Variabili aleatorie parte 2. 1 Definizione di funzione di ripartizione o funzione cumulativa (CDF)

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Variabili aleatorie parte 2. 1 Definizione di funzione di ripartizione o funzione cumulativa (CDF)"

Transcript

1 Statistica e analisi dei dati Data: 11 aprile 2016 Variabili aleatorie parte 2 Docente: Prof. Giuseppe Boccignone Scriba: Alessandra Birlini 1 Definizione di funzione di ripartizione o funzione cumulativa (CDF) Definizione 1.1 (Funzione di ripartizione). Definiamo funzione di ripartizione (o funzione cumulativa, CDF) della V.A. (continua o discreta) X, la funzione F X : R [0, 1] per cui vale F X (x) = P X (X x). (1) Esempio 1.2 ( Caso discreto). Lancio una moneta dove P (T ) = p, P (C) = q = 1 p, e definisco la VA X( ) come il mapping X(T ) = 1 e X(C) = 0. Per costruire la CDF andiamo a variare il valore di x nel codominio (da a ) vedendo quali eventi elementari via via cattura. Per l A2 di Kolmogorov, essendo gli eventi disgiunti, la somma delle probabilitá di tali eventi é P X (X x), cioé F X (x). Nell esempio considerato, gli eventi possibili sono X(C) = 0 e X(T ) = 1, pertanto tale procedura si riduce ad analizzare i seguenti casi: x < 0: X(T ) = 1 x e X(C) = 0 x Funzione di ripartizione: F X (x) = 0. 0 x < 1: X(T ) = 1 x e X(C) = 0 x Funzione di ripartizione: F X (x) = P X (X x) = P (C) = q x 1: X(T ) = 1 x e X(C) x. Funzione di ripartizione: F X (x) = P X (X x) = P (T C) = 1 Abbiamo quindi una funzione di ripartizione che si disegna come in Figura 1. Esempio 1.3 (Caso continuo). Definiamo la VA continua: X(t) = a, t S Questo é un caso degenere, perché X é una funzione che mappa qualsiasi esito t del dominio S in un unico punto del codominio B (quindi avremo che il punto x = a ha probabilitá 1, ovvero un evento certo, cfr. Figura 2 piú avanti). In questo caso abbiamo due situazioni: x < a X(t) = a x Funzione di ripartizione: F X(x) = 0 1

2 2 Variabili aleatorie parte 2 Figura 1: Grafico della funzione di ripartizione F X (x) con X(T ) = 1 e X(C) = 0 x a: X(t) = a x. Funzione di ripartizione: F X (x) = P X(X x) = P (S) = 1 Abbiamo quindi una funzione di ripartizione che si disegna come in Figura 1. Figura 2: Grafico della funzione di ripartizione F X (x) con X(t) = a 2 Proprietá della funzione di ripartizione Prop. 2.1 (Funzione non decrescente). Se x 1 < x 2 F X (x 1 ) F X (x 2 ) Dimostrazione Per ipotesi: {X x 1 } {X x 2 } P X ({X x 1 }) P X ({X x 2 }) Per definizione di CDF: F X (x 1 ) F X (x 2 ) Prop F X (+ ) = 1 F X ( ) = 0

3 Variabili aleatorie parte 2 3 Dimostrazione F X (+ ) = P X (X + ) = 1 F X ( ) = P X (X ) = 0 Prop P X (X > x) = 1 F X (x) Dimostrazione Per costruzione: {X x} {X < x} = 0 R = {X x} {X < x} = 0 Quindi, per A2 di Kolmogorov: P X (R) = P X (X x) + P X {X > x} 1 = P X (X x) + P X {X > x} La P X {X > x} definisce la funzione complementare della CDF, chiamata anche funzione di sopravvivenza. Prop. 2.4 (non decrescenza). Se a < b, allora P X (a < X b) = F X (b) F X (a) Dimostrazione Per ipotesi: {X b} = {X a} + {a < X b} Quindi, per A2 di Kolmogorov: P X ({X b}) P X ({X a}) = P X ({a < X b}) Per definizione di CDF: F X (b) F X (a) = P X ({a < X b}) Prop. 2.5 (Continuitá a destra). F X (x + ) = F X (x) (2) Accenno di dimostrazione Basta dimostrare che: lim P X(X x + ε) = F X (x) (3) ε 0 Per definizione di CDF: P X (X x + ε) = F X (x + ε) Allora, l Equazione 2 vale in virtú della seguente: lim F X(x + ε) = F X (x + ) (4) ε 0 L Equazione 4 si dimostra utilizzando il limite di una successione di insiemi. Omettiamo.

4 4 Variabili aleatorie parte 2 Graficamente il risultato di Equazione é rappresentato in Figura 2. Figura 3: La CDF in x = a assume il valore che si legge avvicinandosi da destra F X (a) = F X (a + ) Prop P X (X = x) = F X (x) F X (x ) Dimostrazione Usiamo la Prop. 2.4, P (a < X b) = F X (b) F X (a) Poniamo: a = x ε e b = x Allora: P X (x ε < X x) = F X (x) F X (x ε) Passando al limite: lim ε 0 P X (x ε < X x) = P X (X = x) lim ε 0 F X (x ε) = F X (x ) Le proprietá (2.5) e (2.6) insieme ci consentono di disegnare la PMF a partire dalla CDF. Riprendiamo la CDF a gradino in Figura 2 Vediamo dalla CDF riportata in Figura 2 che: P X (X = a) = F X (a) F X (a ) = F X (a + ) F X (a ) = 1 0 = 1 cioé, l evento X = a assume probabilitá 1, ovvero é un evento certo. Esempio 2.7 (Lancio di due monete). Definiamo la V.A. X( ) che conta il numero di esiti testa (T): X(T, T ) = 2, X(T, C) = X(C, T ) = 1 e X(C, C) = 0 Possiamo distinguere quattro casi: x < 0: {X x} = Funzione di ripartizione: F X (x) = 0 0 x < 1: {X x} = {C, C} Funzione di ripartizione: F X (x) = P X (x = 1) = P (C, C) = 1 4

