e una frequenza = 0 /2 =1/T (misurata in Hertz). Infine è la fase, cioè un numero (radianti) che dipende dalla definizione dell istante t=0.

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "e una frequenza = 0 /2 =1/T (misurata in Hertz). Infine è la fase, cioè un numero (radianti) che dipende dalla definizione dell istante t=0."

Transcript

1 8. Oscillazioni Definizione di oscillatore armonico libero Si tratta di un sistema soggetto ad un moto descrivibile secondo una funzione armonica (seno o coseno) del tipo x(t) = Acos( 0 t + ) A è l ampiezza del moto (x oscilla fra A e +A). La pulsazione naturale è 0, a cui corrisponde un periodo del moto T = / 0 e una frequenza = 0 / =1/T (misurata in Hertz). Infine è la fase, cioè un numero (radianti) che dipende dalla definizione dell istante t=0. Osserviamo subito che a = d x = A 0 cos( 0 t + ) = 0 x Questa è esattamente l accelerazione a cui è soggetta una massa attaccata ad una molla con costante elastica k, nel piano orizzontale: ma= kx in cui si individua immediatamente la pulsazione naturale (o propria): 0 = k /m. L energia totale per un oscillatore armonico libero è costante: E = 1 mv + 1 kx E = 1 m 0 A sin ( 0 t + ) + 1 ka cos ( 0 t + ) = 1 ka In generale, tutti i sistemi meccanici per i quali l accelerazione risulta del tipo a = 0 x sono oscillatori armonici liberi (non sottoposti ad altre forze).

2 Esempio: calcolare la frequenza di oscillazione di un pendolo costituito da un filo con attaccata una massa m, che descriva oscillazioni con piccoli angoli (pendolo semplice). Scrivendo la legge di Newton nella direzione tangente all arco di traiettoria circolare descritta: Trattandosi di piccole oscillazioni: m dv = mgsin v = d(l) = L d d g L Da cui si deducono la pulsazione e la frequenza: 0 = = g L Essendo l oscillatore armonico necessariamente conservativo, la sua equazione del moto può anche essere ricavata imponendo che l energia meccanica totale sia costante e prendendone la derivata rispetto alla direzione o angolo secondo i quali avviene l oscillazione. Nel caso del pendolo semplice, misurando l energia potenziale della forza peso come U(y) = mgy= mg( L Lcos)= mgl( 1 cos) abbiamo: Imponendo che de/=0: E = 1 mv + mgl( 1 cos) con v = L d m d d + mgld sin = 0

3 da cui nell approssimazione di angoli piccoli si riottiene l equazione di moto del pendolo semplice! Oscillatore forzato A differenza di quello libero, oltre alla forza di richiamo esiste almeno un altra forza agente: ma = kx+ F Se la forza F è costante cambia semplicemente il punto di equilibrio rispetto al quale avvengono le oscillazioni. Se è armonica anch essa, F(t) = F 0 cos( t), determina la frequenza e l ampiezza delle oscillazioni del sistema. Nel caso particolare in cui = 0 = k /m si parla di risonanza. Esempio: una molla con costante elastica k è attaccata ad un soffitto e regge all altra estremità una massa m. Determinare la posizione di equilibrio della massa m. Se da questa posizione m viene tirata verso il basso di una quantità s e poi lasciata libera, determinare l ampiezza e la frequenza delle oscillazioni. La legge di Newton per la massa è: ma= kx+ mg avendo assunto l origine dell asse di riferimento, x=0, coincidente con la posizione di riposo dell estremo inferiore della molla (senza m attaccata). La posizione di equilibrio x e per definizione corrisponde a v=0 e a=0, quindi x e = mg/k. Se ora m viene abbassata di una quantità s e poi rilasciata, ci aspettiamo un moto oscillatorio in su e in giù, simmetrico rispetto alla posizione di equilibrio: x(t) = x e + Acos( 0 t + ) Infatti sostituendo questa legge nell equazione del moto si ottiene: m 0 Acos( 0 t + )= kx e kacos( 0 t + )+ mg

