ESERCIZI SU EVENTI E VARIABILI ALEATORIE DISCRETE

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "ESERCIZI SU EVENTI E VARIABILI ALEATORIE DISCRETE"

Transcript

1 ESERCIZI SU EVENTI E VARIABILI ALEATORIE DISCRETE Docente titolare: Irene Crimaldi 26 novembre 2009 Es.1 Supponendo che la probabilità di nascita maschile e femminile sia la stessa, calcolare la probabilità che in una famiglia con quattro figli ci sia almeno un maschio e la probabilità che ci siano almeno un maschio e una femmina. Es.2 Se due carte sono scelte a caso (senza reimmissione) da un mazzo con 52 carte, calcolare la probabilità che siano entrambe dello stesso valore. Calcolare poi la probabilità che siano entrambi assi. Es.3 In un villaggio con n abitanti un falsario mette in circolo una banconota falsa. La banconota passa da una persona all altra k volte. Calcolare: a) la probabilità che la banconota non torni mai al falsario. b) la probabilità che la banconota non torni mai nelle mani di una stessa persona. Es.4 Si lanci un dado non truccato e si consideri il numero aleatorio che vale 1 se il risultato è un numero pari e 0 se il numero ottenuto è dispari. Determinare: a) l insieme dei valori possibili di X. b) la distribuzione di X. c) la previsione di X. Es.5 Una sorgente binaria genera le cifre 1 o 0 in modo casuale, rispettivamente con probabilità 0.6 e 0.4. a) Calcolare la probabilità che due 1 e tre 0 si verifichino in una sequenza a cinque cifre. b) Calcolare la probabilità che almeno tre 1 si verifichino in una sequenza a cinque cifre. 1

2 Es.6 Su una nave viaggiano 1800 persone. Fra queste 200 vengono colpite da un virus. Un gruppo di medici seleziona fra i viaggiatori un campione di 50 persone per eseguire su di essi alcuni accertamenti. Sia X il numero aleatorio che conta il numero di persone affette da virus presenti nel campione. Determinare l insieme dei valori possibili, la distribuzione, la previsione e la varianza di X. Es.7 I soci di un club sono 50, di cui 30 uomini e 20 donne. Si forma a caso un comitato di 10 persone. Determinare: a) la distribuzione del numero aleatorio X di donne presenti nel comitato. b) la previsione e la varianza del numero aleatorio Y di uomini presenti nel comitato. c) la probabilitaà che tutti i membri del comitato siano dello stesso sesso. Es.8 In un quiz bisogna scegliere la risposta esatta fra quattro risposte assegnate. Se le domande assegnate sono 6 e X indica il numero di risposte sbagliate calcolare: a) la probabilità di indovinarne 5. b) la probabilità di indovinarle tutte. c) la probabilità di indovinarne almeno 5. d) la previsione di X. Es.9 Il 40 per cento degli elettori di un paese con 100 elettori preferisce il candidato A. Si supponga di scegliere a caso 10 elettori. Trovare la probabilità che almeno 5 di essi preferiscano il candidato A. Es.10 In un concorso vengono assegnate le idoneità per un dato servizio. Si assuma che ogni partecipante, indipendentemente dagli altri, abbia probabilità p = 3 4 di ottenere l idoneità. Al termine del concorso a 10 fra gli idonei viene assegnato un posto di lavoro (e se gli idonei sono meno di 10 vengono assegnati tanti posto di lavoro quanti sono gli idonei). Supponiamo che al concorso partecipino 15 persone e sia X il numero aleatorio dei partecipanti che ottengono l idoneità ma non il posto di lavoro. Determinare la distribuzione, la previsione e la varianza di X. Es.11 Si lanciano due dadi equilibrati. a) Calcolare la probabilità che la somma dei risultati dei due lanci sia un numero primo. b) Calcolare la probabilità che il prodotto dei risultati dei due lanci sia uguale alla loro somma. 2

3 c) Sapendo che la somma dei risultati dei due lanci è 6, determinare la probabilità che i numeri ottenuti siano uguali. d) Sapendo che i numeri ottenuti lanciando i due dadi sono uguali, calcolare la probabilità che la somma dei risultati dei due lanci sia uguale a 6. Es.12 L urna A contiene 4 palline bianche e 6 nere, L urna B contiene 8 palline bianche e 2 nere, l urna C contiene 5 palline bianche e 5 nere. Viene estratta una pallina dall urna A. Se la pallina estratta è bianca, si estrae poi una pallina dall urna B senza reimbussolamento, se inceve la pallina estratta è nera si estrae una pallina dall urna C senza reimbussolamento. a) Calcolare la probabilità che nella seconda estrazione sia estratta una pallina bianca. b) Calcolare la probabilità che nella seconda estrazione sia estratta una pallina nera subordinatamente all evento che nella prima è stata estatta una pallina bianca. c) Supponiamo che dalla stessa urna (da cui è stata fatta la seconda estrazione) si estraggano due ulteriori palline senza reimbussolamento. Calcolare la probabilità che siano una bianca e una nera. Es.13 Un urna contiene 8 palline bianche e 4 nere. Si lancia un dado equilibrato a 6 facce. Se ese un numero pari si eseguono due estrazioni CON reimbussolamento. Se esce un numero dispari si eseguono due estrazioni SENZA reimbussolamento. Sia X il numero aleatorio che conta il numero di palline bianche estratte. Calcolare l insieme dei valori possibili di X, la distribuzione, la previsione e la varianza di X. Es.14 L urna A contiene 20 palline di cui 14 bianche e 6 nere. L urna B contiene 20 palline di cui 10 bianche e 10 nere. Viene lanciata una moneta simmetrica. In base al risultato viene scelta una delle due urne (A se testa e B se croce) e dall urna scelta vengono estratte due palline con reimbussolamento. a) Calcolare la probabilità di estrarre due palline bianche. b) Calcolare la probabilità che sia stata scelta l urna A subordinatamente all evento che sono state estratte due palline nere. c) Calcolare le stesse quantità nel caso in cui le estrazioni vengano effettuate senza reimbussolamento. Es.15 Da un mazzo di 52 carte (13 per ogni seme) si scelgono (senza ripetizione) 3 carte. Sia X il numero aleatorio che conta il numero di assi estratti. a) Determinare l insieme dei valori possibili di X e la distribuzione di probabilità di X. 3

