Numero aureo e pentagono Il pentagono regolare

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Numero aureo e pentagono Il pentagono regolare"

Transcript

1 Numero aureo e pentagono Il pentagono regolare - Gli assiri probabilmente lo scoprirono in modo casuale (rappresentato dall impronta di 5 dita sull argilla. - Per i greci il pentagono rappresentò un problema: per la loro mentalità razionale l unico modo per costruire figure geometriche era l utilizzo di riga e compasso, ma con tali strumenti non si riesce a disegnare immediatamente un pentagono. - Il metodo di costruzione con riga e compasso è un metodo che comporta diverse limitazioni: consiste di tracciare punti, segmenti o archi mediante una riga (priva di segni) ed un compasso. Con questo metodo è possibile tracciare la mediana di un segmento, la bisettrice di un angolo, il punto simmetrico da un altro, la retta parallela o perpendicolare ad una retta, dividere un segmento in parti uguali, ecc. - Esistono un serie di problemi che non possono essere risolti con riga e compasso. Ad esempio la quadratura del cerchio (disegnare un quadrato con la stessa area di un cerchio), la duplicazione di un cubo (trovare lo spigolo di un cubo, il cui volume sia doppio di quello originale), la trisezione di un angolo (dividere un angolo in tre parti uguali). Tramite il procedimento diretto con riga e compasso non si possono costruire nemmeno alcuni poligoni regolari, come l ettagono o il pentagono. - Il pentagono regolare può essere disegnato con riga e compasso in modo indiretto, avvalendosi di Φ: fu in questo modo che il numero aureo fece il suo ingresso nel campo della geometria greca. page 1 / 15

2 - Nel pentagono regolare si realizza la relazione EB/ED = Φ. - Le diagonali formano la stella pentagonale. - La ragione Φ si trova anche nei rapporti dei lati dei 3 tipi di triangoli isosceli - Karl Friederih Gauss ( ). Il principe dei matematici. Ha dimostrato che l eptadecagono regolare (17 lati) può essere costruito con riga e compasso. Questa scoperta segnò l inizio della sua carriera. - Il teorema di Morley ( ). Se si trisecano gli angoli interni di un qualunque triangolo per mezzo di semirette che partono da ciascun vertice, le coppie di semirette adiacenti ad ogni lato risultano secate in tre punti che, uniti, individuano sempre un triangolo equilatero. A differenza della maggior parte dei teoremi sui triangoli, già noti ai greci, questo teorema ha poco più di 100 anni (1904): page 2 / 15

3 Il triangolo aureo - Il pentagono e le sue diagonali formano due tipi di triangoli isosceli, con i seguenti angoli: 36, 36, 108 e 36, 72, 72, in entrambi i casi il rapporto tra il lato maggiore e lato minore è Φ, per questo vengono chiamati triangoli aurei (TA). - Il pentagono regolare che compare al centro è circondato da TA. - Per mezzo di un TA si può costruire un pentagono regolare con riga e compasso. Nella procedura di creazione si passa attraverso un decagono (unendo i vertici dispari si ottiene il pentagono). - Le dimensioni di un RA sono definite dal lato del decagono regolare iscritto in una circonferenza e dal raggio delle stessa. - Anche da un TA con angoli di 36, 72 e 72 è possibile ricavare una spirale logaritmica, bisecando l angolo di 72. page 3 / 15

4 La simbologia della stella pentagonale - Il senso comune ci fa pensare che la rappresentazione delle stelle derivi dal fatto che queste scintillano e che noi percepiamo questo scintillio come le punte della stella pentagonale. - Questa rappresentazione (stelle derivate dal pentagono) è molto antica (si trovano in tavolette mesopotamiche e geroglifici egizi). - La stella pentagonale è anche detta pentacolo o pentagramma Questa era anche il simbolo del gruppo dei pitagorici. Per loro la pentade (ovvero il 5) era il numero dell armonia nella salute e nella bellezza. - Matila Ghyka ( ) principe rumeno, scrittore e professore di estetica negli USA, diceva che il pentacolo è stato di volta in volta simbolo dell Amore creatore e della Bellezza vivente, come pure dell equilibrio nella salute del corpo umano. Matila Ghyka si occupò della proporzione aurea. Scrisse Estetica delle proporzioni nella natura e nelle arti e il numero d oro, con cui riportò la sezione aurea nuovamente in auge nell ambito della moderna cultura europea. Secondo lui gli artisti greci dell antichità classica usavano la proporzione aurea in modo conscio e consapevole, tesi però poco considerata nel mondo accademico. - Il pentacolo ha una lunga storia come simbolo di società segrete. Appare nell emblema dei Rosacroce e nelle logge massoniche. page 4 / 15

5 - Ha diversi significati. E il simbolo delle stelle di Hollywood (Walk of Fame di Los Angeles) e simbolo di molti partiti rivoluzionari. I cinque vertici rappresentano l internazionalismo in quanto vengono associati ai cinque continenti. Abbinata al rosso, simboleggia la sofferenza degli oppressi nella lotta all emancipazione o il sangue versato per la libertà. - Il suo valore simbolico è protagonista in diverse bandiere (come quella del Marocco, dove rappresenta i 5 precetti dell Islam). Mosaici - Anche la forma delle piastrelle e dei mattoni che ci circondano hanno combinazioni ordinate che ci conducono al numero aureo: i mosaici. - Un mosaico è la copertura di un piano realizzata attraverso l uso di tessere ed effettuata in modo che non ci siano spazi vuoti, ne sovrapposizioni. - I mosaici d interesse sono quelli realizzati con tessere poligonali. Studiarli è un impresa ardua. - La difficoltà nel concepire un mosaico consiste nel trovare un mosaico minimo che si possa ripetere in definitivamente fino a ricoprire un intero piano. Questo motivo minimo può essere costituito anche da una sola tessera destinato a ripetersi sempre uguale a se stesso. Con questa operazione otteniamo quello che viene chiamato mosaico periodico. I mosaici non periodici, invece, sono quelli che non si basano su un motivo minimo per ottenere questo genere di rivestimento. In tutti i mosaici però si trova la proporzione aurea. - Non tutti i poligoni regolari possono essere usati per creare un mosaico secondo la definizione. Ad esempio, l uso di pentagoni regolari crea spazi vuoti, quindi non è possibile piastrellare con pentagoni regolari. L angolo interno di un pentagono regolare è 108. Unendo tre pentagoni la somma degli angoli è di 108 *3=324. Lo spazio si riempie solo se la somma risultante degli angoli interni del poligono usato più volte risulta multiplo di 360. In altre page 5 / 15

6 parole l'angolo interno del poligono deve essere un divisore di Si deduce che gli unici poligoni regolari che possono essere usati per fare un mosaico periodico sono: l esagono (120 ), il quadrato (90 ) e il triangolo equilatero (60 ). Siccome l esagono è formato da 6 triangoli equilateri si può semplificare dicendo che esistono solo due possibilità per coprire un piano mediante poligono regolari: attraverso quadrati o triangoli equilateri. - E possibile utilizzare anche dei poligoni non regolari. Ad esempio il pentagono i figura è un poligono equilatero, ma non regolare in quanto i suoi angoli non sono uguali. Attraverso di esso però è possibile fare un mosaico periodico. - Esistono altri 13 tipi di pentagoni non regolari adatti ai mosaici (anche se esteticamente poco gradevoli). - Il palazzo reale della dinastia Nasride di Granada, l Alhambra, è un importante monumento all arte geometrica. Qui vi sono mosaici dappertutto. Si nota come la base di questi sia molto semplice, infatti si basano su tre tipi di tessere: la disposizione ed il disegno in base a cui questa si ripete assurgono a risultati sorprendenti. I monumenti dell arte mussulmana o mudéjar presentano moltissimi mosaici. - Tessera a osso (1) - Tessera pajarita o uccellino (2) - Tessera a chiodo (3) page 6 / 15