4 che è evidentemente un identità purchè 0 = k /m, che stabilisce la frequenza propria. Per determinare ampiezza e fase imponiamo le condizioni iniziali del moto: x(0) = x e + s v(0) = 0 x e + Acos = x e + s 0 Asin = 0 da cui si ottiene A=s e =0, per cui x(t) = x e + scos( 0 t): le oscillazioni avvengono effettivamente in maniera simmetrica attorno alla posizione di equilibrio. In alternativa, si poteva sfruttare la conservazione dell energia, che stabilisce la corrispondenza tra quota raggiunta e velocità: 1 mv (x) + 1 kx mgx= 1 k x e + s ( ) mg x e + s ( ) Gli estremi di oscillazione si possono ricavare imponendo che v=0, mentre la frequenza di oscillazione si può calcolare prendendo la derivata di quest equazione rispetto a x, come fatto per il pendolo semplice. Oscillatore libero smorzato Consideriamo oltre alla forza elastica anche una forza di attrito viscoso proporzionale e opposta alla velocità: a = k dx x m limitiamoci a considerare uno smorzamento sufficientemente debole da ritenere il moto ancora armonico con la sua frequenza propria ma con un lento smorzamento di ampiezza: x(t) = A(t)cos( 0 t) Si noti che nei casi precedenti l ampiezza era sempre costante nel tempo! Per determinare come varia l ampiezza nel tempo possiamo valutare la potenza media su un periodo di oscillazione ceduta dall oscillatore per effetto dell attrito, assumendo l ampiezza pressochè costante in un singolo periodo di oscillazione: de = f a v = 1 T de = m T t +T t t +T 0 A (t) t [ mv (t)] sin ( 0 t)

5 Poichè la media di sin su un periodo è, e dato che E(t) = 1 ka (t): da ka da = m 0 A = A, da cui A(t) = A(0)e Quindi il moto oscillatorio debolmente smorzato da una forza di attrito viscoso con costante è caratterizzato da un decadimento esponenziale dell ampiezza di oscillazione, lento rispetto al periodo di oscillazione: x(t) = A(0)e t cos( 0 t) t Nel caso di smorzamento forte non è più possibile fare le stesse ipotesi usate in questo calcolo: addirittura lo smorzamento completo (dissipazione dell energia) può avvenire senza che si sia compiuta una singola oscillazione! Oscillatore armonico forzato (caso generale) Consideriamo un termine forzante del tipo F(t) = F 0 cos( t). Consideriamo ancora una forza di attrito proporzionale e opposta alla velocità. L equazione generale del moto per l oscillatore armonico forzato e smorzato è quindi d x dx x = F 0 cos( t) m Trascurando l intervallo di tempo necessario perchè l oscillatore raggiunga una situazione di regime a partire dalle sue condizioni iniziali, possiamo ritenere su basi intuitive che dopo un tempo sufficientemente lungo la forza F detti il ritmo di oscillazione secondo la sua frequenza, per cui x(t) = Acos( t + ) Sia l ampiezza che la fase dipenderanno dalla frequenza forzante.

6 Per determinare A e dobbiamo calcolare le derivate di x(t) e sostituirle nell equazione del moto. Sfruttando le proprietà sin( + ) = sin cos + cos sin cos( + ) = cos cos sin sin Abbiamo infine: [( 0 )cos sin]acos( t) + [( 0 )sin cos]asin( t) = F 0 cos( t) m Affinchè un identità del tipo P sin( t) + Qcos( t) = 0 sia rispettata per ogni istante t occorre che i coefficienti delle funzioni seno e coseno siano nulli, cioè P=Q=0: [( 0 )cos sin]a = F 0 m [( 0 )sin cos]a = 0 Dalla seconda relazione si ottiene la fase (supposta A0): tan() = 0 Elevando a quadrato entrambe le relazioni e sommando membro a membro si ottiene l ampiezza: A() = F 0 /m ( 0 ) + È utile rappresentare graficamente l andamento di ampiezza e fase in funzione della frequenza: per semplicità introduciamo una frequenza e uno smorzamento normalizzati rispetto alla frequenza propria, = / 0 e = / 0. Per capire il significato fisico del notevole aumento di ampiezza per frequenze prossime alla risonanza per piccoli smorzamenti, possiamo calcolare la potenza media trasferita da F alla massa m oscillante durante un periodo di oscillazione: P = F(t) dx = F 0 A cos( t)sin( t + )

7 P = F 0 A cos( t)sin( t)cos + cos ( t)sin) Il primo termine è semplicemente una sinusoide a frequenza doppia, la cui media è zero, mentre la media di cos è ancora : P = F A 0 sin Dalla curva di () si noti che in condizioni di risonanza è ( 0 ) = /, per cui sin( 0 ) = 1 e la potenza trasferita da F alla massa m oscillante è massima. Si noti che in realtà questa conclusione si ottiene in maniera più corretta esaminando direttamente il grafico di P(): il massimo della potenza trasferita coincide infatti con la risonanza indipendentemente dallo smorzamento.

