ESAME SCRITTO DI FISICA MODERNA. 22 giugno Traccia di soluzione

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "ESAME SCRITTO DI FISICA MODERNA. 22 giugno Traccia di soluzione"

Transcript

1 ESAME SCRITTO DI FISICA MODERNA giugno 08 Traccia di soluzione ) Ponendo α = /σ ), il valore medio della posizione è + ψ ˆx ψ = dx ψ ˆx x x ψ = dx ψ x)xψx) = α + dx x e αx x 0), ) e con un semplice cambio di variabile sotto integrale x = x x 0 otteniamo: α + ) dx x + x 0 ) e αx ) α = 0 + x 0 = x 0, ) α in cui abbiamo usato il noto risultato per l integrale gaussiano. Il valor medio dell impulso è ψ ˆp ψ = + dx ψ x x ˆp ψ = dx ψ x) i ) ψx) α + = i dx [ αx x 0 )] e αx x 0) α = i α + dx x e αx ) = 0. 3) Senza svolgere alcun calcolo avremmo potuto osservare che ψx) è una funzione pari, la derivata è quindi una funzione dispari e questo significa che la funzione integranda è dispari su dominio pari, per cui il risultato è nullo. L indeterminazione in posizione al tempo t = 0 è data da x = x x. Calcoliamo il valor medio di ˆx : + α + ψ ˆx ψ = dx ψ ˆx x x ˆx ψ = dx ψ x)x ψx) = dx x + x 0 ) e αx ) α + } } = dx x ) e αx ) α x 0 = α α + 3 x 0 = α α + x 0 4) e quindi usando x = x 0 otteniamo x = /α, da cui ricordandoci che σ = /α ritroviamo x σ, coerentemente con il significato di σ di varianza della gaussiana. L indeterminazione in impulso al tempo t = 0 si ottiene analogamente: ψ ˆp ψ = + dx ψ ˆp x x ˆp ψ = dx +i ) ψ x) i ) ψx) α + = + dx α x x 0 ) e αx x 0) α = + α α = α 3 = 4σ, 5) che è anche il risultato di p poichè p = 0 come in 3). ) Le equazioni del moto alla Heisenberg per gli operatori x e p sono: dx dt = i [H, x] = i [ p, x ] + i m δ[x, x] = p m 6) dp dt = i [H, p] = i [ p, p ] + i δ[x, p] = δ, m 7)

2 in cui ci siamo serviti della formula [AB, C] = A[B, C] + [A, C]B 8) e di [x, p] = [p, x] = i, oltre che del fatto che [A, A] = 0. Partendo dall equazione differenziale 7) e poi risolvendo 6), troviamo le soluzioni: pt) = p0) δt 9) xt) = x0) + p0) m t δ m t. 0) Pertanto, i valori medi di posizione e impulso a un tempo t qualunque sono dati da: xt) = x0) + t m p0) δ m t = x 0 δ m t ) pt) = p0) δt = δt ) mentre, poichè p t) = p 0) + δ t p0)δt, abbiamo p t) = p 0) + δ t e quindi: che vediamo quindi essere indipendente dal tempo. pt) = α + δ t δ t = α, 3) 3) Partendo dalle equazioni di moto alla Heisenberg già introdotte nelle equazioni 6) e 7), l obiettivo è quello di calcolare i commutatori [H, q] e [H, p] assumendo un hamiltoniana generale, somma di un termine cinetico T p) e di un potenziale V q), dove T e V sono funzioni regolari dipendenti solo da p e q rispettivamente. Esse possono essere quindi sviluppate in una serie di potenze nel loro argomento del tipo: F x) = f x. 4) Abbiamo quindi per esempio: [ ] [T p), q] = t p, q = = t p[p, q] + [p, q]p } = t p [p, q] + p[p, q]p i p } = t p[p, q] i p } t p [p, q] i p i p } = = t p [p, q] )i p } = i t p = i p t p T p) = i p. 5) Con passaggi analoghi si dimostra che: [V q), p] = i V q). 6) q Pertanto le equazioni di moto alla Heisenberg per posizione e impulso possono essere riscritte come: da cui, prendendo i valori medi, otteniamo il teorema di Ehrenfest. dq dt = i H [H, q] = p 7) dp dt = i [H, p] = H q, 8)

3 4) Calcoliamo xt) = x t) xt). Da 0) abbiamo che: x t) = x 0) + p 0) t m + δ t 4 4m + x0)p0) + p0)x0) } t δt δt3 x0) p0) m m m, 9) ma ricordandoci dei risultati della domanda ) otteniamo: x t) = α + x 0 + αt m + δ t 4 4m + x0)p0) i } t m x δt 0 m. 0) Calcoliamo il valor medio di x0)p0) : ψ ˆxˆp ψ = + dx x ψ x) i ) α + ψx) = i α + = i α dx x + x 0 )x e αx ) = i α dx [ αxx x 0 )] e αx x 0) α α 3 = i ) e quindi il termine in parentesi graffa in 0) si annulla. Quindi, dato che xt) = x 0 + δ t 4 δt x 4m 0 m abbiamo infine: xt) = α + αt m = x0) + αt m. ) Il principio di indeterminazione invece afferma che: xt) x0) 4 [xt), x0)]. 3) Calcoliamo il commutatore al membro di destra di 3): [xt), x0)] = t m [p0), x0)] = i t m 4) e quindi concludiamo che: xt) t 4m x0) = αt m. 5) Quindi per grande t, trasurando il termine x0) a membro destro della Eq. ), si vede che l indeterminazione di una misura di posizione è la minima permessa dal principio di indeterminazione. 5) Scriviamo l equazione agli autovalori nella base degli impulsi: p Ĥ ψ = E p ψ. 6) Ricordando che p ˆx ψ = i /p)ψp) otteniamo l equazione differenziale: p ψp) = [ ] p i δ m E ψp) 7) con soluzione dove N è una costante di normalizzazione. [ ]) i p 3 ψp) = N exp δ 6m Ep, 8) Questa funzione d onda non può mai essere normalizzata in senso proprio. Questo è dovuto al fatto che per x infty se > 0) il potenziale soddisfa lim x V x) = e quindi il valore dell energia, qualunque esso sia, è sempre maggiore del potenziale. La funzione d onda ha quindi 3

