Esercizi con catene di Markov Pietro Caputo 12 dicembre 2006

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Esercizi con catene di Markov Pietro Caputo 12 dicembre 2006"

Transcript

1 Esercizi con catene di Markov Pietro Caputo dicembre 006 Esercizio. Si considerino i lanci di un dado (6 facce equiprobabili). Sia X n il minimo tra i risultati ottenuti nei lanci,,..., n. Si calcoli la matrice di transizione associata alla catena di Markov definita da X n. La catena è irriducibile? Si calcoli la prob. p,n che X n > al tempo n, n =,,.... Esercizio. Si consideri una catena di Markov con tre stati le cui transizioni sono descritte dalla matrice stocastica P = 0 0 ε ε ε 0 0 dove ε (0, ) è fissato. ) Descrivere a parole l evoluzione temporale associata a P. ) Per ogni i, j =,, 3 calcolare (se esiste) il limite lim P n (i, j). 3) Determinare tutte le misure invarianti. Esercizio 3. Sia S = {0,,,..., } (dove N è fissato). Si consideri la catena di Markov associata alla passeggiata aleatoria su S con parete riflettente in 0 e assorbente in. La matrice stocastica P corrispondente soddisfa dunque P (0, 0) = P (0, ) = P (i, i + ) = P (i, i ) =, per ogni i P (, ) = ) Dimostrare che lim P n (i, ) =, i S. ) Determinare tutte le misure invarianti. Esercizio 4. Sia S = {0,,,..., } e si consideri la catena di Markov con spazio degli stati S definita dalla matrice di transizione P che soddisfa P (i, j) =, per ogni i 0, j 0 P (0, 0) = ε P (0, i) = ε, per ogni i 0

2 ) Dimostrare che ) Dimostrare che lim P n (i, 0) = 0, i S. lim P n (i, j) =, i S, j S \ {0}. 3) Determinare tutte le misure invarianti. Esercizio. Siano P, P, P 3, P 4 i vertici di un qudrato Q. Sia P il punto di intersezione delle due diagonali di Q. Consideriamo la catena di Markov X n, n N con spazio degli stati S = {P,..., P } associato alle seguenti transizioni: per ogni i la transizione P i P ha probabilità, mentre per ogni j =,..., la transizione P P j ha probabilità /. ) Scrivere la matrice stocastica P (i, j) associata a X n. ) Mostrare che P è regolare 3) Calcolare la misura invariante e descrivere il limte di P n (i, j) (n ) per ogni i, j.

3 3 Soluzione Esercizio : La catena ha spazio degli stati S = {,,..., 6}. Notiamo che X n, è necessariamente non crescente quindi la matrice P associata soddisfa P (i, j) = 0 se i < j. Inoltre si calcola P (i, i) = (6 i+)/6 per ogni i S (ci sono 6 i+ facce del dado maggiori o uguali a i). Questo mostra anche il fatto che è uno stato assorbente, ossia tale che P (, ) =. Per le altre transizioni abbiamo P (i, j) = /6 per ogni j < i. La matrice non è irriducibile poiché P n (, j) = 0 per ogni n se j >. La prob. p,n coincide con la prob. che non sia mai uscito né né su n lanci. Quindi p,n = (/3) n. Soluzione Esercizio : Gli stati e 3 sono assorbenti. Dallo stato si salta in o in 3 con prob. ε e si resta in con prob. ε. La catena non è irriducibile poiché c è uno stato assorbente. Per ogni n N abbiamo P n (, j) = 0 se j e P n (, ) =. Analogamente P n (3, j) = 0 se j 3 e P n (3, 3) =. Per essere nello stato al tempo n è necessario essere stati nello stato in tutti i tempi precedenti e quindi P n (, ) = ( ε) n 0. Infine, P n (, ) + P n (, 3) = P n (, ) e per simmetria P n (, ) = P n (, 3). Passiamo alle misure invarianti. Una misura µ invariante deve soddisfare 3 µ(i)p (i, j) = µ(j), j =,, 3. i= Precisamente si deve avere µ() + εµ() = µ(), ( ε)µ() = µ(), εµ() + µ(3) = µ(3). Se ε (0, /) queste identità sono equivalenti a richiedere µ() = 0. Allora µ è invariante se e solo se µ() = 0. Soluzione Esercizio 3: Se i = allora P (, ) = implica che P n (, ) = per ogni n. Se i allora P n (i, ) è la prob. che la passeggiata partita in i al tempo 0 sia in al tempo n. Se X n è la catena di Markov associata a P, allora P n (i, ) = P(X n = X 0 = i). Sia τ il tempo di primo arrivo in per la passeggiata aleatoria X n. Poiché una volta arrivata in la passeggiata si ferma in abbiamo che {τ n} = {X n = } per ogni n. Allora P n (i, ) = P(τ n X 0 = i) = P(τ > n X 0 = i). Non è difficile vedere che P(τ > n X 0 = i) 0 esponenzialmente veloce quando n. In effetti, per qualunque i, se esiste una successione di almeno passi a destra consecutivi entro il tempo n allora sicuramente τ n. Poiché in qualunque punto la probabilità di salto a destra è / allora τ è dominato per esempio da σ

4 4 dove σ è una v.a. geometrica di parametro (vedi anche soluzioni esercizi con martingale per argomenti analoghi). Allora per ogni i: P(τ > n X 0 = i) P(σ > n/) = ( ) [ n ] e δ(n ), per un δ > 0 (per esempio δ = log( ) ). In particolare, P n (i, ). Sia ν una misura invariante: ν(i)p (i, j) = ν(j), j = 0,...,. i=0 In particolare, ν() = ν( ) + ν() e quindi ν( ) = 0. Ma si ha anche ν( ) = ν( ), da cui ν( ) = 0. Inoltre ν( ) = ν( 3)+ ν( ), da cui ν( 3) = 0. Ripetendo l argomento fino a 0 si ottiene ν(i) = 0 per ogni i = 0,,...,. Quindi ν = δ (ν() = e ν(i) = 0 per ogni i = 0,,..., ) è l unica misura invariante. Lo stesso risultato si poteva ottenere anche cosi : se ν è invariante allora ν = νp n per ogni n. Ma P n (i, ) per n e quindi νp n δ. Allora ν = δ. Soluzione Esercizio 4: Abbiamo S = S S 0 dove S := {,,..., } e lo stato S 0 := {0} è diverso dagli altri. Una volta entrata in S la catena non esce da S. Da S 0 passa a S con probabilità ε. Notiamo che la catena non è irriducibile poiché da S non si puo uscire. Essere in S 0 al tempo n equivale a non essere mai usciti da S 0 per n passi. Poiché a ogni passo questo avviene con prob. ε allora P n (0, 0) = ε n, n =,,... Inoltre, se i 0 allora P n (i, 0) = 0 per ogni n. Osserviamo che P (i, j) = per ogni i, j S implica P n (i, j) = per ogni i, j S per ogni n. Infatti per ogni i, j S : P n (i, j) = P n (i, l)p (l, j) = P n (i, l) = ( P n (i, 0)) =. l= l= Allora dobbiamo mostrare solo P n (0, j) per ogni j S. Scriviamo, per j S : P n (0, j) = P n (0, l)p (l, j) = P n (0, 0)P (0, j) + l=0 = ε n ε + P n (0, l). l= P n (0, l)p (l, j) Ma l= P n (0, l) = P n (0, 0) = ε n. Allora P n (0, j), n, se j S. l=

