()Probablità, Statistica e Processi Stocastici

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "()Probablità, Statistica e Processi Stocastici"

Transcript

1 Probablità, Statistica e Processi Stocastici

2 Riassunto Abbiamo introdotto le equazioni differenziali stocastiche, equazioni del tipo dx t = b (t, X t ) dt + σdb t (o un po più generali) dove B t è il moto browniano, ovvero db t /dt è il white noise. Abbiamo effettuato alcune simulazioni di singole realizzazioni. Abbiamo sviluppato il calcolo di Itô. Invece, circa valori medi delle soluzioni, abbiamo visto poco (solo l esempio delle energia media).

3 Studio della pdf delle soluzioni Se X t è la soluzione di un equazione differenziale stocastica, tra le cose che ci interessano maggiormente c è la densità di probabilità di X t, a t fissato. Dal punto di vista teorico, non sempre la densità esiste; ci sono casi singolari in cui X t concentra dalla massa in qualche punto. Si pensi ad esempio al caso X t = b (X t ). on occupiamoci però della (non banale) questione dell esistenza della densità, confidando che nei nostri esempi essa ci sia. Poniamoci il problema concreto di conoscerla, esattamente o approssimativamente. Vediamo due metodi: uno simulativo ed uno più analitico.

4 La pdf delle soluzioni tramite Monte Carlo Il metodo simulativo è semplicissimo: si generano simulazioni (usando realizzazioni indipendenti del noise) fino ad un dato tempo t e poi, graficamente, si traccia l istogramma. Oltre all istogramma, possono interessare i valori di certe probabilità e valori medi. Il loro calcolo si basa sulla: Theorem (Legge dei Grandi umeri) Se X 1, X 2,... è una successione di v.a. indipendenti ed identicamente ditribuite, con media finita µ, allora lim 1 X i = µ i=1 (limite quasi ( certo, oppure in probabilità: ) per ogni ɛ > 0, 1 lim P i=1 X i µ > ɛ = 0). ranco Flandoli, Università di Pisa

5 L errore di Monte Carlo Se il momento secondo è finito, si verifica facilmente che E 1 2 X i µ = σ2 i=1 dove σ 2 è la varianza, comune, delle X i. Quindi, un po approssimativamente, 1 X i µ σ. i=1 (Esercizio: verificare nel caso dell energia media)

6 La pdf delle soluzioni tramite Monte Carlo Quindi, immaginiamo di risolvere un equazione differenziale stocastica immettendo volta per volta dei moti browniani indipendenti Bt 1, Bt 2,...: dxt i = b ( t, Xt i ) dt + σdb i t con un dato iniziale fissato X i 0 = x 0. Le soluzioni sono anch esse indipendenti. E sono identicamente ditribuite (è la stessa equazione). Fissato t, le v.a. X 1 t, X 2 t,... sono indipendenti ed identicamente ditribuite. Quindi 1 φ ( X i ) t E [φ (Xt )]. i=1

7 La pdf delle soluzioni tramite Monte Carlo Ad esempio, scegliendo diverse φ: se φ (x) = x troviamo la media 1 Xt i E [X t ]. i=1 se φ (x) = H (x λ) (vedi esercitazione), cioè φ (x) = 1 se x > λ, zero altrimenti, allora card { i = 1,..., : Xt i > λ } P (X t > λ). Quest ultima formula si capisce anche pensando a "frequenza relativa probabilità".

8 Esempio lineare Equazione dx t = X t dt db t, X 0 = 1 Con = (quindi errore 0.01), tempo t = 1 P ( X 1 > e 1)

9 Esempio nonlineare Equazione dx t = ( X t Xt 3 ) dt dbt Con = 1000 (quindi errore 0.03), tempo t = 100 P (X 100 > 0)

10 Sulla pdf di una SDE Abbiamo considerato equazioni differenziali stocastiche della forma dx t = b (t, X t ) dt + σ (t, X t ) db t Per avere informazioni quantitative sulla densità di probabilità (pdf) di X t si può usare il metodo di Monte Carlo. Ad esempio E [X t ] 1 Xt i i=1 dove X i t, i = 1,...,, sono ottenute da diverse simulazioni indipendenti. L istogramma dei valori X i t, i = 1,...,, è un approssimazione della pdf p t (x).

11 L equazione di Fokker-Planck Sotto opportune ipotesi vale il seguente risultato: Theorem La pdf p t (x) di X t soddisfa l equazione p t = 1 d 2 i j (a ij p) div (bp) i,j=1 dove a ij = σ ik σ jk k i = d, div v = x i i v i. i=1 ranco Flandoli, Università di Pisa

12 Casi particolari di equazione di Fokker-Planck Familiarizziamo coi simboli. Intanto, in dimensione d = 1, a ij = a = σ 2. L equazione è semplicemente p t = 1 ( σ 2 p ) 2 x 2 (bp). x el caso di noise additivo, σ (t, x) = σ costante, p t = σ2 2 p 2 x 2 (bp). x Anche in più dimensioni, noise additivo, σ (t, x) = σi p t = σ2 p div (bp). 2

13 Condizione iniziale Come ogni equazione alle derivate parziali con t, necessita di una condizione iniziale nota, al tempo t = 0: p 0 (x). Essa è la densità della v.a. iniziale della SDE, X 0. Spesso X 0 è un punto deterministico fissato, x 0. In questo caso, non ha una vera densità, nel senso usuale del termine. Il dato iniziale p 0 (x), in tal caso, è la delta di Dirac in x 0 : p 0 (x) = δ (x x 0 ). Sotto ipotesi abbastanza generali, la soluzione p t (x) è però una funzione regolare, per t > 0 (fenomeno di regolarizzazione parabolica).

14 Esempio del moto browniano Vediamo la SDE particolarissima, in dimensione 1, dx t = σdb t, X 0 = 0 L equazione di Fokker-Planck associata è La funzione p t = σ2 2 p 2 x 2, p 0 (x) = δ (x). p t (x) = ( 1 2πσ 2 t exp x 2 ) 2σ 2 t è soluzione (verifica noiosa ma elementare).

