dei Sistemi Complessi, 2014) Per funzionare, una città consuma energia. Si può elaborare un idea di densità energetica analoga alla densità demografica, cioè al consumo energetico in rapporto alla superficie su cui questa viene consumata (espresso in Watt per mq di suolo urbano, Figura 14). Tale densità energetica è una buona approssimazione della concentrazione di attività sul suolo urbano. Per esempio, se si osserva New York da lontano, si nota come due grandi zone concentrino le maggiori densità energetiche, e cioè i due Central Business District (CBD) di Midtown e Lower Manhattan, mentre Long Island e Brooklyn presentano una densità energetica più debole. Ingrandendo la mappa e gli isolati urbani, si osserva che, all interno di uno stesso isolato principale, la superficie urbana presenta una grande varietà. Se si ingrandisce ancora, si nota come siano ora le parcelle stesse a differenziarsi. La superficie energetica di New York presenta quindi una combinazione in tutte le scale di regolarità e di irregolarità, caratteristica dei multifrattali. Un analisi classificazione/dimensione del consumo energetico in base al riscaldamento degli edifici di New York rivela tale complessità, come fosse un marchio. Ricompare infatti l esponente dello 0,5 come coefficiente di gerarchizzazione del consumo energetico di New York.

11 Parigi / New York Otto secoli di gerarchia di scala nelle lottizzazioni urbane 17 Figura 14 Densità energetiche (in Watt/mq) dei lotti di New York. A sinistra, New York nella sua totalità; a destra i dintorni di Madison Square. Fonte delle mappe: Spatial distribution of urban building energy consumption by end use B. Howard, L. Parshall, J. Thompson, S. Hammer, J. Dickinson, V. Modi, Consumo energetico relativo al riscaldamento (in galloni) Dimensioni edificio Classificazione dell edificio Figura 15 Analisi classificazione/dimensione del consumo energetico di riscaldamento degli edifici dotati di riscaldamento centralizzato a New York (Fonte: Loeiz Bourdic, Istituto di Morfologia Urbana e dei Sistemi Complessi, 2014) L E L EG GI D I SCAL A UR B ANA P E R C O MP R EN D E R E I L P AS S A T O E C O S TR U IR E IL F UT U R O L analisi delle superfici non è che un esempio della complessità urbana ordinata da regolarità matematiche frattali. Gli studi sulla geografia urbana, e in particolare quello di Denise Pumain, hanno mostrato da tempo la presenza di leggi di classificazione e dimensione e della gerarchia di scala nei sistemi urbani, elaborando una teoria evolutiva in grado di spiegarli. I nostri studi consentono di comprendere tali risultati su tutte le scale della struttura urbana stessa. Quindi non soltanto le dimensioni di città aventi una gerarchia di scala, ma anche la scala più sottile del tessuto urbano, cioè la frammentazione parcellare, presenta tale regolarità matematica. I nostri lavori precedenti hanno dimostrato che la dimensione dei giardini pubblici di Parigi e di Manhattan è ugualmente gerarchizzata da leggi di scala, questa volta per ottimizzare l accessibilità partendo da una superficie minima, come in altri fenomeni frattali studiati dalla fisica. Lo stesso avviene per le reti stradali di Parigi o per la frequenza (la lunghezza cumulativa) dei diversi tipi di strada: sia i viali di Haussmann che le vie strette e curve del Medioevo rispettano una legge di scala. Altri studi, in particolare quelli di Sergio Porta, Paolo Crucitti e Vito Latora, hanno dimostrato che se si costruisce un grafo duale delle strade (cioè se si considerano le

12 18 Serge Salat strade come entità e le loro intersezioni come legami) e se si applicano a questi grafi le tecniche d analisi utilizzate per le reti sociali, si osservano, in particolare in città complesse come Ahmedabad o Venezia, proprietà di gerarchia di scala dei gradi dei nodi (vale a dire del numero di intersezioni per via), caratteristiche della connettività dei reticoli complessi, naturali quanto il cervello o artificiali quanto internet o il web. I sistemi stradali sono dunque scalari sia nelle loro proprietà metriche (le frequenze delle diverse geometrie stradali) che nella loro organizzazione topologica (la connettività delle strade tra di loro). Queste si riflettono ugualmente nel numero di linee per stazione e nei volumi dei passeggeri delle metropolitane di Parigi o di Londra, obbedienti anch essi a gerarchie scalari, come evidenziato da Loeiz Bourdic nell ambito delle ricerche dell Istituto di Morfologia Urbana e dei Sistemi complessi. Infine anche le densità demografiche e d impiego (come si è visto per numerose città europee) e di consumo energetico, obbediscono a leggi di scala urbana con maglie estremamente fini. Come nei frattali naturali, la presenza della gerarchia di scala nei numerosi fenomeni urbani risulta dalla selezione operata dall evoluzione delle strutture più efficienti e più resilienti. Rimandiamo quindi per approfondimenti ai nostri studi precedenti. Questi risultati offrono nuovi orizzonti alla comprensione delle città in tutte le scale, quella della complessità e della gerarchia di scala, permettendo anche di migliorarne la gestione. Abbiamo dimostrato in particolare che il consumo relativo alla viabilità di una città dipende molto meno dalla densità media della città che dal coefficiente gerarchico di tale densità. Abbiamo poi reso ancora più efficienti i modelli di valore nodale e locale, sviluppati inizialmente da Luca Bertolini, per spiegare le evoluzioni delle metropolitane. Questo nuovo modello, già applicato alla pianificazione strategica di Shanghai in programma per il 2050 in collaborazione con la Banca Mondiale e la Development and Reform Commission, integra la gerarchia di scala di distribuzione delle densità economiche tramite la rete di connettività. Stiamo applicando operativamente questo modello anche alla pianificazione delle città cinesi in base alle 6000 stazioni metropolitane in programma per il 2020 in Cina. Le numerose leggi di scala che abbiamo scoperto nelle città rappresentano sì un metodo per comprendere il passato, ma anche e soprattutto un metodo per costruire il futuro. Bibliografia Ballon H. (2012), The Greatest Grid - The Master Plan of Manhatan , New York, Museum of the City of New York and Columbia University Press. Noizet H., Bove B. (2013), Costa L., Paris, de parcelles en pixels: Analyse géomatique de l'espace parisien médiéval et moderne, Paris, Coédition PU Vincennes Pumain D., Paulus F., Vacchiani-Marcuzzo C., Lobo C., «An evolutionary theory for interpreting urban scaling laws», Cybergeo : European Journal of Geography [En ligne], Systèmes, Modélisation, Géostatistiques, document 343, mis en ligne le 05 juillet 2006, consulté le 12 octobre Salat S. (2011), Les villes et les formes: Sur l urbanisme durable, Paris, CSTB et Hermann.

