UNIVERSITÀ di ROMA TOR VERGATA

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "UNIVERSITÀ di ROMA TOR VERGATA"

Transcript

1 UNIVERSITÀ di ROMA TOR VERGATA Corso di Statistica, anno 00- P.Baldi Lista di esercizi. Corso di Laurea in Biotecnologie Esercizio Si sa che in una schedina del totocalcio i tre simboli, X, compaiono con probabilità 0.46, 0.8 e 0.6 rispettivamente. Supponiamo inoltre che una colonna del totocalcio riguardi 3 partite, com era fino a poco tempo fa. Calcolare la probabilità che nella schedina di domenica a) il compaia più ( ) di 4 volte; b) il simbolo X non compaia mai; c) i simboli e X insieme compaiano 7 volte. Esercizio Una moneta equilibrata viene lanciata più volte. Qual è la probabilità che al decimo lancio a) si siano avute esattamente 5 teste? b) Si sia avuto testa almeno una volta? c) Si siano avute esattamente testa esattamente una volta? d) Si abbia testa per la prima volta al decimo lancio? Esercizio 3 Una fabbrica produce componenti elettronici. Questi escono da due linee di produzione, A e B, nelle proporzioni del 30% e 70% rispettivamente. La linea A ha una percentuale di pezzi difettosi del 0%, contro 7% per B. a) Qual è la probabilità che un chip scelto a caso sia difettoso? b) I chip vengono venduti in confezioni di 0 pezzi, tutti prodotti dalla stessa linea. Una di queste viene ispezionata e risulta contenere pezzo difettoso. Qual è la probabilità che essa provenga dalla linea A? Qual è la probabilità che provenga dalla linea B? Quale delle due eventualità è più probabile? Esercizio 4 00 palline sono distribuite a caso in 0 scatole. a) Qual è la probabilità che la scatola n. contenga 0 palline? b) Qual è la probabilità che le scatole n. e n. contengano insieme 5 palline? c) Qual è la probabilità che la n. contenga 0 palline e la n. 5? Esercizio 5 Un urna contiene 0 dadi di cui truccato in modo da dare con probabilità e ognuno degli altri 5 risultati con probabilità 0 (gli altri 9 dadi sono equilibrati). Dall urna viene estratto un dado che è poi lanciato tre volte a) Qual è la probabilità che i risultati siano due volte e una volta un numero diverso da?

2 b) Qual è la probabilità che il dado sia truccato sapendo che i tre lanci hanno dato due volte e una volta un numero diverso da? b) Sapendo che i tre lanci hanno dato due volte e una volta un numero diverso da, è più probabile che si tratti di un dado truccato oppure di uno equilibrato? Esercizio 6 Un dado viene lanciato successivamente più volte. a) Qual è la probabilità che dopo n lanci non sia ancora comparso il numero 6? b) Indichiamo con T il numero di lanci necessario per ottenere 6 per la prima volta. b) Quanto vale la probabilità P(T > n) (cioè che dopo n lanci il 6 non sia ancora comparso)? b) Qual è la probabilità P(T = n) (cioè che il 6 compaia per la prima volta esattamente allo n-esimo lamcio)?

3 Soluzioni Esercizio. a) Se supponiamo che i risultati delle singole partite siano indipendenti, il numero, Y, di che compare in una colonna vincente seguirà una legge binomiale B(3, 0.6). La probabilità richiesta è dunque 3 ( ) 3 P(Y 4) = 0.6 k k. k Per fare il calcolo numerico, conviene piuttosto calcolare P(Y 3), cioè k=4 ( ) ( ) ( ) ( ) = b) Il numero, Z, di X che compaiono nella schedina segue una legge B(3, 0.8). Dunque la probabilità che il simbolo X non compaia mai è P(Z = 0) = ( 0.8) 3 = c) Uno dei simboli e X ha la probabilità di comparire in corrispondenza di una singola partita con probabilità = Dunque, sempre assumendo che i singoli risultati siano indipendenti, il numero di volte che uno di questi simboli compare nella schedina dei risultati sarà una v.a. binomiale B(3, 0.54). La probabilità di 7 apparizioni sarà dunque ( 3 7 ) ( 0.54) 6 = 0.8 Esercizio. Indichiamo con X il numero di T ottenuto nei primi 0 lanci. Sappiamo che X segue una legge binomiale B(0, ) (numero di apparizioni in una sequenza di prove indipendenti). A partire da questa due osservazione la risposta alle questioni proposte è immediata, tranne forse per la d). a) P(X = 5) = ( 0 5 ) ( ) 0 = b) P(X ) = P(X = 0) = ( )0 = c) P(X = ) = ( 0 ) ( ) 0 = 0( )0 = 0.0. d) Se indichiamo con X i l esito dello i-esimo lancio, la probabilità richiesta è P(X = C, X = C,... X 9 = C, X 0 = T ). Poiché gli eventi relativi agli esiti di lanci diversi sono indipendenti, questa probabilità è uguale al prodotto P(X = C)P(X = C)... P(X 9 = C)P(X 0 = T ) = =

4 Esercizio 3. a) Indichiamo con A, B e C rispettivamente gli eventi il pezzo proviene dalla linea A, proviene dalla linea B e il pezzo è difettoso. Il punto chiave è che i dati del problema ci permettono di affermare che P(A) = 0.3, P(B) = 0.7, P(C A) = 0., P(C B) = 0.7. Inoltre gli eventi A e B costituiscono una partizione dell evento certo (sono disgiunti e la somma delle loro probabilità vale ). Dunque per la formula delle probabilità totali P(C) = P(C A)P(A) + P(C B)P(B) = = 0.5. b) Se consideriamo una scatola contenente 0 pezzi provenienti dalla linea A, allora ciascuno di essi può essere difettoso con probabilità 0.. Possiamo inoltre supporre che ogni pezzo sia difettoso oppure no indipendentemente dagli altri. Dunque il numero di pezzi difettosi in una scatola di 0 proveniente dalla linea A si modellizza con una v.a. di legge binomiale B(0, 0.). Analogamente se la scatola proviene dalla linea B il numero di pezzi difettosi seguirà una legge B(0, 0.7). Se ora indichiamo con C l evento nella scatola vi è (esattamente) un pezzo difettoso, allora avremo ( ) 0 P(C A) = = = 0.39 ( ) 0 P(C B) = = = 0.3. La probabilità che un pezzo difettoso provenga dalla linea A non è altro che la probabilità condizionale P(A C ). Per calcolarla si usa la formula di Bayes: P(A C ) = P(C A)P(A) P(C ) Nella frazione a destra nella formula precedente conosciamo tutte le quantità che intervengono tranne P(C ). Il calcolo di questa probabilità è però facile, sempre usando la formula delle probabilità totali: P(C ) = P(C A)P(A) + P(C B)P(B) = = Dunque P(A C ) = =