7 - L artista/matematico Escher fu impressionato dai mosaici dell Alhambra: molte sue opere sono costruite con costrutti geometrici e non geometrici, ripetitivi - Si possono realizzare anche mosaici semiregolari i cui mattoncini sono una coppia di poligoni regolari diversi tra loro. L unica condizione è che la somma degli angoli della forma che ne risulta sia pari a Ci sono molte combinazioni grafiche di forme geometriche diverse che offrono la possibilità di ricoprire comunque una superficie con motivi ripetuti senza page 7 / 15

8 lasciare vuoti. Mosaici di Penrose - Sono mosaici non periodici, cioè dove non esiste un motivo minimo che riempie tutto il piano per ripetizione. Richiedono l impiego di molte tessere diverse. Fino agli anni 60-70, costituirono una grande sfida del pensiero matematico. Con il termine tassellatura si intende una qualsiasi ripartizione del piano in un certo numero di figure dette tasselli. Si definisce tassellatura periodica una tassellatura che consente traslazioni almeno in due direzioni non parallele. In caso contrario si dice non periodica. In questi caso non c è un motivo stabilito, che si ripeta all infinito, ma la composizione varia in modo imprevedibile, costruendo un arabesco imprevedibile e affascinante. - Una prima possibilità per ottenere tali mosaici consiste nel realizzare mosaici radiali. Ad esempio partendo da un triangolo isoscele page 8 / 15

9 - Una sfida fu cercare di trovare un insieme minimo di tessere in grado di produrre solo mosaici non periodici. Nel 1971 il matematico statunitense Raphael Mitchel Robinson disegnò un insieme che si basa solo su 6 tessere, ottenute aggiungendo sporgenze e rientranze a mattoncini quadrati, per effettuare gli incastri. - Nel 1973 Roger Penrose (1931) riuscì a ridurre a 4 questo numero di tessere, e un anno dopo riuscì a ridurle a 2 grazie alla proporzione aurea. Riuscì a costruire mosaici non periodici servendosi di sole 2 tessere che chiamò Cometa (ABED) e Freccia (CBED). Il poligono cometa è l unione di due TA. La somma degli angoli è 360 (72 *3+144 ) e (36 * ) page 9 / 15

10 - Con questi mattoncini, si possono realizzare anche tassellature periodiche dato che, disposte in forma di rombo, permettono una pavimentazione omogenea. Per evitarlo si procede in questo modo: si identificano i vertici con due lettere in modo alternato (vedi figura) e si impone che, unendo due lati, si possono mettere in contatto solo vertici con lo stesso nome. - Più espandiamo il mosaico di Penrose, più la relazione fra il numero di tasselli dei due tipi tende al numero aureo. La tendenza è che ci saranno Φ volte più comete che frecce. - Ci sono diverse combinazioni di tessere cometa e freccia che possono formare mosaici (non periodici) diversi. page 10 / 15

11 - Penrose sviluppò un altro tipo di mosaico composto sempre da due tessere costituiti entrambi da due rombi: uno formato da due TA e l altro da due gnomoni aurei (anche in questo caso la proporzione di numero tra le i due tipi di tessere sarà in una proporzione di Φ) page 11 / 15

12 - Un altro studioso di tessere fu Solomon W. Golomb. Partendo da un semplice quadrato definì i polimini, cioè tessere generate con l utilizzo di tale quadratino da cui nacque il gioco Tetrix. Giochi con il pentagono stellato e proporzione aurea - La stella pentagonale ha suggerito la forma di molte plance da gioco, fin dai tempi più remoti. - Il pentacolo fu utilizzato nell antico Egitto: nel tempio di Kurna sono state trovate iscrizioni riguardo un gioco con una tavola a forma di stella pentagonale (1700 a.c.). Si tratta del Pentalfa, un gioco praticato ancora oggi nell isola di Creta. - Il gioco di Nim (variante). Si basa sulla successione di Fibonacci e quindi a che fare con la proporzione aurea. Abbiamo N pedine: il gioco consiste nell eliminarle a turni alterni, vince il giocatore che riesce a rimane per primo senza. Nella prima mano non si possono togliere tutte le pedine, mentre negli altri turni si, rispettando però le seguenti regole: - In ogni mano bisogna eliminare almeno una pedina - Non è possibile eliminare più del doppio delle pedine eliminate dal gioco dal nostro avversario nel turno precedente. - Se N è un numero della successione di Fibonacci, il secondo giocatore può avvalersi di una strategia vincete, se non lo è il primo giocatore ad avere la strategia vincente. - Il pentacolo. Per un solo giocatore. Obiettivo è collocare 9 pedine sui vertici della stella e sul pentagono interno. Questi punti sono 10, per cui uno dovrà rimanere vuoto. Le pedine vengono collocate attraverso sequenze successive, ognuna composta da tre mosse: - Si pone la pedina su uno dei vertici liberi e si conta uno - Poi si muove la pedina verso un secondo vertice in linea retta (occupato o vuoto) e si conta due. - Infine si muove la pedina in un vertice vuoto e si conta tre. - Bisogna piazzare le pedine in questo modo: man mano che la plancia si riempie, il compito diventa sempre più difficile. page 12 / 15

13 - La dama aurea. Per due giocatori. Abbiamo 9 pedine da collocare liberamente sempre sulla stessa figura. Ogni giocatore muove a turno, mangiando le pedine avversarie come nel gioco della dama. L obiettivo è quello di lasciare sulla tavola una sola pedina. Poliedri e numero aureo - Un poliedro è una figura solida, delimitata da facce costituite da poligoni. Implicitamente noi ci riferiamo a poliedri convessi. Questa condizione può essere espressa in vari modi equivalenti. - Per ogni coppia di punti del solido, il segmento che li unisce è contenuto interamente nel solido. - Per ogni coppia di vertici, il segmento che li unisce è contenuto interamente nel solido - Il piano contenente ciascuna faccia divide lo spazio in due semispazi, ed il poliedro è interamente contenuto in ciascuno di questi. - Un poliedro non convesso è detto concavo. - Se in un poliedro convesso, chiamiamo F il numero delle facce, S il numero degli spigoli e V il numero dei vertici, si verificherà sempre la relazione di Euler F+V = S+2 page 13 / 15

14 - Un poliedro è detto regolare quando tutte le sue facce sono poligoni regolari uguali e in ogni vertice insiste lo stesso numero di spigoli. Se non si verifica la seconda condizione avremo un poliedro irregolare, ad esempio il seguente poliedro a sinistra è irregolare in quanto abbiamo vertici con 3 e vertici con 4 spigoli, mentre quelli a destra sono regolari: page 14 / 15