5 Variabili aleatorie parte 2 5 Figura 4: Calcolo della PMF (in basso) dalla CDF (in alto) usando le proprietá (2.5) e (2.6) 1 x < 2 {X x} = {(C, C), (C, T ), (T, C)} Funzione di ripartizione: F X (x) = = 3 4 x 2: {X x = s} Funzione di ripartizione: F X (x) = 1 La CDF é dunque rappresentabile come in Figura 2.7 Figura 5: CDF ottenuta dal conteggio delle teste nell esperimento del lancio di due monete Usando come prima le proprietá (2.5) e (2.6), dalla CDF possiamo ottenere facilmente la PMF (Figura 2.7) Figura 6: PMF ottenuta dal conteggio delle teste nell esperimento del lancio di due monete

6 6 Variabili aleatorie parte 2 3 Definizione di funzione di densitá di probabilitá Le proprietá (2.4), (2.5), (2.6), (2.2) ci dicono che la funzione F X : R [0, 1] é funzione assolutamente continua e derivabile in R e, nel caso di X discreta é ancora derivabile con continuitá a meno di un numero finito di punti che costituiscono discontinuitá di prima specie E allora possibile enunciare la seguente Definizione 3.1 (Densitá di probabilitá). Una funzione f X : R R tale che: f X (x) = df X(x) dx F X (x + x) F X (x) = lim x 0 x (5) con f X (x) 0, per ogni x R si dice funzione di densitá di probabilitá associata a F X Piú in dettaglio, nel caso continuo, f X é sempre ben definita. Nel caso discreto, la densitá di probabilitá corrisponde alla PMF (Probability Mass Function): P X (X = x i ) = p X (x i ) = p i (6) dove i = 1, 2, é un indice discreto. Nel caso discreto la CDF si scrive come la somma tipicamente una funzione continua a tratti. F X (k) = P X (X x k ) = i k p i. (7) Resta tuttavia é possibile, e talvolta utile, trattare la PMF definita in Equazione (6) come fosse continua, f X (x i ) = P X (X = x i ). (8) La forma esatta della rappresentazione continua della PMF la si puó ottenere direttamente derivando la CDF come definito in Eq. (5). A tale scopo, si noti dagli esempi precedenti che per VA discrete la F X (k) é una funzione non decrescente a gradini. Come abbiamo visto, per le proprietá (2.5) e (2.6) ciascun gradino, nel generico punto X = x i ha un ampiezza che vale p i = P X (X = x i ) = F X (x + i ) F X(x i ) Un modo equivalente di scrivere la precedente é di vedere ciascun gradino di altezza p i come il risultato della moltiplicazione p i H(x x i ) (9) dove H(x x i ) é una funzione gradino di altezza 1 o funzione di Heaviside { 0 if x < x i H(x x i ) =. (10) 1 if x > x i Possiamo allora scrivere la CDF discreta (11) come F X (x) = p X (x i ) = p X (x i )H(x x i ). (11) x i x x i x

7 Variabili aleatorie parte 2 7 Derivando: f X (x) = d dx dove δ(x x i ) é la delta di Dirac. x i x p X (x i )H(x x i ) = x i x p X (x i ) d dx H(x x i) = i p i δ(x x i ) (12) + g(x)δ(x x 0 ) = g(x 0 ), + δ(x)dx = 1 (13) Dalla Equazione (5), che definisce la pdf, e dal Teorema Fondamentale del Calcolo Integrale consegue che, per ogni a < b R, P X (a < X b) = F X (b) F X (a) = E immediato notare che la PDF é normalizzata: P x( < X + ) = F x(+ ) F x( ) = Si utilizza talvolta la notazione abbreviata: b a f X (x)dx (14) + fx(x)dx = 1 (15) prob(x dx) = P X (X dx) = f X (x)dx. (16) Essa trova motivazione nella seguente approssimazione: prob(x dx) = P X (x < X x + dx) = F X (x + dx) F X (x) = che vale per dx piccolo. x+dx x f X (u)du f X (x)dx, (17) La medesima approssimazione mette in evidenza un importante fatto che vale per le distribuzioni continue: P X (X = x) = lim dx 0 P X(x < X x + dx) = lim dx 0 x+dx x f X (u)du = 0 (18) ovvero, per una VA X( ) continua la probabilitá in un punto x arbitrario P X (X = x) ha misura nulla. Ne consegue anche che per una variabile continua potendosi scrivere, per esempio P X (a X b) = P X (a < X b) = P X (a X < b) = P X (a < X < b) (19) P X (a X b) = P X (a X < b) + P X (X = b) = P X (a X < b) + 0 (20)

Variabili aleatorie. 13 aprile Definizione di variabile aleatoria e misurabilitá. (R, B) é una funzione aleatoria se

Variabili aleatorie. 13 aprile Definizione di variabile aleatoria e misurabilitá. (R, B) é una funzione aleatoria se Variabili aleatorie 3 aprile 207 Si introduce il concetto di variabile aleatoria discreta e continua e di legge di probabilitá. Si considera in seguito la funzione di ripartizione come caratterizzazione

Dettagli

Variabili aleatorie: parte 1. 1 Definizione di variabile aleatoria e misurabilitá

Variabili aleatorie: parte 1. 1 Definizione di variabile aleatoria e misurabilitá Statistica e analisi dei dati Data: 11 Aprile 2016 Variabili aleatorie: parte 1 Docente: Prof. Giuseppe Boccignone Scriba: Noemi Tentori 1 Definizione di variabile aleatoria e misurabilitá Informalmente,

Dettagli

Distribuzioni di due variabili aleatorie

Distribuzioni di due variabili aleatorie Statistica e analisi dei dati Data: 6 Maggio 206 Distribuzioni di due variabili aleatorie Docente: Prof. Giuseppe Boccignone Scriba: Noemi Tentori Distribuzioni congiunte e marginali Consideriamo due variabili

Dettagli

VARIABILI CASUALI. Fino ad ora abbiamo definito:

VARIABILI CASUALI. Fino ad ora abbiamo definito: VARIABILI CASUALI Fino ad ora abbiamo definito: Lo SPAZIO CAMPIONARIO Ω : Come totalità dei possibili risultati di un esperimento Gli EVENTI : Come sottoinsiemi dello spazio campionario La FUNZIONE DI

Dettagli

Corso di Fondamenti di Telecomunicazioni

Corso di Fondamenti di Telecomunicazioni Corso di Fondamenti di Telecomunicazioni Prof. Mario Barbera [parte ] Variabili aleatorie Esempio: sia dato l esperimento: Scegliere un qualunque giorno non festivo della settimana, per verificare casualmente

Dettagli

Distribuzione geometrica ed esponenziale negativa

Distribuzione geometrica ed esponenziale negativa Statistica e analisi dei dati Data: 9 maggio 216 Distribuzione geometrica ed esponenziale negativa Docente: Prof. Giuseppe Boccignone Scriba: Simone Canali 1 Distribuzione geometrica Si consideri un evento

Dettagli

Note di Teoria della Probabilità.

Note di Teoria della Probabilità. Note di Teoria della Probabilità. In queste brevi note, si richiameranno alcuni risultati di Teoria della Probabilità, riguardanti le conseguenze elementari delle definizioni di probabilità e σ-algebra.

Dettagli

Statistica e analisi dei dati Data: 29 Febbraio Lezione 3

Statistica e analisi dei dati Data: 29 Febbraio Lezione 3 Statistica e analisi dei dati Data: 29 Febbraio 2016 Lezione 3 Docente: Prof. Giuseppe Boccignone Scriba: Sara Fasano 1 Definizione formale di Probabilitá Sia dato lo spazio probabilizzabile (S, F). Definizione

Dettagli

MODELLI STATISTICI, RICHIAMI

MODELLI STATISTICI, RICHIAMI MODELLI STATISTICI, RICHIAMI Corso di Tecniche di Simulazione, a.a. 2005/2006 Francesca Mazzia Dipartimento di Matematica Università di Bari 11 Aprile 2006 Francesca Mazzia (Univ. Bari) MODELLI STATISTICI,

Dettagli

Variabili aleatorie. Variabili aleatorie e variabili statistiche

Variabili aleatorie. Variabili aleatorie e variabili statistiche Variabili aleatorie Variabili aleatorie e variabili statistiche Nelle prime lezioni, abbiamo visto il concetto di variabile statistica : Un oggetto o evento del mondo reale veniva associato a una certa

Dettagli

Indici di posizione e dispersione per distribuzioni di variabili aleatorie

Indici di posizione e dispersione per distribuzioni di variabili aleatorie Indici di posizione e dispersione per distribuzioni di variabili aleatorie 12 maggio 2017 Consideriamo i principali indici statistici che caratterizzano una distribuzione: indici di posizione, che forniscono

Dettagli

VETTORI DI VARIABILI ALEATORIE

VETTORI DI VARIABILI ALEATORIE VETTOI DI VAIABILI ALEATOIE E. DI NADO 1. Funzioni di ripartizione congiunte e marginali Definizione 1.1. Siano X 1, X 2,..., X n v.a. definite su uno stesso spazio di probabilità (Ω, F, P ). La n-pla

Dettagli

Distribuzione Binomiale

Distribuzione Binomiale Statistica e analisi dei dati Data: 2 Maggio 2016 Distribuzione Binomiale Docente: Prof. Giuseppe Boccignone Scriba: Nicoló Pisaroni 1 Conteggi e tempi di attesa Consideriamo il seguente schema, facendo

Dettagli

Indicatori di posizione e ampiezza di variabili aleatorie

Indicatori di posizione e ampiezza di variabili aleatorie Statistica e analisi dei dati Data: 8 aprile 206 Indicatori di posizione e ampiezza di variabili aleatorie Docente: Prof. Giuseppe Boccignone Scriba: Matteo Gandossi Indicatori di posizione. Moda Data

Dettagli

DISTRIBUZIONI DI PROBABILITA (parte 1) 1 / 19

DISTRIBUZIONI DI PROBABILITA (parte 1) 1 / 19 DISTRIBUZIONI DI PROBABILITA (parte 1) 1 / 19 Variabili casuali (o aleatorie) 2 / 19 Disponendo di metodi corretti per raccogliere i dati e costruire i campioni data una popolazione, i valori numerici

Dettagli

Statistica. Lezione : 17. Variabili casuali

Statistica. Lezione : 17. Variabili casuali Corsi di Laurea: a.a. 2018-19 Diritto per le Imprese e le istituzioni Scienze Internazionali dello Sviluppo e della Cooperazione Statistica Variabili casuali Lezione : 17 Docente: Alessandra Durio 1 Contenuti

Dettagli

Modelli probabilistici variabili casuali

Modelli probabilistici variabili casuali Modelli probabilistici variabili casuali Le variabili casuali costituiscono il legame tra il calcolo della probabilità e gli strumenti di statistica descrittiva visti fino ad ora. Idea: pensiamo al ripetersi

Dettagli

TECNICHE DI SIMULAZIONE

TECNICHE DI SIMULAZIONE TECNICHE DI SIMULAZIONE MODELLI STATISTICI, RICHIAMI Francesca Mazzia Dipartimento di Matematica Università di Bari a.a. 2004/2005 TECNICHE DI SIMULAZIONE p. 1 Modelli statistici nella simulazione Nel

Dettagli

Outline. 1 v.c. continue. 2 v.c. Normale. 3 v.c. Esponenziale. Lezione 13. A. Iodice. v.c. continue. v.c. Normale. v.c.