4 b) Calcolare la previsione e la varianza di X. Si lancia un dado simmetrico e sia Y il numero aleatorio che indica il numero della faccia che esce. Da un mazzo di 52 carte (13 per ogni seme) si scelgono (senza ripetizione) Y carte. c) Calcolare la probabilità di estrarre esattamente un solo asso. d) Calcolare la probabilità dell evento (Y = i), per i = 1,...,6, subordinata all evento che è stato estratto esattamente un solo asso. Es.16 Dieci palline bianche vengono distribuite aleatoriamente in 2 scatole, in modo indipendente le une dalle altre. Per ciascuna pallina, la probabilità di finire nella scatola 1 è pari a 1/3 e la probabilità di finire nella scatola 2 è pari a 2/3. Per j = 1, 2, sia Y j il numero aleatorio di palline bianche che vengono messe nella scatola j. a) Determinare l insieme dei valori possibili di Y 1 e la distribuzione di probabilità di Y 1. b) Scrivere la distribuzione congiunta della coppia (Y 1, Y 2 ). Alla scatola 1 vengono aggiunte 5 palline rosse e vengono fatte 2 estrazioni senza reimbussolamento. Sia X il numero aleatorio di palline bianche estratte. c) Calcolare P(X = 1 Y 1 = k) per k = 0,...,10. d) Calcolare P(X = 1). Es.17 Sia X il risultato del lancio di un dado simmetrico. Si estrae X volte una carta da un mazzo di 52 carte con reinserimento. Sia E l evento che almeno una volta nelle X estrazioni si estragga un asso. a) Sia 1 k 6. Calcolare P(E X = k). b) Calcolare P(E). c) Calcolare la previsione di X subordinatamente alla conoscenza di E. d) In una successione di estrazioni da un mazzo di 52 carte senza reinserimento sia Y il numero dell estrazione (senza reinserimento) in cui per la prima volta si estrae un asso. Determinare la distribuzione di Y? Es.18 Si lanci 5 volte un dado simmetrico. Sia X il numero aleatorio che conta il numero di volte in cui esce il numero 4. a) Determinare l insieme dei valori possibili e la distribuzione di probabilità di X. 4

5 b) Calcolare la previsione e la varianza di X. Sia Y un numero aleatorio stocasticamente indipendente da X con distribuzione binomiale di parametri n = 2 p = 1 6. Sia Z = X + Y. c) Calcolare P(Z = 2). d) Calcolare la previsione di Z, la covarianza fra Z e X e la varianza di Z + Y. Es.19 Si lanci 4 volte un dado simmetrico. Sia X il numero aleatorio che conta il numero di volte in cui esce 1 o 2. a) Determinare l insieme dei valori possibili, la distribuzione di probabilità, la previsione e la varianza di X. b) Per ogni valore possibile k, calcolare la probabilità che X sia uguale al valore k sapendo che nei primi tre lanci sono usciti nell ordine i numeri 1, 2, 3. c) Calcolare P(X 2 X 2). Es.20 Sia X un numero aleatorio con distribuzione geometrica di parametro p e tale che 1 P(X = 1) = P(X = 2). 2 a) Calcolare il parametro p e la probabilità P(X > P(X)). Sia Y un numero aleatorio con distribuzione geometrica di parametro p e stocasticamente indipendente da X. b) Posto Z = X + Y, determinare i valori possibili di Z e la sua distribuzione. c) Calcolare P(X = 3 Z = 5). Es.21 Siano X e Y una coppia di numeri aleatori con la seguente distribuzione congiunta discreta: P(X = 1, Y = 1) = 1 6, P(X = 1, Y = 1) = 1, P(X = 1, Y = 0) = 0 6 P(X = 0, Y = 1) = 0, P(X = 0, Y = 1) = 0, P(X = 0, Y = 0) = 1 3. P(X = 1, Y = 1) = 1 6, P(X = 1, Y = 1) = 1, P(X = 1, Y = 0) = 0. 6 a) Determinare la distribuzione di probabilità marginale di X e quella di Y. b) Calcolare la previsione e la varianza di X e la previsione e la varianza di Y. 5

6 c) Stabilire se X e Y sono stocasticamente indipendenti. Calcolare la covarianza tra X e Y. d) Calcolare la varianza di X + Y e la covarianza tra X e 2X + Y. Es.22 In una scuola ci sono 80 alunne e 120 alunni. I 2/5 delle femmine portano gli occhiali, mentre i maschi che portano gli occhiali sono la metà. Si sceglie a caso un campione di 10 studenti fra tutti gli alunni della scuola. Sia X il numero aleatorio che conta gli studenti con gli occhiali presenti nel campione. a) Calcolare l insieme dei valori possibili di X, la distribuzione di probabilità di X e la previsione di X. b) Sapendo che nel campione ci sono almeno 2 studenti con gli occhiali, calcolare la probabilità che ci siano esattamente due femmine con gli occhiali. c) Calcolare la probabilità che nel campione scelto vi siano tanti maschi quante femmine con gli occhiali. Es.23 Siano date due urne: l urna A contenente due gettoni rossi e due bianchi e l urna B contenente due gettoni rossi e tre bianchi. Si estrae un gettone da ciascuna delle due urne A e B. Sia X il numero aleatorio che indica il numero totale di gettoni rossi estratti. a) Determinare l insieme dei valori possibili e la distribuzione di probabilità di X. b) Calcolare la previsione e la varianza di X. Supponiamo di avere una terza urna C contenente in pari quantità gettoni rossi e gettoni bianchi e di estrarre un gettone da ciascuna delle tre urne A, B e C. Sia X il numero aleatorio che indica il numero di gettoni rossi estratti dalle urne A e B e sia Y quello che indica il numero di gettoni rossi estratti dalle urne B e C. c) Trovare l insieme dei valori possibili per il vettore aleatorio (X, Y ) e la distribuzione congiunta di (X, Y ). d) Calcolare la covarianza fra X e Y. I numeri aleatori X e Y sono indipendenti? Es.24 Da un urna contenente tante palline bianche quante nere si eseguono estrazioni con reimbussolamento. a) Calcolare la probabilità di ottenere una pallina bianca entro la quinta estrazione. b) Sapendo che dopo 10 estrazioni non è ancora uscita una pallina nera, calcolare la probabilità di aspettare almeno altre tre estrazioni prima di ottenere una pallina nera. L estrazioni si arrestano non appena sono stati estratti entrambi i colori. 6

7 c) Calcolare la probabilità di arrestare le estrazioni alla terza estrazione. d) Calcolare la probabilità di proseguire le estrazioni oltre la terza estrazione. Es.25 Un urna contiene 20 palline numerate da 1 a 20. Si eseguono quattro estrazioni senza reimbussolamento. La prima e la terza pallina estratte vengono poste in un urna A, mentre la seconda e la quarta pallina vengono poste in un urna B. a) Calcolare la probabilità che l urna A contenga palline contrassegnate entrambe con un numero pari. b) Calcolare la probabilità che entrambe le urne contengano palline contrassegnate tutte da un numero pari. c) Calcolare la probabilità che almeno una delle due urne contenga palline contrassegnate tutte da un numero dispari. d) Sapendo che l urna A contiene palline contrassengate da un numero pari, calcolare la probabilità che l urna B contenga palline contrassengate da un numero pari. Si considerino gli eventi E=(l urna A contiene palline contrassegnate da un numero pari) G=(l urna B contiene palline contrassegnate da un numero pari). Stabilire se gli eventi considerati sono stocasticamente indipendenti. Es.26 Un urna contiene 10 dadi di cui uno solo truccato in modo da dare 1 con probabilità 1/2 e ognuno degli alri 5 risultati con probabilità 1/10. Gli altri 9 dadi sono equilibrati. Dall urna viene estratto a caso un dado che è poi lanciato 3 volte. (Ogni dado ha la stessa probabilità di essere estratto.) a) Calcolare la probabilità che i risultati siano due volte 1 e una volta sola 6. b) Sia X il numero aleatorio che conta quanti dei tre lanci danno come risultato 1. Calcolare previsione e varianza di X. c) Calcolare la probabilità che il dado lanciato sia quello truccato sapendo che i tre lanci hanno dato due volte 1 e una volta sola 6. Es.27 Un dado (non truccato) viene lanciato 4 volte. Calcolare la probabilità a) di ottenere 4 numeri distinti b) di ottenere 4 numeri distinti consecutivi in ordine crescente c) di ottenere 4 numeri distinti in ordine crescente 7