1215 1815 2015. Otto secoli di gerarchia di scala nelle lottizzazioni urbane 1

1215 1815 2015. Otto secoli di gerarchia di scala nelle lottizzazioni urbane 1 Parigi / New York 1215 1811 2015. Otto secoli di gerarchia di scala nelle lottizzazioni urbane 7 *Serge Salat Parigi / New York 1215 1815 2015. Otto secoli di gerarchia di scala nelle lottizzazioni urbane

Dettagli

a) Città a scacchiera: intreccio ortogonale di strade che delimitano isolatri di forma quadrata. Si sono sviluppate su terreno pianeggiante.

a) Città a scacchiera: intreccio ortogonale di strade che delimitano isolatri di forma quadrata. Si sono sviluppate su terreno pianeggiante. La città a) Città a scacchiera: intreccio ortogonale di strade che delimitano isolatri di forma quadrata. Si sono sviluppate su terreno pianeggiante. Le direttrici di traffico sono due, perpendicolari

Dettagli

Storia della città e dell urbanistica Verso una legislazione urbanistica moderna

Storia della città e dell urbanistica Verso una legislazione urbanistica moderna Università di Pisa Facoltà di Ingegneria AA 2014/2015 CORSO DI LAUREA IN INGEGNERIA EDILE-ARCHITETTURA Luisa Santini TECNICA URBANISTICA I Storia della città e dell urbanistica Verso una legislazione urbanistica

Dettagli

PARIGI 1850-1872 IL PIANO DELL HAUSSMANN

PARIGI 1850-1872 IL PIANO DELL HAUSSMANN PARIGI 1850-1872 IL PIANO DELL HAUSSMANN Eugène Hausmann (1809-91) Diviene Prefetto della Senna sotto l imperatore Napoleone III (1850) La legge (13.04.1850) gli consente di espropriare tutti gli immobili

Dettagli

Workshop EWWUD Lisbona 2010. Progetto di ridestinazione del porto containers di Alcantara e dei cantieri di Santos. Ricollegare Lisbona al lungofiume.

Workshop EWWUD Lisbona 2010. Progetto di ridestinazione del porto containers di Alcantara e dei cantieri di Santos. Ricollegare Lisbona al lungofiume. Workshop EWWUD Lisbona 2010. Progetto di ridestinazione del porto containers di Alcantara e dei cantieri di Santos. Ricollegare Lisbona al lungofiume. Gruppo di lavoro diretto da Ado Franchini. Con Andrea

Dettagli

Perché partire dalla popolazione? La crescita economica deriva dall energia. E per molti secoli l uomo è rimasto la macchina principale in grado di

Perché partire dalla popolazione? La crescita economica deriva dall energia. E per molti secoli l uomo è rimasto la macchina principale in grado di La popolazione Perché partire dalla popolazione? La crescita economica deriva dall energia. E per molti secoli l uomo è rimasto la macchina principale in grado di trasformare il cibo in lavoro. Data l

Dettagli

La Cartografia e l'uso di G.P.S. nella Protezione Civile

La Cartografia e l'uso di G.P.S. nella Protezione Civile La Cartografia e l'uso di G.P.S. nella Protezione Civile Obiettivi Introdurre il concetto di carta come rappresentazione dello spazio che ci circonda; Familiarizzare con le caratteristiche costitutive

Dettagli

La città. Dalla polis greca alla città ecosostenibile. De Agostini 2013 De Agostini Scuola Novara Autore: Luca Montanari

La città. Dalla polis greca alla città ecosostenibile. De Agostini 2013 De Agostini Scuola Novara Autore: Luca Montanari La città Dalla polis greca alla città ecosostenibile 1 LA POLIS GRECA Dall VIII al IV secolo a.c. In epoca classica la città greca era caratterizzata dalla suddivisione alto/basso: la parte alta corrispondeva

Dettagli

Costruire il margine:

Costruire il margine: Costruire il margine: un nuovo approdo per l isola di Manhattan Relatore: Prof. ssa Guya Bertelli Correlatore: Prof. Juan Carlos Dall Asta Laureandi: Mattia Fornara 750322 Paolo Nordi 751911 POLITECNICO

Dettagli

4. Funzioni elementari algebriche

4. Funzioni elementari algebriche ISTITUZIONI DI MATEMATICHE E FONDAMENTI DI BIOSTATISTICA 4. Funzioni elementari algebriche A. A. 2013-2014 1 Funzioni elementari Sono dette elementari un insieme di funzioni dalle quali si ottengono, mediante

Dettagli

Sistema Informativo Geografico:

Sistema Informativo Geografico: Sistemi Informativi Geografici Sistema Informativo Geografico: È un sistema informativo che tratta informazioni spaziali georeferenziate, ne consente la gestione e l'analisi. Informazioni spaziali: dati

Dettagli

L Ottocento FRANCIA IL PIANO DI HAUSSMANN PER PARIGI

L Ottocento FRANCIA IL PIANO DI HAUSSMANN PER PARIGI L Ottocento FRANCIA IL PIANO DI HAUSSMANN PER PARIGI Le tre fasi in cui si divide la realizzazione di questa grande maglia metropolitana prendono il nome di réseau (rete), quasi a voler sottolineare il

Dettagli

Geometria analitica di base (prima parte)

Geometria analitica di base (prima parte) SAPERE Al termine di questo capitolo, avrai appreso: come fissare un sistema di riferimento cartesiano ortogonale il significato di equazione di una retta il significato di coefficiente angolare di una

Dettagli

Programma FRESH per Negozi di Quartiere

Programma FRESH per Negozi di Quartiere Editing e traduzione di Fabrizio Bottini per http://mall.lampnet.org Programma FRESH per Negozi di Quartiere Food Retail Expansion to Support Health La promozione di negozi alimentari nelle zone sottoservite

Dettagli

LM Quaternario, Preistoria e Archeologia Corso di Cartografia tematica Dott. Maria Chiara Turrini

LM Quaternario, Preistoria e Archeologia Corso di Cartografia tematica Dott. Maria Chiara Turrini LM Quaternario, Preistoria e Archeologia Corso di Cartografia tematica Dott. Maria Chiara Turrini CARTA U.T.M. (Universale Trasversa di Mercatore) Coordinate chilometriche La superficie della Terra è stata

Dettagli

Basi di Dati Spaziali

Basi di Dati Spaziali degli Studi Basi di Dati Spaziali Introduzione ai Geographical Information Systems (GIS) Alessandra Chiarandini - Lezione 2 Le componenti dell Informazione Territoriale Introduzione ai GIS A. Chiarandini

Dettagli

MATEMATICA CLASSE SECONDA OBIETTIVI OPERATIVI. OBIETTIVI DI APPRENDIMENTO Conoscere il numero nei suoi vari aspetti.