15 Esempio dell equazione lineare Esaminiamo dx t = λx t dt + σdb t, X 0 = x 0. L equazione di Fokker-Planck associata è p t = σ2 2 p 2 x 2 + λ (xp), p 0 (x) = δ (x x 0 ). x Infatti, b (x) = λx. Si può cercare una soluzione della forma ( ) p t (x) = C (t) exp 1 (x m (t)) 2 2 σ (t) 2 e, con opportuni calcoli, la si trova (una gaussiana con media e varianza variabili nel tempo).

16 Simulazioni. Discretizzazione spaziale Purtroppo non si va molto oltre questi esempi, se si vogliono soluzioni esplicite. Vediamo invece alcune simulazioni, limitatamente a d = 1. Usiamo un metodo elementare: discretizziamo lo spazio (che è infinito) tramite un insieme finito di valori x i (ad esempio prendiamo un grande intervallo [ L, L] e lo suddividiamo in parti uguali con x punti, detti x i ) discretizziamo la derivata prima f x con f x (x i ) f (x i+1) f (x i ) h x dove h x è il passo spaziale di discretizzazione (per i nostri scopi è indifferente prendere altri incrementi)

17 Simulazioni. Discretizzazione spaziale discretizziamo la derivata seconda 2 f x 2 con 2 f x 2 (x i ) f (x i+1) 2f (x i ) + f (x i 1 ) hx 2 nota: la formula proviene da: [ 1 f (xi+1 ) f (x i ) f (x ] i ) f (x i 1 ) h x h x h x infine dobbiamo fissare delle condizioni al bordo; questo al momento non si capisce, ma risulterà chiaro scrivendo il codice. Prenderemo la condizione di flusso nullo, f x = 0, una delle più neutre, ovvero f (x i+1 ) = f (x i ) (tra punti vicini al bordo). Per i nostri scopi si potrebbe anche prendere f = 0 sul bordo.

18 Simulazioni. Discretizzazione temporale Il tempo si discretizza analogamente, arrivando, ad es. per l equazione p t = σ2 2 p 2, allo schema esplicito x 2 p tk+1 (x i ) p tk (x i ) h t = σ2 2 p tk (x i+1 ) p tk (x i ) + p tk (x i 1 ) h 2 x che calcola p tk+1 (x i ) a partire da p tk (x i+1 ), p tk (x i ), p tk (x i 1 ) (per questo servono delle condizioni al bordo) Serve la condizione di stabilità σ 2 2 h t hx

19 Esempio del MB Prendiamo il caso p tk+1 (x i ) p tk (x i ) h t dx t = σdb t, X 0 = 0 p t = σ2 2 p 2 x 2 = σ2 2 p tk (x i+1 ) p tk (x i ) + p tk (x i 1 ) h 2 x Approssimiamo il dato iniziale con una funzione molto concentrata di area uno: 1 exp ( x 2 ). 2πɛ 2ɛ

()Probablità, Statistica e Processi Stocastici

()Probablità, Statistica e Processi Stocastici Probablità, Statistica e Processi Stocastici Discretizzazione equazione del calore Per l equazione usiamo lo schema esplicito p tk+1 (x i ) p tk (x i ) h t p t = σ2 2 p 2 x 2 = σ2 2 p tk (x i+1 ) p tk

Dettagli

()Probablità, Statistica e Processi Stocastici

()Probablità, Statistica e Processi Stocastici Probablità, Statistica e Processi Stocastici Energia immessa da un white noise Ricordiamo la motivazione applicativa della volta scorsa: un white noise additivo, messo in un equazione che nel caso deterministico

Dettagli

()Probablità, Statistica e Processi Stocastici

()Probablità, Statistica e Processi Stocastici Probablità, Statistica e Processi Stocastici Premessa Scopo delle seguenti simulazioni è trovare dei modelli con forti fluttuazioni ma valori compresi in un intervallo specificato. Tali processi vengono

Dettagli

()Probablità, Statistica e Processi Stocastici

()Probablità, Statistica e Processi Stocastici Probablità, Statistica e Processi Stocastici Generica motivazione di un noise additivo Supponiamo che, in prima approssimazione, il nostro sistema fisico sia descritto da X (t) = f (t, X (t)). Supponiamo

Dettagli

()Probablità, Statistica e Processi Stocastici

()Probablità, Statistica e Processi Stocastici Probablità, Statistica e Processi Stocastici Dinamiche stocastiche Iniziamo la seconda parte del corso, non più dedicata a metodi statistici ma ad alcuni esempi di dinamiche stocastiche. Esse potrebbero

Dettagli

Esercizi su formula di Itô

Esercizi su formula di Itô Esercizi su formula di Itô 1. Scrivere il differenziale stocastico dei seguenti processi: (i) X t = B t (ii) X t = t + e B t (iii) X t = B 3 t 3tB t (iv) X t = 1 + t + e B t (v) X t = [B 1 (t)] + [B (t)]

Dettagli

Istituzioni di Probabilità Laurea magistrale in Matematica prova scritta del 2/12/2013

Istituzioni di Probabilità Laurea magistrale in Matematica prova scritta del 2/12/2013 Istituzioni di Probabilità Laurea magistrale in Matematica prova scritta del /1/13 Exercise 1 punti 1 circa Un foglio browniano è un processo gaussiano a valori reali X s, t, indicizzato da s, t in [,

Dettagli

Istituzioni di Probabilità Laurea magistrale in Matematica 16 Febbraio 2015

Istituzioni di Probabilità Laurea magistrale in Matematica 16 Febbraio 2015 Istituzioni di Probabilità Laurea magistrale in Matematica 16 Febbraio 15 sercizio 1. (punti 1 ) ) Basandosi sul noto concetto di integrale di Itô, ogni studente esponga, preliminarmente, una ragionevole

Dettagli

Problemi parabolici. u(0, t) = u(l, t) = 0 t (1)