15 - Gli antichi greci avevano già scoperto che esistono infiniti poligoni regolari, ma che esistono solo 5 poliedri regolari, chiamati anche poliedri platonici (quelli in figura a destra). Tre di questi hanno come facce i triangoli equilateri (tetraedro, ottaedro e icosaedro): - Tetraedro (4 facce triangolari, 6 spigoli, 4 vertici). Il fuoco. - Cubo (6 facce quadrate, 12 spigoli, 8 vertici). La terra. - Ottaedro (8 facce triangolari, 12 spigoli, 6 vertici). L aria - Dodecaedro (12 facce pentagonali, 30 pigoli, 20 vertici). Il cosmo, l universo nella sua totalità. - Icosaedro (20 facce triangolari, 30 spigoli, 12 vertici). L acqua. - Tutti i poliedri regolari possono essere inscritti in una sfera, nella quale tutti i vertici giacciono sulla superficie della sfera stessa. - Nella Grecia classica ognuno di questi 5 corpi veniva associato ad uno degli elementi natura. - La grande attenzione che gli antichi greci e pitagorici mostravano nei confronti dei poliedri derivava probabilmente dall osservazione dei minerali cristallizzati, come ad esempio i cristalli di pirite di forma di dodecaedro. - Nota: se uniamo i centri delle facce di un icosaedro, si ottiene un dodecaedro; analogamente se facciamo lo stesso a partire da un dodecaedro otteniamo un icosaedro. Per questa proprietà questi la coppia viene detta poligoni duali. - Non tutti i poliedri hanno la stessa relazione con Φ. Quelli che hanno una relazione con Φ sono il dodecaedro (dal momento che è formato da pentagoni) e il suo duale, l icosaedro. Consideriamo uno spigolo di 1, otteniamo i seguente risultati: page 15 / 15

piastrelle piastrelle piastrelle

piastrelle piastrelle piastrelle Perché le celle delle api hanno una struttura esagonale regolare? Università delle Liberetà 2008 09 appunti di marinella bassi 1 2 Il tessuto di molti vegetali e il pigmento della retina nei nostri occhi

Dettagli

Geometria euclidea. Alessio del Vigna

Geometria euclidea. Alessio del Vigna Geometria euclidea Alessio del Vigna La geometria euclidea è una teoria fondata su quattro enti primitivi e sulle relazioni che tra essi intercorrono. I quattro enti primitivi in questione sono il punto,

Dettagli

DIEDRI. Un diedro è convesso se è una figura convessa, concavo se non lo è.

DIEDRI. Un diedro è convesso se è una figura convessa, concavo se non lo è. DIEDRI Si definisce diedro ciascuna delle due parti di spazio delimitate da due semipiani che hanno la stessa origine, compresi i semipiani stessi. I due semipiani prendono il nome di facce del diedro

Dettagli

Geometria euclidea dello spazio Presentazione n. 5 Poliedri Prof. Daniele Ippolito Liceo Scientifico Amedeo di Savoia di Pistoia

Geometria euclidea dello spazio Presentazione n. 5 Poliedri Prof. Daniele Ippolito Liceo Scientifico Amedeo di Savoia di Pistoia Geometria euclidea dello spazio Presentazione n. 5 Poliedri Prof. Daniele Ippolito Liceo Scientifico Amedeo di Savoia di Pistoia Poliedri Un poliedro è un solido delimitato da una superficie formata da

Dettagli

I solidi. Un solido è una parte di spazio delimitata da una superficie chiusa. I solidi delimitati da poligoni vengono chiamati poliedri.

I solidi. Un solido è una parte di spazio delimitata da una superficie chiusa. I solidi delimitati da poligoni vengono chiamati poliedri. I solidi Un solido è una parte di spazio delimitata da una superficie chiusa. I solidi delimitati da poligoni vengono chiamati poliedri. I solidi che hanno superfici curve vengono chiamati solidi rotondi.

Dettagli

Geometria euclidea. Alessio del Vigna. Lunedì 15 settembre

Geometria euclidea. Alessio del Vigna. Lunedì 15 settembre Geometria euclidea Alessio del Vigna Lunedì 15 settembre La geometria euclidea è una teoria fondata su quattro enti primitivi e sulle relazioni che tra essi intercorrono. I quattro enti primitivi in questione

Dettagli

METODI E TECNOLOGIE PER L INSEGNAMENTO DELLA MATEMATICA. Lezione n 12

METODI E TECNOLOGIE PER L INSEGNAMENTO DELLA MATEMATICA. Lezione n 12 METODI E TECNOLOGIE PER L INSEGNAMENTO DELLA MATEMATICA Lezione n 12 PARTE SECONDA GEOMETRIA SOLIDA UNA PREMESSA Diversi esperti di Didattica della Matematica ritengono che l approccio migliore, per la

Dettagli

I poliedri SMS E. MAJORANA ROMA CLASSI 3F 3 H

I poliedri SMS E. MAJORANA ROMA CLASSI 3F 3 H I poliedri SMS E. MAJORANA ROMA CLASSI 3F 3 H Cosa è un poliedro? Definizioni: Un poliedro è la parte di spazio delimitata da poligoni posti su piani diversi in modo tale che ogni lato sia comune a due

Dettagli

Come vedere la matematica in ciò che ci circonda

Come vedere la matematica in ciò che ci circonda 1/46 Come vedere la matematica in ciò che ci circonda Savona 19 Dicembre 2001 2/46 2/46 2/46 2/46 2/46 2/46 3/46 Sono entrambi parti di un paraboloide Un paraboloide si ottiene facendo ruotare una parabola

Dettagli

CONCETTI DI GEOMETRIA

CONCETTI DI GEOMETRIA LA GEOMETRIA EUCLIDEA SI BASA SU TRE CONCETTI INTUITIVI: IL PUNTO, LA RETTA, IL PIANO IL PUNTO E' UN ENTE GEOMETRICO PRIVO DI DIMENSIONI. LA RETTA E' UN INSIEME DI PUNTI ALLINEATI. IL PIANO E' UN INSIEME

Dettagli

DIDATTICA DELLA GEOMETRIA Lezione n 3

DIDATTICA DELLA GEOMETRIA Lezione n 3 DIDATTICA DELLA GEOMETRIA Lezione n 3 PERCORSI NELLA GEOMETRIA SOLIDA LA RELAZIONE DI EULERO f+v=s+2 Possiamo fare un po di algebra con la Geometria solida! Quanti vertici ha un prisma a base triangolare?