Outline. 1 v.c. continue. 2 v.c. Normale. 3 v.c. Esponenziale. Lezione 13. A. Iodice. v.c. continue. v.c. Normale. v.c. Statistica Alfonso Iodice D Enza iodicede@unicas.it Università degli studi di Cassino () Statistica 1 / 48 Outline 1 2 3 () Statistica 2 / 48 Variabili casuali continue Una variabile casuale X è continua

Dettagli

Definizione formale di probabilitá

Definizione formale di probabilitá Definizione formale di probabilitá 10 marzo 2017 Si introducono la definizione assiomatica di probabilitá e alcune proprietá elementari che ne derivano 1 Eventi e insiemi Poiché un evento é definito come

Dettagli

Studiamo adesso il comportamento di f(x) alla frontiera del dominio. Si. x 0 lim f(x) = lim. x 2 +

Studiamo adesso il comportamento di f(x) alla frontiera del dominio. Si. x 0 lim f(x) = lim. x 2 + Esercizi del 2//09. Data la funzione f(x) = ln(x 2 2x) (a) trovare il dominio, gli eventuali asintoti e gli intervalli in cui la funzione cresce o decresce. Disegnare il grafico della funzione. (b) Scrivere

Dettagli

Distribuzione Gaussiana o Normale. 1 Distribuzione Normale come limite della Binomiale

Distribuzione Gaussiana o Normale. 1 Distribuzione Normale come limite della Binomiale Statistica e analisi dei dati Data: 6 Maggio 26 Distribuzione Gaussiana o Normale Docente: Prof. Giuseppe Boccignone Scriba: Matteo Gandossi Distribuzione Normale come limite della Binomiale Data una distribuzione

Dettagli

Variabili aleatorie Parte I

Variabili aleatorie Parte I Variabili aleatorie Parte I Variabili aleatorie Scalari - Definizione Funzioni di distribuzione di una VA Funzioni densità di probabilità di una VA Indici di posizione di una distribuzione Indici di dispersione

Dettagli

Esercizi di riepilogo 2: soluzioni ( Verifica di analisi funzionale e serie di Fourier)

Esercizi di riepilogo 2: soluzioni ( Verifica di analisi funzionale e serie di Fourier) Esercizi di riepilogo 2: soluzioni ( Verifica di analisi funzionale e serie di Fourier) Spazi Vettoriali e Funzionali 1. Risposte: (a) Spazio vettoriale complesso. (b) Spazio vettoriale reale. (c) Non

Dettagli

Punti di discontinuità

Punti di discontinuità Punti di discontinuità DEF. 15 Siano f una funzione reale di una variabile reale definita nel sottoinsieme X di R, x 0 un punto di X per esso di accumulazione. Se f non è continua in x 0, essa si dice

Dettagli

Computazione per l interazione naturale: fondamenti probabilistici (1)

Computazione per l interazione naturale: fondamenti probabilistici (1) Computazione per l interazione naturale: fondamenti probabilistici (1) Corso di Interazione uomo-macchina II Prof. Giuseppe Boccignone Dipartimento di Scienze dell Informazione Università di Milano boccignone@dsi.unimi.it

Dettagli

Variabili casuali. - di Massimo Cristallo -

Variabili casuali. - di Massimo Cristallo - Università degli Studi di Basilicata Facoltà di Economia Corso di Laurea in Economia Aziendale - a.a. 2012/2013 lezioni di statistica del 16 e 27 maggio 2013 - di Massimo Cristallo - Variabili casuali

Dettagli

Appunti di Matematica 5 - Derivate - Derivate. Considero una funzione e sia e definita in un intorno completo di.

Appunti di Matematica 5 - Derivate - Derivate. Considero una funzione e sia e definita in un intorno completo di. Derivate Definizione di derivata di f(x) in x D o f Considero una funzione e sia e definita in un intorno completo di. Consideriamo il rapporto (detto rapporto incrementale ) È evidente che il rapporto

Dettagli

Le derivate parziali

Le derivate parziali Sia f(x, y) una funzione definita in un insieme aperto A R 2 e sia P 0 = x 0, y 0 un punto di A. Essendo A un aperto, esiste un intorno I(P 0, δ) A. Preso un punto P(x, y) I(P 0, δ), P P 0, possiamo definire

Dettagli

Matematica Applicata L-A Definizioni e teoremi

Matematica Applicata L-A Definizioni e teoremi Definizioni e teoremi Settembre - Dicembre 2008 Definizioni e teoremi di statistica tratte dalle lezioni del corso di Matematica Applicata L- A alla facoltà di Ingegneria Elettronica e delle Telecomunicazioni

Dettagli

B =3 0 1=3 0 1=3

B =3 0 1=3 0 1=3 Corsi di Probabilità, Statistica e Processi stocastici per Ing. dell Automazione, Informatica e Inf.Gest.Azienda, a.a. / // Esercizio. Un PC comprato da alcuni mesi, all accensione compie alcune operazioni

Dettagli

COPPIE DI VARIABILI ALEATORIE

COPPIE DI VARIABILI ALEATORIE COPPIE DI VAIABILI ALEATOIE E DI NADO 1 Funzioni di ripartizione congiunte e marginali Definizione 11 Siano X, Y va definite su uno stesso spazio di probabilità (Ω, F, P La coppia (X, Y viene detta va

Dettagli

PROVE SCRITTE DI MATEMATICA APPLICATA, ANNO 2006/07

PROVE SCRITTE DI MATEMATICA APPLICATA, ANNO 2006/07 PROVE SCRITTE DI MATEMATICA APPLICATA, ANNO 006/07 Esercizio 1 Prova scritta del 16/1/006 In un ufficio postale lavorano due impiegati che svolgono lo stesso compito in maniera indipendente, sbrigando

Dettagli

assuma valori in un determinato intervallo è data dall integrale della sua densità ( = )=

assuma valori in un determinato intervallo è data dall integrale della sua densità ( = )= VARIABILI ALEATORIE CONTINUE Esistono parecchi fenomeni reali per la cui descrizione le variabili aleatorie discrete non sono adatte. Per esempio è necessaria una variabile aleatoria continua ovvero una

Dettagli

PROVE SCRITTE DI ANALISI MATEMATICA II (V.O.), ANNO 2002

PROVE SCRITTE DI ANALISI MATEMATICA II (V.O.), ANNO 2002 PROVE SCRITTE DI ANALISI MATEMATICA II (V.O.), ANNO 22 Prova scritta del 1/1/22 Si esamini la serie di funzioni: 1 log x (e n + n), definita per x IR. Si determini l insieme S in cui tale serie converge,