Problemi parabolici. u(0, t) = u(l, t) = 0 t (1) Problemi parabolici L esempio più semplice di equazione differenziale di tipo parabolico è costituito dall equazione del calore, che in una dimensione spaziale è data da u t (x, t) ku xx (x, t) = x [,

Dettagli

()Probablità, Statistica e Processi Stocastici

()Probablità, Statistica e Processi Stocastici Probablità, Statistica e Processi Stocastici Serie storiche (verso fpca) La tecnica chiamata fpca (functional PCA) esamina serie storiche utilizzando paradigmi propri di PCA. E utile premettere un po di

Dettagli

Istituzioni di Probabilità - A.A

Istituzioni di Probabilità - A.A Istituzioni di Probabilità - A.A. 25-26 Prima prova di verifica intermedia - 29 aprile 25 Esercizio. Sia (X n ) n una successione di v.a. i.i.d. centrate con < X P-q.c., sia λ R ed F una v.a. integrabile

Dettagli

Istituzioni di Probabilità Laurea magistrale in Matematica a.a. 2013/14 Registro delle lezioni

Istituzioni di Probabilità Laurea magistrale in Matematica a.a. 2013/14 Registro delle lezioni Istituzioni di Probabilità Laurea magistrale in Matematica a.a. 2013/14 Registro delle lezioni Lezione 1 (25/2). Introduzione al corso. Prime definizioni sui processi stocastici (processo stocastico, distribuzioni

Dettagli

Correzione di Esercizi 4 di Calcolo delle Probabilità e Statistica. Mercoledì 4 maggio 2016

Correzione di Esercizi 4 di Calcolo delle Probabilità e Statistica. Mercoledì 4 maggio 2016 Correzione di Esercizi di Calcolo delle Probabilità e Statistica. Mercoledì maggio 6 Chun Tian. Answer of Exercise Figure. Catena di Markov.. (a) Le classi di equivalenza e i loro periodi. Da Figure, si

Dettagli

Corsi di Laurea Magistrale in Matematica, A.A Calcolo stocastico e applicazioni (Docente: Bertini) Esercizi settimanali

Corsi di Laurea Magistrale in Matematica, A.A Calcolo stocastico e applicazioni (Docente: Bertini) Esercizi settimanali Settimana 1 Esercizio 1. [Unicità della misura di Wiener] Sia C([0, 1]) l insieme delle funzioni continue sull intervallo [0, 1] con la topologia (metrizzabile) indotta dalla convergenza uniforme. Sia

Dettagli

Statistica I. Ingegneria Gestionale. Scritto del 17/07/2012

Statistica I. Ingegneria Gestionale. Scritto del 17/07/2012 Statistica I. Ingegneria Gestionale. Scritto del 17/07/01 Cerchiare, su questo foglio, le risposte corrette e risolvere per esteso gli esercizi sui fogli assegnati. Esercizio 1. Un operatore finanziario

Dettagli

Probabilità, Statistica e Processi Stocastici Scuola di Dottorato in Ingegneria Leonardo da Vinci a.a. 2011/12 Registro delle lezioni

Probabilità, Statistica e Processi Stocastici Scuola di Dottorato in Ingegneria Leonardo da Vinci a.a. 2011/12 Registro delle lezioni Probabilità, Statistica e Processi Stocastici Scuola di Dottorato in Ingegneria Leonardo da Vinci a.a. 2011/12 Registro delle lezioni Lezione 1 (2/3). Introduzione al corso; materiale e comunicazioni alla

Dettagli

Probablità, Statistica e Processi Stocastici

Probablità, Statistica e Processi Stocastici Probablità, Statistica e Processi Stocastici Franco Flandoli, Università di Pisa Programma del corso vettori gaussiani, PCA ed fpca altri metodi di analisi e previsione di serie storiche catene di Markov

Dettagli

Istituzioni di Probabilità Laurea magistrale in Matematica prova scritta del 22/7/2013

Istituzioni di Probabilità Laurea magistrale in Matematica prova scritta del 22/7/2013 Istituzioni di Probabilità Laurea magistrale in Matematica prova scritta del 22/7/213 Exercise 1 (punti 1 circa Diremo che un processo X = (X t t [,1] a valori reali è un ponte browniano se è un processo

Dettagli

9. Test del χ 2 e test di Smirnov-Kolmogorov. 9.1 Stimatori di massima verosimiglianza per distribuzioni con densità finita

9. Test del χ 2 e test di Smirnov-Kolmogorov. 9.1 Stimatori di massima verosimiglianza per distribuzioni con densità finita 9. Test del χ 2 e test di Smirnov-Kolmogorov 9. Stimatori di massima verosimiglianza per distribuzioni con densità finita Supponiamo di avere un campione statistico X,..., X n e di sapere che esso è relativo

Dettagli

Scheda n.3: densità gaussiana e Beta

Scheda n.3: densità gaussiana e Beta Scheda n.3: densità gaussiana e Beta October 10, 2008 1 Definizioni generali Chiamiamo densità di probabilità (pdf ) ogni funzione integrabile f (x) definita per x R tale che i) f (x) 0 per ogni x R ii)

Dettagli

ESERCITAZIONE 21 : VARIABILI ALEATORIE CONTINUE

ESERCITAZIONE 21 : VARIABILI ALEATORIE CONTINUE ESERCITAZIONE 21 : VARIABILI ALEATORIE CONTINUE e-mail: tommei@dm.unipi.it web: www.dm.unipi.it/ tommei Ricevimento: su appuntamento Dipartimento di Matematica, piano terra, studio 114 7 Maggio 2013 Esercizio

Dettagli

Analisi Stocastica Programma del corso 2009/10

Analisi Stocastica Programma del corso 2009/10 Analisi Stocastica Programma del corso 2009/10 [13/01a] Introduzione. 0. Preludio (1 ora) [1] Descrizione del corso: obiettivi, prerequisiti, propedeuticità. Un esempio euristico: lavoro di una forza,