4 sempre un andamento oscillante nel limite e non può essere normalizzata in senso proprio. Questo si vede anche esplicitamente osservando che l autofunzione ψp) soddisfa + dp N =. 9) È possibile invece normalizzare le autofunzioni di energia in senso improprio in quanto possiamo imporre che ψ E ψ E = δe E ): + ) ) i E E ψ E ψ E = N dp exp δ [E E ] p = N δ = N δ}δe E ), 30) δ da cui leggiamo N = δ. 3) Osserviamo infine che lo spettro non è degenere. Possiamo capirlo come conseguenza del fatto che lim x V x) = > E per ogni E. Pertanto, pr x l autofunzione di energia è esponenziale. Ma delle sue soluzione esponenziali una diverge e non è quindi accettabile. Resta pertanto una unica soluzione accettabile per ogni E 6) Partendo dall espressione generale per l operatore di evoluzione temporale St) e inserendo l hamiltoniana, otteniamo: [ ] [ )] t p St) = exp i Ht = exp i m + δx. 3) Sviluppando l esponente del membro a destra della formula BCH abbiamo: a p + a p + bx + [a b i )p + a b i )] + dove c è una costante. Identificando a = t i m [ i ) a b ] = a p + a i a b) p + bx + c, 33) b = tδ i a = δt i m otteniamo l uguaglianza tra 33) e l esponente di 3) a meno di una costante che possiamo sommare e sottrarre, e quindi usando la formula BCH possiamo scrivere [ ) ] [ t p t p St) = exp i m + δx + c exp [ c] = exp[ c] exp i m + δt }] [ ] t m p exp i δx} 35) e quindi le costanti richieste si ottengono dividendo quelle della Eq. 34) per t/i, ossia 34) a = m, b = δ, a = δt m. 36) La dipendenza temporale per l autofunzione di energia 8) è quindi data da: [ t p ψ E t) = p St) ψ E = exp p + δtp )] [ exp δt ] ψ E p, 0). 37) i m p Ma poiché exp [ δt ] ) ψ E p, 0) = ψ E p, 0) + p p ψ Ep, 0) δt) + ) p ψ Ep, 0) δt) ) 4

5 nel membro di sinistra riconosciamo lo sviluppo in serie di Taylor di ψ E p+δt, 0) e quindi concludiamo che [ t ψ E p, t) = exp p + δtp )] ψ E p + δt, 0). 39) i m Questo significa che, a meno di una fase, l autofunzione al tempo t si ottiene da quella al tempo t = 0 attraverso la sostituzione p p + δt, consistentemente con l equazione del moto alla Heisenberg Eq. 9). 7) Nella base delle coordinate, l equazione agli autovalori ha la forma } m x + δx ψx) = Eψx). 40) Nel limite per x + de δ > 0) il potenziale è infinitamente alto, pertanto qualunque autostato di energia sia esponenzialmente soppresso. In questo limite, il membro a destra di 40) è trascurabile e quindi l equazione agli autovalori si riduce a ψx) = δxψx). 4) m x La soluzione di questa equazione è di tipo esponenziale: ponendo ψx) = exp fx)) abbiamo f x)) = mδ x + f x). 4) Se f e f sono funzioni crescenti di x, allora f è positiva e dalla 4) abbiamo f x)) f x) per x +, pertanto trascurando la derivata seconda in 4) otteniamo: il che ci permette di concludere che f x) = mδ x, 43) fx) x 3/ x +. 44) Nel limite x invece abbiamo la situazione opposta: E > V, e quindi qualsiasi autostato di energia ha un comportamento oscillante. In questo linite dunque possiamo sempre porre ψx) = singx) + δ). In modo analogo a prima otteniamo l equazione differenziale per la g: g x)) = mδ x + g x) cotgx)). 45) Trascurando la derivata seconda, poichè g x)) g x) concludiamo che gx) x 3/ x. 46) 5

FISICA QUANTISTICA I PROVA SCRITTA DEL 20/9/ Si consideri il moto quantistico unidimensionale di una particella soggetta al potenziale

FISICA QUANTISTICA I PROVA SCRITTA DEL 20/9/ Si consideri il moto quantistico unidimensionale di una particella soggetta al potenziale FISICA QUANTISTICA I PROVA SCRITTA DEL 0/9/013 1. Si consideri il moto quantistico unidimensionale di una particella soggetta al potenziale V (x) = V 0 θ(x) αδ(x), V 0, α > 0, (1) con la funzione a gradino

Dettagli

PROBLEMI DI FISICA MODERNA E MECCANICA QUANTISTICA. FISICA MODERNA anno accademico

PROBLEMI DI FISICA MODERNA E MECCANICA QUANTISTICA. FISICA MODERNA anno accademico PROBLEMI DI FISICA MODERNA E MECCANICA QUANTISTICA FISICA MODERNA anno accademico 2011-2012 Si consideri un sistema che può trovarsi in uno di tre stati esclusivi 1, 2, 3, e si supponga che esso si trovi

Dettagli

PROBLEMI DI FISICA MODERNA E MECCANICA QUANTISTICA. FISICA MODERNA anno accademico

PROBLEMI DI FISICA MODERNA E MECCANICA QUANTISTICA. FISICA MODERNA anno accademico PROBLEMI DI FISICA MODERNA E MECCANICA QUANTISTICA FISICA MODERNA anno accademico 007-008 () Sia dato un sistema che può trovarsi in tre stati esclusivi,, 3, e si supponga che esso si trovi nello stato

Dettagli

L equazione di Schrödinger

L equazione di Schrödinger 1 Forma dell equazione L equazione di Schrödinger Postulato - ψ r, t 0 ) definisce completamente lo stato dinamico del sistema al tempo t 0. L equazione che regola l evoluzione di ψ r, t) deve essere:

Dettagli

Esame scritto di fisica moderna

Esame scritto di fisica moderna Esame scritto di fisica moderna Traccia di soluzione 4 luglio 01 Esercizio 1. hamiltoniana data è quella di una buca di potenziale infinita, le cui autofunzioni sono date da due famiglie, dispari ψ n x

Dettagli

PRIMA PARTE anno accademico

PRIMA PARTE anno accademico PROBLEMI DI FISICA MODERNA E MECCANICA QUANTISTICA PRIMA PARTE anno accademico 017-018 (1) Si consideri una particella che può colpire uno schermo in cui sono praticate tre fenditure, indicate dai ket

Dettagli

PROBLEMI DI FISICA MODERNA E MECCANICA QUANTISTICA. PRIMA PARTE anno accademico

PROBLEMI DI FISICA MODERNA E MECCANICA QUANTISTICA. PRIMA PARTE anno accademico PROBLEMI DI FISICA MODERNA E MECCANICA QUANTISTICA PRIMA PARTE anno accademico 015-016 (1) Si consideri una particella che può colpire uno schermo diviso in tre zone, indicate dai ket 1,, 3, e si supponga

Dettagli

PROBLEMI DI FISICA MODERNA E MECCANICA QUANTISTICA. FISICA MODERNA anno accademico

PROBLEMI DI FISICA MODERNA E MECCANICA QUANTISTICA. FISICA MODERNA anno accademico PROBLEMI DI FISICA MODERNA E MECCANICA QUANTISTICA FISICA MODERNA anno accademico 2013-2014 (1) Si consideri un sistema che può trovarsi in uno di tre stati esclusivi 1, 2, 3, e si supponga che esso si