5 Passiamo alle misure invarianti. Se ν è una misura invariante allora ν = νp n per ogni n. Chiamiamo µ la misura µ (i) = / se i S e µ (0) = 0. Allora quanto visto sopra implica che per ogni i e j si ha P n (i, j) µ (j). Allora per ogni ν si ha νp n µ e quindi µ è l unica misura invariante. Soluzione Esercizio : Si ha P = P è regolare, infatti P (i, j) > 0 per ogni i, j come si verifica facilmente. Se ν è invariante allora ν(j) = ν(i)p (i, j) = ν(), j =,, 3, 4. i= Dunque ν() = = ν(4) = ν() e richiedendo i= ν(i) = si ha ν( 9, 9, 9, 9, 9 ). La misura invariante soddisfa inoltre, grazie al teorema ergodico per catene regolari: P n (i, j) ν(j) per ogni i, j. In particolare, ν è l unica misura invariante.

CP410: Esame 2, 3 febbraio 2015

CP410: Esame 2, 3 febbraio 2015 Dipartimento di Matematica, Roma Tre Pietro Caputo 2014-15, I semestre 3 febbraio, 2015 CP410: Esame 2, 3 febbraio 2015 Cognome Nome Matricola Firma 1. Sia (Ω, F, P) lo spazio di probabilità definito da

Dettagli

III Appello di Calcolo delle Probabilità Laurea Triennale in Matematica 2018/19

III Appello di Calcolo delle Probabilità Laurea Triennale in Matematica 2018/19 III Appello di Calcolo delle Probabilità Laurea Triennale in Matematica 8/9 Martedì luglio 9 Cognome: Nome: Email: Se non è espressamente indicato il contrario, per la soluzione degli esercizi è possibile

Dettagli

Catene di Markov. 8 ottobre 2009

Catene di Markov. 8 ottobre 2009 Catene di Markov 8 ottobre 2009 Definizione 1. Si dice catena di Markov (finita) un sistema dotato di un numero finito n di stati {1, 2,..., n} che soddisfi la seguente ipotesi: la probabilità che il sistema

Dettagli

c) Ancora in corrispondenza allo stesso valore di p e ponendo Y = minorazione, fornita dalla diseguaglianza di Chebichev, per la probabilita

c) Ancora in corrispondenza allo stesso valore di p e ponendo Y = minorazione, fornita dalla diseguaglianza di Chebichev, per la probabilita Laurea Triennale in Matematica Corso di Calcolo delle Probabilita I A.A. 00/00 (Docenti: M. Piccioni, F. Spizzichino) a prova di esonero 6 giugno 00 Risolvere almeno tre dei seguenti esercizi.. Indichiamo

Dettagli

CP110 Probabilità: esame del 18 settembre 2017

CP110 Probabilità: esame del 18 settembre 2017 Dipartimento di Matematica, Roma Tre Pietro Caputo 206-7, II semestre 8 settembre, 207 CP0 Probabilità: esame del 8 settembre 207 Cognome Nome Matricola Firma Nota:. L unica cosa che si puo usare durante

Dettagli

CP110 Probabilità: Esonero 2. Testo e soluzione

CP110 Probabilità: Esonero 2. Testo e soluzione Dipartimento di Matematica, Roma Tre Pietro Caputo 29-2, II semestre 25 maggio, 2 CP Probabilità: Esonero 2 Testo e soluzione . (7 pt) Siano T, T 2 variabili esponenziali indipendenti, di parametri λ =

Dettagli

Corso di Laurea Triennale in Matematica Calcolo delle Probabilità I (docenti G. Nappo, F. Spizzichino)

Corso di Laurea Triennale in Matematica Calcolo delle Probabilità I (docenti G. Nappo, F. Spizzichino) Corso di Laurea Triennale in Matematica Calcolo delle Probabilità I (docenti G. Nappo, F. Spizzichino Prova di Mercoledì giugno 4 (tempo a disposizione: ore. Scrivere su ogni foglio NOME e COGNOME. Le

Dettagli

CP110 Probabilità: Esame del 15 settembre Testo e soluzione

CP110 Probabilità: Esame del 15 settembre Testo e soluzione Dipartimento di Matematica, Roma Tre Pietro Caputo 2009-2010, II semestre 15 settembre, 2010 CP110 Probabilità: Esame del 15 settembre 2010 Testo e soluzione 1. (6 pts) 10 carte numerate da 1 a 10 vengono

Dettagli

Esercizio 1. Una obbligazione può avere rating A, B, C o D e passare da un rating all altro secondo la matrice di transizione

Esercizio 1. Una obbligazione può avere rating A, B, C o D e passare da un rating all altro secondo la matrice di transizione Esercizi di Calcolo delle Probabilità della 10 a Matematica, Università degli Studi di Padova). settimana (Corso di Laurea in Esercizio 1. Una obbligazione può avere rating A, B, C o D e passare da un

Dettagli

CP410: Esonero 1, 7 novembre, 2018

CP410: Esonero 1, 7 novembre, 2018 Dipartimento di Matematica, Roma Tre Pietro Caputo 2018-19, I semestre 7 novembre, 2018 CP410: Esonero 1, 7 novembre, 2018 Cognome Nome Matricola Firma 1. Sia X una variabile aleatoria su uno spazio di