Dettagli

CP110 Probabilità: Esonero 2. Testo e soluzione

CP110 Probabilità: Esonero 2. Testo e soluzione Dipartimento di Matematica, Roma Tre Pietro Caputo 2011-12, II semestre 29 maggio, 2012 CP110 Probabilità: Esonero 2 Testo e soluzione 1. (8 punti) La freccia lanciata da un arco è distribuita uniformemente

Dettagli

Verso l integrale stocastico

Verso l integrale stocastico Verso l integrale stocastico Una versione più corretta di è la sua forma integrale ds(t) = σs(t)dx(t) + µs(t)dt S(t) = S() + σs(u)db(u) + µs(u)du Ricordando che S è un processo che descrive la dinamica

Dettagli

Analisi Stocastica Programma del corso 2008/09

Analisi Stocastica Programma del corso 2008/09 Analisi Stocastica Programma del corso 2008/09 [13/01] Introduzione. 0. Preludio (1 ora) [1] Descrizione del corso: obiettivi, prerequisiti, propedeuticità. Un esempio euristico: lavoro di una forza, valore

Dettagli

Istituzioni di Probabilità Laurea magistrale in Matematica prova scritta del 14/2/2013

Istituzioni di Probabilità Laurea magistrale in Matematica prova scritta del 14/2/2013 Istituzioni di Probabilità Laurea magistrale in Matematica prova scritta del 14/2/213 Exercise 1. punti 9+) Sia X = X t, x)) t,x un processo stocastico a valori reali, avente come parametro la coppia t,

Dettagli

Massimi e minimi vincolati

Massimi e minimi vincolati Massimi e minimi vincolati Vedremo tra breve un metodo per studiare il problema di trovare il minimo e il massimo di una funzione su di un sottoinsieme dello spazio ambiente che non sia un aperto. Abbiamo

Dettagli

Programma della parte introduttiva: Lezione 5

Programma della parte introduttiva: Lezione 5 Programma della parte introduttiva: Lezione 5 Cap. 3 Presentazione e confronto tra misure Cap. 4 Propagazione delle incertezze Cap 5 Misure ripetute e stimatori Cap.6 Organizzazione e presentazione dei

Dettagli

Zero-coupon bond e tassi di interesse a breve termine

Zero-coupon bond e tassi di interesse a breve termine Zero-coupon bond e tassi di interesse a breve termine Definizione. Uno zero-coupon bond con data di maturità T > 0, detto anche T -bond, è un contratto che prevede il pagamento alla scadenza T del suo

Dettagli

P ( X n X > ɛ) = 0. ovvero (se come distanza consideriamo quella euclidea)

P ( X n X > ɛ) = 0. ovvero (se come distanza consideriamo quella euclidea) 10.4 Convergenze 166 10.4.3. Convergenza in Probabilità. Definizione 10.2. Data una successione X 1, X 2,...,,... di vettori aleatori e un vettore aleatorio X aventi tutti la stessa dimensione k diremo

Dettagli

Corso di Laurea Triennale in Matematica Calcolo delle Probabilità I (docenti G. Nappo, F. Spizzichino)

Corso di Laurea Triennale in Matematica Calcolo delle Probabilità I (docenti G. Nappo, F. Spizzichino) Corso di Laurea Triennale in Matematica Calcolo delle Probabilità I (docenti G. Nappo, F. Spizzichino Prova di mercoledì 22 Settembre 24 (tempo a disposizione: 2 ore e 4 minuti. consegna compiti e inizio

Dettagli

Probablità, Statistica e Processi Stocastici

Probablità, Statistica e Processi Stocastici Probablità, Statistica e Processi Stocastici Franco Flandoli, Università di Pisa Matrice di covarianza Dato un vettore aleatorio (anche non gaussiano) X = (X 1,..., X n ), chiamiamo sua media il vettore

Dettagli

Teoria dei Segnali Un esempio di processo stocastico: il rumore termico

Teoria dei Segnali Un esempio di processo stocastico: il rumore termico Teoria dei Segnali Un esempio di processo stocastico: il rumore termico Valentino Liberali Dipartimento di Fisica Università degli Studi di Milano valentino.liberali@unimi.it Teoria dei Segnali Il rumore

Dettagli

Metodi Stocastici per la Finanza

Metodi Stocastici per la Finanza Metodi Stocastici per la Finanza Tiziano Vargiolu vargiolu@math.unipd.it 1 1 Università degli Studi di Padova Anno Accademico 2012-2013 Lezione 2 Indice 1 Dal modello alla formula di Black-Scholes 2 Calibrazione

Dettagli

1 Punti di equilibrio e stabilità: definizioni

1 Punti di equilibrio e stabilità: definizioni ASPETTI QUALITATIVI DELLA TEORIA DELLE EQUAZIONI DIFFERENZIALI (Schema del contenuto delle lezioni e riferimenti bibliografici) Testi [HS] M. Hirsch and S. Smale Differential Equations, Dynamical Systems

Dettagli

Esercizi su equazioni differenziali stocastiche e teorema di Girsanov (con soluzioni)

Esercizi su equazioni differenziali stocastiche e teorema di Girsanov (con soluzioni) Esercizi su equazioni differenziali stocastiche e teorema di Girsanov con soluzioni). Moto Browniano geometrico Per r, σ >, si consideri l EDS lineare con coeff. costanti: dx t rx t dt + σx t db t, X x

Dettagli

esiste. Esempio 3. La successione e x2 /n 2 è regolare. In questo caso il limite è

esiste. Esempio 3. La successione e x2 /n 2 è regolare. In questo caso il limite è 9.2. Funzioni generalizzate e integrali regolarizzati. 9.2.. Funzioni generalizzate. Lasciamo per un momento da parte l analisi complessa e occupiamoci di un argomento che prima o poi spunta fuori in un

Dettagli

X n = αx n 1 + Y n. Si dimostri che. Usando la precedente relazione si dimostri che. e che. e si determini il limite di media e varianza quando n +.