Dettagli

Piano Lauree Scientifiche - Progetto Archimede. Costruzione di poliedri SCHEDA 4

Piano Lauree Scientifiche - Progetto Archimede. Costruzione di poliedri SCHEDA 4 Piano Lauree Scientifiche - Progetto Archimede Costruzione di poliedri SCHEDA 4 Espansione di un cubo Consideriamo il quadrato verde AEHD faccia del cubo ABCDEFGH. Vogliamo traslare questa faccia esternamente

Dettagli

LA GEOMETRIA DELLO SPAZIO: CENNI DI TEORIA ED ESERCIZI

LA GEOMETRIA DELLO SPAZIO: CENNI DI TEORIA ED ESERCIZI LA GEOMETRIA DELLO SPAZIO: CENNI DI TEORIA ED ESERCIZI SPAZIO: l insieme di tutti i punti. PUNTI ALLINEATI: punti che appartengono alla stessa retta PUNTI COMPLANARI: punti che appartengono allo stesso

Dettagli

Poliedri regolari. - Le condizioni (a), (b) e (c) della definizione data non sono sovrabbondanti: Riferimenti bibliografici: (a) e (c) non (b)

Poliedri regolari. - Le condizioni (a), (b) e (c) della definizione data non sono sovrabbondanti: Riferimenti bibliografici: (a) e (c) non (b) Riferimenti bibliografici: Poliedri regolari - Forme Maria Dedò Ed. Zanichelli - Le condizioni (a), (b) e (c) della definizione data non sono sovrabbondanti: (a) e (c) non (b) Definizione: Un poliedro

Dettagli

C = d x π (pi greco) 3,14. d = C : π (3,14) r = C : (π x 2)

C = d x π (pi greco) 3,14. d = C : π (3,14) r = C : (π x 2) circonferenza rettificata significa messa su una retta è un segmento che ha la stessa lunghezza della circonferenza formule: C = d x π (pi greco) 3,14 d = C : π (3,14) r = C : (π x 2) area del cerchio

Dettagli

Gli enti geometrici fondamentali

Gli enti geometrici fondamentali capitolo 1 Gli enti geometrici fondamentali 1. Introduzione 1 2. La geometria euclidea come sistema ipotetico-deduttivo 2 Teoremi e dimostrazioni, 3 3. Postulati di appartenenza 4 4. Postulati di ordinamento

Dettagli

La sezione aurea nelle sue molteplici

La sezione aurea nelle sue molteplici La sezione aurea nelle sue molteplici applicazioni Nella geometria piana il rapporto aureo trova molteplici applicazioni. Se prendiamo un segmento AB =, la sua parte aurea AD vale circa 0,68 (Figura ).

Dettagli

Definizione Chiamiamo poliedro la regione di spazio limitata che ha per bordo una superficie poliedrale.

Definizione Chiamiamo poliedro la regione di spazio limitata che ha per bordo una superficie poliedrale. 1 Poliedri Definizione Un sottoinsieme connesso dello spazio è detto superficie poliedrale se è l unione di un numero finito di poligoni P j (poligoni che si diranno facce del poliedro) in modo che risultino

Dettagli

Misure riguardanti triangoli, parallelogrammi, poligoni regolari e cerchio

Misure riguardanti triangoli, parallelogrammi, poligoni regolari e cerchio Misure riguardanti triangoli, parallelogrammi, poligoni regolari e cerchio ELEMENTI DI GEOMETRI PIN. MISURE RIGURDNTI TRINGOLI, PRLLELOGRMMI, POLIGONI REGOLRI, CERCHIO La geometria piana si occupa delle

Dettagli

I vertici e i lati di ogni poligono vengono detti rispettivamente vertici e spigoli del poliedro.

I vertici e i lati di ogni poligono vengono detti rispettivamente vertici e spigoli del poliedro. 1 I poliedri diagonale DEFINIZIONE. Un poliedro è la parte di spazio delimitata da poligoni posti su piani diversi in modo tale che ogni lato sia comune a due di essi. I poligoni che delimitano il poliedro

Dettagli

FIGURE SOLIDE OSSERVANDO LE FIGURE DELLO SPAZIO CHE CI CIRCONDANO NOTIAMO CHE:

FIGURE SOLIDE OSSERVANDO LE FIGURE DELLO SPAZIO CHE CI CIRCONDANO NOTIAMO CHE: FIGURE SOLIDE OSSERVANDO LE FIGURE DELLO SPAZIO CHE CI CIRCONDANO NOTIAMO CHE: IL CUBO IL PARALLELEPIPEDO LA PIRAMIDE HANNO LA SUPERFICIE COSTITUITA DA POLIGONI (QUADRATO, RETTANGOLO, TRIANGOLO) E PRENDONO

Dettagli

Scuola Secondaria di 1 Grado Via MAFFUCCI-PAVONI Via Maffucci 60 Milano PROGETTO STRANIERI GEOMETRIA 2 CERCHIO SIMMETRIA GEOMETRIA SOLIDA

Scuola Secondaria di 1 Grado Via MAFFUCCI-PAVONI Via Maffucci 60 Milano PROGETTO STRANIERI GEOMETRIA 2 CERCHIO SIMMETRIA GEOMETRIA SOLIDA Scuola Secondaria di 1 Grado Via MAFFUCCI-PAVONI Via Maffucci 60 Milano PROGETTO STRANIERI GEOMETRIA CERCHIO SIMMETRIA GEOMETRIA SOLIDA A cura di Maurizio Cesca PROGETTO STRANIERI SMS Maffucci-Pavoni -

Dettagli

Piano Lauree Scientifiche - Progetto Archimede. Dai poliedri platonici ai poliedri archimedei per espansione

Piano Lauree Scientifiche - Progetto Archimede. Dai poliedri platonici ai poliedri archimedei per espansione Piano Lauree Scientifiche - Progetto Archimede Dai poliedri platonici ai poliedri archimedei per espansione Consideriamo il quadrato verde AEHD faccia del cubo ABCDEFGH. Vogliamo traslare questa faccia

Dettagli

Soluzione Applicando il teorema dei seni si ha: = 3 30 ; 3 =4 30 ; = ; =2 3 ; = 2 3 =41, , ,

Soluzione Applicando il teorema dei seni si ha: = 3 30 ; 3 =4 30 ; = ; =2 3 ; = 2 3 =41, , , ESAME DI STATO DI LICEO SCIENTIFICO Sessione Ordinaria 2014 PIANO NAZIONALE INFORMATICA Questionario Quesito 1 Applicando il teorema dei seni si ha: = ; 4 = 3 30 ; 3 =4 30 ; =4 3 1 2 ; =2 3 ; = 2 3 =41,81

Dettagli

Gli esercizi assegnati all esame saranno varianti di alcuni degli esercizi seguenti

Gli esercizi assegnati all esame saranno varianti di alcuni degli esercizi seguenti Gli esercizi assegnati all esame saranno varianti di alcuni degli esercizi seguenti 1.1) Su un piano α (trasparente) sia tracciato un triangolo equilatero. Si consideri un piano β parallelo ad α e raggi

Dettagli

Tassellazioni del piano

Tassellazioni del piano Tassellazioni del piano Livello scolare: 1 biennio Abilità interessate Individuare e riconoscere proprietà di figure del piano e dello spazio. Individuare proprietà invarianti per isometrie nel piano.