Dettagli

Tutorato XI Probabilità e Statistica a.a. 2014/2015

Tutorato XI Probabilità e Statistica a.a. 2014/2015 Tutorato XI Probabilità e Statistica a.a. 4/5 Argomenti: catene di Markov: probabilità e tempi medi di passaggio. Esercizio. Un topolino si sposta sui vertici di un grafo come nella Figura. 4 5 7 6 Ad

Dettagli

Calcolo delle Probabilità e Statistica, Ing. Informatica e dell Automazione 15/9/2010

Calcolo delle Probabilità e Statistica, Ing. Informatica e dell Automazione 15/9/2010 Calcolo delle Probabilità e Statistica, Ing. Informatica e dell Automazione 5/9/ Nota. E obbligatorio sia scegliere le risposte (numeriche, o le formule nali a seconda del caso) negli appositi spazi, sia

Dettagli

PROCESSI STOCASTICI 1: ESERCIZI

PROCESSI STOCASTICI 1: ESERCIZI PROCESSI STOCASTICI 1: ESERCIZI (1) ESERCIZIO: Date P e Q matrici stocastiche, dimostrare che la matrice prodotto P Q è una matrice stocastica. Dedurre che la potenza P n e il prodotto P 1 P 2 P n sono

Dettagli

UNIVERSITÀ di ROMA TOR VERGATA

UNIVERSITÀ di ROMA TOR VERGATA UNIVERSITÀ di ROMA TOR VERGATA Corso di PS-Probabilità P.Baldi Tutorato 9, 19 maggio 11 Corso di Laurea in Matematica Esercizio 1 a) Volendo modellizzare l evoluzione della disoccupazione in un certo ambito

Dettagli

Note sulle Catene di Markov

Note sulle Catene di Markov Note sulle Catene di Markov ELAUT Prof. Giuseppe C. Calafiore Sommario Queste note contengono un estratto schematico ridotto di parte del materiale relativo alle Catene di Markov a tempo continuo e a tempo

Dettagli

CP110 Probabilità: Esame del 25 gennaio, Testo e soluzione

CP110 Probabilità: Esame del 25 gennaio, Testo e soluzione Dipartimento di Matematica, Roma Tre Pietro Caputo 2009-2010, II semestre 25 gennaio, 2011 CP110 Probabilità: Esame del 25 gennaio, 2011 Testo e soluzione 1. (6 pts Un mazzo di 20 carte contiene 15 carte

Dettagli

CP110 Probabilità: Esame 2 luglio Testo e soluzione

CP110 Probabilità: Esame 2 luglio Testo e soluzione Dipartimento di Matematica, Roma Tre Pietro Caputo 212-13, II semestre 2 luglio, 213 CP11 Probabilità: Esame 2 luglio 213 Testo e soluzione 1. (6 pts Due mazzi di carte francesi vengono uniti e mischiati.

Dettagli

CP410: Esame 2, 30 gennaio Testo e soluzione

CP410: Esame 2, 30 gennaio Testo e soluzione Dipartimento di Matematica, Roma Tre Pietro Caputo 23-4, I semestre 3 gennaio, 24 CP4: Esame 2, 3 gennaio 24 Testo e soluzione Cognome Nome Matricola Firma . Per ogni n N, sia X n la variabile aleatoria

Dettagli

DATI DELLO STUDENTE: NomeeCognome:... NumerodiMatricola:... PROCESSI STOCASTICI 09/09/2015, ESAME SCRITTO

DATI DELLO STUDENTE: NomeeCognome:... NumerodiMatricola:... PROCESSI STOCASTICI 09/09/2015, ESAME SCRITTO DATI DELLO STUDENTE: NomeeCognome:... NumerodiMatricola:... PROCESSI STOCASTICI 09/09/20, ESAME SCRITTO L uso di testi, appunti, formulari e gadget elettronici non è autorizzato. Avete 2 ore di tempo a

Dettagli

Calcolo delle Probabilità 2017/18 Foglio di esercizi 8

Calcolo delle Probabilità 2017/18 Foglio di esercizi 8 Calcolo delle Probabilità 07/8 Foglio di esercizi 8 Catene di Markov e convergenze Si consiglia di svolgere gli esercizi n 9,,,, 5 Catene di Markov Esercizio (Baldi, Esempio 5) Si consideri il grafo costituito

Dettagli

Esame di Calcolo delle Probabilità del 4 luglio 2006 (Corso di Laurea Triennale in Matematica, Università degli Studi di Padova).

Esame di Calcolo delle Probabilità del 4 luglio 2006 (Corso di Laurea Triennale in Matematica, Università degli Studi di Padova). Esame di Calcolo delle Probabilità del 4 luglio 26 (Corso di Laurea Triennale in Matematica, Università degli Studi di Padova). Cognome Nome Matricola Es. 1 Es. 2 Es. 3 Es. 4 Somma Voto finale Attenzione:

Dettagli

CP410: Esonero 1, 31 ottobre 2013

CP410: Esonero 1, 31 ottobre 2013 Dipartimento di Matematica, Roma Tre Pietro Caputo 2013-14, I semestre 31 ottobre, 2013 CP410: Esonero 1, 31 ottobre 2013 Cognome Nome Matricola Firma 1. Fare un esempio di successione di variabili aleatorie

Dettagli

Corso di Laurea in Ingegneria Robotica e dell Automazione Probabilità e Processi Stocastici (455AA) A.A. 2018/19 - Prova in itinere

Corso di Laurea in Ingegneria Robotica e dell Automazione Probabilità e Processi Stocastici (455AA) A.A. 2018/19 - Prova in itinere Corso di Laurea in Ingegneria Robotica e dell Automazione Probabilità e Processi Stocastici (455AA) A.A. 208/9 - Prova in itinere 208--2 La durata della prova è di due ore e mezzo. Le risposte devono essere

Dettagli

CP110 Probabilità: Esame 4 giugno Testo e soluzione

CP110 Probabilità: Esame 4 giugno Testo e soluzione Dipartimento di Matematica, Roma Tre Pietro Caputo 202-3, II semestre 4 giugno, 203 CP0 Probabilità: Esame 4 giugno 203 Testo e soluzione . (6 pts) Un urna contiene inizialmente pallina rossa e 0 palline

Dettagli

Prova scritta di Probabilità e Statistica Appello unico, II sessione, a.a. 2015/ Settembre 2016