Dettagli

ESAME SCRITTO DI FISICA MODERNA. 17 Luglio Traccia di soluzione., e α una fase globale inosservabile. Per il secondo sistema

ESAME SCRITTO DI FISICA MODERNA. 17 Luglio Traccia di soluzione., e α una fase globale inosservabile. Per il secondo sistema ESAME SCRITTO DI FISICA MODERNA 7 Luglio 04 Traccia di soluzione ) Per il primo sistema la funzione d onda è x φ = x k = φ(x) = Ce iα e ik x () dove con k si è indicato l-autostato dell impulso, C è una

Dettagli

Equazioni differenziali - Applicazioni

Equazioni differenziali - Applicazioni Equazioni differenziali - Applicazioni Antonino Polimeno Università degli Studi di Padova Equazione di Schrödinger 1D - 1 Equazione di Schrödinger i ψ(x, t) = Ĥ ψ(x, t) t al tempo t = 0 la funzione è definita

Dettagli

Metodo variazionale e applicazione all atomo di elio

Metodo variazionale e applicazione all atomo di elio Metodo variazionale e applicazione all atomo di elio Descrizione del metodo Il metodo detto variazionale è un metodo approssimato che si usa per ottenere una stima dell energia dello stato fondamentale

Dettagli

Fisica Moderna: Corso di Laurea Scienze dei Materiali Prova scritta: 16/06/2017

Fisica Moderna: Corso di Laurea Scienze dei Materiali Prova scritta: 16/06/2017 Fisica Moderna: Corso di aurea Scienze dei Materiali Prova scritta: 16/6/17 Problema 1 Una particella di spin 1/ è soggetta ad un campo magnetico uniforme B = B ẑ diretto lungo l asse delle z. operatore

Dettagli

Risoluzione del compito n. 2 (Febbraio 2014/1)

Risoluzione del compito n. 2 (Febbraio 2014/1) Risoluzione del compito n. Febbraio 04/ PROBLEMA Determinate le soluzioni z C del sistema { z + zz z = 4i z =5 3Iz. Dato che nella seconda equazione compare esplicitamente Iz, sembra inevitabile porre

Dettagli

Esame Scritto di Meccanica Quantistica Traccia di soluzione

Esame Scritto di Meccanica Quantistica Traccia di soluzione Esame Scritto di Meccanica Quantistica Traccia di soluzione 7 Giugno 7. Per esprimere la hamiltoniana data H = P 4m + p m + mω X + x ) in termini di x e x si esegue il cambiamento di coordinate ) X = x

Dettagli

Stati Coerenti. Definizione di stato coerente Consideriamo un oscillatore 1-dimensionale descritto dalla hamiltoniana. p = i d.

Stati Coerenti. Definizione di stato coerente Consideriamo un oscillatore 1-dimensionale descritto dalla hamiltoniana. p = i d. 1 Stati Coerenti Definizione di stato coerente Consideriamo un oscillatore 1-dimensionale descritto dalla hamiltoniana H = 1 m p + 1 m ω x (1) Per semplicitá introduciamo gli operatori autoaggiunti adimensionali

Dettagli

Secondo Compitino di Analisi Matematica Corso di laurea in Informatica, corso B 18 Dicembre 2015 Fila A. i 1 2i. z 2 = (1 + i)(1 i)(1 + 3i).

Secondo Compitino di Analisi Matematica Corso di laurea in Informatica, corso B 18 Dicembre 2015 Fila A. i 1 2i. z 2 = (1 + i)(1 i)(1 + 3i). Secondo Compitino di Analisi Matematica Corso di laurea in Informatica, corso B 8 Dicembre 05 Fila A Esercizio Si considerino i numeri complessi z = i + i i (a) Calcola il modulo di z e il modulo di z.

Dettagli

FISICA MODERNA anno accademico Traccia delle soluzioni

FISICA MODERNA anno accademico Traccia delle soluzioni PROBLEMI DI FISICA MODERNA E MECCANICA QUANTISTICA FISICA MODERNA anno accademico 011-01 Traccia delle soluzioni Esercizio 1 La probabilità che il sistema non si trovi nello stato 1 è pari alla probabilità

Dettagli

Esercizi di Fisica Matematica 3, anno , parte di meccanica hamiltoniana e quantistica

Esercizi di Fisica Matematica 3, anno , parte di meccanica hamiltoniana e quantistica Esercizi di Fisica Matematica 3, anno 014-015, parte di meccanica hamiltoniana e quantistica Dario Bambusi 09.06.015 Abstract Gli esercizi dei compiti saranno varianti dei seguenti esercizi. Nei compiti

Dettagli

OSCILLATORE ARMONICO UNIDIMENSIONALE. Consideriamo una particella sottoposta a una forza armonica di costante mω 2.

OSCILLATORE ARMONICO UNIDIMENSIONALE. Consideriamo una particella sottoposta a una forza armonica di costante mω 2. 4/7 OSCILLATORE ARMONICO 09/10 1 OSCILLATORE ARMONICO UNIDIMENSIONALE Lo spazio di Hilbert e l operatore hamiltoniano Consideriamo una particella sottoposta a una forza armonica di costante mω 2. Nello

Dettagli

Corso di Laurea in Ingegneria Informatica Prova di Analisi Matematica 1

Corso di Laurea in Ingegneria Informatica Prova di Analisi Matematica 1 Corso di Laurea in Ingegneria Informatica Prova di Analisi Matematica 1 30 Gennaio 2018 Scrivere subito nome e cognome e matricola sul foglio risposte e preparare il libretto sul banco per il controllo.

Dettagli

FM1 - Equazioni differenziali e meccanica

FM1 - Equazioni differenziali e meccanica Corso di laurea in Matematica - Anno Accademico 2006/2007 FM1 - Equazioni differenziali e meccanica Prima prova d esonero (03-04-2006) CORREZIONE Esercizio 1. Lo spettro Σ(A) della matrice A si trova risolvendo

Dettagli

CMP-II Equazioni di Hartree-Fock

CMP-II Equazioni di Hartree-Fock CMP-II Equazioni di Hartree-Fock Dipartimento di Fisica, UniTS 9 marzo 019 1 Equazioni di Hartree-Fock 1.1 Funzioni d onda a singolo determinante di Slater (Fermioni) Consideriamo un Hamiltoniana di Fermioni

Dettagli

VALORI E DISTRIBUZIONI DI VALORI DI UNA GRANDEZZA GENERICA

VALORI E DISTRIBUZIONI DI VALORI DI UNA GRANDEZZA GENERICA 3/7 GENERALIZZAZIONI E SVILUPPI 11/12 1 VALORI E DISTRIBUZIONI DI VALORI DI UNA GRANDEZZA GENERICA Forma unificata dei risultati già ottenuti I risultati ottenuti nei fascicoli 3/3, 3/5 e 3/6 sulle grandezze

Dettagli

Esame del giorno 17 Febbraio Scrivere chiaramente e in stampatello in testa all elaborato:

Esame del giorno 17 Febbraio Scrivere chiaramente e in stampatello in testa all elaborato: Corso di Biomatematica (G. Gaeta) Esame del giorno 17 Febbraio 2016 Scrivere chiaramente e in stampatello in testa all elaborato: Nome, Cognome, numero di matricola. Tempo a disposizione: DUE ORE. Non

Dettagli

Corso di Laurea in Chimica e Tecnologie Chimiche - A.A Chimica Fisica II. Esame scritto del 25 Febbraio P = i.