MATEMATICA CLASSE SECONDA OBIETTIVI OPERATIVI. OBIETTIVI DI APPRENDIMENTO Conoscere il numero nei suoi vari aspetti. MATEMATICA Traguardi per lo sviluppo delle competenze al termine della scuola primaria L alunno si muove con sicurezza nel calcolo scritto e mentale con i numeri naturali e sa valutare l opportunità di

Dettagli

Mapping Manhattan ; Mappa i tuoi ricordi: San Basilio come Manhattan (di Fabiola Fratini)

Mapping Manhattan ; Mappa i tuoi ricordi: San Basilio come Manhattan (di Fabiola Fratini) Mapping Manhattan ; Mappa i tuoi ricordi: San Basilio come Manhattan (di Fabiola Fratini) 1. Mapping Manhattan e Mappa i tuoi ricordi: San Basilio come Manhattan Mappa i tuoi ricordi: San Basilio come

Dettagli

Coordinate Cartesiane nel Piano

Coordinate Cartesiane nel Piano Coordinate Cartesiane nel Piano O = (0,0) origine degli assi ascissa, y ordinata sistemi monometrici: stessa unità di misura sui due assi, y sistemi dimetrici: unità di misura diverse sui due assi (spesso

Dettagli

1 Grafico di una funzione reale 1. 2 Funzioni elementari 2 2.1 Funzione potenza... 2 2.2 Funzione esponenziale... 3 2.3 Funzione logaritmica...

1 Grafico di una funzione reale 1. 2 Funzioni elementari 2 2.1 Funzione potenza... 2 2.2 Funzione esponenziale... 3 2.3 Funzione logaritmica... UNIVR Facoltà di Economia Sede di Vicenza Corso di Matematica Funzioni reali di variabile reale Indice Grafico di una funzione reale 2 Funzioni elementari 2 2. Funzione potenza................................................

Dettagli

TRASFORMATA ASSE MEDIANO (MAT)

TRASFORMATA ASSE MEDIANO (MAT) Capitolo 9 - Trasformate per Immagini Binarie 1 TRASFORMATA ASSE MEDIANO (MAT) L informazione contenuta in un immagine binaria può essere codificata ricorrendo a schemi di rappresentazione più compatti

Dettagli

La Ville Radieuse di Le Corbusier

La Ville Radieuse di Le Corbusier Modelli 8: la città funzionale La Ville Radieuse di Le Corbusier Riferimenti bibliografici: - Le Corbusier, Verso una architettura, a cura di P. Cerri e P. Nicolin, trad. it., Longanesi, Milano, 1987 -

Dettagli

PROGRAMMAZIONE DIDATTICA RIFERITA ALLA DISCIPLINA :MATEMATICA

PROGRAMMAZIONE DIDATTICA RIFERITA ALLA DISCIPLINA :MATEMATICA Istituto Istruzione Superiore A. Venturi Modena Liceo artistico - Istituto Professionale Grafica Via Rainusso, 66-41124 MODENA Sede di riferimento (Via de Servi, 21-41121 MODENA) tel. 059-222156 / 245330

Dettagli

Misure di base su una carta. Calcoli di distanze

Misure di base su una carta. Calcoli di distanze Misure di base su una carta Calcoli di distanze Per calcolare la distanza tra due punti su una carta disegnata si opera nel modo seguente: 1. Occorre identificare la scala della carta o ricorrendo alle

Dettagli

RELAZIONE SULLA FORMAZIONE DEL CATASTO DEGLI AGGREGATI EDILIZI

RELAZIONE SULLA FORMAZIONE DEL CATASTO DEGLI AGGREGATI EDILIZI Comune di San Demetrio Ne Vestini Provincia dell Aquila RELAZIONE SULLA FORMAZIONE DEL CATASTO DEGLI AGGREGATI EDILIZI 1. INTRODUZIONE La sottoscritta arch. Tiziana Del Roio, iscritta all Ordine degli

Dettagli

2.1 DATI NAZIONALI E TERRITORIALI (AREE E Regioni)

2.1 DATI NAZIONALI E TERRITORIALI (AREE E Regioni) ANALISI TERRITORIALE DEL VALORE DEL PATRIMONIO ABITATIVO Gli immobili in Italia - 2015 ANALISI TERRITORIALE DEL VALORE DEL PATRIMONIO ABITATIVO Nel presente capitolo è analizzata la distribuzione territoriale

Dettagli

geometriche. Parte Sesta Trasformazioni isometriche

geometriche. Parte Sesta Trasformazioni isometriche Parte Sesta Trasformazioni isometriche In questa sezione di programma di matematica parliamo della geometria delle trasformazioni che studia le figure geometriche soggette a movimenti. Tali movimenti,

Dettagli

GUIDA AL MERCATO DEGLI UFFICI DI MILANO E HINTERLAND 2013-2015

GUIDA AL MERCATO DEGLI UFFICI DI MILANO E HINTERLAND 2013-2015 ESTRATTO GUIDA AL MERCATO DEGLI UFFICI DI MILANO E HINTERLAND 2013-2015 Domanda, offerta e rating di zona per investire e vendere al meglio Il mercato degli uffici di Milano e hinterland è il più importante

Dettagli

Lezione 1: come si descrive la posizione dei corpi

Lezione 1: come si descrive la posizione dei corpi Lezione 1 - pag.1 Lezione 1: come si descrive la posizione dei corpi 1.1. Tutto si muove Tutto intorno a noi si muove. Le nuvole nel cielo, l acqua negli oceani e nei fiumi, il vento che gonfia le vele

Dettagli

1.5. Il centro storico 1.5.1. Un ambito urbano di pregio La ristretta fascia compresa fra la SP342dir. e la linea ferroviaria Carnate-Lecco è occupata dal centro storico, impostato sull unico asse viario