5 Allo stesso modo P(B C ) = P(C B)P(B) P(C ) = È quindi più probabile che la scatola provenga dalla linea B. = Esercizio 4. a) Poniamo { se la i esima pallina finisce nella scatola X i = 0 altrimenti. La probabilità che una singola pallina finisca nella scatola vale 0 poiché, per come il problema è posto, possiamo supporre che tutte le scatole abbiano la stessa probabilità di essere scelte. Dunque P(X i = ) = 0 e cioè X i B(, 0 ). Inoltre le v.a. X,..., X 00 si possono supporre indipendenti. Il numero di palline finite nella scatola è dunque Y = X X 00 ; se ne ricava che Y, numero di palline che sono finite nella scatola numero, è binomiale B(00, 0 ) per cui la probabilità richiesta vale ( 00 P(Y = i) = 0 ) ( 0 ) 0 ( ) 90 = b) Indichiamo con Y il numero di palline che finiscono nella scatola o nella. Ripetendo gli argomenti precedenti Y è binomiale B(00, 0 ) (ora la probabilità di finire nella scatola o nella è 0 = 5 ). Dunque ( ) 00 ( 4 ) 75 P(Y = 5) = = c) Indichiamo con Y, Y, Y 3 il numero di palline che finiscono rispettivamente nella scatola, nella e in una qualunque delle scatole dalle 3 alla 0. Allora la loro legge congiunta è multinomiale di parametri 0, 0, 4 5 rispettivamente. Quindi P(Y = 0, Y = 5) = 00! ( ) 0 ( 5 ( 4 ) 75. 0!5!75! 0 0) 5 Esercizio 5. a) La probabilità di osservare in un singolo lancio è 6 se il dado è equilibrato e se il dado è truccato. Dunque il numero di uni in tre lanci sarà una v.a. di legge binomiale B(3, 6 ) se il dado è equilibrato e B(3, se è truccato. I dati del problema permettono quindi di affermare che P(A B 0 ) = ( 3 ) ( 6 P(B 0 ) = 9 0, P(B ) = 0 ) 5 6 = 5 7 = 0.07, P(A B ) = ( 3 ) ( ) = 3 8 =

6 Dunque P(A) = P(A B 0 )P(B 0 ) + P(A B )P(B ) = b) Si tratta di calcolare P(B A). La formula di Bayes dà subito 0 = 0 = 0.. P(B A) = P(A B )P(B ) P(A) = 3 8 = b) Poiché evidentemente P(B 0 A) = P(B A) = 5 8, è più probabile che si tratti di un dado equilibrato.

UNIVERSITÀ di ROMA TOR VERGATA

UNIVERSITÀ di ROMA TOR VERGATA UNIVERSITÀ di ROMA TOR VERGATA Corso di Laurea Magistrale in Scienze della Nutrizione Umana Corso di Statistica Medica, anno 05-6 P.Baldi Lista di esercizi, 8 gennaio 06. Esercizio Si sa che in una schedina

Dettagli

UNIVERSITÀ di ROMA TOR VERGATA

UNIVERSITÀ di ROMA TOR VERGATA UNIVERSITÀ di ROMA TOR VERGATA Corso di Statistica, anno 2010-11 P.Baldi Lista di esercizi 3. Corso di Laurea in Biotecnologie Esercizio 1 Una v.a. X segue una legge N(2, ). Calcolare a1) P(X 1) a2) P(2

Dettagli

1. Descrivere gli spazi campionari dei seguenti esperimenti casuali: 1. lancio di un dado 2. lancio di due dadi 3.

1. Descrivere gli spazi campionari dei seguenti esperimenti casuali: 1. lancio di un dado 2. lancio di due dadi 3. Corso di Laurea INTERFACOLTÀ - Esercitazione di Statistica n 6 ESERCIZIO 1: 1. Descrivere gli spazi campionari dei seguenti esperimenti casuali: 1. lancio di un dado 2. lancio di due dadi 3. lancio di

Dettagli

I diritti d autore sono riservati. Ogni sfruttamento commerciale non autorizzato sarà perseguito.

I diritti d autore sono riservati. Ogni sfruttamento commerciale non autorizzato sarà perseguito. TEST DI AUTOVALUTAZIONE - SETTIMANA I diritti d autore sono riservati. Ogni sfruttamento commerciale non autorizzato sarà perseguito. Metodi statistici per la biologia 1 Parte A 1.1 Si considerino gli

Dettagli

Esercitazione del 31/01/2012 Istituzioni di Calcolo delle Probabilità

Esercitazione del 31/01/2012 Istituzioni di Calcolo delle Probabilità Esercitazione del 1/01/2012 Istituzioni di Calcolo delle Probabilità Esercizio 1 Vengono lanciati due dadi regolari a 6 facce. (a) Calcolare la probabilità che la somma dei valori ottenuti sia 9? (b) Calcolare

Dettagli

Probabilità 1, laurea triennale in Matematica I prova scritta sessione estiva a.a. 2008/09

Probabilità 1, laurea triennale in Matematica I prova scritta sessione estiva a.a. 2008/09 Probabilità, laurea triennale in Matematica I prova scritta sessione estiva a.a. 2008/09. Due roulette regolari vengono azionate più volte; sia T il numero di volte che occorre azionare la prima roulette

Dettagli

Soluzioni degli esercizi proposti

Soluzioni degli esercizi proposti Soluzioni degli esercizi proposti.9 a La cardinalità dell insieme dei numeri,..., 0 n che sono multipli di 5 è 0n 5. Dunque, poiché siamo in una condizione di equiprobabilità, la probabilità richiesta

Dettagli

CP110 Probabilità: Esonero 1. Testo e soluzione

CP110 Probabilità: Esonero 1. Testo e soluzione Dipartimento di Matematica, Roma Tre Pietro Caputo 2009-2010, II semestre 1 aprile, 2010 CP110 Probabilità: Esonero 1 Testo e soluzione 1. (7 pt Una scatola contiene 15 palle numerate da 1 a 15. Le palle