8 d) di ottenere 4 numeri in ordine crescente (con ripetizione ammessa) e) di ottenere 4 numeri distinti complessivamente consecutivi f) di ottenere almeno 2 numeri uguali. Rispondere alle domande b), c) e d) sostituendo crescente con decrescente. 8

Esercizi su variabili discrete: binomiali e ipergeometriche

Esercizi su variabili discrete: binomiali e ipergeometriche CORSO DI CALCOLO DELLE PROBABILITÀ E STATISTICA Esercizi su variabili discrete: binomiali e ipergeometriche Es1 Due squadre di rugby si sfidano giocando fra loro varie partite La squadra che vince 4 partite

Dettagli

Esercizi di Calcolo delle Probabilità

Esercizi di Calcolo delle Probabilità Esercizi di Calcolo delle Probabilità Versione del 1/05/005 Corso di Statistica Anno Accademico 00/05 Antonio Giannitrapani, Simone Paoletti Calcolo delle probabilità Esercizio 1. Un dado viene lanciato

Dettagli

COMPITO n. 1. a) Determinare la distribuzione del numero X di palline nere presenti nell urna.

COMPITO n. 1. a) Determinare la distribuzione del numero X di palline nere presenti nell urna. Università di Siena a.a. 28/9 Docente D. Papini COMPITO n. 1 a) Un dado non truccato viene lanciato due volte. Quant è la probabilità dell evento: al primo lancio esce un numero minore o uguale a 2 ed

Dettagli

Matematica con elementi di statistica ESERCIZI: probabilità

Matematica con elementi di statistica ESERCIZI: probabilità Matematica con elementi di statistica ESERCIZI: probabilità Esercizi sulla Probabilità Esercizio 1. In un corso di laurea uno studente deve scegliere un esame fra 8 di matematica e un esame fra 5 di fisica.

Dettagli

PROBLEMI DI PROBABILITÀ

PROBLEMI DI PROBABILITÀ PROBLEMI DI PROBABILITÀ 1. Si dispongono a caso su uno scaffale sette libri, dei quali tre trattano di matematica. Qual è la probabilità che i tre libri di matematica si vengano a trovare l uno accanto

Dettagli

TEST n La funzione di ripartizione di una variabile aleatoria:

TEST n La funzione di ripartizione di una variabile aleatoria: TEST n. 1 1. Un esperimento consiste nell estrarre successivamente, con reimmissione nel mazzo, due carte da un mazzo di 52 carte. Individuare la probabilità di estrarre due assi. A 0.0059 B 0.0044 C 0.0045

Dettagli

Esercitazione del 31/01/2012 Istituzioni di Calcolo delle Probabilità

Esercitazione del 31/01/2012 Istituzioni di Calcolo delle Probabilità Esercitazione del 1/01/2012 Istituzioni di Calcolo delle Probabilità Esercizio 1 Vengono lanciati due dadi regolari a 6 facce. (a) Calcolare la probabilità che la somma dei valori ottenuti sia 9? (b) Calcolare

Dettagli

Nelle ipotesi del precedente esercizio, in quanti modi potrebbe essere formata la classifica finale di tutti i 20 concorrenti? [2,4.

Nelle ipotesi del precedente esercizio, in quanti modi potrebbe essere formata la classifica finale di tutti i 20 concorrenti? [2,4. CALCOLO COMBINATORIO Ad una gara partecipano 20 concorrenti; quanti terne di primi tre classificati si possono formare? (nell'ipotesi che non vi siano degli ex aequo) [6.840] Nelle ipotesi del precedente

Dettagli

STATISTICA: esercizi svolti sulle VARIABILI CASUALI

STATISTICA: esercizi svolti sulle VARIABILI CASUALI STATISTICA: esercizi svolti sulle VARIABILI CASUALI VARIABILI CASUALI 2 VARIABILI CASUALI. Variabili casuali generiche. Si supponga che un dado truccato, formato da sei facce contrassegnate dai numeri

Dettagli

ESERCIZI SULLA PROBABILITA

ESERCIZI SULLA PROBABILITA PROBABILITA CLASSICA ESERCIZI SULLA PROBABILITA 1) Si estrae una carta da un mazzo di 40 carte ; calcolare la probabilità che la carta sia: a. una figura; b. una carta di danari; c. un asso. 2) Un urna

Dettagli

IL CALCOLO DELLA PROBABILITÀ

IL CALCOLO DELLA PROBABILITÀ IL LOLO LL PROILITÀ 1 Una scatola contiene quattro dischetti rossi numerati da 1 a 4, sei dischetti verdi numerati da 1 a e cinque dischetti bianchi numerati da 1 a 5. Si estrae un dischetto. Scrivi gli

Dettagli

VARIABILI ALEATORIE Una moneta equilibrata viene lanciata più volte. Qual è la probabilità che al 6 lancio:

VARIABILI ALEATORIE Una moneta equilibrata viene lanciata più volte. Qual è la probabilità che al 6 lancio: VARIABILI ALEATORIE. Una moneta equilibrata viene lanciata più volte. Qual è la probabilità che al lancio: a) si abbia testa per la prima volta? b) Si sia avuto testa almeno una volta? c) Si sia avuta

Dettagli

Variabili casuali ad una dimensione Testi degli esercizi. Variabili casuali ad una dimensione a.a. 2012/2013 1

Variabili casuali ad una dimensione Testi degli esercizi. Variabili casuali ad una dimensione a.a. 2012/2013 1 Variabili casuali ad una dimensione Testi degli esercizi 1 Costruzione di variabile casuale discreta Esercizio 1. Sia data un urna contenente 3 biglie rosse, 2 biglie bianche ed una biglia nera. Ad ogni

Dettagli

Corso di Fondamenti di TLC Esercizi di Probabilitá

Corso di Fondamenti di TLC Esercizi di Probabilitá Corso di Fondamenti di TLC Esercizi di Probabilitá Exercise 0.1 Unurna contiene 2 biglie bianche e 5 nere. Estraiamo una prima biglia: se nera la rimettiamo dentro con altre due dello stesso colore, se

Dettagli

Probabilità e Statistica Esercitazioni. a.a. 2009/2010. C.d.L.: Ingegneria Elettronica e delle Telecomunicazioni, Ingegneria Informatica.