Oscillazioni. Si produce un oscillazione quando un sistema viene perturbato rispetto a una posizione di equilibrio stabile

Oscillazioni. Si produce un oscillazione quando un sistema viene perturbato rispetto a una posizione di equilibrio stabile Oscillazioni Si produce un oscillazione quando un sistema viene perturbato rispetto a una posizione di equilibrio stabile Caratteristica più evidente del moto oscillatorio è di essere un moto periodico,

Dettagli

Applicazioni delle leggi della meccanica: moto armnico

Applicazioni delle leggi della meccanica: moto armnico Applicazioni delle leggi della meccanica: moto armnico Discutiamo le caratteristiche del moto armonico utilizzando l esempio di una molla di costante k e massa trascurabile a cui è fissato un oggetto di

Dettagli

Capitolo 12. Moto oscillatorio

Capitolo 12. Moto oscillatorio Moto oscillatorio INTRODUZIONE Quando la forza che agisce su un corpo è proporzionale al suo spostamento dalla posizione di equilibrio ne risulta un particolare tipo di moto. Se la forza agisce sempre

Dettagli

Ricordiamo ora che a è legata ad x (derivata seconda) ed otteniamo

Ricordiamo ora che a è legata ad x (derivata seconda) ed otteniamo Moto armonico semplice Consideriamo il sistema presentato in figura in cui un corpo di massa m si muove lungo l asse delle x sotto l azione della molla ideale di costante elastica k ed in assenza di forze

Dettagli

Appunti sul moto circolare uniforme e sul moto armonico- Fabbri Mariagrazia

Appunti sul moto circolare uniforme e sul moto armonico- Fabbri Mariagrazia Moto circolare uniforme Il moto circolare uniforme è il moto di un corpo che si muove con velocità di modulo costante lungo una traiettoria circolare di raggio R. Il tempo impiegato dal corpo per compiere

Dettagli

Fisica per scienze ed ingegneria

Fisica per scienze ed ingegneria Serway, Jewett Fisica per scienze ed ingegneria Capitolo 15 Blocchetto legato ad una molla in moto su un piano orizzontale privo di attrito. Forza elastica di richiamo: F x =-Kx (Legge di Hooke). Per x>0,

Dettagli

8. Energia e lavoro. 2 Teorema dell energia per un moto uniformemente

8. Energia e lavoro. 2 Teorema dell energia per un moto uniformemente 1 Definizione di lavoro 8. Energia e lavoro Consideriamo una forza applicata ad un corpo di massa m. Per semplicità ci limitiamo, inizialmente ad una forza costante, come ad esempio la gravità alla superficie

Dettagli

Esercitazione 2. Soluzione

Esercitazione 2. Soluzione Esercitazione 2 Esercizio 1 - Resistenza dell aria Un blocchetto di massa m = 0.01 Kg (10 grammi) viene appoggiato delicatamente con velocità iniziale zero su un piano inclinato rispetto all orizziontale

Dettagli

Lez. 9 Moto armonico

Lez. 9 Moto armonico Lez. 9 Moto armonico Prof. 1 Dott., PhD Dipartimento Scienze Fisiche Università di Napoli Federico II Compl. Univ. Monte S.Angelo Via Cintia, I-80126, Napoli mettivier@na.infn.it +39-081-676137 2 1 Un

Dettagli

Esercitazione 2. Soluzione

Esercitazione 2. Soluzione Esercitazione 2 Esercizio 1 - Resistenza dell aria Un blocchetto di massa m = 0.01 Kg (10 grammi) viene appoggiato delicatamente con velocità iniziale zero su un piano inclinato rispetto all orizziontale

Dettagli

Dinamica del punto materiale

Dinamica del punto materiale Dinamica del punto materiale Formule fondamentali L. P. 5 Aprile 2010 N.B.: Le relazioni riportate sono valide in un sistema di riferimento inerziale. Princìpi della dinamica Secondo principio della dinamica

Dettagli

Indice slides. 1 Oscillatore semplice 5. 2 Equazione caratteristica 6. 3 Radici complesse 7. 4 Integrale generale 8. 5 Forza Peso 9.