X n = αx n 1 + Y n. Si dimostri che. Usando la precedente relazione si dimostri che. e che. e si determini il limite di media e varianza quando n +. Problema 1. Siano X, Y 1, Y,... variabili aleatorie indipendenti. Si supponga che X abbia media m e varianza σ e che le Y i abbiano distribuzione gaussiana con media µ e varianza σ. Dato α in (, 1, si

Dettagli

Derivazione Numerica

Derivazione Numerica Derivazione Numerica I metodi alle differenze finite sono basati sull approssimazione numerica di derivate parziali. Per questo consideriamo come problema iniziale quello di approssimare le derivate di

Dettagli

Capitolo 6. Variabili casuali continue. 6.1 La densità di probabilità

Capitolo 6. Variabili casuali continue. 6.1 La densità di probabilità Capitolo 6 Variabili casuali continue Le definizioni di probabilità che abbiamo finora usato sono adatte solo per una variabile casuale che possa assumere solo valori discreti; vediamo innanzi tutto come

Dettagli

ESAME SCRITTO DI FISICA MODERNA. 22 giugno Traccia di soluzione

ESAME SCRITTO DI FISICA MODERNA. 22 giugno Traccia di soluzione ESAME SCRITTO DI FISICA MODERNA giugno 08 Traccia di soluzione ) Ponendo α = /σ ), il valore medio della posizione è + ψ ˆx ψ = dx ψ ˆx x x ψ = dx ψ x)xψx) = α + dx x e αx x 0), ) e con un semplice cambio

Dettagli

Stima puntuale di parametri

Stima puntuale di parametri Probabilità e Statistica Esercitazioni a.a. 2009/2010 C.d.L.: Ingegneria Elettronica e delle Telecomunicazioni, Ingegneria Informatica Stima puntuale di parametri Ines Campa Probabilità e Statistica -

Dettagli

III Appello di Calcolo delle Probabilità Cognome: Laurea Triennale in Matematica 2013/14 Nome: 16 luglio

III Appello di Calcolo delle Probabilità Cognome: Laurea Triennale in Matematica 2013/14 Nome: 16 luglio III Appello di Calcolo delle Probabilità Cognome: Laurea Triennale in Matematica 013/14 Nome: 16 luglio 014 Email: Quando non è espressamente indicato il contrario, per la soluzione degli esercizi è possibile

Dettagli

Elementi di Probabilità e Statistica, A.A

Elementi di Probabilità e Statistica, A.A Elementi di Probabilità e Statistica, A.A. 5-6 Prova scritta - febbraio 6 Problema. 3+3+3 punti) In un sistema di lettura automatica - da parte di un computer - di testi scritti a mano scannerizzati, le

Dettagli

Elementi di Probabilità e Statistica - 052AA - A.A

Elementi di Probabilità e Statistica - 052AA - A.A Elementi di Probabilità e Statistica - 5AA - A.A. 4-5 Prova scritta - 4 settembre 5 Problema. Tornato a casa dal supermercato con la spesa, Alberto racconta ai suoi co-inquilini Bruno e Carlo che si potrebbe

Dettagli

Valutazione incertezza di categoria B

Valutazione incertezza di categoria B Valutazione incertezza di categoria B La valutazione consiste nell assegnare alla grandezza x uno scarto tipo σ in base alle informazioni disponibili Le informazioni riguardano: ) Gli estremi dell intervallo

Dettagli

Simulazione dei dati

Simulazione dei dati Simulazione dei dati Scopo della simulazione Fasi della simulazione Generazione di numeri casuali Esempi Simulazione con Montecarlo 0 Scopo della simulazione Le distribuzioni di riferimento usate per determinare

Dettagli

MODELLI STATISTICI, RICHIAMI

MODELLI STATISTICI, RICHIAMI MODELLI STATISTICI, RICHIAMI Corso di Tecniche di Simulazione, a.a. 2005/2006 Francesca Mazzia Dipartimento di Matematica Università di Bari 11 Aprile 2006 Francesca Mazzia (Univ. Bari) MODELLI STATISTICI,

Dettagli

Esercitazione del 28/10/2011 Calcolo delle probabilità

Esercitazione del 28/10/2011 Calcolo delle probabilità Esercitazione del 28/0/20 Calcolo delle probabilità Distribuzione di una funzione di una variabile aleatoria discreta. Sia X una variabile aletoria discreta, sia f una funzione da in, se Y := f(x) allora

Dettagli

TEST DI AUTOVALUTAZIONE APPROSSIMAZIONE NORMALE

TEST DI AUTOVALUTAZIONE APPROSSIMAZIONE NORMALE TEST DI AUTOVALUTAZIONE APPROSSIMAZIONE NORMALE I diritti d autore sono riservati. Ogni sfruttamento commerciale non autorizzato sarà perseguito. Metodi statistici per la biologia Parte A. Sia X, X,...

Dettagli

xn+1 distribuzione qualsiasi;

xn+1 distribuzione qualsiasi; Numeri pseudocasuali Il periodo deve essere il più lungo possibile; la distribuzione deve essere uniforme in [0, 1] p(x)=costante in [0, 1]; le correlazioni devono essere trascurabili xn+1 x n xn+1 xn

Dettagli

Elementi di Probabilità e Statistica, A.A

Elementi di Probabilità e Statistica, A.A Elementi di Probabilità e Statistica, A.A. 5-6 Prova scritta - gennaio 6 Problema. +++4 punti Un gioco elettronico per bambini sceglie a caso una schermata con n immagini diverse n fissato; serve da parametro

Dettagli

III Appello di Processi Stocastici Cognome: Laurea Magistrale in Matematica 2014/15 Nome: 15 Settembre

III Appello di Processi Stocastici Cognome: Laurea Magistrale in Matematica 2014/15 Nome: 15 Settembre III Appello di Processi Stocastici Cognome: Laurea Magistrale in Matematica 2014/15 Nome: 15 Settembre 2015 Email: Quando non è espressamente indicato il contrario, per la soluzione degli esercizi è possibile

Dettagli

RICHIAMI DI CALCOLO DELLE PROBABILITÀ

RICHIAMI DI CALCOLO DELLE PROBABILITÀ UNIVERSITA DEL SALENTO INGEGNERIA CIVILE RICHIAMI DI CALCOLO DELLE PROBABILITÀ ing. Marianovella LEONE INTRODUZIONE Per misurare la sicurezza di una struttura, ovvero la sua affidabilità, esistono due

Dettagli

La media campionaria. MEDIA CAMPIONARIA Date n v.a. X 1,..., X n indipendenti e identicamente distribuite (in breve i.i.d.), la v.a.