Dettagli

Esame di AM2 & EAP (270/04) a.a. 2009/10

Esame di AM2 & EAP (270/04) a.a. 2009/10 Quarto appello del 16 Luglio 2010 1. Un urna contiene delle palline numerate e distribuite in seguente maniera: Vengono estratte due palline senza rimpiazzo e siano X e Y rispettivamente il numero della

Dettagli

VARIABILI ALEATORIE Una moneta equilibrata viene lanciata più volte. Qual è la probabilità che al 6 lancio:

VARIABILI ALEATORIE Una moneta equilibrata viene lanciata più volte. Qual è la probabilità che al 6 lancio: VARIABILI ALEATORIE. Una moneta equilibrata viene lanciata più volte. Qual è la probabilità che al lancio: a) si abbia testa per la prima volta? b) Si sia avuto testa almeno una volta? c) Si sia avuta

Dettagli

Calcolo delle Probabilità e Statistica, Ingegneria Civile e A&T e Informatica I prova finale a.a. 2016/17

Calcolo delle Probabilità e Statistica, Ingegneria Civile e A&T e Informatica I prova finale a.a. 2016/17 Calcolo delle Probabilità e Statistica, Ingegneria Civile e A&T e Informatica I prova finale aa 6/ Punteggi: : 3 + 6; : + + + ; 3: + Una scatola contiene monete; 8 di queste sono equilibrate, mentre le

Dettagli

STATISTICA: esercizi svolti sulle VARIABILI CASUALI

STATISTICA: esercizi svolti sulle VARIABILI CASUALI STATISTICA: esercizi svolti sulle VARIABILI CASUALI VARIABILI CASUALI 2 VARIABILI CASUALI. Variabili casuali generiche. Si supponga che un dado truccato, formato da sei facce contrassegnate dai numeri

Dettagli

ESERCIZI SU EVENTI E VARIABILI ALEATORIE DISCRETE

ESERCIZI SU EVENTI E VARIABILI ALEATORIE DISCRETE ESERCIZI SU EVENTI E VARIABILI ALEATORIE DISCRETE Docente titolare: Irene Crimaldi 26 novembre 2009 Es.1 Supponendo che la probabilità di nascita maschile e femminile sia la stessa, calcolare la probabilità

Dettagli

Calcolo delle Probabilità 2013/14 Foglio di esercizi 3

Calcolo delle Probabilità 2013/14 Foglio di esercizi 3 Calcolo delle Probabilità 203/4 Foglio di esercizi 3 Probabilità condizionale e indipendenza. Esercizio. Per rilevare la presenza di una certa malattia, si effettua un test. Se la persona sottoposta al

Dettagli

Esercizi di Calcolo delle Probabilità

Esercizi di Calcolo delle Probabilità Esercizi di Calcolo delle Probabilità Versione del 1/05/005 Corso di Statistica Anno Accademico 00/05 Antonio Giannitrapani, Simone Paoletti Calcolo delle probabilità Esercizio 1. Un dado viene lanciato

Dettagli

Matematica II: Calcolo delle Probabilità e Statistica Matematica

Matematica II: Calcolo delle Probabilità e Statistica Matematica Matematica II: Calcolo delle Probabilità e Statistica Matematica ELT A-Z Docente: dott. F. Zucca Esercitazione # 3 1 Distribuzione di Bernoulli e Distribuzione Binomiale Esercizio 1 Sia n un intero maggiore

Dettagli

Esercizi svolti di statistica. Gianpaolo Gabutti

Esercizi svolti di statistica. Gianpaolo Gabutti Esercizi svolti di statistica Gianpaolo Gabutti (gabuttig@hotmail.com) 1 Introduzione Questo breve documento contiene lo svolgimento di alcuni esercizi di statistica da me svolti durante la preparazione

Dettagli

STATISTICA 1 ESERCITAZIONE 8

STATISTICA 1 ESERCITAZIONE 8 STATISTICA 1 ESERCITAZIONE 8 Dott. Giuseppe Pandolfo 18 Novembre 2013 CALCOLO DELLE PROBABILITA Elementi del calcolo delle probabilità: 1) Esperimento: fenomeno caratterizzato da incertezza 2) Evento:

Dettagli

Variabili casuali ad una dimensione Testi degli esercizi. Variabili casuali ad una dimensione a.a. 2012/2013 1

Variabili casuali ad una dimensione Testi degli esercizi. Variabili casuali ad una dimensione a.a. 2012/2013 1 Variabili casuali ad una dimensione Testi degli esercizi 1 Costruzione di variabile casuale discreta Esercizio 1. Sia data un urna contenente 3 biglie rosse, 2 biglie bianche ed una biglia nera. Ad ogni

Dettagli

UNIVERSITÀ di ROMA TOR VERGATA

UNIVERSITÀ di ROMA TOR VERGATA UNIVERSITÀ di ROMA TOR VERGATA Corso di Laurea Magistrale in Scienze della Nutrizione Umana Corso di Statistica Medica, anno 2015-16 P.Baldi Lista di esercizi 4, 11 febbraio 2016. Esercizio 1 Una v.a.

Dettagli

SOLUZIONI DEL 1 0 TEST DI PREPARAZIONE ALLA 1 a PROVA INTERMEDIA

SOLUZIONI DEL 1 0 TEST DI PREPARAZIONE ALLA 1 a PROVA INTERMEDIA SOLUZIONI DEL 1 0 TEST DI PREPARAZIONE ALLA 1 a PROVA INTERMEDIA 1 Esercizio 0.1 Dato P (A) = 0.5 e P (A B) = 0.6, determinare P (B) nei casi in cui: a] A e B sono incompatibili; b] A e B sono indipendenti;

Dettagli

Statistica Inferenziale

Statistica Inferenziale Statistica Inferenziale Prof. Raffaella Folgieri Email: folgieri@mtcube.com aa 2009/2010 Riepilogo lezione 1 Abbiamo visto: Definizioni di statistica, statistica inferenziale, probabilità (interpretazione

Dettagli

Probabilità Condizionale - 1

Probabilità Condizionale - 1 Probabilità Condizionale - 1 Come varia la probabilità al variare della conoscenza, ovvero delle informazioni in possesso di chi la calcola? ESEMPIO - Calcolare la probabilità che in una estrazione della

Dettagli

P (F E) = P (E) P (F E) = = 25

P (F E) = P (E) P (F E) = = 25 Regola del prodotto Conoscete la definizione di probabilità condizionata. Definizione 1. Siano E e F due eventi di uno spazio campionario S. Supponiamo P (F ) > 0. La probabilità condizionata dell evento