Corso di Laurea in Chimica e Tecnologie Chimiche - A.A Chimica Fisica II. Esame scritto del 25 Febbraio P = i. 1 Corso di Laurea in Chimica e Tecnologie Chimiche - A.A. 212-213 Chimica Fisica II Esame scritto del 25 Febbraio 213 Quesiti d esame: 1. Definire gli operatori componente del momento cinetico P x e del

Dettagli

PROBLEMI DI FISICA MODERNA E MECCANICA QUANTISTICA. MECCANICA QUANTISTICA anno accademico

PROBLEMI DI FISICA MODERNA E MECCANICA QUANTISTICA. MECCANICA QUANTISTICA anno accademico PROBLEMI DI FISICA MODERNA E MECCANICA QUANTISTICA MECCANICA QUANTISTICA anno accademico 2012-2013 (1) Per un sistema n-dimensionale si scrivano: (a) gli elementi di matrice dell operatore posizione x

Dettagli

Fondamenti di Meccanica Quantistica (Prof. Tarantelli)

Fondamenti di Meccanica Quantistica (Prof. Tarantelli) Fondamenti di Meccanica Quantistica (Prof. Tarantelli) 1 MOTO LINEARE E L OSCILLATORE ARMONICO 2 EQUAZIONE DI SCHRODINGER Equazione di Schrödinger: descrive il comportamento di un insieme di particelle:

Dettagli

VALORI E DISTRIBUZIONI DI VALORI DI UNA GRANDEZZA GENERICA

VALORI E DISTRIBUZIONI DI VALORI DI UNA GRANDEZZA GENERICA 3/7 GENERALIZZAZIONI E SVILUPPI 09/10 1 VALORI E DISTRIBUZIONI DI VALORI DI UNA GRANDEZZA GENERICA Forma unificata dei risultati già ottenuti I risultati ottenuti nei fascicoli 3/3, 3/5 e 3/6 sulle grandezze

Dettagli

Soluzioni dello scritto di Analisi Matematica II - 10/07/09. C.L. in Matematica e Matematica per le Applicazioni

Soluzioni dello scritto di Analisi Matematica II - 10/07/09. C.L. in Matematica e Matematica per le Applicazioni Soluzioni dello scritto di Analisi Matematica II - /7/9 C.L. in Matematica e Matematica per le Applicazioni Proff. K. Payne, C. Tarsi, M. Calanchi Esercizio. a La funzione f è limitata e essendo lim fx

Dettagli

METODI MATEMATICI PER LA FISICA

METODI MATEMATICI PER LA FISICA METODI MATEMATICI PER LA FISICA PROVA SCRITTA - SETTEMBRE 6 Si risolvano cortesemente i seguenti problemi. PRIMO PROBLEMA (PUNTEGGIO: 6/3) Si calcoli l integrale in valore principale P = Pr x sen(x) x

Dettagli

Corso di Laurea in Ingegneria Robotica e dell Automazione Probabilità e Processi Stocastici (455AA) A.A. 2018/19 - Prova in itinere

Corso di Laurea in Ingegneria Robotica e dell Automazione Probabilità e Processi Stocastici (455AA) A.A. 2018/19 - Prova in itinere Corso di Laurea in Ingegneria Robotica e dell Automazione Probabilità e Processi Stocastici (455AA) A.A. 208/9 - Prova in itinere 208--2 La durata della prova è di due ore e mezzo. Le risposte devono essere

Dettagli

Risoluzione del compito n. 2 (Febbraio 2018/1)

Risoluzione del compito n. 2 (Febbraio 2018/1) Risoluzione del compito n. Febbraio 18/1 PROBLEMA 1 Dopo averlo scritto in forma trigonometrica, determinate le radiciquadrate complesse del numero +i 3. Determinate tutte le soluzioni w C dell equazione

Dettagli

I esonero di Meccanica Quantistica 22/2/2006 A.A Proff. G. Martinelli, A. Pugliese

I esonero di Meccanica Quantistica 22/2/2006 A.A Proff. G. Martinelli, A. Pugliese I esonero di Meccanica Quantistica //006 A.A. 005 006 Proff. G. Martinelli, A. Pugliese Esercizio n. Una particella di spin / e massa m è vincolata a muoversi su una sfera di raggio R. Al tempo t =0 lo

Dettagli

Le derivate parziali

Le derivate parziali Sia f(x, y) una funzione definita in un insieme aperto A R 2 e sia P 0 = x 0, y 0 un punto di A. Essendo A un aperto, esiste un intorno I(P 0, δ) A. Preso un punto P(x, y) I(P 0, δ), P P 0, possiamo definire

Dettagli

Esercitazioni di Matematica Generale A.A. 2016/2017 Pietro Pastore Lezione del 21 Novembre Logaritmi e Proprietà

Esercitazioni di Matematica Generale A.A. 2016/2017 Pietro Pastore Lezione del 21 Novembre Logaritmi e Proprietà Esercitazioni di Matematica Generale A.A. 016/017 Pietro Pastore Lezione del 1 Novembre 016 Logaritmi e Proprietà Quando scriviamo log a b = c che leggiamo logaritmo in base a di b uguale a c, c è l esponente

Dettagli

Oscillatore Armonico in M.Q.