La media campionaria. MEDIA CAMPIONARIA Date n v.a. X 1,..., X n indipendenti e identicamente distribuite (in breve i.i.d.), la v.a. La media MEDIA CAMPIONARIA Date n v.a. X 1,..., X n indipendenti e identicamente distribuite (in breve i.i.d.), la v.a. X n = 1 n è detta media. n X i, i=1 In altre parole, se le X 1,...,X n sono il risultato

Dettagli

PROBABILITA Laurea in Matematica a.a. 2017/18 Registro delle lezioni

PROBABILITA Laurea in Matematica a.a. 2017/18 Registro delle lezioni PROBABILITA Laurea in Matematica a.a. 2017/18 Registro delle lezioni 25/09/2017. Teorema delle classi monotone, con dimostrazione. Corollario di unicità di misure coincidenti su classi chiuse per intersezione

Dettagli

Variabili aleatorie. continue. Discreto continuo

Variabili aleatorie. continue. Discreto continuo Variabili aleatorie continue Discreto continuo.18 Uniforme discreta, n=11 n=21 n=11 n=6 n=51 n=51 Uniforme.16.14.12.1.8.6?.4.2 1 1 2 2 3 3 4 4 5 5 6 6 7 7 Per passare dal modello discreto al modello continuo

Dettagli

Metodi e Modelli dei Mercati Finanziari

Metodi e Modelli dei Mercati Finanziari Diario delle lezioni di Metodi e Modelli dei Mercati Finanziari a.a. 2018/2019 www.mat.uniroma2.it/~caramell/did 1819/mmmf.htm Parte I: Opzioni Europee e Metodi Monte Carlo Lezioni 1, 2-02/10/2018 Breve

Dettagli

Analisi degli Errori di Misura. 08/04/2009 G.Sirri

Analisi degli Errori di Misura. 08/04/2009 G.Sirri Analisi degli Errori di Misura 08/04/2009 G.Sirri 1 Misure di grandezze fisiche La misura di una grandezza fisica è descrivibile tramite tre elementi: valore più probabile; incertezza (o errore ) ossia

Dettagli

arrivi in un tempo t è pari a λ*t, come si può ricavare dalla media su k della distribuzione di Poisson :

arrivi in un tempo t è pari a λ*t, come si può ricavare dalla media su k della distribuzione di Poisson : Sistema di coda ad un canale con arrivi poissoniani e tempi di servizio esponenziali. Si può dimostrare che assumere il tasso degli arrivi costante e pari a equivale ad assumere per gli intervalli fra

Dettagli

TECNICHE DI SIMULAZIONE

TECNICHE DI SIMULAZIONE TECNICHE DI SIMULAZIONE MODELLI STATISTICI, RICHIAMI Francesca Mazzia Dipartimento di Matematica Università di Bari a.a. 2004/2005 TECNICHE DI SIMULAZIONE p. 1 Modelli statistici nella simulazione Nel

Dettagli

RICHIAMI DI ELETTROMAGNETISMO

RICHIAMI DI ELETTROMAGNETISMO RICHIAMI DI ELETTROMAGNETISMO Equazioni di Maxwell I fenomeni elettrici e magnetici a livello del mondo macroscopico sono descritti da due campi vettoriali, in generale dipendenti dal tempo, E(x, t), H(x,

Dettagli

Stima dei parametri. La v.c. multipla (X 1, X 2,.., X n ) ha probabilità (o densità): Le f( ) sono uguali per tutte le v.c.

Stima dei parametri. La v.c. multipla (X 1, X 2,.., X n ) ha probabilità (o densità): Le f( ) sono uguali per tutte le v.c. Stima dei parametri Sia il carattere X rappresentato da una variabile casuale (v.c.) che si distribuisce secondo la funzione di probabilità f(x). Per investigare su tale carattere si estrae un campione

Dettagli

Interpolazione e Approssimazione

Interpolazione e Approssimazione Interpolazione e Approssimazione Dato un insieme di punti di ascisse e ordinate (x j, f j ) mi serve qualche volta di avere a disposizione una funzione, di solito con proprietà particolari, che passi per

Dettagli

Analisi Matematica III modulo Soluzioni della prova scritta preliminare n. 2

Analisi Matematica III modulo Soluzioni della prova scritta preliminare n. 2 Analisi Matematica III modulo Soluzioni della prova scritta preliminare n. Corso di laurea in Matematica, a.a. 003-004 17 dicembre 003 1. Si consideri la funzione f : R R definita da f(x, y) = x 4 y arctan

Dettagli

Esercitazione del 21/02/2012 Istituzioni di Calcolo delle Probabilità

Esercitazione del 21/02/2012 Istituzioni di Calcolo delle Probabilità Esercitazione del /0/0 Istituzioni di Calcolo delle Probabilità David Barbato Funzione di ripartizione Sia F X una funzione da in. consideriamo le seguenti condizioni: F X è non decrescente lim ( ) x F

Dettagli

Calcolo delle Probabilità e Statistica, Ing. Informatica e dell Automazione, a.a. 2009/10 30/6/2010

Calcolo delle Probabilità e Statistica, Ing. Informatica e dell Automazione, a.a. 2009/10 30/6/2010 Calcolo delle Probabilità e Statistica, Ing. Informatica e dell Automazione, a.a. 29/ /6/2 Nota. E obbligatorio sia scegliere le risposte numeriche, o le formule nali a seconda del caso) negli appositi

Dettagli

Svolgimenti esami del corso di Teoria di Segnali

Svolgimenti esami del corso di Teoria di Segnali Svolgimenti esami del corso di Teoria di Segnali versione.4 - ultimo aggionamento 0/03/209 Autore: Gabriel Emile Hine mail: gabriel.hine@uniroma3.it (per segnalazione di eventuali errori/refusi) Esame