Probabilità e Statistica Esercitazioni. a.a. 2009/2010. C.d.L.: Ingegneria Elettronica e delle Telecomunicazioni, Ingegneria Informatica. Probabilità e Statistica Esercitazioni a.a. 2009/200 C.d.L.: Ingegneria Elettronica e delle Telecomunicazioni, Ingegneria Informatica Estrazioni I Ines Campa Probabilità e Statistica - Esercitazioni -

Dettagli

Probabilità esempi. Aiutiamoci con una rappresentazione grafica:

Probabilità esempi. Aiutiamoci con una rappresentazione grafica: Probabilità esempi Paolo e Francesca giocano a dadi. Paolo scommette che, lanciando due dadi, si otterrà come somma 8 oppure 9. Francesca scommette che si otterrà come somma un numero minore o uguale a

Dettagli

Probabilità delle cause:

Probabilità delle cause: Probabilità delle cause: Probabilità condizionata 2 Teorema delle probabilità composte A B) A) B/A) 3 Teorema delle probabilità totali B )! 4 Teorema delle probabilità delle cause n i A! B ) A / B ) B

Dettagli

Corso di probabilità e statistica

Corso di probabilità e statistica Università degli Studi di Verona Facoltà di Scienze MM.FF.NN. Corso di Laurea in Informatica Corso di probabilità e statistica (Prof.ssa L.Morato) Esercizi Parte I: probabilità classica e probabilità combinatoria,

Dettagli

1. Descrivere gli spazi campionari dei seguenti esperimenti casuali: 1. lancio di un dado 2. lancio di due dadi 3.

1. Descrivere gli spazi campionari dei seguenti esperimenti casuali: 1. lancio di un dado 2. lancio di due dadi 3. Corso di Laurea INTERFACOLTÀ - Esercitazione di Statistica n 6 ESERCIZIO 1: 1. Descrivere gli spazi campionari dei seguenti esperimenti casuali: 1. lancio di un dado 2. lancio di due dadi 3. lancio di

Dettagli

È l insieme di tutti i possibili esiti di un esperimento aleatorio; si indica generalmente con il simbolo.

È l insieme di tutti i possibili esiti di un esperimento aleatorio; si indica generalmente con il simbolo. A Ripasso Terminologia DOMADE Spazio campionario Evento Evento certo Evento elementare Evento impossibile Evento unione Evento intersezione Eventi incompatibili Evento contrario RISPOSTE È l insieme di

Dettagli

STATISTICA A K (63 ore) Marco Riani

STATISTICA A K (63 ore) Marco Riani STATISTICA A K (63 ore) Marco Riani mriani@unipr.it http://www.riani.it Esempio totocalcio Gioco la schedina mettendo a caso i segni 1 X 2 Qual è la prob. di fare 14? Esempio Gioco la schedina mettendo

Dettagli

Esame di AM2 & EAP (270/04) a.a. 2009/10

Esame di AM2 & EAP (270/04) a.a. 2009/10 Quarto appello del 16 Luglio 2010 1. Un urna contiene delle palline numerate e distribuite in seguente maniera: Vengono estratte due palline senza rimpiazzo e siano X e Y rispettivamente il numero della

Dettagli

Test di autovalutazione

Test di autovalutazione Test Test di autovalutazione 0 0 0 0 0 0 0 70 80 90 00 n Il mio punteggio, in centesimi, è n Rispondi a ogni quesito segnando una sola delle alternative. n Confronta le tue risposte con le soluzioni. n

Dettagli

e n n xn ( 1) n ( 1) n n + 1 2e n x n 3n [ln x]n 1 n + 1 2e n 1

e n n xn ( 1) n ( 1) n n + 1 2e n x n 3n [ln x]n 1 n + 1 2e n 1 1) Studiare la seguente serie di funzioni en ( 1) n n x n 2) Studiare la seguente serie di funzioni ( 1) n n + 1 2e n xn 3) Studiare la seguente serie di funzioni 3n [ln x]n 1 2n 4) Studiare la seguente

Dettagli

Scopo del Corso: Lezione 1. La Probabilità. Organizzazione del Corso e argomenti trattati: Prerequisiti:

Scopo del Corso: Lezione 1. La Probabilità. Organizzazione del Corso e argomenti trattati: Prerequisiti: Lezione 1 La Probabilità Scopo del Corso: Introduzione alla probabilità e alle procedure di inferenza statistica Introduzione ad alcune importanti tecniche di analisi multivariata dei dati Organizzazione

Dettagli

Test di Matematica di base

Test di Matematica di base Test di Matematica di base Calcolo combinatorio e delle probabilitá Quanti oggetti possiamo differenziare con delle targhe di due simboli di cui il primo é una lettera dell alfabeto italiano e il secondo

Dettagli

Soluzione esercizi (quarta settimana)

Soluzione esercizi (quarta settimana) Soluzione esercizi (quarta settimana) Marco Riani Esempio totocalcio Gioco la schedina mettendo a caso i segni 1 X 2 Qual è la prob. di fare 14? 1 Esempio Gioco la schedina mettendo a caso i segni (1 X

Dettagli

IL CALCOLO DELLE PROBABILITA

IL CALCOLO DELLE PROBABILITA IL CALCOLO DELLE PROBABILITA INTRODUZIONE Già 3000 anni fa gli Egizi praticavano un antenato del gioco dei dadi, che si svolgeva lanciando una pietra. Il gioco dei dadi era diffuso anche nell antica Roma,

Dettagli

Probabilità e Statistica Esercitazioni. a.a. 2009/2010. C.d.L.: Ingegneria Elettronica e delle Telecomunicazioni, Ingegneria Informatica.

Probabilità e Statistica Esercitazioni. a.a. 2009/2010. C.d.L.: Ingegneria Elettronica e delle Telecomunicazioni, Ingegneria Informatica. Probabilità e Statistica Esercitazioni a.a. 2009/2010 C.d.L.: Ingegneria Elettronica e delle Telecomunicazioni, Ingegneria Informatica Probabilità Ines Campa Probabilità e Statistica - Esercitazioni -

Dettagli

Statistica 1 A.A. 2015/2016

Statistica 1 A.A. 2015/2016 Corso di Laurea in Economia e Finanza Statistica 1 A.A. 2015/2016 (8 CFU, corrispondenti a 48 ore di lezione frontale e 24 ore di esercitazione) Prof. Luigi Augugliaro 1 / 51 Introduzione Il Calcolo delle

Dettagli

STATISTICA ESERCITAZIONE 9

STATISTICA ESERCITAZIONE 9 STATISTICA ESERCITAZIONE 9 Dott. Giuseppe Pandolfo 19 Gennaio 2015 REGOLE DI CONTEGGIO Sequenze ordinate Sequenze non ordinate Estrazioni con ripetizione Estrazioni senza ripetizione Estrazioni con ripetizione

Dettagli

CP110 Probabilità: Esonero 1. Testo e soluzione

CP110 Probabilità: Esonero 1. Testo e soluzione Dipartimento di Matematica, Roma Tre Pietro Caputo 2009-2010, II semestre 1 aprile, 2010 CP110 Probabilità: Esonero 1 Testo e soluzione 1. (7 pt Una scatola contiene 15 palle numerate da 1 a 15. Le palle

Dettagli

ESERCIZI DI CALCOLO COMBINATORIO

ESERCIZI DI CALCOLO COMBINATORIO ESERCIZI DI CALCOLO COMBINATORIO (G.T.Bagni) Sintesi delle nozioni teoriche da utilizzare a) Dati n elementi e k n, si dicono disposizioni semplici di n elementi di classe k tutti i raggruppamenti ottenuti

Dettagli

UNIVERSITÀ di ROMA TOR VERGATA

UNIVERSITÀ di ROMA TOR VERGATA UNIVERSITÀ di ROMA TOR VERGATA Corso di Laurea Magistrale in Scienze della Nutrizione Umana Corso di Statistica Medica, anno 05-6 P.Baldi Lista di esercizi, 8 gennaio 06. Esercizio Si sa che in una schedina

Dettagli

Alcuni esercizi di probabilità (aggiornato al )

Alcuni esercizi di probabilità (aggiornato al ) COMPL. DI ANALISI MATEMATICA ED ELEMENTI DI PROBABILITA (L-Z) C.d.L. Ing. Civile - Università di Bologna A.A.2009-200 - Prof. G.Cupini Alcuni esercizi di probabilità (aggiornato al 2-7-200) (Grazie agli