Dettagli

APPUNTI DI GEOMETRIA SOLIDA

APPUNTI DI GEOMETRIA SOLIDA APPUNTI DI GEOMETRIA SOLIDA Geometria piana: (planimetria) studio delle figure i cui punti stanno tutti su un piano Geometria solida: (stereometria) studio delle figure i cui punti non giacciono tutti

Dettagli

Matematica creativa e packaging

Matematica creativa e packaging Matematica creativa e packaging Elena Marchetti - Luisa Rossi Costa Dipartimento di Matematica F. Brioschi Politecnico di Milano Piazza Leonardo da Vinci, 32-20133 Milano POLIGONI E TASSELLAZIONI DEL PIANO

Dettagli

01. Se il raggio di un cerchio dimezza, la sua area diventa: a) 1/3 b) 1/4 c) 3/2 d) 1/5

01. Se il raggio di un cerchio dimezza, la sua area diventa: a) 1/3 b) 1/4 c) 3/2 d) 1/5 GEOMETRIA 01. Se il raggio di un cerchio dimezza, la sua area diventa: 1/ b) 1/4 c) / d) 1/5 0. Quanto misura il lato di un quadrato la cui area è equivalente a quella di un triangolo che ha la base di

Dettagli

I POLIEDRI SEMIREGOLARI

I POLIEDRI SEMIREGOLARI I POLIEDRI SEMIREGOLARI Il matematico, come il pittore o il poeta, è un creatore di forme. E se le forme che crea sono più durature delle loro è perché sono fatte di idee Godfrey H. Hardy In geometria

Dettagli

Prisma retto. Generatrice. Direttrice. Prisma obliquo. Nel caso le generatrici non siano parallele. Generatrice

Prisma retto. Generatrice. Direttrice. Prisma obliquo. Nel caso le generatrici non siano parallele. Generatrice Oggetti (identificati) nello spazio Una porzione di piano delimitata da una linea spezzata chiusa si chiama poligono, un solido delimitato da un numero finito di facce piane si chiama poliedro. In un poliedro

Dettagli

La piramide. BM 3 teoria pag ; esercizi 52 71, pag

La piramide. BM 3 teoria pag ; esercizi 52 71, pag La piramide. BM teoria pag. 4-49; esercizi 52 71, pag.120-127 Ricorda: I poliedri: sono solidi ottenuti accostando dei poligoni in modo da racchiudere parti di spazio limitate, essi si dividono in prismi

Dettagli

Le simmetrie dei poliedri regolari

Le simmetrie dei poliedri regolari Le simmetrie dei poliedri regolari Le isometrie del piano e dello spazio sono state classificate da due illustri matematici. Per quanto riguarda il piano, il teorema di Chasles, del 8, afferma che nel

Dettagli

METODI E TECNOLOGIE PER L INSEGNAMENTO DELLA MATEMATICA. Lezione n 11

METODI E TECNOLOGIE PER L INSEGNAMENTO DELLA MATEMATICA. Lezione n 11 METODI E TECNOLOGIE PER L INSEGNAMENTO DELLA MATEMATICA Lezione n 11 In questa lezione percorriamo gli argomenti della geometria che interessano la scuola primaria, in modo essenziale, o meglio ancora

Dettagli

La misura delle grandezze

La misura delle grandezze GEOMETRIA EUCLIDEA La misura delle grandezze Una classe di grandezze geometriche è un insieme di enti geometrici in cui è possibile: - il confronto tra due qualsiasi elementi dell insieme; - l addizione,

Dettagli

Simmetrie nei poliedri

Simmetrie nei poliedri Simmetrie nei poliedri Livello scolare: 1 biennio Abilità interessate Individuare e riconoscere nel mondo reale le figure. geometriche note e descriverle con la terminologia specifica. Analizzare con strumenti

Dettagli

METODI E TECNOLOGIE PER L INSEGNAMENTO DELLA MATEMATICA. Lezione n 10

METODI E TECNOLOGIE PER L INSEGNAMENTO DELLA MATEMATICA. Lezione n 10 METODI E TECNOLOGIE PER L INSEGNAMENTO DELLA MATEMATICA Lezione n 10 In questa lezione percorriamo gli argomenti della geometria che interessano la scuola primaria, in modo essenziale, o meglio ancora

Dettagli

GEOMETRIA. Studio dei luoghi /relazioni tra due variabili. Studio delle figure (nel piano/spazio) Problemi algebrici sulle figure geometriche

GEOMETRIA. Studio dei luoghi /relazioni tra due variabili. Studio delle figure (nel piano/spazio) Problemi algebrici sulle figure geometriche GEOMETRIA ANALITICA EUCLIDEA Studio dei luoghi /relazioni tra due variabili Studio delle figure (nel piano/spazio) Funzioni elementari Problemi algebrici sulle figure geometriche Grafici al servizio dell

Dettagli

Frattali e sezione aurea.

Frattali e sezione aurea. Home Frattali e sezione aurea. (fig. 1: il merletto a trina di Koch) La sezione aurea è un numero irrazionale, di solito indicato con la lettera greca phi, pari a 1,61803... Si tratta di un numero irrazionale

Dettagli

Principali Definizioni e Teoremi di Geometria

Principali Definizioni e Teoremi di Geometria Principali Definizioni e Teoremi di Geometria Segmento (definizione) Si dice segmento di estremi A e B l insieme costituito dai punti A e B e da tutti i punti della retta AB compresi tra A e B. Angolo

Dettagli

Poligoni. Enti geometrici fondamentali. Formati dei fogli. Squadratura del foglio

Poligoni. Enti geometrici fondamentali. Formati dei fogli. Squadratura del foglio Poligoni Enti geometrici fondamentali Gli enti geometrici fondamentali sono le rette e le curve. I segmenti sono frammenti di retta, mentre gli archi sono frammenti di curva. Un angolo esprime l inclinazione

Dettagli

LA CIRCONFERENZA e IL CERCHIO

LA CIRCONFERENZA e IL CERCHIO LA CIRCONFERENZA e IL CERCHIO La circonferenza è un poligono regolare con un numero infinito di lati Bisogna fare innanzitutto una distinzione: la circonferenza è la misura del perimetro; C (se sono più

Dettagli

Quando si parla di diedro tra due semipiani, si intende. quello convesso (che non contiene il prolungamento. sono paralleli i rispettivi piani

Quando si parla di diedro tra due semipiani, si intende. quello convesso (che non contiene il prolungamento. sono paralleli i rispettivi piani Diedri Siano dati due semipiani nello spazio, α e β, aventi per origine la stessa retta r. Essi dividono lo spazio in due regioni, ciascuna delle quali si chiama diedro. I due semipiani sono le facce del

Dettagli

Geometria piana euclidea Presentazione n. 1 Enti geometrici Prof. Daniele Ippolito Itcs Pacini di Pistoia

Geometria piana euclidea Presentazione n. 1 Enti geometrici Prof. Daniele Ippolito Itcs Pacini di Pistoia Geometria piana euclidea Presentazione n. 1 Enti geometrici Prof. Daniele Ippolito Itcs Pacini di Pistoia Il metodo deduttivo in matematica In matematica ci sono dei concetti, detti termini primitivi,

Dettagli

ISTITUTO SAN GABRIELE CLASSI 4 S - 4 SA PROF. ANDREA PUGLIESE GEOMETRIA EUCLIDEA NELLO SPAZIO

ISTITUTO SAN GABRIELE CLASSI 4 S - 4 SA PROF. ANDREA PUGLIESE GEOMETRIA EUCLIDEA NELLO SPAZIO ISTITUTO SAN GABRIELE CLASSI 4 S - 4 SA PROF. ANDREA PUGLIESE GEOMETRIA EUCLIDEA NELLO SPAZIO GEOMETRIA NELLO SPAZIO Gli enti fondamentali sono punto, retta, piano, e spazio. Con le lettere maiuscole (A,B,C,...)