Dettagli

Elaborazione statistica di dati

Elaborazione statistica di dati Elaborazione statistica di dati 1 CONCETTI DI BASE DI STATISTICA ELEMENTARE 2 Taratura strumenti di misura IPOTESI: grandezza da misurare identica da misura a misura Per la presenza di errori casuali,

Dettagli

Metodi di Monte Carlo: un'applicazione

Metodi di Monte Carlo: un'applicazione Metodi di Monte Carlo: un'applicazione Metodi di Monte Carlo: definizione Brevi richiami sui concetti base utilizzati Variabile casuale Valore di aspettazione Varianza Densità di probabilità Funzione cumulativa

Dettagli

CP110 Probabilità: Esame 13 settembre Testo e soluzione

CP110 Probabilità: Esame 13 settembre Testo e soluzione Dipartimento di Matematica, Roma Tre Pietro Caputo 2011-12, II semestre 13 settembre, 2012 CP110 Probabilità: Esame 13 settembre 2012 Testo e soluzione 1. (6 pts) Una scatola contiene 10 palline, 8 bianche

Dettagli

Modelli e Metodi Matematici della Fisica. S2/AC

Modelli e Metodi Matematici della Fisica. S2/AC Modelli e Metodi Matematici della Fisica. S/AC Filippo Cesi 010 11 Nome Cognome Devo verbalizzare questo esame come (fare una croce): 1 CFU (AA 010-11) 6 CFU (solo anal. funzionale) 6 CFU (solo anal. complessa)

Dettagli

Metodi Stocastici per la Finanza

Metodi Stocastici per la Finanza Metodi Stocastici per la Finanza Tiziano Vargiolu vargiolu@math.unipd.it 1 1 Università degli Studi di Padova Anno Accademico 2014-2015 Lezione 5 Indice 1 Errori nella simulazione Monte Carlo di processi

Dettagli

Processi Stocastici, anno 2013/14

Processi Stocastici, anno 2013/14 Processi Stocastici, anno 213/14 Esercitazione 1 Esercizio 1 Siano X e Y due v.a. indipendenti in L 2, con E(X) = µ, V (X) = σ 2, E(Y ) = ν. Si determini il valor medio condizionato E(X + Y X), il valor

Dettagli

01CXGBN Trasmissione numerica. parte 6: calcolo delle probabilità I

01CXGBN Trasmissione numerica. parte 6: calcolo delle probabilità I 01CXGBN Trasmissione numerica parte 6: calcolo delle probabilità I 1 Probabilità di errore BER e SER Per rappresentare la bontà di un sistema di trasmissione numerica in termini di probabilità di errore

Dettagli

Probabilità e Statistica Esercizi

Probabilità e Statistica Esercizi Corso di PIANIFICAZIONE DEI TRASPORTI 1 ing. Antonio Comi Marzo 2006 Probabilità e Statistica Esercizi 1 Variabile aleatoria X(E): funzione che associa ad un evento E dello spazio delle prove un numero

Dettagli

Valutazione in tempo continuo (formula di Black e Scholes)

Valutazione in tempo continuo (formula di Black e Scholes) Valutazione in tempo continuo (formula di Black e Scholes) Federico Marchetti (Politecnico di Milano) Dipartimento di Economia e Produzione 5/6/000 1 Calcolo stocastico Ci limitiamo al caso unidimensionale,

Dettagli

Politecnico di Milano Facoltà di Ingegneria Industriale. I Prova in Itinere di Statistica Matematica A per Ingegneria ENG 03 Maggio 2004

Politecnico di Milano Facoltà di Ingegneria Industriale. I Prova in Itinere di Statistica Matematica A per Ingegneria ENG 03 Maggio 2004 Politecnico di Milano Facoltà di Ingegneria Industriale I Prova in Itinere di Statistica Matematica A per Ingegneria ENG 03 Maggio 004 c I diritti d autore sono riservati. Ogni sfruttamento commerciale

Dettagli

Variabili aleatorie parte 2. 1 Definizione di funzione di ripartizione o funzione cumulativa (CDF)

Variabili aleatorie parte 2. 1 Definizione di funzione di ripartizione o funzione cumulativa (CDF) Statistica e analisi dei dati Data: 11 aprile 2016 Variabili aleatorie parte 2 Docente: Prof. Giuseppe Boccignone Scriba: Alessandra Birlini 1 Definizione di funzione di ripartizione o funzione cumulativa

Dettagli

1 Serie temporali. 1.1 Processi MA

1 Serie temporali. 1.1 Processi MA 1 Serie temporali Un processo stocastico 1 {X t, t T }, dove T = N o T = Z, si dice stazionario se (X 1,..., X n ) e (X k+1,...,x k+n ) hanno la stessa distribuzione per ogni n 1 e per ogni k T. Un processo

Dettagli

Laboratorio di Calcolo B 68

Laboratorio di Calcolo B 68 Generazione di numeri casuali Abbiamo già accennato all idea che le tecniche statistiche possano essere utili per risolvere problemi di simulazione di processi fisici e di calcoli numerici. Dobbiamo però

Dettagli

La funzione di distribuzione Gaussiana normale

La funzione di distribuzione Gaussiana normale La funzione di distribuzione Gaussiana normale Nicola Morganti 25 aprile 2004 Indice Proprietà fondamentali 2 Standard Normal Density Function 3 3 Esempio applicativo 5 Proprietà fondamentali L utilizzo

Dettagli

Modelli e Metodi Matematici della Fisica. S1/AC

Modelli e Metodi Matematici della Fisica. S1/AC Modelli e Metodi Matematici della Fisica. S/AC Filippo Cesi 2 Nome Cognome Devo verbalizzare questo esame come (fare una croce): 2 CFU (AA 2-) 6 CFU (solo anal. funzionale) 6 CFU (solo anal. complessa)

Dettagli

Metodi Stocastici per la Finanza

Metodi Stocastici per la Finanza Metodi Stocastici per la Finanza Tiziano Vargiolu vargiolu@math.unipd.it 1 1 Università degli Studi di Padova Anno Accademico 2012-2013 Lezione 8 Indice 1 Modello di Vasicek 2 Calibrazione e ottimizzazione

Dettagli

Indice. Notazioni generali... 1

Indice. Notazioni generali... 1 Notazioni generali............................................. 1 1 Derivati e arbitraggi....................................... 5 1.1 Opzioni................................................ 5 1.1.1 Finalità..........................................