Prova scritta di Probabilità e Statistica Appello unico, II sessione, a.a. 2015/ Settembre 2016 Prova scritta di Probabilità e Statistica Appello unico, II sessione, a.a. 205/206 20 Settembre 206 Esercizio. Un dado equilibrato viene lanciato ripetutamente. Indichiamo con X n il risultato dell n-esimo

Dettagli

Catene di Markov - Foglio 1

Catene di Markov - Foglio 1 Catene di Markov - Foglio 1 1. Una pedina si muove su un circuito circolare a 4 vertici, numerati da 1 a 4. La pedina si trova inizialmente nel vertice 1. Ad ogni passo un giocatore lancia un dado equilibrato:

Dettagli

Corso di Laurea in Ingegneria Robotica e dell Automazione Probabilità e Processi Stocastici (455AA) A.A. 2018/19 - Prova scritta

Corso di Laurea in Ingegneria Robotica e dell Automazione Probabilità e Processi Stocastici (455AA) A.A. 2018/19 - Prova scritta Corso di Laurea in Ingegneria Robotica e dell Automazione Probabilità e Processi Stocastici (455AA) A.A. 208/9 - Prova scritta 209-0-09 La durata della prova è di due ore e mezzo. Le risposte devono essere

Dettagli

Calcolo delle Probabilità e Statistica, Ing. Informatica e dell Automazione, a.a. 2009/10 30/6/2010

Calcolo delle Probabilità e Statistica, Ing. Informatica e dell Automazione, a.a. 2009/10 30/6/2010 Calcolo delle Probabilità e Statistica, Ing. Informatica e dell Automazione, a.a. 29/ /6/2 Nota. E obbligatorio sia scegliere le risposte numeriche, o le formule nali a seconda del caso) negli appositi

Dettagli

ESERCIZI DATI A LEZIONE TPA - anno 2006 CAPITOLO 2

ESERCIZI DATI A LEZIONE TPA - anno 2006 CAPITOLO 2 ESECIZI DATI A LEZIONE TPA - anno 2006 CAPITOLO 2 1. Una σ algebra è chiusa rispetto a intersezioni finite e numerabili, e rispetto a differenze e differenze simmetriche. 2. Una σ algebra è anche un algebra,

Dettagli

Tutorato III Probabilità e Statistica a.a. 2015/2016

Tutorato III Probabilità e Statistica a.a. 2015/2016 Tutorato III Probabilità e Statistica a.a. 205/206 Argomenti: legge di Poisson; funzioni di ripartizione; leggi congiunte e marginali; leggi condizionali. Esercizio. All inizio di ogni mese un commerciante

Dettagli

B =3 0 1=3 0 1=3

B =3 0 1=3 0 1=3 Corsi di Probabilità, Statistica e Processi stocastici per Ing. dell Automazione, Informatica e Inf.Gest.Azienda, a.a. / // Esercizio. Un PC comprato da alcuni mesi, all accensione compie alcune operazioni

Dettagli

Correzione di Esercizi 4 di Calcolo delle Probabilità e Statistica. Mercoledì 4 maggio 2016

Correzione di Esercizi 4 di Calcolo delle Probabilità e Statistica. Mercoledì 4 maggio 2016 Correzione di Esercizi di Calcolo delle Probabilità e Statistica. Mercoledì maggio 6 Chun Tian. Answer of Exercise Figure. Catena di Markov.. (a) Le classi di equivalenza e i loro periodi. Da Figure, si

Dettagli

Corso di Laurea in Informatica Calcolo delle Probabilità e Statistica (269AA) A.A. 2016/17 - Prova del

Corso di Laurea in Informatica Calcolo delle Probabilità e Statistica (269AA) A.A. 2016/17 - Prova del Corso di Laurea in Informatica Calcolo delle Probabilità e Statistica (269AA) A.A. 206/7 - Prova del 207-09-08 La durata della prova è di tre ore. Le risposte devono essere adeguatamente giustificate.

Dettagli

COMPLETAMENTO DI SPAZI METRICI

COMPLETAMENTO DI SPAZI METRICI COMPLETAMENTO DI SPAZI METRICI 1. Successioni di Cauchy e spazi metrici completi Definizione 1.1. Una successione x n n N a valori in uno spazio metrico X, d si dice di Cauchy se, per ogni ε > 0 esiste

Dettagli

PROCESSI STOCASTICI 1: ESERCIZI

PROCESSI STOCASTICI 1: ESERCIZI PROCESSI STOCASTICI 1: ESERCIZI (1) ESERCIZIO: Date P e Q matrici stocastiche, dimostrare che la matrice prodotto P Q è una matrice stocastica. Dedurre che la potenza P n e il prodotto P 1 P 2 P n sono

Dettagli

Questionario. Quesito 1. Esame di Stato - Liceo Scientifico. Soluzione. Definito il numero. dimostrare che risulta: ed esprimere. in termini di ed = 1

Questionario. Quesito 1. Esame di Stato - Liceo Scientifico. Soluzione. Definito il numero. dimostrare che risulta: ed esprimere. in termini di ed = 1 Esame di Stato - Liceo Scientifico Quesito 1 Questionario Definito il numero come: dimostrare che risulta: ed esprimere in termini di ed = = 1 (1.1.1) Chiamiamo (1.1.2) = = (1.1.3) ovvero. = = (1.1.4)

Dettagli

CP110 Probabilità: Esonero 1. Testo e soluzione

CP110 Probabilità: Esonero 1. Testo e soluzione Dipartimento di Matematica, Roma Tre Pietro Caputo 2009-2010, II semestre 1 aprile, 2010 CP110 Probabilità: Esonero 1 Testo e soluzione 1. (7 pt Una scatola contiene 15 palle numerate da 1 a 15. Le palle

Dettagli

4 0 = 4 2 = 4 4 = 4 6 = 0.