Dettagli

Esercizi settimana 5. Esercizi applicati. Esercizio 1. Si considerino tre monete truccate, ognuna con probabilità 2 3

Esercizi settimana 5. Esercizi applicati. Esercizio 1. Si considerino tre monete truccate, ognuna con probabilità 2 3 1 Esercizi settimana 5 Esercizi applicati Esercizio 1. Si considerino tre monete truccate, ognuna con probabilità 3 di ottenere testa. Se scegliete la prima moneta vincete 10 punti se esce testa e punti

Dettagli

Matematica con elementi di statistica ESERCIZI: probabilità

Matematica con elementi di statistica ESERCIZI: probabilità Matematica con elementi di statistica ESERCIZI: probabilità Esercizi sulla Probabilità Esercizio 1. In un corso di laurea uno studente deve scegliere un esame fra 8 di matematica e un esame fra 5 di fisica.

Dettagli

Calcolo delle Probabilità

Calcolo delle Probabilità Calcolo delle Probabilità Paolo Baldi, Università di Roma Tor Vergata McGraw-Hill Prima parte: soluzioni pag 3 Seconda parte: risultati degli esercizi proposti pag 5 Paolo Baldi Calcolo delle Probabilità

Dettagli

Esercitazioni del Corso di Probabilitá e Statistica Lezione 2: Eventi disgiunti, eventi indipendenti e probabilitá condizionata

Esercitazioni del Corso di Probabilitá e Statistica Lezione 2: Eventi disgiunti, eventi indipendenti e probabilitá condizionata Esercitazioni del Corso di Probabilitá e Statistica Lezione 2: Eventi disgiunti, eventi indipendenti e probabilitá condizionata Stefano Patti 1 19 ottobre 2005 Definizione 1 Sia (Ω, F) uno spazio probabilizzabile.

Dettagli

IL CALCOLO DELLA PROBABILITÀ

IL CALCOLO DELLA PROBABILITÀ IL LOLO LL PROILITÀ 1 Una scatola contiene quattro dischetti rossi numerati da 1 a 4, sei dischetti verdi numerati da 1 a e cinque dischetti bianchi numerati da 1 a 5. Si estrae un dischetto. Scrivi gli

Dettagli

p k q n k = p n (k) = n 12 = 1 = 12 1 12 11 10 9 1 0,1208. q = 1 2 e si ha: p 12 (8) = 12 8 4

p k q n k = p n (k) = n 12 = 1 = 12 1 12 11 10 9 1 0,1208. q = 1 2 e si ha: p 12 (8) = 12 8 4 CAPITOLO QUARTO DISTRIBUZIONE BINOMIALE (O DI BERNOULLI) Molti degli esempi che abbiamo presentato nei capitoli precedenti possono essere pensati come casi particolari di uno schema generale di prove ripetute,

Dettagli

Statistica Inferenziale

Statistica Inferenziale Statistica Inferenziale Prof. Raffaella Folgieri Email: folgieri@mtcube.com aa 2009/2010 Riepilogo lezione 3 Abbiamo visto: Definizione di partizione di Teorema di Bayes Definizione di variabile aleatoria

Dettagli

Esercizi su variabili discrete: binomiali e ipergeometriche

Esercizi su variabili discrete: binomiali e ipergeometriche CORSO DI CALCOLO DELLE PROBABILITÀ E STATISTICA Esercizi su variabili discrete: binomiali e ipergeometriche Es1 Due squadre di rugby si sfidano giocando fra loro varie partite La squadra che vince 4 partite

Dettagli

Esercizi di Probabilità

Esercizi di Probabilità Esercizi di Probabilità Annalisa Cerquetti - Sandra Fortini Vai all indice Istituto di Metodi Quantitativi, Viale Isonzo, 25, 2033 Milano, Italy. E-mail: annalisa.cerquetti@unibocconi.it,sandra.fortini@unibocconi.it

Dettagli

) la sua densità discreta sarà della forma. p X (0) = 1 2, p X(1) = 1 2,

) la sua densità discreta sarà della forma. p X (0) = 1 2, p X(1) = 1 2, Esercizi settimana 6 Esercizi applicati Esercizio. Siano X e Y due v.a. discrete indipendenti tali che X B(, ) e Y B(, ), n 0. (i) Si calcoli la legge di X + Y ; (ii) Si calcoli la legge di X Y ; (iii)

Dettagli

Test di autovalutazione

Test di autovalutazione Test Test di autovalutazione 0 0 0 0 0 0 0 70 80 90 00 n Il mio punteggio, in centesimi, è n Rispondi a ogni quesito segnando una sola delle alternative. n Confronta le tue risposte con le soluzioni. n

Dettagli

Statistica - metodologie per le scienze economiche e sociali /2e S. Borra, A. Di Ciaccio - McGraw Hill

Statistica - metodologie per le scienze economiche e sociali /2e S. Borra, A. Di Ciaccio - McGraw Hill Statistica - metodologie per le scienze economiche e sociali /e S. Borra A. Di Ciaccio - McGraw Hill s. 9. Soluzione degli esercizi del capitolo 9 In base agli arrotondamenti effettuati nei calcoli si

Dettagli

PROBABILITA. DEFINIZIONE: Ogni singolo risultato di un esperimento casuale si chiama evento elementare

PROBABILITA. DEFINIZIONE: Ogni singolo risultato di un esperimento casuale si chiama evento elementare PROBABILITA La teoria della probabilità si applica ad esperimenti aleatori o casuali: ossia, esperimenti il cui risultato non è prevedibile a priori. Ad esempio, lancio di un dado, lancio di una moneta,

Dettagli

X = X 1 + X 2 +... + X n. dove. 1 se alla i-esima prova si ha un successo 0 se alla i-esima prova si ha un insuccesso. X i =

X = X 1 + X 2 +... + X n. dove. 1 se alla i-esima prova si ha un successo 0 se alla i-esima prova si ha un insuccesso. X i = PIU DI UNA VARIABILE CASUALE Supponiamo di avere n variabili casuali, X 1, X 2,..., X n. Le n variabili casuali si dicono indipendenti se e solo se P(X 1 x 1 X 2 x 2... X n x n ) = = P(X 1 x 1 ) P(X 2