Dettagli

Esercitazioni di Statistica

Esercitazioni di Statistica Esercitazioni di Statistica Variabili casuali Prof. Livia De Giovanni statistica@dis.uniroma.it Esercizio Determinare se le funzioni seguenti: 0.0 se x < 0. se x = g(x) = 0.5 se x = 0.7 se x = 3 se x =

Dettagli

Lezione 5 (9/10/2014)

Lezione 5 (9/10/2014) Lezione 5 (9/10/2014) Esercizi svolti a lezione Nota 1. La derivata di una funzione. Consideriamo una funzione f(x) : R R e definiamo il rapporto incrementale nel punto x 0 come r(h) = f(x 0 +h) f(x 0

Dettagli

Modulo 1. p 2 (p 1 + p 3 p 1 p 3 ) p 1 (p 2 + p 3 p 2 p 3 ), (1) p 2 (p 1 + p 3 p 1 p 3 ) p 3 (p 2 + p 1 p 2 p 1 ). (2)

Modulo 1. p 2 (p 1 + p 3 p 1 p 3 ) p 1 (p 2 + p 3 p 2 p 3 ), (1) p 2 (p 1 + p 3 p 1 p 3 ) p 3 (p 2 + p 1 p 2 p 1 ). (2) 1 Compito scritto dell esame di Statistica e Prof. Giuseppe Boccignone Corso di Laurea analisi dei dati (Crema) 26 gennaio 2017 Cognome: Nome: Matricola: Istruzioni Il tempo riservato alla prova scritta

Dettagli

Integrali Curvilinei

Integrali Curvilinei Integrali Curvilinei Gianluca Gorni 11 gennaio 2006 1 Lunghezza di una curva Definizione 1.1. Una curva N-dimensionale è una funzione definita su un intervallo (compatto, se non specificato altrimenti)

Dettagli

25 - Funzioni di più Variabili Introduzione

25 - Funzioni di più Variabili Introduzione Università degli Studi di Palermo Facoltà di Economia CdS Statistica per l Analisi dei Dati Appunti del corso di Matematica 25 - Funzioni di più Variabili Introduzione Anno Accademico 2013/2014 M. Tumminello

Dettagli

Eventi numerici e variabili aleatorie

Eventi numerici e variabili aleatorie Capitolo Eventi numerici e variabili aleatorie. Probabilità di eventi numerici Nel capitolo precedente si sono considerate le nozioni di esperimento, risultato, evento. Un evento è individuato dai risultati

Dettagli

Lezione 1. 1 Probabilità e statistica. 2 Definizioni di probabilità. Statistica e analisi dei dati Data: 22 Febbraio 2016

Lezione 1. 1 Probabilità e statistica. 2 Definizioni di probabilità. Statistica e analisi dei dati Data: 22 Febbraio 2016 Statistica e analisi dei dati Data: 22 Febbraio 2016 Lezione 1 Docente: Prof. Giuseppe Boccignone Scriba: Nicolò Pisaroni 1 Probabilità e statistica Probabilità: Un modello probabilistico é una descrizione

Dettagli

Statistica ARGOMENTI. Calcolo combinatorio

Statistica ARGOMENTI. Calcolo combinatorio Statistica ARGOMENTI Calcolo combinatorio Probabilità Disposizioni semplici Disposizioni con ripetizione Permutazioni semplici Permutazioni con ripetizioni Combinazioni semplici Assiomi di probabilità

Dettagli

Esercizi su variabili aleatorie discrete

Esercizi su variabili aleatorie discrete Esercizi su variabili aleatorie discrete Esercizio 1. Data la variabile aleatoria discreta X, caratterizzata dalla seguente rappresentazione nello spazio degli stati: 1 0,25 X = { 0 0,50 1 0,25 calcolare

Dettagli

Massimo limite e minimo limite di una funzione

Massimo limite e minimo limite di una funzione Massimo limite e minimo limite di una funzione Sia f : A R una funzione, e sia p DA). Per ogni r > 0, l insieme ) E f p r) = { fx) x A I r p) \ {p} } è non vuoto; inoltre E f p r ) E f p r ) se 0 < r r.

Dettagli

Modulo 5 Funzioni di piú variabili. A. Scanu

Modulo 5 Funzioni di piú variabili. A. Scanu Modulo 5 Funzioni di piú variabili A. Scanu 1 1 Generalitá In questo modulo studieremo funzioni di piú di una variabile cioé del tipo f : R n R m con n, m 1. In particolare prenderemo in considerazione

Dettagli

esiste. Esempio 3. La successione e x2 /n 2 è regolare. In questo caso il limite è

esiste. Esempio 3. La successione e x2 /n 2 è regolare. In questo caso il limite è 9.2. Funzioni generalizzate e integrali regolarizzati. 9.2.. Funzioni generalizzate. Lasciamo per un momento da parte l analisi complessa e occupiamoci di un argomento che prima o poi spunta fuori in un

Dettagli

Continuità di funzioni

Continuità di funzioni Continuità di funzioni Annalisa Cesaroni, Paola Mannucci e Alvise Sommariva Università degli Studi di Padova Dipartimento di Matematica 2 novembre 2015 Annalisa Cesaroni, Paola Mannucci e Alvise Sommariva

Dettagli

Scrivere su ogni foglio NOME e COGNOME. Le risposte devono essere giustificate sui fogli protocollo e riportate nel foglio RISPOSTE.