4 0 = 4 2 = 4 4 = 4 6 = 0. Elementi di Algebra e Logica 2008. Esercizi 4. Gruppi, anelli e campi. 1. Determinare la tabella additiva e la tabella moltiplicativa di Z 6. (a) Verificare dalla tabella moltiplicativa di Z 6 che esistono

Dettagli

FUNZIONI CONTINUE - ESERCIZI SVOLTI

FUNZIONI CONTINUE - ESERCIZI SVOLTI FUNZIONI CONTINUE - ESERCIZI SVOLTI 1) Verificare che x è continua in x 0 per ogni x 0 0 ) Verificare che 1 x 1 x 0 è continua in x 0 per ogni x 0 0 3) Disegnare il grafico e studiare i punti di discontinuità

Dettagli

CP210 Introduzione alla Probabilità: Esonero 2

CP210 Introduzione alla Probabilità: Esonero 2 Dipartimento di Matematica, Roma Tre Pietro Caputo 218-19, II semestre 4 giugno, 219 CP21 Introduzione alla Probabilità: Esonero 2 Cognome Nome Matricola Firma Nota: 1. L unica cosa che si può usare durante

Dettagli

CP110 Probabilità: Esame 5 giugno Testo e soluzione

CP110 Probabilità: Esame 5 giugno Testo e soluzione Dipartimento di Matematica, Roma Tre Pietro Caputo 21-11, II semestre 5 giugno, 212 CP11 Probabilità: Esame 5 giugno 212 Testo e soluzione 1. (6 pts) Sette biglietti numerati da 1 a 7 vengono distribuiti

Dettagli

Primo appello prova scritta di Calcolo delle probabilità Laurea Triennale in Matematica 01/02/2016

Primo appello prova scritta di Calcolo delle probabilità Laurea Triennale in Matematica 01/02/2016 Primo appello prova scritta di Calcolo delle probabilità Laurea Triennale in Matematica 0/0/06 COGNOME e NOME... N. MATRICOLA... Esercizio. (9 punti) Sia {S n } n N una passeggiata aleatoria standard (cioè

Dettagli

- ciascun autovalore di T ha molteplicità geometrica uguale alla moltplicitaà algebrica.

- ciascun autovalore di T ha molteplicità geometrica uguale alla moltplicitaà algebrica. Lezioni del 14.05 e 17.05 In queste lezioni si sono svolti i seguenti argomenti. Ripresa del teorema generale che fornisce condizioni che implicano la diagonalizzabilità, indebolimento delle ipotesi, e

Dettagli

Matrici jordanizzabili

Matrici jordanizzabili Capitolo 17 Matrici jordanizzabili 17.1 Introduzione Abbiamo visto che non tutte le matrici sono simili a matrici diagonali. Mostreremo in questo capitolo che alcune matrici sono simili a matrici di Jordan.

Dettagli

Lezione 6 Richiami di Geometria Analitica

Lezione 6 Richiami di Geometria Analitica 1 Piano cartesiano Lezione 6 Richiami di Geometria Analitica Consideriamo nel piano due rette perpendicolari che si intersecano in un punto O Consideriamo ciascuna di queste rette come retta orientata

Dettagli

UNIVERSITA` di ROMA TOR VERGATA

UNIVERSITA` di ROMA TOR VERGATA UNIVERSITA` di ROMA TOR VERGATA Corso di PS2-Probabilità 2 PBaldi appello, 23 giugno 29 Corso di Laurea in Matematica Esercizio Per α 2 consideriamo la catena di Markov su {, 2, 3} associata alla matrice

Dettagli

Probabilità e Processi stocastici. Ingegneria Robotica e dell Automazione. Prova scritta del giorno 15/12/14

Probabilità e Processi stocastici. Ingegneria Robotica e dell Automazione. Prova scritta del giorno 15/12/14 Probabilità e Processi stocastici. Ingegneria Robotica e dell Automazione. Prova scritta del giorno 15/12/14 In ingegneria un sistema formato da n componenti è detto k su n se funziona quando almeno k

Dettagli

Metodi quantitativi per i mercati finanziari

Metodi quantitativi per i mercati finanziari Metodi quantitativi per i mercati finanziari Esercizi di probabilità Spazi di probabilità Ex. 1 Sia Ω = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}. Siano A e B sottoinsiemi di Ω tali che A = {numeri pari},

Dettagli

Circonferenze del piano

Circonferenze del piano Circonferenze del piano 1 novembre 1 Circonferenze del piano 1.1 Definizione Una circonferenza è il luogo dei punti equidistanti da un punto fisso, detto centro. La distanza di un qualunque punto della

Dettagli

LAUREA IN INGEGNERIA CIVILE ED AMBIENTE-TERRITORIO Corso di Matematica 2 Padova TEMA n.1

LAUREA IN INGEGNERIA CIVILE ED AMBIENTE-TERRITORIO Corso di Matematica 2 Padova TEMA n.1 LAUREA IN INGEGNERIA CIVILE ED AMBIENTE-TERRITORIO Corso di Matematica Padova -8-8 TEMA n.1 PARTE 1. Quesiti preliminari Stabilire se le seguenti affermazioni sono vere o false giustificando brevemente

Dettagli

Seconda prova in itinere di Calcolo delle probabilità e Statistica (12 crediti) 10 gennaio 2007

Seconda prova in itinere di Calcolo delle probabilità e Statistica (12 crediti) 10 gennaio 2007 Seconda prova in itinere di Calcolo delle probabilità e Statistica ( crediti) gennaio 7 Esercizio. Un concessionario automobilistico ha in dotazione 4 autoveicoli nuovi e usati, che divide equamente tra

Dettagli

Esercizi svolti. Geometria analitica: rette e piani

Esercizi svolti. Geometria analitica: rette e piani Esercizi svolti. Sistemi di riferimento e vettori. Dati i vettori v = i + j k, u =i + j + k determinare:. il vettore v + u ;. gli angoli formati da v e u;. i vettore paralleli alle bisettrici di tali angoli;

Dettagli

CP110 Probabilità: Esame 30 gennaio Testo e soluzione

CP110 Probabilità: Esame 30 gennaio Testo e soluzione Dipartimento di Matematica, Roma Tre Pietro Caputo 2010-11, II semestre 30 gennaio, 2012 CP110 Probabilità: Esame 30 gennaio 2012 Testo e soluzione 1. (5 pts) Un gioco consiste in n prove ripetute, tali

Dettagli

Istituzioni di Probabilità - A.A

Istituzioni di Probabilità - A.A Istituzioni di Probabilità - A.A. 25-26 Prima prova di verifica intermedia - 29 aprile 25 Esercizio. Sia (X n ) n una successione di v.a. i.i.d. centrate con < X P-q.c., sia λ R ed F una v.a. integrabile

Dettagli

Corso di Laurea in Ingegneria Robotica e dell Automazione Probabilità e Processi Stocastici (455AA) A.A. 2018/19 - Esercitazione

Corso di Laurea in Ingegneria Robotica e dell Automazione Probabilità e Processi Stocastici (455AA) A.A. 2018/19 - Esercitazione Corso di Laurea in Ingegneria Robotica e dell Automazione Probabilità e Processi Stocastici (55AA) A.A. 28/9 - Esercitazione 28--9 La durata della prova è di due ore e mezzo. Le risposte devono essere