Dettagli

11. Misure con segno.

11. Misure con segno. 11. Misure con segno. 11.1. Misure con segno. Sia Ω un insieme non vuoto e sia A una σ-algebra in Ω. Definizione 11.1.1. (Misura con segno). Si chiama misura con segno su A ogni funzione ϕ : A R verificante

Dettagli

( ) = t. 8 Teoria della dispersione. Teoria di Taylor della dispersione turbolenta

( ) = t. 8 Teoria della dispersione. Teoria di Taylor della dispersione turbolenta 8 Teoria della dispersione Teoria di Taylor della dispersione turbolenta Si consideri una sorgente che emette particelle in un flusso turbolento stazionario ed omogeneo con velocità media nulla, utilizzando

Dettagli

Convergenza di martingale - La convergenza in L p, p > 1 equivale alla limitatezza in L p : disuguaglianza per submg non negative; disuguaglianza di

Convergenza di martingale - La convergenza in L p, p > 1 equivale alla limitatezza in L p : disuguaglianza per submg non negative; disuguaglianza di 1. martedì 10 marzo Convergenza di martingale - La convergenza in L p, p > 1 equivale alla limitatezza in L p : disuguaglianza per submg non negative; disuguaglianza di Doob; una mg è L p limitata se e

Dettagli

Teoria dei Fenomeni Aleatori AA 2012/13. Il Concetto di Distribuzione Condizionata ( )

Teoria dei Fenomeni Aleatori AA 2012/13. Il Concetto di Distribuzione Condizionata ( ) Il Concetto di Distribuzione Condizionata Se B è un evento, la probabilità di un evento A condizionata a B vale: ponendo: P A B = ( ) P A B P B A = { x} si giunge al concetto di distribuzione condizionata

Dettagli

Analisi Numerica: Introduzione

Analisi Numerica: Introduzione Analisi Numerica: Introduzione S. Maset Dipartimento di Matematica e Geoscienze, Università di Trieste Analisi numerica e calcolo numerico Analisi numerica e calcolo numerico La matematica del continuo

Dettagli

Esercitazione del 16/04/2019 Istituzioni di Calcolo delle Probabilità

Esercitazione del 16/04/2019 Istituzioni di Calcolo delle Probabilità Esercitazione del 6/04/09 Istituzioni di Calcolo delle Probabilità David Barbato Nozioni di riepilogo con esercizi Distribuzione di una funzione di una variabile aleatoria discreta. Sia X una variabile

Dettagli

Matematica per l Economia, a.a Integrazione al libro di testo

Matematica per l Economia, a.a Integrazione al libro di testo Matematica per l Economia, a.a. 2016 2017 Integrazione al libro di testo Gianluca Amato 20 dicembre 2016 1 Note ed errata corrige Sezione 2.3, definizione di dominio. La definizione di dominio data dal

Dettagli

Statistica I. Ingegneria Gestionale. Scritto del 20/07/2010

Statistica I. Ingegneria Gestionale. Scritto del 20/07/2010 Statistica I. Ingegneria Gestionale. Scritto del 20/07/2010 Esercizio 1. i) Il rischio di un evento è calcolato come prodotto tra la sua probabilità ed il suo costo. Un impianto produttivo può essere costruito

Dettagli

Equazioni differenziali Problema di Cauchy

Equazioni differenziali Problema di Cauchy Equazioni differenziali Problema di Cauch Primo esempio - Risolvere l equazione '( ) = g( ) con g( ) :[ a, b] R continua Teor. fondamentale del calcolo integrale ( ) = + g ( t )dt Primo esempio - Osserviamo

Dettagli

Istituzioni di geometria superiore - prova scritta del 4 febbraio y 2 ) 4xe (x. e γ(t) = t2 + 1 log (t 4 + 2) div g (X) ω g.

Istituzioni di geometria superiore - prova scritta del 4 febbraio y 2 ) 4xe (x. e γ(t) = t2 + 1 log (t 4 + 2) div g (X) ω g. Istituzioni di geometria superiore - prova scritta del 4 febbraio 6 Prima parte Su R dotato delle coordinate cartesiane {x, y} si considerino la metrica g data da e il campo vettoriale g = dx dx + e x

Dettagli

Corso di Calcolo Numerico

Corso di Calcolo Numerico Corso di Laurea in Ingegneria Gestionale Sede di Fermo Corso di 9 - EQUAZIONI DIFFERENZIALI ORDINARIE valori iniziali Valori iniziali Ci occuperemo della soluzione numerica di equazioni del prim ordine

Dettagli

Corso di Laurea in Ingegneria Robotica e dell Automazione Probabilità e Processi Stocastici (455AA) A.A. 2018/19 - Prova in itinere

Corso di Laurea in Ingegneria Robotica e dell Automazione Probabilità e Processi Stocastici (455AA) A.A. 2018/19 - Prova in itinere Corso di Laurea in Ingegneria Robotica e dell Automazione Probabilità e Processi Stocastici (455AA) A.A. 208/9 - Prova in itinere 208--2 La durata della prova è di due ore e mezzo. Le risposte devono essere

Dettagli

Matematica Applicata L-A Definizioni e teoremi

Matematica Applicata L-A Definizioni e teoremi Definizioni e teoremi Settembre - Dicembre 2008 Definizioni e teoremi di statistica tratte dalle lezioni del corso di Matematica Applicata L- A alla facoltà di Ingegneria Elettronica e delle Telecomunicazioni

Dettagli