Scrivere su ogni foglio NOME e COGNOME. Le risposte devono essere giustificate sui fogli protocollo e riportate nel foglio RISPOSTE. Corso di Laurea Triennale in Matematica Corso di Calcolo delle Probabilità (docenti G. Nappo, F. Spizzichino prova scritta giugno 5 (tempo a disposizione: ore La prova scritta consiste nello svolgimento

Dettagli

Le variabili casuali o aleatorie

Le variabili casuali o aleatorie Le variabili casuali o aleatorie Intuitivamente un numero casuale o aleatorio è un numero sul cui valore non siamo certi per carenza di informazioni - ad esempio la durata di un macchinario, il valore

Dettagli

Integrali (M.S. Bernabei & H. Thaler)

Integrali (M.S. Bernabei & H. Thaler) Integrali (M.S. Bernabei & H. Thaler) Integrali. Motivazione Che cos é un integrale? Sia f 0 e limitata b a f ( x) dx area f ( x, y) dxdy volume Definizione di integrale: b a dove f ( x) dx lim n n k b

Dettagli

Esame di Teoria dei Segnali A Ing. Informatica, Elettronica e Telecomunicazioni. 12 luglio 2004

Esame di Teoria dei Segnali A Ing. Informatica, Elettronica e Telecomunicazioni. 12 luglio 2004 Esame di Teoria dei Segnali A Ing. Informatica, Elettronica e Telecomunicazioni luglio 4 Esercizio Un sacchetto A contiene caramelle ai gusti fragola, limone e lampone. Un sacchetto B contiene caramelle

Dettagli

Esercitazione del 30/05/2018 Istituzioni di Calcolo delle Probabilità

Esercitazione del 30/05/2018 Istituzioni di Calcolo delle Probabilità Esercitazione del /5/8 Istituzioni di Calcolo delle Probabilità David Barbato barbato@math.unipd.it Somma di variabili aleatorie indipendenti. Caso discreto. Siano X e Y due variabili aletaroie discrete

Dettagli

Un modello computazionale per la detezione dei bordi

Un modello computazionale per la detezione dei bordi Modelli e Principi della Percezione Data: AA 2010-11 Un modello computazionale per la detezione dei bordi Docente: Prof. Giuseppe Boccignone Scriba: 1 Il problema Il problema della modellazione di un processo

Dettagli

1! 4! = 5. Quindi la probabilità di ottenere 1 successo su 5 lanci sarà 5 2 = 5! 2! 3! = 10

1! 4! = 5. Quindi la probabilità di ottenere 1 successo su 5 lanci sarà 5 2 = 5! 2! 3! = 10 Note sulla Distribuzione Binomiale La distribuzione binomiale è relativa ad una variabile aleatoria discreta, che descrive i possibili risultati di un esperimento composto da n prove. In particolare, definisce

Dettagli

Prova Scritta di Probabilità e Statistica Cognome: Laurea in Matematica. 10 settembre 2012 Matricola: Nome:

Prova Scritta di Probabilità e Statistica Cognome: Laurea in Matematica. 10 settembre 2012 Matricola: Nome: Prova Scritta di Probabilità e Statistica Cognome: Laurea in Matematica Nome: 10 settembre 2012 Matricola: ESERCIZIO 1. Facendo uso solamente della definizione di spazio di probabilità, dell additività

Dettagli

D Analisi Matematica 1 (Corso di Laurea in Informatica e Bioinformatica)

D Analisi Matematica 1 (Corso di Laurea in Informatica e Bioinformatica) COGNOME NOME Matr. D Firma dello studente Tempo: ore. Prima parte: test a risposta multipla. Una ed una sola delle 4 affermazioni è corretta. Indicatela con una croce. È consentita una sola correzione

Dettagli

Matematica A Corso di Laurea in Chimica. Prova scritta del Tema A

Matematica A Corso di Laurea in Chimica. Prova scritta del Tema A Matematica A Corso di Laurea in Chimica Prova scritta del 7..6 Tema A P) Data la funzione f(x) = ex+ x determinarne (a) campo di esistenza; (b) zeri e segno; (c) iti agli estremi del campo di esistenza

Dettagli

P ( X n X > ɛ) = 0. ovvero (se come distanza consideriamo quella euclidea)

P ( X n X > ɛ) = 0. ovvero (se come distanza consideriamo quella euclidea) 10.4 Convergenze 166 10.4.3. Convergenza in Probabilità. Definizione 10.2. Data una successione X 1, X 2,...,,... di vettori aleatori e un vettore aleatorio X aventi tutti la stessa dimensione k diremo

Dettagli

Matematica con elementi di Informatica

Matematica con elementi di Informatica Variabili aleatorie Matematica con elementi di Informatica Tiziano Vargiolu Dipartimento di Matematica vargiolu@math.unipd.it Corso di Laurea Magistrale in Chimica e Tecnologie Farmaceutiche Anno Accademico

Dettagli

Bayes, PDF, CDF. Renato Mainetti

Bayes, PDF, CDF. Renato Mainetti Bayes, PDF, CDF Renato Mainetti Importiamo i dati di un esperimento Censimento volatili isola di Nim: 100 volatili vivono su quest isola 30 piccioni marroni (classe 1) 20 piccioni bianchi (classe 2) 10

Dettagli

(a) Qual è la probabilità che un neonato sopravviva al primo anno?

(a) Qual è la probabilità che un neonato sopravviva al primo anno? II Appello di Probabilità e Statistica Cognome: Laurea in Matematica Nome: 2 luglio 2009 Matricola: ESERCIZIO. Per una certa specie africana di uccelli, i neonati hanno indipendentemente l uno dal l altro

Dettagli

ANNO ACCADEMICO 2015/2016 CORSO di LAUREA in BIOTECNOLOGIE MATEMATICA IV appello 1/6/2017 1

ANNO ACCADEMICO 2015/2016 CORSO di LAUREA in BIOTECNOLOGIE MATEMATICA IV appello 1/6/2017 1 ANNO ACCADEMICO 205/206 CORSO di LAUREA in BIOTECNOLOGIE MATEMATICA IV appello /6/207 Esercizio. Ho tre monete, A, B e C, apparentemente identiche ma tali che: A dà testa in media 4 volte in 0 lanci B

Dettagli

Modelli descrittivi, statistica e simulazione

Modelli descrittivi, statistica e simulazione Modelli descrittivi, statistica e simulazione Master per Smart Logistics specialist Roberto Cordone (roberto.cordone@unimi.it) Statistica inferenziale Cernusco S.N., giovedì 18 febbraio 2016 (9.00/13.00)

Dettagli

Corso di Analisi Matematica Funzioni di una variabile

Corso di Analisi Matematica Funzioni di una variabile Corso di Analisi Matematica Funzioni di una variabile Laurea in Informatica e Comunicazione Digitale A.A. 2013/2014 Università di Bari ICD (Bari) Analisi Matematica 1 / 24 1 Generalità 2 Funzioni reali