Dettagli

V Appello di Calcolo delle Probabilità Cognome: Laurea Triennale in Matematica 2012/13 Nome: 18 ottobre

V Appello di Calcolo delle Probabilità Cognome: Laurea Triennale in Matematica 2012/13 Nome: 18 ottobre V Appello di Calcolo delle Probabilità Cognome: Laurea Triennale in Matematica 202/ Nome: 8 ottobre 20 Email: Se non è espressamente indicato il contrario, per la soluzione degli esercizi è possibile usare

Dettagli

ESERCIZI SUI SISTEMI LINEARI

ESERCIZI SUI SISTEMI LINEARI ESERCIZI SUI SISTEMI LINEARI Consideriamo ora il sistema lineare omogeneo a coefficienti costanti associato alla matrice A M n n, cioè SLO Vale il seguente = A. Teorema. Sia v R n \ } e sia λ C. Condizione

Dettagli

Università di Roma Tor Vergata Corso di Teoria dei Fenomeni Aleatori, AA 2012/13. Catene di Markov

Università di Roma Tor Vergata Corso di Teoria dei Fenomeni Aleatori, AA 2012/13. Catene di Markov Catene di Markov SISTEMI CASUALI DINAMICI (PROCESSI) - UN ESEMPIO: I GUASTI Frequenza dei guasti: N GUASTI 0 T N T 0 T! Catene di Markov SISTEMI CASUALI DINAMICI (PROCESSI) - UN ESEMPIO: I GUASTI Campionando

Dettagli

Note di Teoria della Probabilità.

Note di Teoria della Probabilità. Note di Teoria della Probabilità. In queste brevi note, si richiameranno alcuni risultati di Teoria della Probabilità, riguardanti le conseguenze elementari delle definizioni di probabilità e σ-algebra.

Dettagli

Esercizi di Probabilità

Esercizi di Probabilità Esercizi di Probabilità Annalisa Cerquetti - Sandra Fortini Vai all indice Istituto di Metodi Quantitativi, Viale Isonzo, 25, 2033 Milano, Italy. E-mail: annalisa.cerquetti@unibocconi.it,sandra.fortini@unibocconi.it

Dettagli

STATISTICA A K (63 ore) Marco Riani

STATISTICA A K (63 ore) Marco Riani STATISTICA A K (63 ore) Marco Riani mriani@unipr.it http://www.riani.it Esempio totocalcio Gioco la schedina mettendo a caso i segni 1 X 2 Qual è la prob. di fare 14? Esempio Gioco la schedina mettendo

Dettagli

I Appello di Calcolo delle Probabilità Cognome: Laurea Triennale in Matematica 2012/13 Nome: 30 gennaio

I Appello di Calcolo delle Probabilità Cognome: Laurea Triennale in Matematica 2012/13 Nome: 30 gennaio I Appello di Calcolo delle Probabilità Cognome: Laurea Triennale in Matematica /3 Nome: 3 gennaio 3 Email: Se non è espressamente indicato il contrario, per la soluzione degli esercizi è possibile usare

Dettagli

Esercitazioni del Corso di Probabilitá e Statistica Lezione 2: Eventi disgiunti, eventi indipendenti e probabilitá condizionata

Esercitazioni del Corso di Probabilitá e Statistica Lezione 2: Eventi disgiunti, eventi indipendenti e probabilitá condizionata Esercitazioni del Corso di Probabilitá e Statistica Lezione 2: Eventi disgiunti, eventi indipendenti e probabilitá condizionata Stefano Patti 1 19 ottobre 2005 Definizione 1 Sia (Ω, F) uno spazio probabilizzabile.

Dettagli

STIMA DELLA VARIANZA CAMPIONARIA

STIMA DELLA VARIANZA CAMPIONARIA STIMA DELLA VARIANZA CAMPIONARIA Abbiamo visto che una stima puntuale corretta per il valore atteso µ delle variabili aleatorie X i è x n = (x 1 +.. + x n )/n. Una stima puntuale della varianza σ 2 delle

Dettagli

PROCESSI STOCASTICI A.A. 2010/2011. DIARIO DELLE LEZIONI

PROCESSI STOCASTICI A.A. 2010/2011. DIARIO DELLE LEZIONI PROCESSI STOCASTICI A.A. 2010/2011. DIARIO DELLE LEZIONI Martedì 19/10/2010 (14-16) Richiami di teoria della probabilità: spazio di probabilità, alcune consequenze della definizione di funzione di probabilità,

Dettagli

Analisi Matematica 1 Appello straordinario

Analisi Matematica 1 Appello straordinario marzo 09 Testo A. Sia ν : N N una funzione strettamente crescente. Allora sicuramente a n N, νn) n b n N: νn) > n. Sia a n ) n N successione tale che n N: ε > 0 n > n, a n a < ε. Allora sicuramente a a

Dettagli

Analisi II, a.a Soluzioni 3

Analisi II, a.a Soluzioni 3 Analisi II, a.a. 2017-2018 Soluzioni 3 1) Consideriamo la funzione F : R 2 R 2 definita come F (x, y) = (x 2 + y 2, x 2 y 2 ). (i) Calcolare la matrice Jacobiana DF e determinare in quali punti F è localmente

Dettagli

Corso di Laurea in Informatica Calcolo delle Probabilità e Statistica (269AA) A.A. 2016/17 - Prova del

Corso di Laurea in Informatica Calcolo delle Probabilità e Statistica (269AA) A.A. 2016/17 - Prova del Corso di Laurea in Informatica Calcolo delle Probabilità e Statistica (69AA) A.A. 06/7 - Prova del 07-07-07 La durata della prova è di tre ore. Le risposte devono essere adeguatamente giustificate. Problema

Dettagli

Corso di Laurea in Informatica Calcolo delle Probabilità e Statistica (269AA) A.A. 2017/18 - Prova scritta

Corso di Laurea in Informatica Calcolo delle Probabilità e Statistica (269AA) A.A. 2017/18 - Prova scritta Corso di Laurea in Informatica Calcolo delle Probabilità e Statistica (69AA) A.A. 7/8 - Prova scritta 8-7-3 La durata della prova è di tre ore. Le risposte devono essere adeguatamente giustificate. Problema

Dettagli

Soluzioni Esercitazione 1

Soluzioni Esercitazione 1 Soluzioni Esercitazione Esercizio Per rappresentare gli eventi richiesti sfruttiamo le operazioni insiemistiche note di unione, intersezione e complementazione. Vediamo separatamente le quattro soluzioni..