Dettagli

1. Talco (più tenero) 2. Gesso 3. Calcite 4. Fluorite 5. Apatite 6. Ortoclasio 7. Quarzo 8. Topazio 9. Corindone 10. Diamante (più duro)

1. Talco (più tenero) 2. Gesso 3. Calcite 4. Fluorite 5. Apatite 6. Ortoclasio 7. Quarzo 8. Topazio 9. Corindone 10. Diamante (più duro) 1. Lo stato solido Lo stato solido è uno stato condensato della materia; le particelle (che possono essere presenti come atomi, ioni o molecole) occupano posizioni fisse e la loro libertà di movimento

Dettagli

Ministero delle Infrastrutture e dei Trasporti

Ministero delle Infrastrutture e dei Trasporti Ministero delle Infrastrutture e dei Trasporti UNITÀ DI GESTIONE DELLE INFRASTRUTTURE PER LA NAVIGAZIONE ED IL DEMANIO MARITTIMO S.I.D. SISTEMA INFORMATIVO DEMANIO MARITTIMO GUIDA ALLA COMPILAZIONE DEL

Dettagli

Tessuto urbano. di Antonio Cappuccitti

Tessuto urbano. di Antonio Cappuccitti Tessuto urbano di Antonio Cappuccitti Come si è già rilevato nel capitolo Forme insediative, la forma fisica della città può essere analizzata a differenti scale di osservazione, a seconda dell estensione

Dettagli

15. Lettura Carte Topografiche Scala cartografica: rapporto tra le distanze sulla carta e le rispettive distanze sul terreno

15. Lettura Carte Topografiche Scala cartografica: rapporto tra le distanze sulla carta e le rispettive distanze sul terreno 15. Lettura Carte Topografiche Scala cartografica: rapporto tra le distanze sulla carta e le rispettive distanze sul terreno La distanza planimetrica fra due punti di una carta può essere letta direttamente

Dettagli

Istituto San Luigi di Chieri PIANO DI LAVORO ANNUALE a.s. 2013/2014. CLASSE: I SEZIONE: A e B MATERIA: Storia e Geografia

Istituto San Luigi di Chieri PIANO DI LAVORO ANNUALE a.s. 2013/2014. CLASSE: I SEZIONE: A e B MATERIA: Storia e Geografia Istituto San Luigi di Chieri PIANO DI LAVORO ANNUALE a.s. 2013/2014 CLASSE: I SEZIONE: A e B MATERIA: Storia e Geografia SUDDIVISIONE DEI MODULI SETTIMANALI: nr. 2 moduli di storia nr. 2 moduli di geografia

Dettagli

Milano (MI) PII Montecity Rogoredo. Scala 1:20.000

Milano (MI) PII Montecity Rogoredo. Scala 1:20.000 Milano (MI) PII Montecity Rogoredo Scala 1:20.000 Inquadramento territoriale Il Programma Integrato d Intervento interessa un area di circa 1.100.000 mq, collocata nel settore sud est di Milano, attualmente

Dettagli

UNIVERSITA DEGLI STUDI DI BRESCIA Facoltà di Ingegneria

UNIVERSITA DEGLI STUDI DI BRESCIA Facoltà di Ingegneria PRIMA PROVA SCRITTA DEL 23 NOVEMBRE 2011 Tema n. 1 Il candidato illustri i tipi edilizi residenziali. Si discutano inoltre le principali relazioni tra tipologie edilizie e morfologie urbane. Si richiede,

Dettagli

Che cosa è la fisica? Per arrivare ad una legge fisica si fa un insieme di cose pratiche (procedura) che si chiama metodo scientifico.

Che cosa è la fisica? Per arrivare ad una legge fisica si fa un insieme di cose pratiche (procedura) che si chiama metodo scientifico. 01 Che cosa è la fisica? In questa lezione iniziamo a studiare questa materia chiamata fisica. Spesso ti sarai fatto delle domande su come funziona il mondo e le cose che stanno attorno a te. Il compito

Dettagli

Lezione 01-08-ott-14

Lezione 01-08-ott-14 Urb_14-15_[2p]_Lez_01_08-ott-14 1 Corso di Urbanistica (EA) a.a. 2014/2015 Lezione 01-08-ott-14 Prima dell urbanistica moderna Urb_14-15_[2p]_Lez_01_08-ott-14 2 Prima.. La città antica era caratterizzata

Dettagli

Il taccuino dell esploratore

Il taccuino dell esploratore Il taccuino dell esploratore a cura di ORESTE GALLO (per gli scout: Lupo Tenace) SETTIMA CHIACCHIERATA L ORIENTAMENTO (terza parte) Acquisire dimestichezza con bussola e cartina topografica, significa

Dettagli

LE SCALE DI RAPPRESENTAZIONE

LE SCALE DI RAPPRESENTAZIONE IL SUPPORTO La CARTA DA DISEGNO è raggruppabile in due tipi fondamentali: - carta opaca o bianca - carta trasparente o da lucido, usata per disegni a china. GLI STRUMENTI Il gruppo di linee da usare per

Dettagli

1.4 DESCRIZIONI E INTERPRETAZIONI. 1.4. Commercio e attività produttive

1.4 DESCRIZIONI E INTERPRETAZIONI. 1.4. Commercio e attività produttive DESCRIZIONI E INTERPRETAZIONI 1.4. Commercio e attività produttive 1.4 ANALISI E DATI Lo spazio attualmente occupato dal commercio e delle attività produttive è l 11% del territorio, pari 1.707.968 mq.