Dettagli

Ψ PSICOMETRIA. Corso di laurea triennale (classe 34) STATISTICA INFERENZIALE

Ψ PSICOMETRIA. Corso di laurea triennale (classe 34) STATISTICA INFERENZIALE Ψ PSICOMETRIA Corso di laurea triennale (classe 34) STATISTICA INFERENZIALE STATISTICA INFERENZIALE CAMPIONE caratteristiche conosciute POPOLAZIONE caratteristiche sconosciute STATISTICA INFERENZIALE STIMA

Dettagli

Sia f la frequenza di un evento A e n sia la dimensione del campione. La probabilità dell'evento A è

Sia f la frequenza di un evento A e n sia la dimensione del campione. La probabilità dell'evento A è Cenni di probabilità di Carlo Elce Definizioni Lo spazio campionario per un esperimento è l'insieme di tutti i suoi possibili esiti. Per esempio, se l'esperimento è il lancio di due di dadi e si rappresentano

Dettagli

Probabilità delle cause:

Probabilità delle cause: Probabilità delle cause: Probabilità condizionata 2 Teorema delle probabilità composte A B) A) B/A) 3 Teorema delle probabilità totali B )! 4 Teorema delle probabilità delle cause n i A! B ) A / B ) B

Dettagli

Soluzione esercizi (quarta settimana)

Soluzione esercizi (quarta settimana) Soluzione esercizi (quarta settimana) Marco Riani Esempio totocalcio Gioco la schedina mettendo a caso i segni 1 X 2 Qual è la prob. di fare 14? 1 Esempio Gioco la schedina mettendo a caso i segni (1 X

Dettagli

Cenni di analisi combinatoria

Cenni di analisi combinatoria Cenni di analisi combinatoria In molti problemi concreti di teoria della probabilità e, in particolare, nell ambito della interpretazione classica occorre calcolare quanti sono gli esiti che compongono

Dettagli

Esercitazione del 13/04/2015 Probabilità e Statistica

Esercitazione del 13/04/2015 Probabilità e Statistica Esercitazione del 3/04/205 Probabilità e Statistica David Barbato I quesiti contrassegnati con il simbolo saranno accessibili nella seconda metà del corso. Esercizio. Una nota concessionaria automobilistica

Dettagli

ESERCIZI PROBABILITA E CALCOLO COMBINATORIO CON RISULTATI 1. P che estraendo a caso 1 carta da un mazzo di 52 sia una regina?

ESERCIZI PROBABILITA E CALCOLO COMBINATORIO CON RISULTATI 1. P che estraendo a caso 1 carta da un mazzo di 52 sia una regina? ESERCIZI PROBABILITA E CALCOLO COMBINATORIO CON RISULTATI 1. P che estraendo a caso 1 carta da un mazzo di 52 sia una regina? [4/52] 2. Estratta una Q, P che ad una seconda estrazione si presenti ancora

Dettagli

Calcolo della probabilità

Calcolo della probabilità Calcolo della probabilità GLI EVENTI Un evento è un fatto che può accadere o non accadere. Se esso avviene con certezza si dice evento certo, mentre se non può mai accadere si dice evento impossibile.

Dettagli

ESERCITAZIONE 20 : VARIABILI ALEATORIE DISCRETE

ESERCITAZIONE 20 : VARIABILI ALEATORIE DISCRETE ESERCITAZIONE 20 : VARIABILI ALEATORIE DISCRETE e-mail: tommei@dm.unipi.it web: www.dm.unipi.it/ tommei Ricevimento: su appuntamento Dipartimento di Matematica, piano terra, studio 114 30 Aprile 2013 Esercizio

Dettagli

ESERCIZI DI CALCOLO PROBABILITÀ DISTRIBUZIONI DOPPIE E NOTEVOLI

ESERCIZI DI CALCOLO PROBABILITÀ DISTRIBUZIONI DOPPIE E NOTEVOLI Variabili bidimensionali ESERCIZI DI CALCOLO PROBABILITÀ DISTRIBUZIONI DOPPIE E NOTEVOLI 1) Siano X 1 e X 2 due variabili casuali indipendenti che possono assumere valori 0, 1 e 3 rispettivamente con probabilità

Dettagli

Probabilità e Processi stocastici. Ingegneria Robotica e dell Automazione. Prova scritta del giorno 15/12/14

Probabilità e Processi stocastici. Ingegneria Robotica e dell Automazione. Prova scritta del giorno 15/12/14 Probabilità e Processi stocastici. Ingegneria Robotica e dell Automazione. Prova scritta del giorno 15/12/14 In ingegneria un sistema formato da n componenti è detto k su n se funziona quando almeno k

Dettagli

Variabili aleatorie discrete. Giovanni M. Marchetti Statistica Capitolo 5 Corso di Laurea in Economia

Variabili aleatorie discrete. Giovanni M. Marchetti Statistica Capitolo 5 Corso di Laurea in Economia Variabili aleatorie discrete Giovanni M. Marchetti Statistica Capitolo 5 Corso di Laurea in Economia 2015-16 1 / 45 Variabili aleatorie Una variabile aleatoria è simile a una variabile statistica Una variabile

Dettagli

Corso di Fondamenti di TLC Esercizi di Probabilitá

Corso di Fondamenti di TLC Esercizi di Probabilitá Corso di Fondamenti di TLC Esercizi di Probabilitá Exercise 0.1 Unurna contiene 2 biglie bianche e 5 nere. Estraiamo una prima biglia: se nera la rimettiamo dentro con altre due dello stesso colore, se

Dettagli

P(X > 0) = P(X 1 = 1) + P(X 1 = 1, X 2 = 1, X 3 = 1) =

P(X > 0) = P(X 1 = 1) + P(X 1 = 1, X 2 = 1, X 3 = 1) = 1 Esercizi settimana 3 Esercizio 1. Un urna contiene 8 palline bianche, 4 nere e rosse. Si assuma di vincere e ogni volta che si estragga una pallina nera, si perda 1e per ogni pallina bianca e non succeda

Dettagli

STATISTICA ESERCITAZIONE 9

STATISTICA ESERCITAZIONE 9 STATISTICA ESERCITAZIONE 9 Dott. Giuseppe Pandolfo 19 Gennaio 2015 REGOLE DI CONTEGGIO Sequenze ordinate Sequenze non ordinate Estrazioni con ripetizione Estrazioni senza ripetizione Estrazioni con ripetizione