Dettagli

Analisi Matematica 3 (Fisica) Prova scritta del 17 febbraio 2012 Un breve svolgimento delle versioni A

Analisi Matematica 3 (Fisica) Prova scritta del 17 febbraio 2012 Un breve svolgimento delle versioni A Analisi Matematica 3 (Fisica) Prova scritta del 7 febbraio Un breve svolgimento delle versioni A Vi sarò grato per la segnalazione di eventuali errori. Esercizio. (a) Dimostrare che l equazione () (3 +

Dettagli

Esercizi di Programmazione Lineare

Esercizi di Programmazione Lineare Esercizi di Programmazione Lineare 1 grafica Si consideri il seguente problema di programmazione lineare: max 3x 1 + 2x 2 s.t. + 2x 1 + x 2 4 2x 1 + x 2 2 + x 1 x 2 1 x 1, x 2 0 a) Risolvere il problema

Dettagli

II Appello di Calcolo delle Probabilità Laurea Triennale in Matematica 2016/17

II Appello di Calcolo delle Probabilità Laurea Triennale in Matematica 2016/17 II Appello di Calcolo delle Probabilità Laurea Triennale in Matematica 6/7 Martedì 4 febbraio 7 Cognome: Nome: Email: Se non è espressamente indicato il contrario, per la soluzione degli esercizi è possibile

Dettagli

Corso di Geometria, a.a Ing. Informatica e Automatica Esercizi VI: soluzioni

Corso di Geometria, a.a Ing. Informatica e Automatica Esercizi VI: soluzioni Corso di Geometria, a.a. 2009-2010 Ing. Informatica e Automatica Esercizi VI: soluzioni 5 novembre 2009 1 Geometria del piano e prodotto scalare Richiami. Il prodotto scalare di due vettori del piano v,

Dettagli

CP210 Introduzione alla Probabilità: Esame 2

CP210 Introduzione alla Probabilità: Esame 2 Dipartimento di Matematica, Roma Tre Pietro Caputo 2018-19, II semestre 9 luglio, 2019 CP210 Introduzione alla Probabilità: Esame 2 Cognome Nome Matricola Firma Nota: 1. L unica cosa che si può usare durante

Dettagli

V Appello di Calcolo delle Probabilità Cognome: Laurea Triennale in Matematica 2014/15 Nome: 7 gennaio

V Appello di Calcolo delle Probabilità Cognome: Laurea Triennale in Matematica 2014/15 Nome: 7 gennaio V Appello di Calcolo delle Probabilità Cognome: Laurea Triennale in Matematica 24/5 Nome: 7 gennaio 26 Email: Se non è espressamente indicato il contrario, per la soluzione degli esercizi è possibile usare

Dettagli

SOLUZIONE DEGLI ESERCIZI DEL FOGLIO N. 7

SOLUZIONE DEGLI ESERCIZI DEL FOGLIO N. 7 SOLUZIONE DEGLI ESERCIZI DEL FOGLIO N. 7 Esercizio. Funzione da studiare: log( 3).. Dominio: dobbiamo richiedere che il denominatore non si annulli e che il logaritmo sia ben definito. Quindi le condizioni

Dettagli

CATENE DI MARKOV. Esempio 1 Consideriamo la catena di Markov avente spazio degli stati S = {1, 2, 3, 4} e matrice di transizione 1/2 1/2 0 0

CATENE DI MARKOV. Esempio 1 Consideriamo la catena di Markov avente spazio degli stati S = {1, 2, 3, 4} e matrice di transizione 1/2 1/2 0 0 CATENE DI MARKOV Esempio Consideriamo la catena di Markov avente spazio degli stati S = {, 2, 3, 4} e matrice di transizione /2 /2 0 0 /2 /2 0 0 /4 /4 /4 /4. 0 0 0 La classe costituita dagli stati e 2

Dettagli

CORSO DI LAUREA IN INGEGNERIA DELLE TELECOMUNICAZIONI

CORSO DI LAUREA IN INGEGNERIA DELLE TELECOMUNICAZIONI CORSO DI LAUREA IN INGEGNERIA DELLE TELECOMUNICAZIONI FOGLIO DI ESERCIZI # GEOMETRIA E ALGEBRA 009/0 Esercizio.. Dati i vettori di R : v (,, ), v (, 4, 6), v (,, 5), v 4 (,, 0) determinare se v 4 è combinazione

Dettagli

Scuola Galileiana di Studi Superiori Classe di Scienze Naturali - A. A Prova scritta di matematica

Scuola Galileiana di Studi Superiori Classe di Scienze Naturali - A. A Prova scritta di matematica Scuola Galileiana di Studi Superiori Classe di Scienze Naturali - A. A. 016-017 Prova scritta di matematica Il candidato svolga quanti più possibile dei seguenti sei esercizi. Esercizio 1. Consideriamo

Dettagli

P ( X n X > ɛ) = 0. ovvero (se come distanza consideriamo quella euclidea)

P ( X n X > ɛ) = 0. ovvero (se come distanza consideriamo quella euclidea) 10.4 Convergenze 166 10.4.3. Convergenza in Probabilità. Definizione 10.2. Data una successione X 1, X 2,...,,... di vettori aleatori e un vettore aleatorio X aventi tutti la stessa dimensione k diremo

Dettagli

! X (92) X n. P ( X n X ) =0 (94)

! X (92) X n. P ( X n X ) =0 (94) Convergenza in robabilità Definizione 2 Data una successione X 1,X 2,...,X n,... di numeri aleatori e un numero aleatorio X diremo che X n tende in probabilità a X escriveremo X n! X (92) se fissati comunque

Dettagli

Comportamento asintotico delle Catene di Markov

Comportamento asintotico delle Catene di Markov Comortamento asintotico delle Catene di Markov In queste note analizzeremo il comortamento asintotico della catene di Markov a temo discreto omogenee, con sazio degli stati di dimensione finita. I risultati

Dettagli

Università degli Studi di Bergamo Matematica II (5 e 7,5 crediti) 24 giugno 2011 Tema A