Dettagli

Piano Regolatore Generale NORME TECNICHE DI ATTUAZIONE ALLEGATO 2. Schede urbanistiche relative alle Unità Minime di Intervento

Piano Regolatore Generale NORME TECNICHE DI ATTUAZIONE ALLEGATO 2. Schede urbanistiche relative alle Unità Minime di Intervento COMUNE DI CESSALTO Provincia di Treviso Piano Regolatore Generale NORME TECNICHE DI ATTUAZIONE ALLEGATO 2 Schede urbanistiche relative alle Unità Minime di Intervento Aggiornamento novembre 2006 N.B.:

Dettagli

unità 13. I fenomeni sismici

unità 13. I fenomeni sismici Terremoto: vibrazione della Terra prodotta da rapida liberazione di energia elastica che avviene nell che avviene secondo il modello del rimbalzo elastico dal quale si propagano le onde sismiche forniscono

Dettagli

IL GEOGRAFO E I SUOI AIUTANTI

IL GEOGRAFO E I SUOI AIUTANTI IL GEOGRAFO E I SUOI AIUTANTI La geografia studia le caratteristiche dell ambiente in cui viviamo, cioè la Terra. Per fare questo, il geografo deve studiare: com è fatto il territorio (per esempio se ci

Dettagli

n L ambiente di lavoro

n L ambiente di lavoro n L ambiente di lavoro n Usare Cabri n Comprendere Cabri n L ambiente di lavoro 1 Che cosa è Cabri Il programma Cabri* è stato sviluppato da Jean-Marie Laborde e Franck Bellemain presso l Institut d Informatique

Dettagli

EUROPEAN COMPUTER DRIVING LICENCE. GEOGRAPHIC INFORMATION SYSTEM Syllabus. Versione 1 Febbraio 2007

EUROPEAN COMPUTER DRIVING LICENCE. GEOGRAPHIC INFORMATION SYSTEM Syllabus. Versione 1 Febbraio 2007 EUROPEAN COMPUTER DRIVING LICENCE GEOGRAPHIC INFORMATION SYSTEM Syllabus Versione 1 Febbraio 2007 Versione 1 Febbraio 2007 ECDL GIS Programma di certificazione 1. A chi si rivolge La certificazione ECDL

Dettagli

COMUNE DI MONZA PIANO ATTUATIVO. AREA SISTEMA RESIDENZIALE Via della Birona_via Perosi

COMUNE DI MONZA PIANO ATTUATIVO. AREA SISTEMA RESIDENZIALE Via della Birona_via Perosi COMUNE DI MONZA PIANO ATTUATIVO AREA SISTEMA RESIDENZIALE Via della Birona_via Perosi Allegato F Relazione Tecnica Novembre 2014_Gennaio 2015_Luglio 2015 Pietro Giulio Malvezzi Architetto Paola Cambiaghi

Dettagli

Disegno tradizionale VS modellazione digitale affinità e differenze. Modello matematico VS modello numerico

Disegno tradizionale VS modellazione digitale affinità e differenze. Modello matematico VS modello numerico Disegno tradizionale VS modellazione digitale affinità e differenze Modello matematico VS modello numerico IUAV Disegno Digitale Camillo Trevisan Capitelli hatoriani di Abu Fedah, dalla Description de

Dettagli

3) Consistenza planimetrica dei locali posti a concessione di valorizzazione

3) Consistenza planimetrica dei locali posti a concessione di valorizzazione Il mobile 4 incorpora la porta da cui si accede al corridoio di servizio e ad un vano scale; sulla parete di destra l arredo è composto da più elementi di mobili (5, 6, 7, 8) e risulta più eterogeneo.

Dettagli

Monitoraggio della qualità morfologica dei corsi d acqua

Monitoraggio della qualità morfologica dei corsi d acqua Monitoraggio della qualità morfologica dei corsi d acqua 1. Premessa Nel 2010 ISPRA ha pubblicato il metodo per la valutazione della qualità morfologica dei corsi d acqua basato sull Indice di Qualità

Dettagli

GLI STRUMENTI DELLA GEOGRAFIA Prof.ssa Sonia Russo

GLI STRUMENTI DELLA GEOGRAFIA Prof.ssa Sonia Russo 1 LE MAPPE GEOGRAFICHE La cartografia è la scienza che si occupa di rappresentare graficamente su di un piano, gli elementi della superficie terrestre. Tali elementi possono essere già presenti in natura

Dettagli

VERIFICA STRUTTURALE E PROGETTO DI CONSOLIDAMENTO

VERIFICA STRUTTURALE E PROGETTO DI CONSOLIDAMENTO Università degli Studi di Roma La Sapienza Prima Facoltà di Architettura L.Quaroni C.d.L. Specialistica Architettura Restauro dell Architettura A.A. 2006/2007 CORSO DI COMPORTAMENTO DEI MATERIALI MURARI

Dettagli

LO ZONING NELL URBANISTICA ITALIANA E FRANCESE DEL XX SECOLO. Chiara Barattucci

LO ZONING NELL URBANISTICA ITALIANA E FRANCESE DEL XX SECOLO. Chiara Barattucci IUAV - CLASA - 3 anno - 2010-2011 LABORATORIO PROGETTAZIONE URBANISTICA 1G LO ZONING NELL URBANISTICA ITALIANA E FRANCESE DEL XX SECOLO Chiara Barattucci Tra la fine del XIX secolo e l inizio del XX secolo

Dettagli

RILIEVO LASER SCANNER RILIEVO DEGLI EDIFICI STORICI AMBIENTE E TERRITORIO

RILIEVO LASER SCANNER RILIEVO DEGLI EDIFICI STORICI AMBIENTE E TERRITORIO RILIEVO LASER SCANNER RILIEVO DEGLI EDIFICI STORICI AMBIENTE E TERRITORIO Il laser a scansione terrestre opera in modalità totalmente automatica ed è in grado di acquisire centinaia o migliaia di punti

Dettagli

Politecnico di Milano Scuola di Architettura e Società Corso di Laurea Magistrale in Pianificazione Urbana e Politiche Territoriali

Politecnico di Milano Scuola di Architettura e Società Corso di Laurea Magistrale in Pianificazione Urbana e Politiche Territoriali Corso di Laurea Magistrale in Pianificazione Urbana e Politiche Territoriali Linee guida progettuali per un nuovo Piano delle Regole Lombardo il caso Meda: modelli insediativi e indirizzi urbanistici per

Dettagli

Collaudo DBT 2K Agg. RT

Collaudo DBT 2K Agg. RT Tre porzioni territoriali + estensione Circa 100000 ha di aggiornamento e 10000 ha di exnovo Per ogni porzione territoriale due consegne in corso d opera, al termine di fasi intermedie di lavoro, e una

Dettagli

SINTESI DI PROGETTO PREMESSA : Created with novapdf Printer (www.novapdf.com). Please register to remove this message.