Dettagli

Statistica 1 A.A. 2015/2016

Statistica 1 A.A. 2015/2016 Corso di Laurea in Economia e Finanza Statistica 1 A.A. 2015/2016 (8 CFU, corrispondenti a 48 ore di lezione frontale e 24 ore di esercitazione) Prof. Luigi Augugliaro 1 / 51 Introduzione Il Calcolo delle

Dettagli

Modelli matematici di fenomeni aleatori Variabilità e casualità

Modelli matematici di fenomeni aleatori Variabilità e casualità Modelli matematici di fenomeni aleatori Variabilità e casualità La casualità è alla base della scelta degli individui che compongono un campione ai fini di un indagine statistica. La casualità è alla base

Dettagli

STATISTICA A K (63 ore) Marco Riani

STATISTICA A K (63 ore) Marco Riani STATISTICA A K (63 ore) Marco Riani mriani@unipr.it http://www.riani.it Esempio totocalcio Gioco la schedina mettendo a caso i segni 1 X 2 Qual è la prob. di fare 14? Esempio Gioco la schedina mettendo

Dettagli

COMPITO n. 1. c(4s + 6t) se 0 s t 1 f(s, t) = 0 altrimenti

COMPITO n. 1. c(4s + 6t) se 0 s t 1 f(s, t) = 0 altrimenti COMPITO n. 1 a) Si lancia due volte un dado non truccato. Quant è la probabilità dell evento al primo lancio esce un numero strettamente minore di 3 oppure al secondo lancio esce un numero strettamente

Dettagli

ESERCIZI DI MATEMATICA DISCRETA E PROBABILITÀ

ESERCIZI DI MATEMATICA DISCRETA E PROBABILITÀ ESERCIZI DI MATEMATICA DISCRETA E PROBABILITÀ Esercizi del 28/09/2016 (1) In quanti modo posso scegliere 2 persone tra 10? Quante sono le sequenze date da due cifre decimali? (2) Quanti sono i sottoinsiemi

Dettagli

Calcolo delle probabilità

Calcolo delle probabilità Capitolo 1 Calcolo delle probabilità Esercizio I. 1 Luca prende il treno per andare a scuola e cerca il suo amico Giovanni. Luca sa che è ugualmente probabile che Giovanni abbia preso il bus o il treno

Dettagli

Distribuzioni campionarie. Antonello Maruotti

Distribuzioni campionarie. Antonello Maruotti Distribuzioni campionarie Antonello Maruotti Outline 1 Introduzione 2 Concetti base Si riprendano le considerazioni fatte nella parte di statistica descrittiva. Si vuole studiare una popolazione con riferimento

Dettagli

ESERCIZI SCHEDA N. 1: EVENTI E VARIABILI ALEATORIE

ESERCIZI SCHEDA N. 1: EVENTI E VARIABILI ALEATORIE ESERCIZI SCHEDA N. 1: EVENTI E VARIABILI ALEATORIE 1) Dato lo spazio campionario Ω = {(1,1); (1,2); (1,3); (1,4); (1,5); (1,6); (2,1); (2,2); (2,3); ; (6,6)} riferito al lancio di due dadi non truccati,

Dettagli

È l insieme di tutti i possibili esiti di un esperimento aleatorio; si indica generalmente con il simbolo.

È l insieme di tutti i possibili esiti di un esperimento aleatorio; si indica generalmente con il simbolo. A Ripasso Terminologia DOMADE Spazio campionario Evento Evento certo Evento elementare Evento impossibile Evento unione Evento intersezione Eventi incompatibili Evento contrario RISPOSTE È l insieme di

Dettagli

Per capire qual è l altezza media degli italiani è stato intervistato un campione di 1523 cittadini. La media campionaria dell altezza risulta essere:

Per capire qual è l altezza media degli italiani è stato intervistato un campione di 1523 cittadini. La media campionaria dell altezza risulta essere: PROBABILITÀ E STATISTICA Per capire qual è l altezza media degli italiani è stato intervistato un campione di 1523 cittadini. La media campionaria dell altezza risulta essere: x = 172, 3 cm Possiamo affermare

Dettagli

STATISTICA (2) ESERCITAZIONE 1. Dott.ssa Antonella Costanzo

STATISTICA (2) ESERCITAZIONE 1. Dott.ssa Antonella Costanzo STATISTICA (2) ESERCITAZIONE 1 29.01.2014 Dott.ssa Antonella Costanzo Esercizio 1. Modelli discreti di probabilità: le v.c. binomiale e geometrica (come caso particolare della v.c. binomiale negativa)

Dettagli

Statistica. Esercitazione 10. Alfonso Iodice D Enza iodicede@unicas.it. Università degli studi di Cassino. Statistica. A. Iodice. V.C.

Statistica. Esercitazione 10. Alfonso Iodice D Enza iodicede@unicas.it. Università degli studi di Cassino. Statistica. A. Iodice. V.C. uniforme Bernoulli binomiale di Esercitazione 10 Alfonso Iodice D Enza iodicede@unicas.it Università degli studi di Cassino () 1 / 55 Outline uniforme Bernoulli binomiale di 1 uniforme 2 Bernoulli 3 4

Dettagli

Corso di Laurea Triennale in Matematica Calcolo delle Probabilità I (docenti G. Nappo, F. Spizzichino)

Corso di Laurea Triennale in Matematica Calcolo delle Probabilità I (docenti G. Nappo, F. Spizzichino) Corso di Laurea Triennale in Matematica Calcolo delle Probabilità I (docenti G. Nappo, F. Spizzichino Prova di Mercoledì giugno 4 (tempo a disposizione: ore. Scrivere su ogni foglio NOME e COGNOME. Le

Dettagli

Test di Matematica di base

Test di Matematica di base Test di Matematica di base Calcolo combinatorio e delle probabilitá Quanti oggetti possiamo differenziare con delle targhe di due simboli di cui il primo é una lettera dell alfabeto italiano e il secondo

Dettagli

incompatibili compatibili complementari eventi composti probabilità composta

incompatibili compatibili complementari eventi composti probabilità composta Un evento si dice casuale, o aleatorio, se il suo verificarsi dipende esclusivamente dal caso. La probabilità matematica p di un evento aleatorio è il rapporto fra il numero dei casi favorevoli f e il

Dettagli

Scrivere su ogni foglio NOME e COGNOME. Le risposte devono essere giustificate sui fogli protocollo e riportate nel foglio RISPOSTE.