Indice slides. 1 Oscillatore semplice 5. 2 Equazione caratteristica 6. 3 Radici complesse 7. 4 Integrale generale 8. 5 Forza Peso 9. Moto di Oscillatori Pietro Pantano Dipartimento di Matematica Università della Calabria Slides 1 di 27 Slides 2 di 27 1 Oscillatore semplice 5 2 Equazione caratteristica 6 3 Radici complesse 7 4 Integrale

Dettagli

OSCILLATORE ARMONICO SEMPLICE

OSCILLATORE ARMONICO SEMPLICE OSCILLATORE ARMONICO SEMPLICE Un oscillatore è costituito da una particella che si muove periodicamente attorno ad una posizione di equilibrio. Compiono moti oscillatori: il pendolo, un peso attaccato

Dettagli

Moto armonico. A.Solano - Fisica - CTF

Moto armonico. A.Solano - Fisica - CTF Moto armonico Moti periodici Moto armonico semplice: descrizione cinematica e dinamica Energia nel moto armonico semplice Il pendolo Oscillazioni smorzate Oscillazioni forzate e risonanza Moto periodico

Dettagli

Richiami sulle oscillazioni smorzate

Richiami sulle oscillazioni smorzate Richiami sulle oscillazioni smorzate Il moto armonico è il moto descritto da un oscillatore armonico, cioè un sistema meccanico che, quando perturbato dalla sua posizione di equilibrio, è soggetto ad una

Dettagli

In un punto qualsiasi (P) della traiettoria è definita la direzione tangente t e la direzione perpendicolare n. d dt

In un punto qualsiasi (P) della traiettoria è definita la direzione tangente t e la direzione perpendicolare n. d dt Moti piani su traiettorie qualsiasi In un punto qualsiasi (P) della traiettoria è definita la direzione tangente t e la direzione perpendicolare n. n ˆ P ˆ t traiettoria La velocità in ogni punto della

Dettagli

OSCILLAZIONI SMORZATE E FORZATE

OSCILLAZIONI SMORZATE E FORZATE OSCILLAZIONI SMORZATE E FORZATE Questo esperimento permette di studiare le oscillazioni armoniche di un pendolo e le oscillazioni smorzate e smorzate-forzate. Studiando il variare dell ampiezza dell oscillazione

Dettagli

Esame di Fisica con Laboratorio Corso di Laurea in Scienze dell Architettura Università degli Studi di Udine 29 gennaio 2010 Mario Paolo Giordani

Esame di Fisica con Laboratorio Corso di Laurea in Scienze dell Architettura Università degli Studi di Udine 29 gennaio 2010 Mario Paolo Giordani Esame di Fisica con Laboratorio Corso di Laurea in Scienze dell Architettura Università degli Studi di Udine 29 gennaio 2010 Mario Paolo Giordani Soluzioni Teoria Enunciare sinteticamente chiarendo il

Dettagli

Oscillazioni ed onde meccaniche

Oscillazioni ed onde meccaniche Capitolo Oscillazioni ed onde meccaniche 1. Il moto periodico Quali sono le caratteristiche del moto periodico? Una particella si muove di moto periodico quando continuamente ripassa per le stesse posizioni

Dettagli

Energia e Lavoro. In pratica, si determina la dipendenza dallo spazio invece che dal tempo

Energia e Lavoro. In pratica, si determina la dipendenza dallo spazio invece che dal tempo Energia e Lavoro Finora abbiamo descritto il moto dei corpi (puntiformi) usando le leggi di Newton, tramite le forze; abbiamo scritto l equazione del moto, determinato spostamento e velocità in funzione

Dettagli

ESERCIZIO SOLUZIONE. 13 Aprile 2011

ESERCIZIO SOLUZIONE. 13 Aprile 2011 ESERCIZIO Un corpo di massa m è lasciato cadere da un altezza h sull estremo libero di una molla di costante elastica in modo da provocarne la compressione. Determinare: ) la velocità del corpo all impatto

Dettagli

Onde. Antonio Pierro. Per consigli, suggerimenti, eventuali errori o altro potete scrivere una a antonio.pierro[at]gmail.com

Onde. Antonio Pierro. Per consigli, suggerimenti, eventuali errori o altro potete scrivere una  a antonio.pierro[at]gmail.com Onde Video Introduzione Onde trasversali e onde longitudinali. Lunghezza d'onda e frequenza. Interferenza fra onde. Battimenti. Moto armonico smorzato e forzato Antonio Pierro Per consigli, suggerimenti,