Dettagli

Calcolo delle Probabilità Soluzioni 1. Spazio campionario ed eventi

Calcolo delle Probabilità Soluzioni 1. Spazio campionario ed eventi ISTITUZIONI DI STATISTICA A. A. 2007/2008 Marco Minozzo e Annamaria Guolo Laurea in Economia del Commercio Internazionale Laurea in Economia e Amministrazione delle Imprese Università degli Studi di Verona

Dettagli

E, la successione di numeri {f n (x 0. n f n(x) (15.1)

E, la successione di numeri {f n (x 0. n f n(x) (15.1) Capitolo 15 15.1 Successioni e serie di funzioni Sia {f n } una successione di funzioni, tutte definite in un certo insieme E dello spazio R n ; si dice che essa è convergente nell insieme E se, comunque

Dettagli

Metodi Matematici per l Economia anno 2017/2018 Gruppo B

Metodi Matematici per l Economia anno 2017/2018 Gruppo B Metodi Matematici per l Economia anno 2017/2018 Gruppo B Docente: Giacomo Dimarco Dipartimento di Matematica e Informatica Università di Ferrara https://sites.google.com/a/unife.it/giacomo-dimarco-home-page/

Dettagli

Esercizi di Probabilità - Matematica Applicata a. a aprile 2014

Esercizi di Probabilità - Matematica Applicata a. a aprile 2014 Esercizi di Probabilità - Matematica Applicata a. a. 2013-3014 db 1 aprile 2014 1 Funzione di ripartizione Si dice funzione di ripartizione o funzione cumulativa delle frequenze di una variabile casuale

Dettagli

Traccia della soluzione degli esercizi del Capitolo 4

Traccia della soluzione degli esercizi del Capitolo 4 Traccia della soluzione degli esercizi del Capitolo 4 Esercizio 6 Sia X una v.c. uniformenente distribuita nell intervallo ( π, π ), cioè f X (x) = π ( π, π ) (x). Posto Y = cos(x), trovare la distribuzione

Dettagli

Limiti di funzioni all infinito (1) lim f(x) = λ R x K>0 : x > K f(x) λ < ε (2) lim f(x) = x M>0 >0 K>0 : x > K f(x) > M (3) lim f(x) = x M>0 >0 K>0 : x > K f(x) < < M Se f(x) è definita in un intorno

Dettagli

2. Introduzione alla probabilità

2. Introduzione alla probabilità . Introduzione alla probabilità Carla Seatzu, 8 Marzo 008 Definizioni preliminari: Prova: è un esperimento il cui esito è aleatorio Spazio degli eventi elementari: è l insieme Ω di tutti i possibili esiti

Dettagli

Segnali (processi) aleatori (casuali)

Segnali (processi) aleatori (casuali) Segnali (processi) aleatori (casuali) Definizione di processo aleatorio Descrizione statistica di un processo aleatorio Media, potenza, varianza Autocorrelazione e autocovarianza Filtraggio di un processo

Dettagli

Statistica e analisi dei dati Data: 7 Marzo Lezione 4

Statistica e analisi dei dati Data: 7 Marzo Lezione 4 Statistica e analisi dei dati Data: 7 Marzo 2016 Lezione 4 Docente: Prof. Giuseppe Boccignone Scriba: Matteo Gandossi 1 Indipendenza Stocastica Definizione 1 (Indipendenza Stocastica). Dati due eventi

Dettagli

Secondo Compitino di Analisi Matematica Corso di laurea in Informatica, corso B 18 Dicembre 2015 Fila A. i 1 2i. z 2 = (1 + i)(1 i)(1 + 3i).

Secondo Compitino di Analisi Matematica Corso di laurea in Informatica, corso B 18 Dicembre 2015 Fila A. i 1 2i. z 2 = (1 + i)(1 i)(1 + 3i). Secondo Compitino di Analisi Matematica Corso di laurea in Informatica, corso B 8 Dicembre 05 Fila A Esercizio Si considerino i numeri complessi z = i + i i (a) Calcola il modulo di z e il modulo di z.

Dettagli

Probabilita' mediante l'analisi combinatoria D n,k =Disposizioni di n oggetti a k a k (o di classe k)

Probabilita' mediante l'analisi combinatoria D n,k =Disposizioni di n oggetti a k a k (o di classe k) Probabilita' mediante l'analisi combinatoria D n,k =Disposizioni di n oggetti a k a k (o di classe k) Nel calcolo del numero di modalita' con cui si presenta un evento e' utile talvolta utilizzare le definizioni

Dettagli

IDENTIFICAZIONE dei MODELLI e ANALISI dei DATI. Lezione 01 - Variabili aleatorie. Calcolo di densità di probabilità. Operatore di media

IDENTIFICAZIONE dei MODELLI e ANALISI dei DATI. Lezione 01 - Variabili aleatorie. Calcolo di densità di probabilità. Operatore di media IDENTIFICAZIONE dei MODELLI e ANALISI dei DATI Lezione 01 - Variabili aleatorie Motivazioni Densità di probabilità Operatore di media Densità di probabilità congiunta Densità di probabilità condizionata

Dettagli

17 - Serie di funzioni

17 - Serie di funzioni Università degli Studi di Palermo Facoltà di Economia CdS Statistica per l Analisi dei Dati Appunti del corso di Matematica 7 - Serie di funzioni Anno Accademico 203/204 M. Tumminello, V. Lacagnina, A.