Scrivere su ogni foglio NOME e COGNOME. Le risposte devono essere giustificate sui fogli protocollo e riportate nel foglio RISPOSTE. Corso di Laurea Triennale in Matematica Corso di Calcolo delle Probabilità 1 A. A. 4/5 a prova in itinere 8/6/5docenti G. Nappo, F. Spizzichino La prova scritta consiste nello svolgimento degli Esercizi

Dettagli

Probabilità esempi. Aiutiamoci con una rappresentazione grafica:

Probabilità esempi. Aiutiamoci con una rappresentazione grafica: Probabilità esempi Paolo e Francesca giocano a dadi. Paolo scommette che, lanciando due dadi, si otterrà come somma 8 oppure 9. Francesca scommette che si otterrà come somma un numero minore o uguale a

Dettagli

Statistica Matematica Prova scritta del 06/07/05 1. Risposte Domande x se 0 x 2, f(x) = 0 altrove;

Statistica Matematica Prova scritta del 06/07/05 1. Risposte Domande x se 0 x 2, f(x) = 0 altrove; Statistica Matematica Prova scritta del 06/07/05 1 COGNOME: NOME: TEST Scrivere il numero della risposta sopra alla corrispondente domanda. Risposte Domande 1 2 3 4 5 6 7 8 9 10 1 Sia data una variabile

Dettagli

Probabilità e Statistica Esercitazioni. a.a. 2009/2010. C.d.L.: Ingegneria Elettronica e delle Telecomunicazioni, Ingegneria Informatica.

Probabilità e Statistica Esercitazioni. a.a. 2009/2010. C.d.L.: Ingegneria Elettronica e delle Telecomunicazioni, Ingegneria Informatica. Probabilità e Statistica Esercitazioni a.a. 2009/2010 C.d.L.: Ingegneria Elettronica e delle Telecomunicazioni, Ingegneria Informatica Probabilità Ines Campa Probabilità e Statistica - Esercitazioni -

Dettagli

0.1 Esercizi calcolo combinatorio

0.1 Esercizi calcolo combinatorio 0.1 Esercizi calcolo combinatorio Esercizio 1. Sia T l insieme dei primi 100 numeri naturali. Calcolare: 1. Il numero di sottoinsiemi A di T che contengono esattamente 8 pari.. Il numero di coppie (A,

Dettagli

PROBLEMI DI PROBABILITÀ

PROBLEMI DI PROBABILITÀ PROBLEMI DI PROBABILITÀ 1. Si dispongono a caso su uno scaffale sette libri, dei quali tre trattano di matematica. Qual è la probabilità che i tre libri di matematica si vengano a trovare l uno accanto

Dettagli

Esercizi su variabili aleatorie discrete

Esercizi su variabili aleatorie discrete Esercizi su variabili aleatorie discrete Esercizio 1. Data la variabile aleatoria discreta X, caratterizzata dalla seguente rappresentazione nello spazio degli stati: 1 0,25 X = { 0 0,50 1 0,25 calcolare

Dettagli

{ } corrisponde all uscita della faccia i-esima del dado. La distribuzione di probabilità associata ( )

{ } corrisponde all uscita della faccia i-esima del dado. La distribuzione di probabilità associata ( ) Università di Trento - Corsi di Laurea in Ingegneria Civile e in Ingegneria per l Ambiente e il Territorio - 2017/18 Analisi Matematica 1 - professore Alberto Valli 2 foglio di esercizi 25 settembre 2017

Dettagli

COMPITO n. 1. a) Determinare la distribuzione del numero X di palline nere presenti nell urna.

COMPITO n. 1. a) Determinare la distribuzione del numero X di palline nere presenti nell urna. Università di Siena a.a. 28/9 Docente D. Papini COMPITO n. 1 a) Un dado non truccato viene lanciato due volte. Quant è la probabilità dell evento: al primo lancio esce un numero minore o uguale a 2 ed

Dettagli

Variabili casuali. - di Massimo Cristallo -

Variabili casuali. - di Massimo Cristallo - Università degli Studi di Basilicata Facoltà di Economia Corso di Laurea in Economia Aziendale - a.a. 2012/2013 lezioni di statistica del 16 e 27 maggio 2013 - di Massimo Cristallo - Variabili casuali

Dettagli

Esercizi di Calcolo delle Probabilità con Elementi di Statistica Matematica

Esercizi di Calcolo delle Probabilità con Elementi di Statistica Matematica Esercizi di Calcolo delle Probabilità con Elementi di Statistica Matematica Lucio Demeio Dipartimento di Scienze Matematiche Università Politecnica delle Marche 1. Esercizio. Siano X ed Y due variabili

Dettagli

TEST DI AUTOVALUTAZIONE PROBABILITÀ

TEST DI AUTOVALUTAZIONE PROBABILITÀ TEST DI AUTOVALUTAZIONE PROBABILITÀ Statistica 1 Parte A 1.1 Si considerino gli eventi A = nessuno studente ha superato l esame e B = nessuno studente maschio ha superato l esame. Allora A c B è uguale

Dettagli

CP110 Probabilità: Esonero 1

CP110 Probabilità: Esonero 1 Dipartimento di Matematica, Roma Tre Pietro Caputo 2016-17, II semestre 11 aprile, 2017 CP110 Probabilità: Esonero 1 Cognome Nome Matricola Firma Nota: 1. L unica cosa che si può usare durante l esame

Dettagli

Statistica A. Corsi di Laurea afferenti alla IV Facoltà Prova del Cognome e Nome...

Statistica A. Corsi di Laurea afferenti alla IV Facoltà Prova del Cognome e Nome... Compito A Statistica A Corsi di Laurea afferenti alla IV Facoltà Prova del 12-07-2007 Cognome e Nome...... N 0 di Matricola ISTRUZIONI: Copiare in modo chiaro e leggibile lo svolgimento di ciascun esercizio

Dettagli

6. PROBABILITÀ. Definizione Due eventi A e B si dicono incompatibili se il verificarsi di uno esclude il verificarsi dell altro,

6. PROBABILITÀ. Definizione Due eventi A e B si dicono incompatibili se il verificarsi di uno esclude il verificarsi dell altro, 6. PROBABILITÀ L introduzione alla teoria della probabilità può essere vista come un applicazione della teoria degli insiemi. Essa si occupa degli esperimenti il cui esito è incerto. Ebbe origine a metà

Dettagli

Lezione 12. Statistica. Alfonso Iodice D Enza Università degli studi di Cassino. Lezione 12. A. Iodice.