SINTESI DI PROGETTO PREMESSA : Created with novapdf Printer (www.novapdf.com). Please register to remove this message. REALIZZAZIONE DI UNA RETE GPS PER LA FORMAZIONE DI UN DATUM GEODETICO LOCALE E TRASFORMAZIONI DI COORDINATE PER APPLICAZIONI CARTOGRAFICHE E TOPOGRAFICHE SINTESI DI PROGETTO PREMESSA : Il progetto nasce

Dettagli

Padova st innovazione. Riconversione e Riqualificazione sostenibile della ZIP nord di Padova PRESENTAZIONE

Padova st innovazione. Riconversione e Riqualificazione sostenibile della ZIP nord di Padova PRESENTAZIONE Padova st innovazione Riconversione e Riqualificazione sostenibile della ZIP nord di Padova PRESENTAZIONE La ZIP Nord 1.500.000 mq di superficie complessiva Oltre 150 lotti attrezzati Oltre 450 proprietari

Dettagli

Funzioni reali di più variabili reali

Funzioni reali di più variabili reali Funzioni reali di più variabili reali Generalità. Indichiamo con R n il prodotto cartesiano di R per sé stesso, n volte: R n = {(, 2,, n ) ;! R,, n!r}. Quando n = 2 oppure n = 3 indicheremo le coordinate

Dettagli

MATEMATICA PRIMO BIENNIO LICEO DELLE SCIENZE UMANE

MATEMATICA PRIMO BIENNIO LICEO DELLE SCIENZE UMANE MATEMATICA PRIMO BIENNIO LICEO DELLE SCIENZE UMANE Profilo generale e competenze Al termine del percorso liceale lo studente dovrà padroneggiare i principali concetti e metodi di base della matematica,

Dettagli

SISTEMA DI MISURAZIONE, SISTEMA DI RICOSTRUZIONE, SISTEMA DI VISUALIZZAZIONE

SISTEMA DI MISURAZIONE, SISTEMA DI RICOSTRUZIONE, SISTEMA DI VISUALIZZAZIONE LA TOMOGRAFIA COMPUTERIZZATA: MODALITA DI FORMAZIONE DELL IMMAGINE SISTEMA DI MISURAZIONE, SISTEMA DI RICOSTRUZIONE, SISTEMA DI VISUALIZZAZIONE SISTEMA DI MISURAZIONE: ACQUISIZIONE DELL IMMAGINE TC Un

Dettagli

ESAME DELL IMPATTO PAESISTICO DEI PROGETTI

ESAME DELL IMPATTO PAESISTICO DEI PROGETTI Aggiornato 01.07.05 ESAME DELL IMPATTO PAESISTICO DEI PROGETTI Applicato in forma sperimentale agli interventi edilizi maggiori. (Approvato ai sensi dell art. 30 delle Norme di Attuazione del Piano Territoriale

Dettagli

Università di Camerino Esame di Stato di Abilitazione ad Esercizio della Professione di Architetto Sessione Giugno 2009 (Laurea Specialistica 4/s)

Università di Camerino Esame di Stato di Abilitazione ad Esercizio della Professione di Architetto Sessione Giugno 2009 (Laurea Specialistica 4/s) Università di Camerino Esame di Stato di Abilitazione ad Esercizio della Professione di Architetto Sessione Giugno 2009 (Laurea Specialistica 4/s) Tema N.1 Il candidato imposti il progetto di un complesso

Dettagli

Analisi 2. Argomenti. Raffaele D. Facendola

Analisi 2. Argomenti. Raffaele D. Facendola Analisi 2 Argomenti Successioni di funzioni Definizione Convergenza puntuale Proprietà della convergenza puntuale Convergenza uniforme Continuità e limitatezza Teorema della continuità del limite Teorema

Dettagli

Facoltà di Economia e Commercio progetto di ristrutturazione dell edificio ex I. R. VE.

Facoltà di Economia e Commercio progetto di ristrutturazione dell edificio ex I. R. VE. Facoltà di Economia e Commercio progetto di ristrutturazione dell edificio ex I. R. VE. LA STORIA DELL EDIFICIO GENERALE La nuova sede dell Ospizio di Carità (Regio Istituto di Riposo per la Vecchiaia),

Dettagli

Comune di Cittadella Provincia di Padova PIANO DI LOTTIZZAZIONE DIRETTA COMPARTO OVEST C3/107 VIA PEZZE ALL. 1 RELAZIONE TECNICO-ILLUSTRATIVA

Comune di Cittadella Provincia di Padova PIANO DI LOTTIZZAZIONE DIRETTA COMPARTO OVEST C3/107 VIA PEZZE ALL. 1 RELAZIONE TECNICO-ILLUSTRATIVA Comune di Cittadella Provincia di Padova PIANO DI LOTTIZZAZIONE DIRETTA COMPARTO OVEST C3/107 VIA PEZZE ALL. 1 RELAZIONE TECNICO-ILLUSTRATIVA Committente: Ferrari Vittorio e Rebellato Maria Bertilla Via

Dettagli

Verifica sismica degli edifici in muratura attraverso il software di calcolo 3Muri

Verifica sismica degli edifici in muratura attraverso il software di calcolo 3Muri Corso di Laurea Magistrale in Ingegneria civile per la protezione dai rischi naturali D.M. 270 Relazione di fine tirocinio A.A. 2013-2014 Verifica sismica degli edifici in muratura attraverso il software

Dettagli

1-LA FISICA DEI CAMPI ELETTRICI E MAGNETICI.

1-LA FISICA DEI CAMPI ELETTRICI E MAGNETICI. 1-LA FISICA DEI CAMPI ELETTRICI E MAGNETICI. Tutti i fenomeni elettrici e magnetici hanno origine da cariche elettriche. Per comprendere a fondo la definizione di carica elettrica occorre risalire alla

Dettagli

BUGNARA_Le pietre della ricostruzione, tra amnesie e memoria storica

BUGNARA_Le pietre della ricostruzione, tra amnesie e memoria storica BUGNARA_Le pietre della ricostruzione, tra amnesie e memoria storica workshop urbano_ 29/30/31 marzo 2012 p. 1 In collaborazione con Università degli studi dell Aquila Facoltà di Ingegneria Politecnico

Dettagli

ELEMENTI DI STATISTICA PER IDROLOGIA

ELEMENTI DI STATISTICA PER IDROLOGIA Carlo Gregoretti Corso di Idraulica ed Idrologia Elementi di statist. per Idrolog.-7//4 ELEMETI DI STATISTICA PER IDROLOGIA Introduzione Una variabile si dice casuale quando assume valori che dipendono