Dettagli

Facoltà di ECONOMIA Università di Pavia 20 Aprile 2004 Prova scritta di Analisi dei dati MODALITÀ A

Facoltà di ECONOMIA Università di Pavia 20 Aprile 2004 Prova scritta di Analisi dei dati MODALITÀ A MODALITÀ A Riportare sul foglio nome, cognome, numero di matricola e modalità del testo d esame. Problema 1 (8 PUNTI) Su un collettivo di 10 clienti iscritti al programma frequent flyer di una nota compagnia

Dettagli

Lo spazio degli eventi del lancio di un dado regolare a sei facce è l insieme U 1. 2. 3. U 4. 5. 6

Lo spazio degli eventi del lancio di un dado regolare a sei facce è l insieme U 1. 2. 3. U 4. 5. 6 EVENTI ALEATORI E LORO RAPPRESENTAZIONE Lo spazio degli eventi del lancio di un dado regolare a sei facce è l insieme U... U.. La definizione classica di probabilità dice che, se gli eventi che si considerano

Dettagli

ESERCIZI PROBABILITA E CALCOLO COMBINATORIO CON RISULTATI 1. P che estraendo a caso 1 carta da un mazzo di 52 sia una regina?

ESERCIZI PROBABILITA E CALCOLO COMBINATORIO CON RISULTATI 1. P che estraendo a caso 1 carta da un mazzo di 52 sia una regina? ESERCIZI PROBABILITA E CALCOLO COMBINATORIO CON RISULTATI 1. P che estraendo a caso 1 carta da un mazzo di 52 sia una regina? [4/52] 2. Estratta una Q, P che ad una seconda estrazione si presenti ancora

Dettagli

ESERCIZI DI MATEMATICA DISCRETA E PROBABILITÀ

ESERCIZI DI MATEMATICA DISCRETA E PROBABILITÀ ESERCIZI DI MATEMATICA DISCRETA E PROBABILITÀ Esercizi del 28/09/2016 (1) In quanti modo posso scegliere 2 persone tra 10? Quante sono le sequenze date da due cifre decimali? (2) Quanti sono i sottoinsiemi

Dettagli

Prof. Pagani Corrado ALGORITMI ESERCITAZIONI CICLI

Prof. Pagani Corrado ALGORITMI ESERCITAZIONI CICLI Prof. Pagani Corrado ALGORITMI ESERCITAZIONI CICLI DIAGRAMMA A BLOCCHI: SWITCH DIAGRAMMA BLOCCHI: WHILE DIAGRAMMA BLOCCHI: FOR for (inizializzazione contatore, condizione, incremento) { istruzioni ; }

Dettagli

COMPITO n. 1. c(4s + 6t) se 0 s t 1 f(s, t) = 0 altrimenti

COMPITO n. 1. c(4s + 6t) se 0 s t 1 f(s, t) = 0 altrimenti COMPITO n. 1 a) Si lancia due volte un dado non truccato. Quant è la probabilità dell evento al primo lancio esce un numero strettamente minore di 3 oppure al secondo lancio esce un numero strettamente

Dettagli

DOMANDA 1: mettere una croce sulla affermazione esatta (90 89)

DOMANDA 1: mettere una croce sulla affermazione esatta (90 89) PROVA D ESAME - 0 marzo 00 nome: cognome: SSIS-INDIRIZZO MATEMATICA E MATEMATICA APPLICATA (primo anno MATEMATICA APPLICATA B: CALCOLO DELLE PROBABILITÀ Per le domande a risposta aperta il punteggio varia

Dettagli

ESERCIZI SUL CALCOLO COMBINATORIO

ESERCIZI SUL CALCOLO COMBINATORIO ESERCIZI SUL CALCOLO COMBINATORIO A) SVILUPPARE E CALCOLARE LE SEGUENTI ESPRESSIONI : numero esercizio risoluzione 1) D 3, ) P 4 3) P 6 3 4) 3,3 P 6 5) D ' 3, 6) C 4, 7) C n, n 8) D + D' C 4, 3, 3 3, 9)

Dettagli

CONOSCENZE 1. il significato di evento casuale. 2. il significato di eventi impossibili, complementari;

CONOSCENZE 1. il significato di evento casuale. 2. il significato di eventi impossibili, complementari; ARITMETICA ELEMENTIDICALCOLO DELLE PROBABILITAÁ PREREQUISITI l l l conoscere e costruire tabelle a doppia entrata conoscere il significato di frequenza statistica calcolare rapporti e percentuali CONOSCENZE.

Dettagli

Alcuni esercizi di probabilità e statistica

Alcuni esercizi di probabilità e statistica Alcuni esercizi di probabilità e statistica 1. Vi sono 2 urne, ciascuna contenente 10 palle. Nella prima urna ci sono 8 palle bianche e 2 nere. Nella seconda ve ne sono 7 bianche e 3 rosse. Qual è la probabilità

Dettagli

PROBABILITÀ. a) 0,04 b) 0,8 c) 0,25 d) 0,64 e) 0,96

PROBABILITÀ. a) 0,04 b) 0,8 c) 0,25 d) 0,64 e) 0,96 QUESITI 1 PROBABILITÀ 1. (Da Medicina e Odontoiatria 2015) La probabilità con cui un paziente deve attendere meno di dieci minuti il proprio turno in un ambulatorio medico è 0,8. Qual è la probabilità

Dettagli

1. Calcolo combinatorio, problemi di conteggio.

1. Calcolo combinatorio, problemi di conteggio. 1 1. Calcolo combinatorio, problemi di conteggio. 1. In quanti modi diversi 4 persone possono occupare 8 posti a sedere numerati? (D 8,4. Un allenatore dispone di 18 giocatori per scegliere la formazione

Dettagli

prima urna seconda urna

prima urna seconda urna Un po di fortuna Considera il seguente gioco: ci sono due urne contenenti delle palline perfettamente uguali tra loro, ma colorate diversamente, alcune bianche, altre nere. Nella prima urna ci sono una

Dettagli

UNIVERSITÀ di ROMA TOR VERGATA

UNIVERSITÀ di ROMA TOR VERGATA UNIVERSITÀ di ROMA TOR VERGATA Corso di Statistica, anno 00- P.Baldi Lista di esercizi. Corso di Laurea in Biotecnologie Esercizio Si sa che in una schedina del totocalcio i tre simboli, X, compaiono con

Dettagli

Prova d'esame di Statistica I - Corso Prof.ssa S. Terzi

Prova d'esame di Statistica I - Corso Prof.ssa S. Terzi Prova d'esame di Statistica I - Corso Prof.ssa S. Terzi Esercizio 1 Data la variabile casuale X con funzione di densità f(x) = 2x, per 0 x 1; f(x) = 0 per x [0, 1], determinare: a) P( - 0,5 < X< 0,7) b)

Dettagli

, mentre Y è una variabile geometrica di costante q = 1 2. (1 q) n = q (1 q) 3 1 q = (1 2 )3 = 1 8. n=0

, mentre Y è una variabile geometrica di costante q = 1 2. (1 q) n = q (1 q) 3 1 q = (1 2 )3 = 1 8. n=0 SOLUZIONI DEGLI ESERCIZI SULLE VARIABILI ALEATORIE DISCRETE Esercizio. Sono date due urne denominate rispettivamente A e B. A contiene palline bianche e 6 palline rosse, B contiene 8 palline bianche e