Dettagli

TRASFORMAZIONI GEOMETRICHE NEL PIANO. Parte 2

TRASFORMAZIONI GEOMETRICHE NEL PIANO. Parte 2 TRASFORMAZIONI GEOMETRICHE NEL PIANO Parte 2 La simmetria L'etimologia della parola simmetria è greca. = stessa misura Per estensione, se ne amplia il significato ad espressioni del tipo 'equilibrio fra

Dettagli

Laboratorio di informatica

Laboratorio di informatica Laboratorio di informatica GEOMETRIA DELLO SPAZIO Introduzione a Geogebra 3D La versione 5 di Geogebra prevede anche la possibilità di lavorare in ambiente 3D. Basta aprire Visualizza - Grafici 3D: sullo

Dettagli

ISTITUTO COMPRENSIVO RAFFAELLO Scuola Secondaria di primo grado classe II C a.s. 2011/2012

ISTITUTO COMPRENSIVO RAFFAELLO Scuola Secondaria di primo grado classe II C a.s. 2011/2012 ISTITUTO COMPRENSIVO RAFFAELLO Scuola Secondaria di primo grado classe II C a.s. 2011/2012 Docente Elena Flammini DOCUMENTAZIONE DELL ATTIVITA OBIETTIVI Obiettivo generale Sviluppare l immaginazione geometrica,

Dettagli

Corso di Matematica - Geometria. Geometria - 0. Ing. L. Balogh

Corso di Matematica - Geometria. Geometria - 0. Ing. L. Balogh Geometria - 0 Triangoli qualunque somma degli angoli interni, calcolo del perimetro e dell area Oggetti Vertici Lati Angoli Altezza Raggio Simbolo A, B, C a, b, c,, h S, r Perimetro = + + Somma angoli

Dettagli

ORDINAMENTO 2013 SESSIONE SUPPLETIVA QUESITO 1

ORDINAMENTO 2013 SESSIONE SUPPLETIVA QUESITO 1 www.matefilia.it ORDINAMENTO 2013 SESSIONE SUPPLETIVA QUESITO 1 E dato il settore circolare AOB, di centro O, raggio e ampiezza. Si inscriva in esso il rettangolo PQMN, con M ed N sul raggio OB, Q sull

Dettagli

C.P.I.A. CENTRO PROVINCIALE PER

C.P.I.A. CENTRO PROVINCIALE PER C.P.I.A. CENTRO PROVINCIALE PER L ISTRUZIONE DEGLI ADULTI SEDE DI CATANZARO - Via T. Campanella n 9 DISPENSE DI GEOMETRIA PERCORSO DI ISTRUZIONE DI PRIMO LIVELLO PRIMO PERIODO DIDATTICO A.S. 2017/2018

Dettagli

A B C D E F G H I L M N O P Q R S T U V Z

A B C D E F G H I L M N O P Q R S T U V Z IL VOCABOLARIO GEOMETRICO A B C D E F G H I L M N O P Q R S T U V Z A A: è il simbolo dell area di una figura geometrica Altezza: è la misura verticale e il segmento che parte da un vertice e cade perpendicolarmente

Dettagli

GEOMETRIA NELLO SPAZIO

GEOMETRIA NELLO SPAZIO pag. 1 GEOMETRIA NELLO SPAZIO 1. Sintesi geometria piana Il punto, ente privo di dimensioni La retta, ente con una sola dimensione Il piano, ente con due dimensioni a) Punto e retta sul piano Per un punto

Dettagli

Indice del vocabolario della Geometria euclidea

Indice del vocabolario della Geometria euclidea Indice del vocabolario della Geometria euclidea 1 Postulati di appartenenza: piano, retta e punto nello spazio Punto, retta, piano nello spazio Punto, retta nel piano Punto nella retta Punto esterno alla

Dettagli

Principali Definizioni e Teoremi di Geometria

Principali Definizioni e Teoremi di Geometria Principali Definizioni e Teoremi di Geometria Segmento (definizione) Si dice segmento di estremi A e B l insieme costituito dai punti A e B e da tutti i punti della retta AB compresi tra A e B. Angolo

Dettagli

GEOMETRIA. Congruenza, angoli e segmenti

GEOMETRIA. Congruenza, angoli e segmenti GEOMETRIA Per affermare che un triangolo è isoscele o rettangolo oppure che un quadrilatero è un parallelogramma o un rettangolo o un rombo o un quadrato o un trapezio o un trapezio isoscele, c è sempre

Dettagli

Punti notevoli di un triangolo

Punti notevoli di un triangolo Punti notevoli dei triangoli - 1 Punti notevoli di un triangolo Particolarmente importanti in un triangolo sono i punti dove s intersecano specifici segmenti o semirette. Questi punti sono detti punti

Dettagli

Postulati e definizioni di geometria piana

Postulati e definizioni di geometria piana I cinque postulati di Euclide I postulato Adimandiamo che ce sia concesso, che da qualunque ponto in qualunque ponto si possi condurre una linea retta. Tra due punti qualsiasi è possibile tracciare una

Dettagli

Elementi di Euclide. Libro II. Algebra Geometrica. Proposizione 4: (x + y) 2 = x 2 + 2xy + y 2.

Elementi di Euclide. Libro II. Algebra Geometrica. Proposizione 4: (x + y) 2 = x 2 + 2xy + y 2. PAS 2014 GEOMETRIA Programma di massima: Elementi di logica elementare. La geometria degli Elementi di Euclide. De nizioni, assiomi e postulati. La geometria del triangolo. Criteri di uguaglianza. Teorema

Dettagli

Poligoni e triangoli

Poligoni e triangoli Poligoni e triangoli Def: I poligoni sono figure geometriche formate da una spezzata chiusa semplice e dalla parte di piano che essa delimita.. I punti A, B, C, D, E sono i vertici del poligono. I segmenti

Dettagli

Dato un segmento AB ed un suo punto interno S, si dice che S divide AB secondo la sezione aurea se: (AS) 2 = AB SB. M = AS, m = SB, a = AB.

Dato un segmento AB ed un suo punto interno S, si dice che S divide AB secondo la sezione aurea se: (AS) 2 = AB SB. M = AS, m = SB, a = AB. La teoria delle proporzioni, che è alla base di tutta l arte e l architettura greca, ha radici molto profonde che probabilmente risalgono all antica civiltà egizia. Nel mondo greco l ideale di bellezza

Dettagli

1. conoscere i concetti fondamentali della geometria sintetica del piano (poligoni, circonferenza

1. conoscere i concetti fondamentali della geometria sintetica del piano (poligoni, circonferenza Terzo modulo: Geometria Obiettivi 1. conoscere i concetti fondamentali della geometria sintetica del piano (poligoni, circonferenza e cerchio, ecc.). calcolare perimetri e aree di figure elementari nel

Dettagli

TAVOLE PER IL DISEGNO

TAVOLE PER IL DISEGNO TAVOLE PER IL DISEGNO Disegni geometrici tavv. Disegni a mano libera 1-2 Riproduzione di disegni in scala 3 Uso delle squadre 4 Inviluppi di linee 5-6 Uso del compasso 7 Costruzioni geometriche 8-11 Strutture

Dettagli

1 Congruenza diretta e inversa

1 Congruenza diretta e inversa 1 Congruenza diretta e inversa PROPRIETÀ. La congruenza tra due figure piane mantiene inalterata la lunghezza dei segmenti e l ampiezza degli angoli; ciò che cambia è la posizione delle figure nel piano.