Lezione 12. Statistica. Alfonso Iodice D Enza Università degli studi di Cassino. Lezione 12. A. Iodice. discrete uniforme Bernoulli Poisson Statistica Alfonso Iodice D Enza iodicede@unicas.it Università degli studi di Cassino () Statistica 1 / 56 Outline discrete uniforme Bernoulli Poisson 1 2 discrete 3

Dettagli

Probabilità discreta

Probabilità discreta CAPITOLO 2 Probabilità discreta Esercizio 2.1 Eventi Un opportuno spazio degli eventi è dato da: Ω{(M,M), (M,F), (F, M), (F, F)}. L evento unione di primo figlio femmina e secondo figlio maschio è dato

Dettagli

prima urna seconda urna

prima urna seconda urna Un po di fortuna Considera il seguente gioco: ci sono due urne contenenti delle palline perfettamente uguali tra loro, ma colorate diversamente, alcune bianche, altre nere. Nella prima urna ci sono una

Dettagli

La probabilità composta

La probabilità composta La probabilità composta DEFINIZIONE. Un evento E si dice composto se il suo verificarsi è legato al verificarsi contemporaneo (o in successione) degli eventi E 1, E 2 che lo compongono. Consideriamo il

Dettagli

ESERCIZI DI PROBABILITA

ESERCIZI DI PROBABILITA ESERCIZI DI PROBABILITA Quest'opera è stata rilasciata sotto la licenza Creative Commons Attribuzione-Non commerciale-condividi allo stesso modo 2.5 Italia. Per leggere una copia della licenza visita il

Dettagli

NOZIONI DI CALCOLO DELLE PROBABILITÀ

NOZIONI DI CALCOLO DELLE PROBABILITÀ NOZIONI DI CALCOLO DELLE PROBABILITÀ ESPERIMENTO CASUALE: un esperimento si dice casuale quando gli esiti (manifestazioni o eventi) non possono essere previsti con certezza. PROVA: le ripetizioni, o occasioni

Dettagli

1 4 Esempio 2. Si determini la distribuzione di probabilità della variabile casuale X = punteggio ottenuto lanciando un dado. Si ha immediatamente:

1 4 Esempio 2. Si determini la distribuzione di probabilità della variabile casuale X = punteggio ottenuto lanciando un dado. Si ha immediatamente: CAPITOLO TERZO VARIABILI CASUALI. Le variabili casuali e la loro distribuzione di probabilità In molte situazioni, dato uno spazio di probabilità S, si è interessati non tanto agli eventi elementari (o

Dettagli

Calcolo delle Probabilità Esercizi

Calcolo delle Probabilità Esercizi Calcolo delle Probabilità Esercizi A.A 00-006 Costituenti. Siano dati eventi A, B, C tali che A B = Φ, A B C, determinare i costituenti. C C C C C C C [ AB C, A BC, A B C, A B C ]. Siano dati eventi A,

Dettagli

LEZIONI DI STATISTICA MEDICA

LEZIONI DI STATISTICA MEDICA LEZIONI DI STATISTICA MEDICA A.A. 2010/2011 - Distribuzione binomiale - Distribuzione Normale Sezione di Epidemiologia & Statistica Medica Università degli Studi di Verona DISTRIBUZIONI TEORICHE DI PROBABILITA

Dettagli

Lo spazio degli eventi del lancio di un dado regolare a sei facce è l insieme U 1. 2. 3. U 4. 5. 6

Lo spazio degli eventi del lancio di un dado regolare a sei facce è l insieme U 1. 2. 3. U 4. 5. 6 EVENTI ALEATORI E LORO RAPPRESENTAZIONE Lo spazio degli eventi del lancio di un dado regolare a sei facce è l insieme U... U.. La definizione classica di probabilità dice che, se gli eventi che si considerano

Dettagli

Calcolo Combinatorio e Probabilità

Calcolo Combinatorio e Probabilità Calcolo Combinatorio e Probabilità Andrea Galasso 1 Calcolo Combinatorio Definizione 1 Fissati n, k N, con k n, indicheremo con D n,k := n! (n k)! le disposizioni di n oggetti in k posti e con DR n,k :=

Dettagli

3.1 La probabilità: eventi e variabili casuali

3.1 La probabilità: eventi e variabili casuali Capitolo 3 Elementi di teoria della probabilità Abbiamo già notato come, per la ineliminabile presenza degli errori di misura, quello che otteniamo come risultato della stima del valore di una grandezza

Dettagli

Lezione 2. La probabilità oggettiva : definizione classica e frequentistica e loro problemi

Lezione 2. La probabilità oggettiva : definizione classica e frequentistica e loro problemi Lezione 2 La probabilità oggettiva : definizione classica e frequentistica e loro problemi La definizione classica Definizione classica: La probabilità di un evento E è il rapporto tra il numero dei casi

Dettagli

Modelli probabilistici variabili casuali

Modelli probabilistici variabili casuali Modelli probabilistici variabili casuali Le variabili casuali costituiscono il legame tra il calcolo della probabilità e gli strumenti di statistica descrittiva visti fino ad ora. Idea: pensiamo al ripetersi

Dettagli

La PROBABILITA è un numero che si associa ad un evento E ed esprime il grado di aspettativa circa il suo verificarsi.

La PROBABILITA è un numero che si associa ad un evento E ed esprime il grado di aspettativa circa il suo verificarsi. La maggior parte dei fenomeni, ai quali assistiamo quotidianamente, può manifestarsi in vari modi, ma è quasi sempre impossibile stabilire a priori quale di essi si presenterà ogni volta. La PROBABILITA

Dettagli

Analisi. Calcolo Combinatorio. Ing. Ivano Coccorullo

Analisi. Calcolo Combinatorio. Ing. Ivano Coccorullo Analisi Ing. Ivano Coccorullo Prof. Ivano Coccorullo ü Molti dei problemi classici di calcolo delle probabilità si riducono al calcolo dei casi favorevoli e di quelli possibili. Quando le situazioni diventano

Dettagli

Riprendiamo le probabilità. 1.Probabilità a priori oggettiva 2.Probabilità a posteriori frequentista

Riprendiamo le probabilità. 1.Probabilità a priori oggettiva 2.Probabilità a posteriori frequentista Riprendiamo le probabilità 1.Probabilità a priori oggettiva 2.Probabilità a posteriori frequentista 1 2.Probabilità a posteriori frequentista Tabelle di sopravvivenza.! Volendo calcolare la probabilità

Dettagli