Oscillatore Armonico in M.Q. Oscillatore Armonico in M.Q. Oscillatore Armonico Unidimensionale Risoluzione in coordinate cartesiane L oscillatore armonico unidimensionale è un sistema che ha la seguente Hamiltoniana: H = P M + Mω

Dettagli

Foglio di Esercizi 9 con Risoluzione 29 dicembre 2015

Foglio di Esercizi 9 con Risoluzione 29 dicembre 2015 Matematica per Farmacia, a.a. 5/6 Foglio di Esercizi 9 con Risoluzione 9 dicembre 5 Esercizio. Integrare per parti: L integrale che poi si ottiene puó essere risolto con una sostituzione). ln d e arctan

Dettagli

METODI MATEMATICI PER LA FISICA

METODI MATEMATICI PER LA FISICA METODI MATEMATICI PER LA FISICA SECONDO ESONERO - 6 GIUGNO 7 Si risolvano cortesemente i seguenti problemi PRIMO PROBLEMA (PUNTEGGIO: 3/3) Facendo uso delle proprietà della matrici di Pauli, si calcoli

Dettagli

(ln 5)i 1 i. (c) (d) Scriviamo il numero complesso assegnato in forma algebrica:

(ln 5)i 1 i. (c) (d) Scriviamo il numero complesso assegnato in forma algebrica: Primo parziale Test. L argomento principale del numero complesso (ln 5)i i è (a) 4 π (b) (c) (d) Scriviamo il numero complesso assegnato in forma algebrica: Risposta esatta a) ln 5 i i = ln 5 i( + i) i

Dettagli

Formalismo della Meccanica Quantistica

Formalismo della Meccanica Quantistica Formalismo della Meccanica Quantistica Le funzioni d onda devono appartenere allo spazio delle funzioni a quadrato sommabile, denotato con L 2 ψ L 2 = ψ( r) 2 d 3 r ψ < () Lo spazio delle funzioni a quadrato

Dettagli

Forme quadratiche in R n e metodo del completamento dei quadrati

Forme quadratiche in R n e metodo del completamento dei quadrati Chapter 1 Forme quadratiche in R n e metodo del completamento dei quadrati Ricordiamo che a determinare il tipo (definita positiva o negativa, semidefinita positiva o negativa, indefinita) di una forma

Dettagli

Risoluzione del compito n. 7 (Settembre 2014/2)

Risoluzione del compito n. 7 (Settembre 2014/2) Risoluzione del compito n. 7 (Settembre 204/2) PROBLEMA Determinate tutte le soluzioni (z, w), con z, w C,del sistema { 2z 2 3iz = w 2 w 4 = z 4. Dalla seconda equazione si ricava subito che w 4 = z 4,

Dettagli

Analisi Matematica II Politecnico di Milano Ingegneria Industriale

Analisi Matematica II Politecnico di Milano Ingegneria Industriale Analisi Matematica II Politecnico di Milano Ingegneria Industriale Autovalutazione #5. Sia f : R R la funzione definita da f(x, y) x + x + y + x + y (x, y) R. (a) Determinare il segno di f. (b) Calcolare

Dettagli

Geometria BAER Canale A-K Esercizi 11

Geometria BAER Canale A-K Esercizi 11 Geometria BAER 6-7 Canale A-K Esercizi Esercizio. Scrivere la matrice delle seguenti trasformazioni ortogonali del piano (a Proiezione ortogonale sulla retta x + y = (b Rotazione di π/4 seguita da riflessione

Dettagli

Analisi Matematica 2 (Corso di Laurea in Informatica)

Analisi Matematica 2 (Corso di Laurea in Informatica) COGNOME NOME Matr. Firma dello studente A Tempo: 3 ore. Prima parte: test a risposta multipla. Una ed una sola delle 4 affermazioni è corretta. Indicatela con una croce. È consentita una sola correzione

Dettagli

Esercizi di Fisica Matematica 3, anno

Esercizi di Fisica Matematica 3, anno Esercizi di Fisica Matematica 3, anno 01-013 Dario Bambusi, Andrea Carati 5.06.013 Abstract Tra i seguenti esercizi verranno scelti gli esercizi dell esame di Fisica Matematica 3. 1 Meccanica Hamiltoniana

Dettagli

Correzione terzo compitino, testo A

Correzione terzo compitino, testo A Correzione terzo compitino, testo A 24 maggio 2 Parte Esercizio.. Procederemo per esclusione, mostrando come alcune funzioni della lista non possano avere il grafico in figura. La prima cosa che possiamo

Dettagli

Problemi di Meccanica Quantistica. Capitolo IV. Oscillatore Armonico Unidimensionale

Problemi di Meccanica Quantistica. Capitolo IV. Oscillatore Armonico Unidimensionale Problemi di Meccanica Quantistica Capitolo IV Oscillatore Armonico Unidimensionale a cura di Fedele Lizzi, Gennaro Miele e Francesco Nicodemi http://people.na.infn.it/%7epq-qp Problema IV.1 All istante

Dettagli

H = H 0 + V. { V ti t t f 0 altrove

H = H 0 + V. { V ti t t f 0 altrove Esercizio 1 (Regola d oro di Fermi Determinare la probabilità di transizione per unità di tempo da uno stato a ad uno stato b al primo ordine perturbativo di un sistema per cui si suppone di aver risolto

Dettagli

Analisi 4 - SOLUZIONI (17/01/2013)

Analisi 4 - SOLUZIONI (17/01/2013) Corso di Laurea in Matematica Analisi 4 - SOLUZIONI 7//23 Docente: Claudia Anedda Utilizzando uno sviluppo in serie noto, scrivere lo sviluppo in serie di MacLaurin della funzione fx = 32 + x, specificando

Dettagli

SOLUZIONE DEL PROBLEMA 1 TEMA DI MATEMATICA ESAME DI STATO 2017

SOLUZIONE DEL PROBLEMA 1 TEMA DI MATEMATICA ESAME DI STATO 2017 SOLUZIONE DEL PROBLEMA TEMA DI MATEMATICA ESAME DI STATO 7. Studiamo la funzione f() per verificare che il suo grafico sia compatibile con il profilo della pedana. Dominio della funzione. R Eventuali simmetrie

Dettagli

Calcolo I - Corso di Laurea in Fisica - 19 Febbraio 2019 Soluzioni Scritto. a) Calcolare il dominio, asintoti ed eventuali punti di non derivabilità;

Calcolo I - Corso di Laurea in Fisica - 19 Febbraio 2019 Soluzioni Scritto. a) Calcolare il dominio, asintoti ed eventuali punti di non derivabilità; Calcolo I - Corso di Laurea in Fisica - 9 Febbraio 209 Soluzioni Scritto ) Data la funzione fx) = arctanx + 4x 2 2 x + ) a) Calcolare il dominio, asintoti ed eventuali punti di non derivabilità; b) Calcolare,

Dettagli

SVILUPPI DI TAYLOR Esercizi risolti

SVILUPPI DI TAYLOR Esercizi risolti Esercizio 1 SVILUPPI DI TAYLOR Esercizi risolti Utilizzando gli sviluppi fondamentali, calcolare gli sviluppi di McLaurin con resto di Peano delle funzioni seguenti fino all ordine n indicato: 1. fx log1

Dettagli

Esercitazioni di Matematica

Esercitazioni di Matematica Università degli Studi di Udine Anno Accademico 009/00 Facoltà di Agraria Corsi di Laurea in VIT e STAL Esercitazioni di Matematica novembre 009 Trovare le soluzioni della seguente disequazione: x + +

Dettagli

1) Applicando la definizione di derivata, calcolare la derivata in x = 0 delle funzioni: c) x + 1 d)x sin x.