Dettagli

! X (92) X n. P ( X n X ) =0 (94)

! X (92) X n. P ( X n X ) =0 (94) Convergenza in robabilità Definizione 2 Data una successione X 1,X 2,...,X n,... di numeri aleatori e un numero aleatorio X diremo che X n tende in probabilità a X escriveremo X n! X (92) se fissati comunque

Dettagli

Segnali e Sistemi (Ingegneria Informatica)

Segnali e Sistemi (Ingegneria Informatica) Segnali e Sistemi (Ingegneria Informatica) Lezione 2 last update Oct 17, 2004 c 2004 Finesso, Pavon, Pinzoni 1 MODELLO MATEMATICO DEI SEGNALI Segnale a tempo continuo È una funzione reale (complessa) di

Dettagli

Statistica descrittiva I. La frequenza

Statistica descrittiva I. La frequenza Statistica descrittiva I. La frequenza Supponiamo di ripetere n volte un esperimento che può dare esito 0 o 1, il numero di uni su n ripetizioni è detto frequenza di 1: f 1,n = #{esperimenti con esito

Dettagli

Statistica. Lezione : 18, 19. Variabili casuali

Statistica. Lezione : 18, 19. Variabili casuali Corsi di Laurea: a.a. 2017-18 Diritto per le Imprese e le istituzioni Scienze dell Amministrazione e Consulenza del Lavoro sienze Internazionali dello Sviluppo e della Cooperazione Statistica Variabili

Dettagli

Primi elementi di topologia dell asse reale. Intorni

Primi elementi di topologia dell asse reale. Intorni Primi elementi di topologia dell asse reale. Intorni R è uno spazio metrico: La distanza d(x, y) tra due numeri reali x, y è il valore assoluto della loro differenza: d(x, y) = x y Definizione (Intorno

Dettagli

Matematica I, Derivate e operazioni algebriche.

Matematica I, Derivate e operazioni algebriche. Matematica I, 6.0.202 Derivate e operazioni algebriche.. Prima di iniziare questa lezione, conviene rendere espliciti due fatti che sono impliciti nella definizione informale di derivata, banalmente verificabili

Dettagli

Matematica - Prova d esame (25/06/2004)

Matematica - Prova d esame (25/06/2004) Matematica - Prova d esame (/6/4) Università di Verona - Laurea in Biotecnologie AI - A.A. /4. (a) Disegnare sul piano di Gauss i numeri z = i e w = i, e scriverne la forma trigonometrica. Calcolare z

Dettagli

Alcune v.a. discrete notevoli

Alcune v.a. discrete notevoli Alcune v.a. discrete notevoli Variabile aleatoria Bernoulliana Il risultato X di un esperimento aleatorio può essere classificato nel modo che segue: successo oppure insuccesso. Indichiamo: Successo =

Dettagli

Teoria dei Segnali Introduzione ai processi stocastici

Teoria dei Segnali Introduzione ai processi stocastici Teoria dei Segnali Introduzione ai processi stocastici Valentino Liberali Dipartimento di Fisica Università degli Studi di Milano valentino.liberali@unimi.it Teoria dei Segnali Introduzione ai processi

Dettagli

Analisi matematica I. Calcolo integrale. Primitive e integrali indefiniti

Analisi matematica I. Calcolo integrale. Primitive e integrali indefiniti Analisi matematica I Calcolo integrale Regole di integrazione Integrali definiti condo Riemann Teorema fondamentale del calcolo integrale Integrali impropri 2 2006 Politecnico di Torino 1 Calcolo integrale

Dettagli

Analisi Matematica 2

Analisi Matematica 2 Analisi Matematica 2 Differenziabilità per funzioni di due variabili Differenziabilità per funzioni di due variabili CCS Ingegneria Meccanica e Ingegneria Chimica 1 / 26 Differenziabilitá Data la funzione

Dettagli

Variabili casuali multidimensionali

Variabili casuali multidimensionali Capitolo 1 Variabili casuali multidimensionali Definizione 1.1 Le variabili casuali multidimensionali sono k-ple ordinate di variabili casuali unidimensionali definite sullo stesso spazio di probabilità.

Dettagli

Politecnico di Milano Corso di Analisi e Geometria 1. Federico Lastaria

Politecnico di Milano Corso di Analisi e Geometria 1. Federico Lastaria Politecnico di Milano Corso di Analisi e Geometria 1 Federico Lastaria federico.lastaria@poi.it Limiti di derivate. Punti angolosi e di cuspide. Ottobre 2012 Indice 1 Limiti della derivata e punti di non

Dettagli

Esercitazione del 16/04/2019 Istituzioni di Calcolo delle Probabilità

Esercitazione del 16/04/2019 Istituzioni di Calcolo delle Probabilità Esercitazione del 6/04/09 Istituzioni di Calcolo delle Probabilità David Barbato Nozioni di riepilogo con esercizi Distribuzione di una funzione di una variabile aleatoria discreta. Sia X una variabile

Dettagli

I Appello di Calcolo delle Probabilità Laurea Triennale in Matematica 2016/17

I Appello di Calcolo delle Probabilità Laurea Triennale in Matematica 2016/17 I Appello di Calcolo delle Probabilità Laurea Triennale in Matematica 6/7 Martedì 3 gennaio 7 Cognome: Nome: Email: Se non è espressamente indicato il contrario, per la soluzione degli esercizi è possibile

Dettagli

Funzioni di più variabli: dominio, limiti, continuità

Funzioni di più variabli: dominio, limiti, continuità Funzioni di più variabli: dominio, limiti, continuità Riccarda Rossi Università di Brescia Analisi Matematica B Riccarda Rossi (Università di Brescia) Funzioni di più variabli Analisi Matematica B 1 /

Dettagli

Funzioni di più variabli: dominio, limiti, continuità

Funzioni di più variabli: dominio, limiti, continuità Funzioni di più variabli: dominio, limiti, continuità Riccarda Rossi Università di Brescia Analisi Matematica B Riccarda Rossi (Università di Brescia) Funzioni di più variabli Analisi Matematica B 1 /

Dettagli

Corso di Analisi Matematica

Corso di Analisi Matematica Corso di Laurea in Ingegneria Edile Corso di CONVESSITÀ Lucio Demeio Dipartimento di Ingegneria Industriale e delle Scienze Matematiche Derivata seconda Se la derivata (prima) di una funzione è definita

Dettagli

Principi di Statistica a.a

Principi di Statistica a.a Principi di Statistica a.a. 2014-2015 Dr. Luca Secondi 1. Introduzione al corso 1.01Variabili casuali Distribuzioni di probabilità 1 Corso di laurea in Biotecnologie Matematica e PRINCIPI DI STATISTICA

Dettagli