Università degli Studi di Bergamo Matematica II (5 e 7,5 crediti) 24 giugno 2011 Tema A Università degli Studi di Bergamo Matematica II (5 e 7,5 crediti) 24 giugno 20 Tema A Tempo a disposizione: 2 ore. Calcolatrici, libri e appunti non sono ammessi. Ogni esercizio va iniziato all inizio

Dettagli

RETI DI TELECOMUNICAZIONE

RETI DI TELECOMUNICAZIONE RETI DI TELECOMUNICAZIONE CATENE DI MARKOV TEMPO CONTINUE Definizioni Sia dato un processo stocastico x(t) che può assumere valori discreti appartenenti ad un insieme se accade che il processo è una catena

Dettagli

Soluzioni della prova di Matematica Maturità 2015

Soluzioni della prova di Matematica Maturità 2015 Soluzioni della prova di Matematica Maturità 015 Lara Charawi 1, Alberto Cogliati e Luca Magri 1 Dipartimento di Matematica, Università degli Studi di Pavia Dipartimento di Matematica, Università degli

Dettagli

Corso di Geometria BIAR, BSIR Esercizi 10: soluzioni

Corso di Geometria BIAR, BSIR Esercizi 10: soluzioni Corso di Geometria 2010-11 BIAR, BSIR Esercizi 10: soluzioni 1 Geometria dello spazio Esercizio 1. Dato il punto P 0 = ( 1, 0, 1) e il piano π : x + y + z 2 = 0, determinare: a) Le equazioni parametriche

Dettagli

Esercizi svolti sui sistemi lineari

Esercizi svolti sui sistemi lineari Francesco Daddi - www.webalice.it/francesco.daddi Esercizi svolti sui sistemi lineari Esercizio 1. Risolvere il seguente sistema lineare al variare del parametro reale t: tx+(t 1)y + z =1 (t 1)y + tz =1

Dettagli

Quali condizionisi si possono richiedere sulla funzione interpolante?

Quali condizionisi si possono richiedere sulla funzione interpolante? INTERPOLAZIONE Problema generale di INTERPOLAZIONE Dati n punti distinti ( i, i ) i=,..,n si vuole costruire una funzione f() tale che nei nodi ( i ) i=,..n soddisfi a certe condizioni, dette Condizioni

Dettagli

il discriminante uguale a zero; sviluppando i calcoli si ottiene che deve essere

il discriminante uguale a zero; sviluppando i calcoli si ottiene che deve essere Macerata maggio 0 classe M COMPITO DI MATEMATICA RECUPERO ASSENTI QUESITO Considera il fascio di curve di equazione: x y (.) = k + k 6 a) Trova per quali valori di k si hanno delle ellissi. Deve essere

Dettagli

Intersezione e somma di sottospazi vettoriali

Intersezione e somma di sottospazi vettoriali Capitolo 7 Intersezione e somma di sottospazi vettoriali 7.1 Introduzione Ricordiamo le definizioni di intersezione e somma di due sottospazi vettoriali. Anche in questo caso rimandiamo al testo di geometria

Dettagli

ax 1 + bx 2 + c = 0, r : 2x 1 3x 2 + 1 = 0.

ax 1 + bx 2 + c = 0, r : 2x 1 3x 2 + 1 = 0. . Rette in R ; circonferenze. In questo paragrafo studiamo le rette e le circonferenze in R. Ci sono due modi per descrivere una retta in R : mediante una equazione cartesiana oppure mediante una equazione

Dettagli

4 Funzioni continue. Geometria I 27. Cfr: Sernesi vol II, cap I, 4 [1].

4 Funzioni continue. Geometria I 27. Cfr: Sernesi vol II, cap I, 4 [1]. Geometria I 27 4 Funzioni continue Cfr: Sernesi vol II, cap I, 4 [1]. Le funzioni continue tra spazi topologici si dicono anche mappe. Si può dimostrare, esattamente come in (2.10) e in (1.10), che vale

Dettagli

PRINCIPIO DI INDUZIONE E APPLICAZIONI

PRINCIPIO DI INDUZIONE E APPLICAZIONI PRINCIPIO DI INDUZIONE E APPLICAZIONI Il principio di induzione è un potente metodo dimostrativo indiretto per stabilire la validità di proposizioni che riguardano una successione infinita di casi. GIZ

Dettagli

Corsi di Probabilità ecc., per Ing. dell Automazione, Informatica e Inf.Gest.Azienda, 17/9/2011. B 0 0 a=3 b=3 0 0 b=3 a=3 0 A : 0 b=3 0 0 a=3

Corsi di Probabilità ecc., per Ing. dell Automazione, Informatica e Inf.Gest.Azienda, 17/9/2011. B 0 0 a=3 b=3 0 0 b=3 a=3 0 A : 0 b=3 0 0 a=3 Corsi di Probabilità ecc., per Ing. dell Automazione, Informatica e Inf.Gest.Azienda, 7/9/ mjx j Esercizio. Si consideri la funzione f (x) = C jx j e i) Stabilire per quali valori di m e di C è una densità

Dettagli

0.1 Spazi Euclidei in generale

0.1 Spazi Euclidei in generale 0.1. SPAZI EUCLIDEI IN GENERALE 1 0.1 Spazi Euclidei in generale Sia V uno spazio vettoriale definito su R. Diremo, estendendo una definizione data in precedenza, che V è uno spazio vettoriale euclideo

Dettagli

Analisi Matematica 2 e Complementi Soluzioni prova scritta n. 3

Analisi Matematica 2 e Complementi Soluzioni prova scritta n. 3 Analisi Matematica e Complementi Soluzioni prova scritta n. Corso di studio in Ingegneria Chimica, Elettrica ed Energetica a.a. 9-7 luglio. Trovare i valori massimo e minimo assunti dalla funzione sulla

Dettagli

Intersezione e somma di sottospazi vettoriali

Intersezione e somma di sottospazi vettoriali Capitolo 6 Intersezione e somma di sottospazi vettoriali 6.1 Introduzione Ricordiamo le definizioni di intersezione e somma di due sottospazi vettoriali. Anche in questo caso rimandiamo al testo di geometria

Dettagli

5. Catene di Markov a tempo discreto (CMTD)

5. Catene di Markov a tempo discreto (CMTD) 5. Catene di Markov a tempo discreto (CMTD) Carla Seatzu, 8 Marzo 2008 Definizione: CATENA Le catene sono p.s. in cui lo stato è discreto : X{x,x 2, }. L insieme X può essere sia finito sia infinito numerabile.

Dettagli