1) Applicando la definizione di derivata, calcolare la derivata in x = 0 delle funzioni: c) x + 1 d)x sin x. Funzioni derivabili Esercizi svolti 1) Applicando la definizione di derivata, calcolare la derivata in x = 0 delle funzioni: a)2x 5 b) x 3 x 4 c) x + 1 d)x sin x. 2) Scrivere l equazione della retta tangente

Dettagli

Esercizi geometria analitica nello spazio. Corso di Laurea in Informatica. Docente: Andrea Loi. Correzione

Esercizi geometria analitica nello spazio. Corso di Laurea in Informatica. Docente: Andrea Loi. Correzione Esercizi geometria analitica nello spazio Corso di Laurea in Informatica Docente: Andrea Loi Correzione 1. Denotiamo con P 1, P 13, P 3, P 1, P, P 3, P i simmetrici di un punto P rispetto ai piani coordinati

Dettagli

BUCA DI POTENZIALE RETTANGOLARE

BUCA DI POTENZIALE RETTANGOLARE 4/3 POTENZIALI RETTANGOLARI 09/10 1 BUCA DI POTENZIALE RETTANGOLARE La buca di potenziale unidimensionale rettangolare è definita da (1) V (x) = { V0, per x < b (V 0 > 0), 4/3 POTENZIALI RETTANGOLARI bozza

Dettagli

Introduzione al modello Uniforme

Introduzione al modello Uniforme Introduzione al modello Uniforme Esempio: conversione Analogico/Digitale Errore di quantizzazione Ampiezza Continua Discreta x () t x ( t ) q Tempo Discreto Continuo Segnale Analogico ( ) x t k t t Segnale

Dettagli

Istituzioni di Matematiche, Integrali fratti. corso di laurea in Scienze geologiche. Mauro Costantini

Istituzioni di Matematiche, Integrali fratti. corso di laurea in Scienze geologiche. Mauro Costantini Istituzioni di Matematiche, Integrali fratti corso di laurea in Scienze geologiche. Mauro Costantini tipo: Il nostro obiettivo è studiare gli integrali (indefiniti e definiti delle funzioni razionali,

Dettagli

Esame di Complementi di Matematica (STC) e Parziale di Matematica II (SMat). 3 Maggio Soluzioni

Esame di Complementi di Matematica (STC) e Parziale di Matematica II (SMat). 3 Maggio Soluzioni Esame di Complementi di Matematica (STC) e Parziale di Matematica II (SMat). 3 Maggio 2006. Soluzioni In questo documento sono contenuti gli svolgimenti del tema d esame del 05/06/2006. Alcuni esercizi

Dettagli

ANALISI MATEMATICA 1 Area dell Ingegneria dell Informazione. Appello del

ANALISI MATEMATICA 1 Area dell Ingegneria dell Informazione. Appello del ANALISI MATEMATICA Area dell Ingegneria dell Informazione Appello del 3..7 TEMA Esercizio Calcolare l integrale log(3) 4 dx Svolgimento. Si ha log(3) 4 dx = (ponendo ex = t, per cui dx = dt/t) e = 4 3

Dettagli

FM210 / MA - Seconda prova pre-esonero ( )

FM210 / MA - Seconda prova pre-esonero ( ) FM10 / MA - Seconda prova pre-esonero (3-5-018) 1. Un sistema meccanico è costituito da due sbarre uguali AB e BC, rettilinee, omogenee, di massa M e lunghezza l, incernierate tra loro in B. Le due sbarre

Dettagli

2) Scrivere la soluzione generale del seguente sistema di equazioni differenziali lineari del primo ordine. y 1 = 2y 1 5y 3 y 2

2) Scrivere la soluzione generale del seguente sistema di equazioni differenziali lineari del primo ordine. y 1 = 2y 1 5y 3 y 2 Corso di Laurea in Matematica Analisi Matematica 3/Analisi 4 - SOLUZIONI (8/6/5) Docente: Claudia Anedda ) Trovare il limite puntuale della successione di funzioni f k (t) = cos(kt), t R. Stabilire se

Dettagli

17 LIMITI E COMPOSIZIONE

17 LIMITI E COMPOSIZIONE 17 LIMITI E COMPOSIZIONE L operazione di ite si comporta bene per composizione con funzioni continue. Teorema. Sia gx) = y 0 e sia f continua in y 0. Allora esiste fgx)) = fy 0 ). Questo teorema ci dice

Dettagli

Matematica III Corso di Ingegneria delle Telecomunicazioni Prova scritta del

Matematica III Corso di Ingegneria delle Telecomunicazioni Prova scritta del Matematica III Corso di Ingegneria delle Telecomunicazioni Prova scritta del 04-06-007 Esercizio. (8 punti) Si consideri il seguente campo vettoriale F = + y + z i y ( + y + z ) j z ( + y + z ) k a) (5

Dettagli

f(x) := 1 10 x g(x) := f(x) x = 1 x + 100

f(x) := 1 10 x g(x) := f(x) x = 1 x + 100 PROBLEMA. Dal momento che la spesa totale mensile data dalla somma del canone mensile e della spesa dovuta alle telefonate al minuto, indicando con x i minuti di conversazione ed f : R + R + la funzione

Dettagli

ANALISI MATEMATICA 1 Area dell Ingegneria dell Informazione. Appello del TEMA log x. f(x) = e

ANALISI MATEMATICA 1 Area dell Ingegneria dell Informazione. Appello del TEMA log x. f(x) = e Esercizio 1 [6 punti] Sia ANALISI MATEMATICA 1 Area dell Ingegneria dell Informazione Appello del 8.07.019 TEMA 1 f) = e +log. a) Determinare il dominio D di f; determinare i limiti di f agli estremi di

Dettagli

Considerare il moto di un punto materiale di massa m = 1 soggetto ad un potenziale V (x):

Considerare il moto di un punto materiale di massa m = 1 soggetto ad un potenziale V (x): 1 sercizio 1 dove V (x = x x. o tutorato - MA - 17//17 Considerare il moto di un punto materiale di massa m = 1 soggetto ad un potenziale V (x: ẍ = V (x, 1. Scrivere esplicitamente l equazione del moto

Dettagli

ANALISI MATEMATICA. Prova scritta del 20/12/ FILA 1

ANALISI MATEMATICA. Prova scritta del 20/12/ FILA 1 ANALISI MATEMATICA CORSO C - CdL INFORMATICA Prova scritta del 0//004 - FILA ESERCIZIO Studiare la funzione f(x) log x log x determinando in particolare a) campo di esistenza ed eventuali asintoti; b)