Dettagli

SOLUZIONI DEL 1 0 TEST DI PREPARAZIONE ALLA 1 a PROVA INTERMEDIA

SOLUZIONI DEL 1 0 TEST DI PREPARAZIONE ALLA 1 a PROVA INTERMEDIA SOLUZIONI DEL 1 0 TEST DI PREPARAZIONE ALLA 1 a PROVA INTERMEDIA 1 Esercizio 0.1 Dato P (A) = 0.5 e P (A B) = 0.6, determinare P (B) nei casi in cui: a] A e B sono incompatibili; b] A e B sono indipendenti;

Dettagli

CALCOLO DELLE PROBABILITÀ - 9 giugno 1998 Scrivere le risposte negli appositi spazi Motivare dettagliatamente le risposte su fogli allegati

CALCOLO DELLE PROBABILITÀ - 9 giugno 1998 Scrivere le risposte negli appositi spazi Motivare dettagliatamente le risposte su fogli allegati CALCOLO DELLE PROBABILITÀ - 9 giugno 1998 1. Dati gli eventi A,B,C, ognuno dei quali implica il successivo, e tali che P (A) è metà della probabilità di B, che a sua volta ha probabilità metà di quella

Dettagli

COMPITI PER IL RECUPERO DELLA CARENZA FORMATIVA (E RIPASSO) MATEMATICA IV -VE

COMPITI PER IL RECUPERO DELLA CARENZA FORMATIVA (E RIPASSO) MATEMATICA IV -VE COMPITI PER IL RECUPERO DELLA CARENZA FORMATIVA (E RIPASSO) MATEMATICA IV -VE Scheda : Funzioni circolari, Equazioni e disequazioni goniometriche Risolvi la seguente equazione: sin + 4 sin cos + 5 = 0

Dettagli

La PROBABILITA è un numero che si associa ad un evento E ed esprime il grado di aspettativa circa il suo verificarsi.

La PROBABILITA è un numero che si associa ad un evento E ed esprime il grado di aspettativa circa il suo verificarsi. La maggior parte dei fenomeni, ai quali assistiamo quotidianamente, può manifestarsi in vari modi, ma è quasi sempre impossibile stabilire a priori quale di essi si presenterà ogni volta. La PROBABILITA

Dettagli

UNIVERSITÀ di ROMA TOR VERGATA

UNIVERSITÀ di ROMA TOR VERGATA UNIVERSITÀ di ROMA TOR VERGATA Corso di Statistica, anno 2010-11 P.Baldi Lista di esercizi 3. Corso di Laurea in Biotecnologie Esercizio 1 Una v.a. X segue una legge N(2, ). Calcolare a1) P(X 1) a2) P(2

Dettagli

FRAME 0.3. E possibile partecipare a tre appelli su 5 (esclusi i compitini). Farà fede l iscrizione alle liste elettroniche.

FRAME 0.3. E possibile partecipare a tre appelli su 5 (esclusi i compitini). Farà fede l iscrizione alle liste elettroniche. FRAME 0.1. S.M. Ross, Calcolo delle Probabilità, Apogeo 2004. C. Mariconda, A. Tonolo, Matematica Discreta, a.a. 2005-2006, Libreria Progetto, 2005 (costo 6 euro. Compitini FRAME 0.2. 13 maggio, ore 9.30

Dettagli

Statistica Matematica Prova scritta del 06/07/05 1. Risposte Domande x se 0 x 2, f(x) = 0 altrove;

Statistica Matematica Prova scritta del 06/07/05 1. Risposte Domande x se 0 x 2, f(x) = 0 altrove; Statistica Matematica Prova scritta del 06/07/05 1 COGNOME: NOME: TEST Scrivere il numero della risposta sopra alla corrispondente domanda. Risposte Domande 1 2 3 4 5 6 7 8 9 10 1 Sia data una variabile

Dettagli

p k q n k = p n (k) = n 12 = 1 = 12 1 12 11 10 9 1 0,1208. q = 1 2 e si ha: p 12 (8) = 12 8 4

p k q n k = p n (k) = n 12 = 1 = 12 1 12 11 10 9 1 0,1208. q = 1 2 e si ha: p 12 (8) = 12 8 4 CAPITOLO QUARTO DISTRIBUZIONE BINOMIALE (O DI BERNOULLI) Molti degli esempi che abbiamo presentato nei capitoli precedenti possono essere pensati come casi particolari di uno schema generale di prove ripetute,

Dettagli

CORSO DI STATISTICA (parte 2) - ESERCITAZIONE 2

CORSO DI STATISTICA (parte 2) - ESERCITAZIONE 2 CORSO DI STATISTICA (parte 2) - ESERCITAZIONE 2 Dott.ssa Antonella Costanzo a.costanzo@unicas.it Esercizio 1. Il modello binomiale Da studi interni è noto che il 35% dei clienti del Supermercato GD paga

Dettagli

Esercizi settimana 5. Esercizi applicati. Esercizio 1. Si considerino tre monete truccate, ognuna con probabilità 2 3

Esercizi settimana 5. Esercizi applicati. Esercizio 1. Si considerino tre monete truccate, ognuna con probabilità 2 3 1 Esercizi settimana 5 Esercizi applicati Esercizio 1. Si considerino tre monete truccate, ognuna con probabilità 3 di ottenere testa. Se scegliete la prima moneta vincete 10 punti se esce testa e punti

Dettagli

La probabilità matematica

La probabilità matematica 1 La probabilità matematica In generale parliamo di eventi probabili o improbabili quando non siamo sicuri se si verificheranno. DEFINIZIONE. Un evento (E) si dice casuale, o aleatorio, quando il suo verificarsi

Dettagli

RISOLUZIONE ESERCIZI SUL CALCOLO COMBINATORIO C = =10

RISOLUZIONE ESERCIZI SUL CALCOLO COMBINATORIO C = =10 RISOLUZIONE ESERCIZI SUL CALCOLO COMBINATORIO A) SVILUARE E CALCOLARE LE SEGUENTI ESRESSIONI : numero esercizio risoluzione 1) D 3, 2 3 2 6 2) 4 3) 6 3 4! 4 3 24 6! 6 5 4 3 120 3! 3 4) 3,3 6 6! 6 5 4 3

Dettagli

( ) ( ) Ω={1,2,3,4,5,6} B B A Siano A e B due eventi di Ω: si definisce evento condizionato B A. Consideriamo il lancio di un dado:

( ) ( ) Ω={1,2,3,4,5,6} B B A Siano A e B due eventi di Ω: si definisce evento condizionato B A. Consideriamo il lancio di un dado: Eventi condizionati Quando si ha motivo di credere che il verificarsi di uno o più eventi sia subordinato al verificarsi di altri eventi, si è soliti distinguere tra eventi dipendenti(o condizionati )

Dettagli

Ψ PSICOMETRIA. Corso di laurea triennale (classe 34) STATISTICA INFERENZIALE

Ψ PSICOMETRIA. Corso di laurea triennale (classe 34) STATISTICA INFERENZIALE Ψ PSICOMETRIA Corso di laurea triennale (classe 34) STATISTICA INFERENZIALE STATISTICA INFERENZIALE CAMPIONE caratteristiche conosciute POPOLAZIONE caratteristiche sconosciute STATISTICA INFERENZIALE STIMA