Dettagli

Le cupole geodetiche

Le cupole geodetiche Le cupole geodetiche Una cupola geodetica é una struttura semisferica composta da aste che si intersecano in triangoli. Dal punto di vista matematico possiamo definire cupola geodetica un tipo di triangolazione

Dettagli

PROGRAMMAZIONE DIDATTICA PER COMPETENZE. Modulo A : INSIEMI

PROGRAMMAZIONE DIDATTICA PER COMPETENZE. Modulo A : INSIEMI PROGRAMMAZIONE DIDATTICA PER COMPETENZE Indirizzo LICEO DELLE SCIENZE UMANE Classe I D disciplina Matematica Modulo A : INSIEMI UNITÁ A1 TEORIA DEGLI INSIEMI UNITÁ A2 GLI INSIEMI NUMERICI COMPETENZE DA

Dettagli

Un famoso teorema. Una possibile costruzione del quadrato (stabile) di lato AB:

Un famoso teorema. Una possibile costruzione del quadrato (stabile) di lato AB: Un famoso teorema Un famoso teorema Si deve premettere: 1) Definizione di quadrato (già nota nella scuola media) 2) Prop. I.46: Costruzione del quadrato di lato il segmento dato con riga e compasso. Se

Dettagli

Geometria degli origami

Geometria degli origami UNIVERSITA DEGLI STUDI DI NAPOLI FEDERICO II FACOLTA DI SCIENZE MATEMATICHE, FISICHE E NATURALI CORSO DI LAUREA IN MATEMATICA TESI DI LAUREA Geometria degli origami Relatore Candidato Ch.ma Prof.ssa Mariacarmela

Dettagli

LA MATEMATICA DEI POLIEDRI REGOLARI

LA MATEMATICA DEI POLIEDRI REGOLARI LA MATEMATICA DEI POLIEDRI REGOLARI Essi simbolizzano il desiderio di Armonia e di ordine dell uomo, ma nello stesso tempo la loro perfezione desta in noi il senso della nostra impotenza. I poliedri regolari

Dettagli

Progetto Matematica in Rete - Geometria euclidea - Introduzione GEOMETRIA EUCLIDEA. Introduzione. geo (terra) e metron (misura)

Progetto Matematica in Rete - Geometria euclidea - Introduzione GEOMETRIA EUCLIDEA. Introduzione. geo (terra) e metron (misura) GEOMETRIA EUCLIDEA La parola geometria deriva dalle parole greche geo (terra) e metron (misura) ed è nata per risolvere problemi di misurazione dei terreni al tempo degli antichi Egizi nel VI secolo a.c.

Dettagli

Scopri come utilizzare i nostri servizi:

Scopri come utilizzare i nostri servizi: Geometria CONCORSO AGENTI POLIZIA PENITENZIARIA 2015 Link utili Link utili Esercitati con il Simulatore Quiz Gratuito di Concorsando.it: http://www.concorsando.it/fb.php Scopri come utilizzare i nostri

Dettagli

Indice. Parte prima Metodi. XI Gli autori

Indice. Parte prima Metodi. XI Gli autori XI Gli autori XIII Prefazione Parte prima Metodi 5 Capitolo 1 Elementi di geometria proiettiva 5 1.1 Gli enti geometrici 6 1.2 Convenzioni 7 1.3 L operazione di proiezione 9 1.4 L ampliamento proiettivo

Dettagli

Le caratteristiche dei poligoni. La relazione tra i lati e gli angoli di un poligono. Definizioni

Le caratteristiche dei poligoni. La relazione tra i lati e gli angoli di un poligono. Definizioni Le caratteristiche dei poligoni 1. Si dice poligono la parte del piano delimitata da una spezzata chiusa. 2. Il perimetro di un poligono è la somma delle misure del suoi lati, si indica cm 2p. 3. Un poligono

Dettagli

ESERCIZI. 1.2 Dire quali dei seguenti insiemi sono vuoti e descriverne il complementare nell insieme dei numeri reali: C:= {x R x 1 3 e x 1 2 };

ESERCIZI. 1.2 Dire quali dei seguenti insiemi sono vuoti e descriverne il complementare nell insieme dei numeri reali: C:= {x R x 1 3 e x 1 2 }; ESERCIZI. INSIEMISTICA. Sia l insieme dei punti dello spazio, Γ una sfera e N il suo polo nord. Quali delle seguenti relazioni sono corrette? N Γ; N ; Γ ; Γ ; N ; Γ N.. Dire quali dei seguenti insiemi

Dettagli

Rette e piani nello spazio

Rette e piani nello spazio Geometria Euclidea Solida 1 Rette e piani nello spazio Sappiamo già che il punto, la retta ed il piano sono enti geometrici primitivi e, come tali, non sono definibili. Definizione : Dicesi spazio l insieme

Dettagli

Geometria. Rudimenti della Logica e della Matematica. Marzo Geometria Marzo / 18

Geometria. Rudimenti della Logica e della Matematica. Marzo Geometria Marzo / 18 Geometria Rudimenti della Logica e della Matematica Marzo 2013 Geometria Marzo 2013 1 / 18 La geometria tratta delle figure e le forme nello spazio. Letteralmente della misura della terra o più in concreto,

Dettagli

Le figure geometriche

Le figure geometriche La geometria In Egitto nel XIV secolo a.c. la geometria nasce per misurare la terra (geometria = misura della terra) perché il Nilo con le sue piene, cancellava spesso i limiti fra i campi. E dunque una

Dettagli

Poligoni con riga e compasso

Poligoni con riga e compasso Poligoni con riga e compasso Affrontiamo alcuni problemi di costruzione con riga e compasso, che ci aiuteranno a ricordare le principali relazioni tra le circonferenze e le rette, gli angoli inscritti,

Dettagli

Precorso di Matematica

Precorso di Matematica UNIVERSITÀ DEGLI STUDI ROMA TRE FACOLTA DI ARCHITETTURA Precorso di Matematica Anna Scaramuzza Anno Accademico 2005-2006 17-24 Ottobre 2005 INDICE 1. GEOMETRIA EUCLIDEA........................ 2 1.1 Triangoli...............................

Dettagli

Simmetrie nei Poliedri Regolari

Simmetrie nei Poliedri Regolari Simmetrie nei Poliedri Regolari Francesca Benanti Dipartimento di Matematica ed Informatica Università degli Studi di Palermo, Via Archirafi 34, 90123 Palermo Tel: 09123891105 Email: fbenanti@math.unipa.it

Dettagli

SCUOLA SECONDARIA DI SECONDO GRADO. Contenuti Attività Metodo Strumenti Durata (in ore)

SCUOLA SECONDARIA DI SECONDO GRADO. Contenuti Attività Metodo Strumenti Durata (in ore) SCUOLA SECONDARIA DI SECONDO GRADO Obiettivi di apprendimento Contenuti Attività Metodo Strumenti Durata (in ore) Valutazione degli obiettivi di apprendimento Valutazione della competenza Conoscere i poligoni

Dettagli

LA CIRCONFERENZA, I POLIGONI INSCRITTI E CIRCOSCRITTI

LA CIRCONFERENZA, I POLIGONI INSCRITTI E CIRCOSCRITTI LA CIRCONFERENZA, I POLIGONI INSCRITTI E CIRCOSCRITTI Realizzato da: Ballatore Alessia, D Aquila Michele, Di Guardo Chiara, Formosa Sara, Santuccio Anastasia. Classe: III A LA CIRCONFERENZA E IL CERCHIO