Dettagli

IL SISTEMA CARTOGRAFICO NAZIONALE

IL SISTEMA CARTOGRAFICO NAZIONALE IL SISTEMA CARTOGRAFICO NAZIONALE La Il paragrafo è intitolato La Carta di Gauss poiché, delle infinite formule che si possono adottare per mettere in corrispondenza i punti dell'ellissoide con quelli

Dettagli

Corso Integrato di DISEGNO A Prof.ssa Anna De Santis

Corso Integrato di DISEGNO A Prof.ssa Anna De Santis Prima Facoltà di Architettura Ludovico Quaroni Corso di Laurea in DISEGNO INDUSTRIALE A.A. 2007-08 - 1 Semestre Corso Integrato di DISEGNO A Prof.ssa Anna De Santis Calendario del corso con argomenti svolti

Dettagli

RDefinizione (Funzione) . y. . x CAPITOLO 2

RDefinizione (Funzione) . y. . x CAPITOLO 2 CAPITOLO 2 Funzioni reali di variabile reale Nel capitolo precedente è stata introdotta la nozione generale di funzione f : A B, con A e B insiemi arbitrari. Nel presente capitolo si analizzeranno più

Dettagli

OSCURI PREDATORI DI LUCE

OSCURI PREDATORI DI LUCE OSCURI PREDATORI DI LUCE LA CADUTA DI EUCLIDE IN UN BUCO NERO PAOLO DULIO DIPARTIMENTO DI MATEMATICA DI COSA PARLIAMO Ricerca e applicazioni I protagonisti di un viaggio fantastico Geometria dello spazio-tempo

Dettagli

Cenno sui metodi Monte Carlo

Cenno sui metodi Monte Carlo Cenno sui metodi Monte Carlo I metodi probabilistici hanno una lunga storia ma solo dopo il 1944 è iniziato un loro studio sistematico che ha portato a notevoli sviluppi. Attualmente è stato valutato che

Dettagli

Caserma L. Pierobon 18 marzo 2010. U.N.U.C.I. sezione di Padova

Caserma L. Pierobon 18 marzo 2010. U.N.U.C.I. sezione di Padova Caserma L. Pierobon 18 marzo 2010 U.N.U.C.I. sezione di Padova NOZIONI DI TOPOGRAFIA Reticolato geografico Designazione di un punto Sistemi di misura Nord Geografico, Rete e Magnetico Distanze Scale di

Dettagli

Unità Didattica 1. La radiazione di Corpo Nero

Unità Didattica 1. La radiazione di Corpo Nero Diapositiva 1 Unità Didattica 1 La radiazione di Corpo Nero Questa unità contiene informazioni sulle proprietà del corpo nero, fondamentali per la comprensione dei meccanismi di emissione delle sorgenti

Dettagli

Programmazione didattica classe 1A Schilpario, Anno Scolastico: 2014/2015

Programmazione didattica classe 1A Schilpario, Anno Scolastico: 2014/2015 METODOLOGIA DIDATTICA E STRUMENTI Le lezioni teoriche vengono sviluppate a partire da momenti pratici e di osservazione di fenomeni. I principi teorici verranno quindi o presentati dall insegnate o ricavati

Dettagli

Il Piano di Azione per la sicurezza dei pedoni di New York City

Il Piano di Azione per la sicurezza dei pedoni di New York City Buone pratiche Il Piano di Azione per la sicurezza dei pedoni di New York City Tra le grandi città americane 1, New York City si classifica come la più sicura dal punto di vista dell incidentalità stradale.

Dettagli

SIMULAZIONE E ANALISI SOFTWARE PER MACCHINE UTENSILI

SIMULAZIONE E ANALISI SOFTWARE PER MACCHINE UTENSILI SIMULAZIONE E ANALISI SOFTWARE PER MACCHINE UTENSILI Antonio Scippa u macchine utensili u Ottimizzare i parametri per una lavorazione di fresatura su macchina a controllo numerico significa sfruttare in

Dettagli

RAPPORTO A3 e TAVOLE A1 con alcune precisazioni per la loro costruzione su tessuto urbano e paesaggio storico-culturale.

RAPPORTO A3 e TAVOLE A1 con alcune precisazioni per la loro costruzione su tessuto urbano e paesaggio storico-culturale. Università IUAV Facoltà di Architettura A.A. 2011-2012 PROGETTAZIONE URBANISTICA 1D RAPPORTO A3 e TAVOLE A1 con alcune precisazioni per la loro costruzione su tessuto urbano e paesaggio storico-culturale

Dettagli

Relazione sul mercato immobiliare di Manhattan. Secondo trimestre 2014

Relazione sul mercato immobiliare di Manhattan. Secondo trimestre 2014 Relazione sul mercato immobiliare di Manhattan. Secondo trimestre 2014 Presentiamo la seconda relazione trimestrale delle vendite immobiliari a Manhattan. Lo studio si basa sulle operazioni di vendita

Dettagli

SVILUPPO IN SERIE DI FOURIER

SVILUPPO IN SERIE DI FOURIER SVILUPPO IN SERIE DI FOURIER Cenni Storici (Wikipedia) Jean Baptiste Joseph Fourier ( nato a Auxerre il 21 marzo 1768 e morto a Parigi il 16 maggio 1830 ) è stato un matematico e fisico, ma è conosciuto

Dettagli

13. GLI ZII DI PIERINO

13. GLI ZII DI PIERINO 13 o RALLY MATEMATICO TRANSALPINO PROVA II - marzo - aprile 2005 ARMT.2005 p. 1 12. DADI (Cat. 6, 7, 8, 9) ARMT.2005-13 - II prova Un dado (di tipo «occidentale») è costruito correttamente se sono rispettate

Dettagli

Scuola di Architettura e Design Eduardo Vittoria UNICAM Esame di Abilitazione all esercizio della professione di Architetto Temi Giugno 2014

Scuola di Architettura e Design Eduardo Vittoria UNICAM Esame di Abilitazione all esercizio della professione di Architetto Temi Giugno 2014 Scuola di Architettura e Design Eduardo Vittoria UNICAM Esame di Abilitazione all esercizio della professione di Architetto Temi Giugno 2014 Prova pratico-grafica (6 ore) Tema n.1 Consideriamo un edificio

Dettagli

I.I.S. MARGHERITA DI SAVOIA NAPOLI ANNO SCOLASTICO 2014/2015. CLASSE III SEZ. Ae INDIRIZZO LICEO ECONOMICO PROGRAMMA DI FISICA