Dettagli

La formula di Stirling. lim

La formula di Stirling. lim La formula di Stirling La formula che vogliamo mostrare è lim n + n! n n e n πn = 1. Per mostrare la seguente formula servono alcuni requisiti, alcuni dei quali non visti al corso, e un po di pazienza

Dettagli

Cognome: Nome: Matricola: a. Si enunci e dimostri il teorema della media integrale per funzioni continue. (5 punti)

Cognome: Nome: Matricola: a. Si enunci e dimostri il teorema della media integrale per funzioni continue. (5 punti) Analisi e Geometria Seconda Prova 3 gennaio 207 Docente: Politecnico di Milano Scuola di Ingegneria Industriale e dell Informazione Cognome: Nome: Matricola: a. Si enunci e dimostri il teorema della media

Dettagli

Soluzione della Prova Scritta di Analisi Matematica 4-25/06/13. C.L. in Matematica e Matematica per le Applicazioni. Proff. K. R. Payne e E.

Soluzione della Prova Scritta di Analisi Matematica 4-25/06/13. C.L. in Matematica e Matematica per le Applicazioni. Proff. K. R. Payne e E. Soluzione della Prova Scritta di Analisi Matematica 4-5/6/ C.L. in Matematica e Matematica per le Applicazioni Proff. K. R. Payne e E. Terraneo Esercizio. a. Le funzioni f n (x) sono continue e quindi

Dettagli

Correzione terzo compitino, testo B

Correzione terzo compitino, testo B Correzione terzo compitino, testo B 4 maggio 00 Parte Esercizio.. Procederemo per esclusione, mostrando come alcune funzioni della lista non possano avere il grafico in figura. La prima cosa che possiamo

Dettagli

Esame scritto (parte di Meccanica Quantistica) 19/06/2017. Esercizio 1. Si consideri l oscillatore armonico descritto dalla Hamiltoniana

Esame scritto (parte di Meccanica Quantistica) 19/06/2017. Esercizio 1. Si consideri l oscillatore armonico descritto dalla Hamiltoniana Corso di Fisica Matematica 3 a.a. 06/7 Esame scritto (parte di Meccanica Quantistica) 9/06/07 Esercizio. Si consideri l oscillatore armonico descritto dalla Hamiltoniana H 0 = p m + mω x, e siano n (n

Dettagli

Corso di Analisi Matematica 1 - professore Alberto Valli

Corso di Analisi Matematica 1 - professore Alberto Valli Università di Trento - Corso di Laurea in Ingegneria Civile e Ingegneria per l Ambiente e il Territorio - 8/9 Corso di Analisi Matematica - professore Alberto Valli foglio di esercizi - dicembre 8 Integrali

Dettagli

appunti per il corso di Analisi Matematica I corso di laurea in Ingegneria Gestionale, a.a autore: Giovanni Alberti

appunti per il corso di Analisi Matematica I corso di laurea in Ingegneria Gestionale, a.a autore: Giovanni Alberti appunti per il corso di Analisi Matematica I corso di laurea in Ingegneria Gestionale, a.a. 2014-15 autore: Giovanni Alberti Equazioni differenziali [versione: 2 gennaio 2015] Richiamo delle nozioni fondamentali

Dettagli

ANALISI MATEMATICA II 6 luglio 2010 Versione A

ANALISI MATEMATICA II 6 luglio 2010 Versione A ANALISI MATEMATICA II 6 luglio 2 Versione A Nome Cognome: Matricola Codice corso Docente: Corso di Laurea: Analisi II 75 cr. Analisi D Analisi II V.O. Analisi C es. 23 es. 245 es 24 es. es. 3 pinti b c

Dettagli

PROVE SCRITTE DI ANALISI MATEMATICA I(N.O.), ANNO 2002/03

PROVE SCRITTE DI ANALISI MATEMATICA I(N.O.), ANNO 2002/03 PROVE SCRITTE DI ANALISI MATEMATICA I(N.O.), ANNO / Prova scritta del 6// Denotato con a il numero delle lettere del nome, si consideri la serie nx + cos nx a nx, per x IR, e si determini per quali valori

Dettagli

M557- Esame di Stato di Istruzione Secondaria Superiore

M557- Esame di Stato di Istruzione Secondaria Superiore Ministero dell Istruzione, dell Università e della Ricerca M557- Esame di Stato di Istruzione Secondaria Superiore Indirizzi: LI, EA SCIENTIFICO LI, EA9 SCIENTIFICO Opzione Scienze Applicate Tema di: MATEMATICA

Dettagli

NOME:... MATRICOLA:... Corso di Laurea in Fisica, A.A. 2007/2008 Calcolo 1, Esame scritto del

NOME:... MATRICOLA:... Corso di Laurea in Fisica, A.A. 2007/2008 Calcolo 1, Esame scritto del NOME: MATRICOLA: Corso di Laurea in Fisica AA 007/008 Calcolo Esame scritto del 00009 Corso di Laurea in Fisica dell Atmosfera e Meteorologia AA 007/008 Calcolo Esame scritto del 00009 ) Consideriamo la

Dettagli

CALENDARIO BOREALE 1 EUROPA 2015 QUESITO 1

CALENDARIO BOREALE 1 EUROPA 2015 QUESITO 1 www.matefilia.it Indirizzi: LI0, EA0 SCIENTIFICO; LI0 - SCIENTIFICO - OPZIONE SCIENZE APPLICATE CALENDARIO BOREALE EUROPA 05 QUESITO La funzione f(x) è continua per x [ 4; 4] il suo grafico è la spezzata

Dettagli

Esercizi svolti. a 2 x + 3 se x 0; determinare a in modo che f risulti continua nel suo dominio.