Dettagli

PNI QUESITO 1 QUESITO 2

PNI QUESITO 1 QUESITO 2 www.matefilia.it PNI 0014 QUESITO 1 Per il teorema dei seni risulta: = da cui sen α = Quindi α = arcsen ( ) che porta alle due soluzioni: α 41,810 41 49 α 138 11 QUESITO I poliedri regolari (solidi platonici)

Dettagli

Teoremi di geometria piana

Teoremi di geometria piana la congruenza teoremi sugli angoli γ teorema sugli angoli complementari Se due angoli sono complementari di uno stesso angolo α β In generale: Se due angoli sono complementari di due angoli congruenti

Dettagli

Programma di Matematica Classe 1^ C/L Anno scolastico 2014/2015

Programma di Matematica Classe 1^ C/L Anno scolastico 2014/2015 Programma di Matematica Classe 1^ C/L Anno scolastico 2014/2015 Capitolo 1- I numeri naturali e i numeri interi Che cosa sono i numeri naturali La rappresentazione dei numeri naturali Le quattro operazioni

Dettagli

I punti di inizio e di fine della spezzata prendono il nome di estremi della spezzata. lati

I punti di inizio e di fine della spezzata prendono il nome di estremi della spezzata. lati I Poligoni Spezzata C A cosa vi fa pensare una spezzata? Qualcosa che si rompe in tanti pezzi A me dà l idea di un spaghetto che si rompe Se noi rompiamo uno spaghetto e manteniamo uniti i vari pezzi per

Dettagli

Kangourou Italia Gara del 21 marzo 2013 Categoria Student Per studenti di quarta e quinta della secondaria di secondo grado

Kangourou Italia Gara del 21 marzo 2013 Categoria Student Per studenti di quarta e quinta della secondaria di secondo grado Kangourou Italia Gara del 21 marzo 2013 Categoria Student Per studenti di quarta e quinta della secondaria di secondo grado I quesiti dal N. 1 al N. 10 valgono 3 punti ciascuno 1. Quale è il più grande

Dettagli

Massimo Bergamini, Graziella Barozzi - Matematica multimediale.azzurro con Tutor, Zanichelli

Massimo Bergamini, Graziella Barozzi - Matematica multimediale.azzurro con Tutor, Zanichelli Programma di Matematica Classe 1^ B/LL Anno scolastico 2016/2017 Testo Massimo Bergamini, Graziella Barozzi - Matematica multimediale.azzurro con Tutor, Zanichelli CAPITOLO 1: NUMERI NATURALI ORDINAMENTO

Dettagli

Il rettangolo aureo Divisione di un segmento in media ad estrema ragione

Il rettangolo aureo Divisione di un segmento in media ad estrema ragione Il rettangolo aureo Divisione di un segmento in media ad estrema ragione La forma dei rettangoli e numero aureo - Molti oggetti rettangolari di uso quotidiano, come le tessere, hanno dimensioni simili

Dettagli

Costruzioni geometriche: perché gli origami battono la riga ed il compasso. Francesco Veneziano

Costruzioni geometriche: perché gli origami battono la riga ed il compasso. Francesco Veneziano Costruzioni geometriche: perché gli origami battono la riga ed il compasso. Francesco Veneziano 5 agosto 2008 I problemi classici della geometria euclidea Quadratura del cerchio Costruire un quadrato avente

Dettagli

Poligoni. Def: I poligoni sono figure geometriche formate da una spezzata chiusa semplice e dalla parte di piano che essa delimita.

Poligoni. Def: I poligoni sono figure geometriche formate da una spezzata chiusa semplice e dalla parte di piano che essa delimita. Poligoni Def: I poligoni sono figure geometriche formate da una spezzata chiusa semplice e dalla parte di piano che essa delimita. I punti A, B, C, D, E sono i VERTICI del poligono I segmenti AB, BC, CD,

Dettagli

FONDAMENTI DI GEOMETRIA

FONDAMENTI DI GEOMETRIA 1 FONDAMENTI DI GEOMETRIA (Fundamental geometrical concepts) La geometria [ghè (terra) metron (misura)] è una parte della matematica che studia lo spazio, la forma, l estensione, la trasformazione delle

Dettagli

La geometria della riga e compasso: Primo incontro

La geometria della riga e compasso: Primo incontro La geometria della riga e compasso: Primo incontro Progetto Lauree Scientifiche A.S. 2010/2011 Università degli Studi di Firenze 23/11/2010 Quando si devono rappresentare disegni geometrici, è importante

Dettagli

Figure. Nome e cognome:

Figure. Nome e cognome: Figure Nome e cognome: Data: 1. Secondo te, di cosa si occupa la geometria? Dopo il confronto nel gruppo Finale 2. Prova a dire cos è: a] Un punto b] Una retta c] Un piano 1 3. Quali relazioni possono

Dettagli

intersezione di due oggetti semicirconferenza - per due punti circonferenza - per tre punti retta - per due punti

intersezione di due oggetti semicirconferenza - per due punti circonferenza - per tre punti retta - per due punti IN CLASSE IL CERCHIO E Preparazione Per questi esercizi con GeoGebra dovrai utilizzare i seguenti pulsanti. Leggi sempre le procedure di esecuzione nella zona in alto a destra, accanto alla barra degli

Dettagli

g. Ferrari M. Cerini D. giallongo Piattaforma informatica geometria 3 trevisini EDITORE

g. Ferrari M. Cerini D. giallongo Piattaforma informatica geometria 3 trevisini EDITORE g. Ferrari M. Cerini D. giallongo Piattaforma Ma Pia a tematica informatica geometria 3 trevisini EDITORE unità 14 2 UNITÀ14 LE MISURE DI CIRCONFERENZA, CERCHIO E LORO PARTI 1. Relazione tra circonferenza

Dettagli

3. Osserva attentamente il centro della corda e la distanza con il centro del cerchio M. Cosa constati?

3. Osserva attentamente il centro della corda e la distanza con il centro del cerchio M. Cosa constati? Corde 1. Ruota la retta a attorno al punto A e leggi il testo di colore verde. a) La retta, quando è una secante? Quando una tangente? Quando la retta non è né l una né l altra? b) Quante tangenti e quante

Dettagli

Poligoni. Def: I poligoni sono figure geometriche formate da una spezzata chiusa semplice e dalla parte di piano che essa delimita.

Poligoni. Def: I poligoni sono figure geometriche formate da una spezzata chiusa semplice e dalla parte di piano che essa delimita. Poligoni I poligoni sono figure geometriche formate da una spezzata chiusa semplice e dalla parte di piano che essa delimita. I punti A, B, C, D, E sono i VERTICI del poligono I segmenti AB BC CD DE AE

Dettagli

I PARALLELOGRAMMI Si dice PARALLELOGRAMMA un quadrilatero avente i lati opposti paralleli a due a due.

I PARALLELOGRAMMI Si dice PARALLELOGRAMMA un quadrilatero avente i lati opposti paralleli a due a due. I PARALLELOGRAMMI Si dice PARALLELOGRAMMA un quadrilatero avente i lati opposti paralleli a due a due. A D B H C K Una particolarità del parallelogramma è che mantiene le sue caratteristiche anche quando

Dettagli