I.I.S. MARGHERITA DI SAVOIA NAPOLI ANNO SCOLASTICO 2014/2015. CLASSE III SEZ. Ae INDIRIZZO LICEO ECONOMICO PROGRAMMA DI FISICA I.I.S. MARGHERITA DI SAVOIA NAPOLI ANNO SCOLASTICO 2014/2015 CLASSE III SEZ. Ae INDIRIZZO LICEO ECONOMICO PROGRAMMA DI FISICA PROFESSORESSA: REGALBUTO PAOLA LE GRANDEZZE: LE GRANDEZZE FONDAMENTALI E DERIVATE,

Dettagli

Accuratezza di uno strumento

Accuratezza di uno strumento Accuratezza di uno strumento Come abbiamo già accennato la volta scora, il risultato della misurazione di una grandezza fisica, qualsiasi sia lo strumento utilizzato, non è mai un valore numerico X univocamente

Dettagli

Serie numeriche e serie di potenze

Serie numeriche e serie di potenze Serie numeriche e serie di potenze Sommare un numero finito di numeri reali è senza dubbio un operazione che non può riservare molte sorprese Cosa succede però se ne sommiamo un numero infinito? Prima

Dettagli

Corrado Malanga ARCHETIPI E NUMERI

Corrado Malanga ARCHETIPI E NUMERI Corrado Malanga Nel precedente lavoro ho parlato degli archetipi, ne ho fornito le definizioni ed ho descritto cosa i suddetti archetipi siano, come funzionino e perché siano legati ad alcuni numeri e

Dettagli

6 APPARTAMENTI VISTA LAGO

6 APPARTAMENTI VISTA LAGO 6 APPARTAMENTI VISTA LAGO w w w. v i l l a m e t a. c h il concetto EDIFICAZIONE DI 6 APPARTAMENTI SU 5 LIVELLI. La Residenza è ubicata in zona collinare, nel comune di Orselina, con una generosa apertura

Dettagli

Corso Operatore C.R.I. nel Settore Emergenza Cartografia ed orientamento

Corso Operatore C.R.I. nel Settore Emergenza Cartografia ed orientamento Corso Operatore C.R.I. nel Settore Emergenza Cartografia ed orientamento Contenuti della lezione 1. Definizioni generali 2. Le coordinate geografiche 3. Le carte e le proiezioni 4. Lettura di una carta

Dettagli

Spazio espositivo a rotazione n.1 Cardo Nord Ovest. ago. 14

Spazio espositivo a rotazione n.1 Cardo Nord Ovest. ago. 14 Spazio espositivo a rotazione n.1 Cardo Nord Ovest ago. 14 Il Sito Espositivo 935.595 mq di area totale 147 Paesi Partecipanti AREE TEMATICHE PARTECIPANTI UFFICIALI AREE DI SERVIZIO PARTECIPANTI NON UFFICIALI

Dettagli

Villa Grandi. Via di Porta Latina, 11 Roma EXCLUSIVE OPPORTUNITY PRESENTED BY. francesco.martini@colliers.it FRANCESCO MARTINI

Villa Grandi. Via di Porta Latina, 11 Roma EXCLUSIVE OPPORTUNITY PRESENTED BY. francesco.martini@colliers.it FRANCESCO MARTINI EXCLUSIVE OPPORTUNITY Villa Grandi Via di Porta Latina, 11 Roma PRESENTED BY FRANCESCO MARTINI francesco.martini@colliers.it MAIN +39 06 45.21.40.16 MOBILE +39 346 61.58.52.3 ROMA VIA DI PORTA LATINA,

Dettagli

Facoltà di Scienze Matematiche, Fisiche e naturali. CFU = 3 9 incontri di 3 ore. del Corso di Studio Obiettivi formativi del corso

Facoltà di Scienze Matematiche, Fisiche e naturali. CFU = 3 9 incontri di 3 ore. del Corso di Studio Obiettivi formativi del corso Allegato A al Bando per la partecipazione al progetto sperimentale di orientamento e formazione per l iscrizione all Università I Facoltà di Scienze Matematiche, Fisiche e Naturali Facoltà di Scienze Matematiche,

Dettagli

Orientamento. Orientarsi vuol dire saper riconoscere un punto cardinale. Come si puó riconoscere un punto cardinale? Bussola. Sole. Orologio.

Orientamento. Orientarsi vuol dire saper riconoscere un punto cardinale. Come si puó riconoscere un punto cardinale? Bussola. Sole. Orologio. Orientamento Orientarsi vuol dire saper riconoscere un punto cardinale Come si puó riconoscere un punto cardinale? Bussola Sole Orologio Stelle BUSSOLA Tacca di mira Ago Magnetico Cerchio graduato Ci indica

Dettagli

ISTITUTO COMPRENSIVO VIA UGO BASSI

ISTITUTO COMPRENSIVO VIA UGO BASSI ISTITUTO COMPRENSIVO VIA UGO BASSI Via U. Bassi n 30-62012 CIVITANOVA MARCHE Tel. 0733 772163- Fax 0733 778446 mcic83600n@istruzione.it, MCMM83600N@PEC.ISTRUZIONE.IT www.circolougobassi.it Cod. fiscale:

Dettagli

AMBITO ANTROPOLOGICO CURRICOLO E PROGRAMMAZIONE ANNUALE DI GEOGRAFIA

AMBITO ANTROPOLOGICO CURRICOLO E PROGRAMMAZIONE ANNUALE DI GEOGRAFIA AMBITO ANTROPOLOGICO CURRICOLO E DI GEOGRAFIA 1- IDEA, SVILUPPO E RAPPRESENTAZIONE DELLO SPAZIO CLASSE 1^ CURRICOLO - Uso corretto dei principali indicatori topologici Riconoscere la propria posizione

Dettagli

IL CAMPO MAGNETICO TERRESTRE

IL CAMPO MAGNETICO TERRESTRE IL CAMPO MAGNETICO TERRESTRE La Terra, come ogni altro corpo dotato di massa, è circondata da un campo gravitazionale che attrae altri corpi. Siamo oggi in grado di determinare gli effetti della gravità,

Dettagli

PASSEGGIANDO LUNGO LE MURA DI COMO

PASSEGGIANDO LUNGO LE MURA DI COMO PASSEGGIANDO LUNGO LE MURA DI COMO mura, porte, torri e giardini quel che resta di visibile oggi La nostra passeggiata lungo il tracciato delle mura di Como ha inizio dove sorgeva la Porta Sala, allo sbocco

Dettagli