Esercizi svolti. a 2 x + 3 se x 0; determinare a in modo che f risulti continua nel suo dominio. Esercizi svolti 1. Sia sin(x ) f(x) = x ( 1 + x 1 ) se x > 0 a x + 3 se x 0; determinare a in modo che f risulti continua nel suo dominio.. Scrivere l equazione della retta tangente nel punto di ascissa

Dettagli

Università degli Studi di Verona

Università degli Studi di Verona Università degli Studi di Verona Dipartimento di Informatica Ca' Vignal 2 Strada le Grazie 5 3734 Verona - Italia Tel. +39 045 802 7069 Fax +39 045 802 7068 Corso di Laurea in Matematica Applicata PROVETTA

Dettagli

Momento angolare. l = i h ( x ) li = i h ε ijk x j x k. Calcoliamo le relazioni di commutazione tra due componenti del momento angolare

Momento angolare. l = i h ( x ) li = i h ε ijk x j x k. Calcoliamo le relazioni di commutazione tra due componenti del momento angolare 1 Momento angolare. Il momento della quantitá di moto (momento angolare) é definito in fisica classica dal vettore (nel seguito usiamo la convenzione che gli indici ripetuti vanno intesi sommati) l = x

Dettagli

CALENDARIO BOREALE 1 EUROPA 2015 QUESITO 1

CALENDARIO BOREALE 1 EUROPA 2015 QUESITO 1 www.matefilia.it Indirizzi: LI0, EA0 SCIENTIFICO; LI0 - SCIENTIFICO - OPZIONE SCIENZE APPLICATE CALENDARIO BOREALE EUROPA 05 QUESITO La funzione f(x) è continua per x [ 4; 4] il suo grafico è la spezzata

Dettagli

Calcolo integrale. Regole di integrazione

Calcolo integrale. Regole di integrazione Calcolo integrale Linearità dell integrale Integrazione per parti Integrazione per sostituzione Integrazione di funzioni razionali 2 2006 Politecnico di Torino Proprietà Siano e funzioni integrabili su

Dettagli

Esame di Fisica Matematica 2, a.a (8/5/2014)

Esame di Fisica Matematica 2, a.a (8/5/2014) Esame di Fisica Matematica, a.a. 03-04 (8/5/04) Tempo a disposizione: DUE ORE E MEZZA. Svolgere tutti gli esercizi. Scrivere chiaramente nome, cognome e numero di matricola. Non è consentito l uso di libri,

Dettagli

Calcolo I, a.a Secondo esonero

Calcolo I, a.a Secondo esonero Calcolo I, a.a. 205 206 Secondo esonero ) 7 punti Determinare i valori di a, b e c (con la condizione che a 0) affinché sia continua e derivabile la funzione ln(a + ) se x > 0, f(x) x e bx c se x 0. Soluzione.

Dettagli

SOLUZIONE PROBLEMA 1. Punto 1 Osserviamo anzitutto che la funzione

SOLUZIONE PROBLEMA 1. Punto 1 Osserviamo anzitutto che la funzione SOLUZIONE PROBLEMA 1 Punto 1 Osserviamo anzitutto che la funzione g(x) = (ax b)e,-,. è continua e derivabile in R in quanto composizione di funzioni continue e derivabili. Per discutere la presenza di

Dettagli

1 Polinomio di Taylor 1. 2 Formula di Taylor 2. 3 Alcuni sviluppi notevoli 2. 4 Uso della formula di Taylor nel calcolo dei limiti 4

1 Polinomio di Taylor 1. 2 Formula di Taylor 2. 3 Alcuni sviluppi notevoli 2. 4 Uso della formula di Taylor nel calcolo dei limiti 4 1 POLINOMIO DI TAYLOR 1 Formula di Taylor Indice 1 Polinomio di Taylor 1 Formula di Taylor 3 Alcuni sviluppi notevoli 4 Uso della formula di Taylor nel calcolo dei iti 4 5 Soluzioni degli esercizi 6 La

Dettagli

1 Serie temporali. 1.1 Processi MA

1 Serie temporali. 1.1 Processi MA 1 Serie temporali Un processo stocastico 1 {X t, t T }, dove T = N o T = Z, si dice stazionario se (X 1,..., X n ) e (X k+1,...,x k+n ) hanno la stessa distribuzione per ogni n 1 e per ogni k T. Un processo

Dettagli

Matematica II prof. C.Mascia

Matematica II prof. C.Mascia Corso di laurea in CHIMICA INDUSTRIALE Sapienza, Università di Roma Matematica II prof CMascia alcuni esercizi, parte, 7 marzo 25 Indice Testi degli esercizi 2 Svolgimento degli esercizi 4 Testi degli

Dettagli

Problemi di Meccanica Quantistica. Capitolo II. Problemi Unidimensionali

Problemi di Meccanica Quantistica. Capitolo II. Problemi Unidimensionali Problemi di Meccanica Quantistica Capitolo II Problemi Unidimensionali a cura di Fedele Lizzi, Gennaro Miele e Francesco Nicodemi http://people.na.infn.it/%7epq-qp Problema II.1 Si consideri una particella

Dettagli

Analisi Matematica 1 Foglio 1 Lunedì 3 ottobre. f(x) = log x 2 6x + 5.

Analisi Matematica 1 Foglio 1 Lunedì 3 ottobre. f(x) = log x 2 6x + 5. Analisi Matematica Foglio Lunedì 3 ottobre Esercizio. Trovare il dominio naturale della funzione f data da ( ) f(x) = log x 2 6x + 5. Esercizio 2. Dire quali tra le seguenti funzioni sono iniettive :.

Dettagli

ANALISI VETTORIALE COMPITO IN CLASSE DEL 8/11/2013

ANALISI VETTORIALE COMPITO IN CLASSE DEL 8/11/2013 ANALISI VETTORIALE COMPITO IN CLASSE DEL 8//3 Premessa (Cfr. gli Appunti di Analisi Vettoriale / del Prof. Troianiello) Nello studio degli integrali impropri il primo approccio all utilizzo del criterio

Dettagli

7. Equazioni differenziali

7. Equazioni differenziali 18 Sezione 7. Equazioni differenziali 7. Equazioni differenziali [versione: 25/5/2012] Richiamo delle nozioni fondamentali In un equazione differenziale l incognita da determinare è una funzione (e non

Dettagli

SIMULAZIONE - 29 APRILE QUESITI

SIMULAZIONE - 29 APRILE QUESITI www.matefilia.it SIMULAZIONE - 29 APRILE 206 - QUESITI Q Determinare il volume del solido generato dalla rotazione attorno alla retta di equazione y= della regione di piano delimitata dalla curva di equazione

Dettagli

Analisi Matematica I modulo Soluzioni prova scritta preliminare n. 2

Analisi Matematica I modulo Soluzioni prova scritta preliminare n. 2 Analisi Matematica I modulo Soluzioni prova scritta preinare n 2 Corso di laurea in Matematica, aa 2004-2005 22 dicembre 2004 1 (a) Calcolare il seguente ite A******* ( ) n 2 n 2 + n n 1 n + 2n 2 Soluzione

Dettagli

1D, rappresentazione delle coordinate. Funzione normalizzata. Densità di probabilità. Osservabile F(X) Valore medio

1D, rappresentazione delle coordinate. Funzione normalizzata. Densità di probabilità. Osservabile F(X) Valore medio Stato quantistico Funzione d onda 1D, rappresentazione delle coordinate + ( x) dx 1 Densità di probabilità Funzione normalizzata Osservabile F(X) Valore medio Osservabili Operatori lineari hermitiani sullo

Dettagli