Dettagli

Lezione 2. La probabilità oggettiva : definizione classica e frequentistica e loro problemi

Lezione 2. La probabilità oggettiva : definizione classica e frequentistica e loro problemi Lezione 2 La probabilità oggettiva : definizione classica e frequentistica e loro problemi La definizione classica Definizione classica: La probabilità di un evento E è il rapporto tra il numero dei casi

Dettagli

0 z < z < 2. 0 z < z 3

0 z < z < 2. 0 z < z 3 CALCOLO DELLE PROBABILITÀ o - 7 gennaio 004. Elettronica : 4; Nettuno: 3.. Data un urna di composizione incognita con palline bianche e nere, sia K = il numero di palline bianche nell urna è il doppio

Dettagli

ESERCIZI SCHEDA N. 1: EVENTI E VARIABILI ALEATORIE

ESERCIZI SCHEDA N. 1: EVENTI E VARIABILI ALEATORIE ESERCIZI SCHEDA N. 1: EVENTI E VARIABILI ALEATORIE 1) Dato lo spazio campionario Ω = {(1,1); (1,2); (1,3); (1,4); (1,5); (1,6); (2,1); (2,2); (2,3); ; (6,6)} riferito al lancio di due dadi non truccati,

Dettagli

Un elenco di esercizi per il corso Matematica docente: Alberto Dolcetti

Un elenco di esercizi per il corso Matematica docente: Alberto Dolcetti Un elenco di esercizi per il corso Matematica docente: Alberto Dolcetti Ricevo molti messaggi di posta elettronica che suggeriscono varie soluzioni per gli esercizi proposti. Questo non mi dispiace perchè

Dettagli

Esercizi di Probabilità

Esercizi di Probabilità Esercizi di Probabilità Annalisa Cerquetti - Sandra Fortini Vai all indice Istituto di Metodi Quantitativi, Viale Isonzo, 25, 2033 Milano, Italy. E-mail: annalisa.cerquetti@unibocconi.it,sandra.fortini@unibocconi.it

Dettagli

Probabilità 1, laurea triennale in Matematica I prova scritta sessione estiva a.a. 2008/09

Probabilità 1, laurea triennale in Matematica I prova scritta sessione estiva a.a. 2008/09 Probabilità, laurea triennale in Matematica I prova scritta sessione estiva a.a. 2008/09. Due roulette regolari vengono azionate più volte; sia T il numero di volte che occorre azionare la prima roulette

Dettagli

SIMULAZIONE TEST INVALSI

SIMULAZIONE TEST INVALSI SIMULAZIONE TEST INVALSI PROBABILITA Nel sacchetto A ci sono 4 palline rosse e 8 nere mentre nel sacchetto B ci sono 4 palline rosse e 6 nere. a. Completa correttamente la seguente frase inserendo al posto

Dettagli

258 Capitolo 9. La probabilità

258 Capitolo 9. La probabilità 258 Capitolo 9 La probabilità 96 Esercizi 96 Esercizi dei singoli paragrafi 9 - Gli eventi 9 Quali dei seguenti eventi sono certi, probabili, impossibili a ) Il giorno di Pasquetta pioverà; b ) il giorno

Dettagli

ESERCIZI DI CALCOLO PROBABILITÀ DISTRIBUZIONI DOPPIE E NOTEVOLI

ESERCIZI DI CALCOLO PROBABILITÀ DISTRIBUZIONI DOPPIE E NOTEVOLI Variabili bidimensionali ESERCIZI DI CALCOLO PROBABILITÀ DISTRIBUZIONI DOPPIE E NOTEVOLI 1) Siano X 1 e X 2 due variabili casuali indipendenti che possono assumere valori 0, 1 e 3 rispettivamente con probabilità

Dettagli

La probabilità composta

La probabilità composta La probabilità composta DEFINIZIONE. Un evento E si dice composto se il suo verificarsi è legato al verificarsi contemporaneo (o in successione) degli eventi E 1, E 2 che lo compongono. Consideriamo il

Dettagli

Esercizi svolti di statistica. Gianpaolo Gabutti

Esercizi svolti di statistica. Gianpaolo Gabutti Esercizi svolti di statistica Gianpaolo Gabutti (gabuttig@hotmail.com) 1 Introduzione Questo breve documento contiene lo svolgimento di alcuni esercizi di statistica da me svolti durante la preparazione

Dettagli

Probabilità Condizionale - 1

Probabilità Condizionale - 1 Probabilità Condizionale - 1 Come varia la probabilità al variare della conoscenza, ovvero delle informazioni in possesso di chi la calcola? ESEMPIO - Calcolare la probabilità che in una estrazione della

Dettagli

LA PROBABILITAÁ ALGEBRA IL CALCOLO DELLE PROBABILITAÁ. richiami della teoria

LA PROBABILITAÁ ALGEBRA IL CALCOLO DELLE PROBABILITAÁ. richiami della teoria ALGEBRA IL CALCOLO DELLE PROBABILITAÁ richiami della teoria n un evento E si dice casuale o aleatorio, quando il suo verificarsi dipende unicamente dal caso; n un evento si dice certo quando eá possibile

Dettagli

PROBABILITÀ. P ( E ) = f n

PROBABILITÀ. P ( E ) = f n PROBABILITÀ GLI EVENTI E LA PROBABILITÀ EVENTI CERTI, IMPOSSIBILI E ALEATORI Ci sono avvenimenti che accadono con certezza, mentre altri sicuramente non possono mai verificarsi. Per esempio, se una scatola

Dettagli

Calcolo delle Probabilità e Statistica

Calcolo delle Probabilità e Statistica Calcolo delle Probabilità e Statistica Alcuni esercizi Laura Poggiolini Dipartimento di Matematica Applicata Giovanni Sansone Università di Firenze 2 Indice 1 Probabilità: esercizi vari 1 1.1 Combinatorica

Dettagli

ELABORAZIONI STATISTICHE Conoscenze (tutti)

ELABORAZIONI STATISTICHE Conoscenze (tutti) Scegli il completamento corretto. ELABORAZIONI STATISTICHE Conoscenze (tutti) 1. Una variabile statistica è di tipo qualitativo se: a. fa riferimento ad una qualità b. viene espressa mediante un dato numerico

Dettagli

Soluzioni degli esercizi proposti

Soluzioni degli esercizi proposti Soluzioni degli esercizi proposti.9 a La cardinalità dell insieme dei numeri,..., 0 n che sono multipli di 5 è 0n 5. Dunque, poiché siamo in una condizione di equiprobabilità, la probabilità richiesta

Dettagli

{ } corrisponde all uscita della faccia i-esima del dado. La distribuzione di probabilità associata ( )

{ } corrisponde all uscita della faccia i-esima del dado. La distribuzione di probabilità associata ( ) Università di Trento - Corsi di Laurea in Ingegneria Civile e in Ingegneria per l Ambiente e il Territorio - 2017/18 Analisi Matematica 1 - professore Alberto Valli 2 foglio di esercizi 25 settembre 2017

Dettagli

(5 sin x + 4 cos x)dx [9]

(5 sin x + 4 cos x)dx [9] FACOLTÀ DI SCIENZE MM. FF. NN. CORSO DI LAUREA IN SCIENZE NATURALI II Modulo di Matematica con elementi di statistica. Esercitazioni A.A. 009.00. Tutor: Mauro Soro, p.soro@tin.it Integrali definiti Risolvere

Dettagli

Calcolo delle probabilità

Calcolo delle probabilità Calcolo delle probabilità Definizione di Spazio Campionario Definizioni di Probabilità Eventi mutuamente esclusivi Eventi indipendenti Principio della somma Principio del prodotto Eventi certi : è certo

Dettagli

Probabilità. Decisioni in condizioni di incertezza:

Probabilità. Decisioni in condizioni di incertezza: Probabilità Decisioni in condizioni di incertezza: Casi quotidiani e no Probabile / certo. Incertezza e futuro / incertezza e quantità-qualità delle informazioni. Probabilità come misura del grado di fiducia

Dettagli

P(X > 0) = P(X 1 = 1) + P(X 1 = 1, X 2 = 1, X 3 = 1) =

P(X > 0) = P(X 1 = 1) + P(X 1 = 1, X 2 = 1, X 3 = 1) = 1 Esercizi settimana 3 Esercizio 1. Un urna contiene 8 palline bianche, 4 nere e rosse. Si assuma di vincere e ogni volta che si estragga una pallina nera, si perda 1e per ogni pallina bianca e non succeda

Dettagli

COMPITI PER IL RECUPERO DELLA CARENZA FORMATIVA (E RIPASSO) MATEMATICA IV A PT

COMPITI PER IL RECUPERO DELLA CARENZA FORMATIVA (E RIPASSO) MATEMATICA IV A PT COMPITI PER IL RECUPERO DELLA CARENZA FORMATIVA (E RIPASSO) MATEMATICA IV A PT Scheda : equazioni e disequazioni goniometriche. Risolvi la seguente equazione: sin + sin cos + 5 = 0. Suggerimento dell insegnante:

Dettagli

Due variabili aleatorie X ed Y si dicono indipendenti se comunque dati due numeri reali a e b si ha. P {X = a, Y = b} = P {X = a}p {Y = b}

Due variabili aleatorie X ed Y si dicono indipendenti se comunque dati due numeri reali a e b si ha. P {X = a, Y = b} = P {X = a}p {Y = b} Due variabili aleatorie X ed Y si dicono indipendenti se comunque dati due numeri reali a e b si ha P {X = a, Y = b} = P {X = a}p {Y = b} Una variabile aleatoria χ che assume i soli valori 1, 2,..., n

Dettagli

b = 1 2σ 3. La lunghezza di una barra è un numero aleatorio X con densità della forma 0, x 0, 0 < x 1 a = 1 F (x) = 2 2x 1 x2

b = 1 2σ 3. La lunghezza di una barra è un numero aleatorio X con densità della forma 0, x 0, 0 < x 1 a = 1 F (x) = 2 2x 1 x2 CALCOLO DELLE PROBABILITÀ E STATISTICA - 0 gennaio 2002 Informatica (N.O.) (Canali 4) esercizi -4 Vecchio Ordinamento esercizi -6. Da un lotto contenente 4 pezzi buoni e 2 difettosi si estraggono senza

Dettagli

Calcolo delle Probabilità Esercizi

Calcolo delle Probabilità Esercizi Calcolo delle Probabilità Esercizi A.A 00-006 Costituenti. Siano dati eventi A, B, C tali che A B = Φ, A B C, determinare i costituenti. C C C C C C C [ AB C, A BC, A B C, A B C ]. Siano dati eventi A,

Dettagli

Calcolo della probabilità

Calcolo della probabilità Calcolo della probabilità GLI EVENTI Un evento è un fatto che può accadere o non accadere. Se esso avviene con certezza si dice evento certo, mentre se non può mai accadere si dice evento impossibile.

Dettagli

Lanciando un dado, il tuo compagno esclama: uscirà 1, 2, 3, 4, 5 o 6 oppure: uscirà il numero 4. uscirà il numero 9

Lanciando un dado, il tuo compagno esclama: uscirà 1, 2, 3, 4, 5 o 6 oppure: uscirà il numero 4. uscirà il numero 9 Lanciando un dado, il tuo compagno esclama: uscirà 1, 2, 3, 4, 5 o 6 oppure: uscirà il numero 4 o ancora: uscirà il numero 9 Possiamo dire che le previsione del tuo compagno sono la prima certa, la seconda

Dettagli

Sia f la frequenza di un evento A e n sia la dimensione del campione. La probabilità dell'evento A è

Sia f la frequenza di un evento A e n sia la dimensione del campione. La probabilità dell'evento A è Cenni di probabilità di Carlo Elce Definizioni Lo spazio campionario per un esperimento è l'insieme di tutti i suoi possibili esiti. Per esempio, se l'esperimento è il lancio di due di dadi e si rappresentano

Dettagli

Abbiamo visto come si possa determinare il numero di possibili anagrammi di una parola, con lettere tutte distinte o con alcune lettere ripetute.

Abbiamo visto come si possa determinare il numero di possibili anagrammi di una parola, con lettere tutte distinte o con alcune lettere ripetute. MODELLI (Approfondimenti) Approfondiamo i 3 modelli più frequentemente utilizzati nell'analisi Combinatoria e nel Calcolo delle Probabilità, precisamente il modello ANAGRAMMA, il modello ESTRAZIONE e il

Dettagli

Esercizi di Calcolo combinatorio: disposizioni

Esercizi di Calcolo combinatorio: disposizioni Calcolo combinatorio: disposizioni La Big Triple all ippodromo del luogo consiste nell indicare il corretto ordine di arrivo dei cavalli classificati tra i primi tre nella nona corsa. Se ci sono 12 cavalli

Dettagli

Esercitazione 4 del corso di Statistica 2 Prof. Domenico Vistocco

Esercitazione 4 del corso di Statistica 2 Prof. Domenico Vistocco Esercitazione 4 del corso di Statistica 2 Prof. Domenico Vistocco Alfonso Iodice D Enza May 23, 2007 1 Esercizio Si consideri un mazzo di carte francesi di 2 carte e si supponga di stare giocando a poker.

Dettagli

ESERCITAZIONE 20 : VARIABILI ALEATORIE DISCRETE

ESERCITAZIONE 20 : VARIABILI ALEATORIE DISCRETE ESERCITAZIONE 20 : VARIABILI ALEATORIE DISCRETE e-mail: tommei@dm.unipi.it web: www.dm.unipi.it/ tommei Ricevimento: su appuntamento Dipartimento di Matematica, piano terra, studio 114 30 Aprile 2013 Esercizio

Dettagli

Domande di teoria. Esercizi

Domande di teoria. Esercizi 1 Domande di teoria 1. Vedi pp. 131-132 2. Vedi pp. 132-134 3. Vedi p. 134 4. Vedi p. 135 5. Vedi pp. 136-142 6. Vedi pp. 138-139 7. Vedi pp. 141-142 8. Vedi pp. 143-146 9. Vedi pp. 146-148 Esercizi Esercizio

Dettagli

Statistica A. Corsi di Laurea afferenti alla IV Facoltà Prova del Cognome e Nome...

Statistica A. Corsi di Laurea afferenti alla IV Facoltà Prova del Cognome e Nome... Compito A Statistica A Corsi di Laurea afferenti alla IV Facoltà Prova del 12-07-2007 Cognome e Nome...... N 0 di Matricola ISTRUZIONI: Copiare in modo chiaro e leggibile lo svolgimento di ciascun esercizio

Dettagli