Dettagli

Unità didattica 3. Terza unità didattica (Fisica) 1. Corso integrato di Matematica e Fisica per il Corso di Farmacia

Unità didattica 3. Terza unità didattica (Fisica) 1. Corso integrato di Matematica e Fisica per il Corso di Farmacia Unità didattica 3 Elasticità dei materiali Deformazione di un solido..2 Legge di Hooke.. 3 Forza elastica.. 4 Deformazione elastica di una molla... 5 Accumulo di energia attraverso la deformazione elastica..6

Dettagli

Oscillazioni. Capitolo L oscillatore armonico Abbiamo in precedenza (pag. 228) già considerato il caso dell oscillatore armonico, il

Oscillazioni. Capitolo L oscillatore armonico Abbiamo in precedenza (pag. 228) già considerato il caso dell oscillatore armonico, il Capitolo 15 Oscillazioni 15.1 L oscillatore armonico Abbiamo in precedenza (pag. 8) già considerato il caso dell oscillatore armonico, il y caso cioè di un corpo che oscilla sotto l azione di una forza

Dettagli

Esercizi. Diagrammi delle forze (di corpo singolo) per sistemi in equilibrio

Esercizi. Diagrammi delle forze (di corpo singolo) per sistemi in equilibrio Esercizi Diagrammi delle forze (di corpo singolo) per sistemi in equilibrio Per ciascun esercizio disegnare su ciascun corpo del sistema il diagramma delle forze, individuando e nominando ciascuna forza.

Dettagli

Esercizi. Diagrammi delle forze (di corpo singolo) per sistemi in equilibrio

Esercizi. Diagrammi delle forze (di corpo singolo) per sistemi in equilibrio Esercizi Diagrammi delle forze (di corpo singolo) per sistemi in equilibrio Per ciascun esercizio disegnare su ciascun corpo del sistema il diagramma delle forze, individuando e nominando ciascuna forza.

Dettagli

IV ESERCITAZIONE. Esercizio 1. Soluzione

IV ESERCITAZIONE. Esercizio 1. Soluzione Esercizio 1 IV ESERCITAZIONE Un blocco di massa m = 2 kg è posto su un piano orizzontale scabro. Una forza avente direzione orizzontale e modulo costante F = 20 N agisce sul blocco, inizialmente fermo,

Dettagli

Meccanica del punto materiale

Meccanica del punto materiale Meccanica del punto materiale Princìpi della dinamica. Forze. Momento angolare. Antonio Pierro @antonio_pierro_ (https://twitter.com/antonio_pierro_) Per consigli, suggerimenti, eventuali errori o altro

Dettagli

Don Bosco 2014/15, Classe 3B - Primo compito in classe di Fisica

Don Bosco 2014/15, Classe 3B - Primo compito in classe di Fisica Don Bosco 014/15, Classe B - Primo compito in classe di Fisica 1. Enuncia il Teorema dell Energia Cinetica. Soluzione. Il lavoro della risultante delle forze agenti su un corpo che si sposta lungo una

Dettagli

Opera rilasciata sotto licenza CC BY-NC-SA 3.0 Italia da Studio Bells (www.studiobells.it)

Opera rilasciata sotto licenza CC BY-NC-SA 3.0 Italia da Studio Bells (www.studiobells.it) Esercizio 001 Si consideri un piano inclinato di un angolo = 30 rispetto all orizzontale e di lunghezza L = 1 m. Sul piano è posta una massa m = 5, 0 kg collegata alla cima del piano tramite una molla

Dettagli

Attrito statico e attrito dinamico

Attrito statico e attrito dinamico Forza di attrito La presenza delle forze di attrito fa parte dell esperienza quotidiana. Se si tenta di far scorrere un corpo su una superficie, si sviluppa una resistenza allo scorrimento detta forza

Dettagli

Esercitazione 3. Soluzione. F y dy = 0 al 2 dy = 0.06 J

Esercitazione 3. Soluzione. F y dy = 0 al 2 dy = 0.06 J Esercitazione 3 Esercizio 1 - Lavoro Una particella è sottoposta ad una forza F = axy û x ax 2 û y, dove û x e û y sono i versori degli assi x e y e a = 6 N/m 2. Si calcoli il lavoro compiuto dalla forza

Dettagli

T= 2π/ ω; ν=1/t = ω/2π Quindi ω = 2π/T = 2πν

T= 2π/ ω; ν=1/t = ω/2π Quindi ω = 2π/T = 2πν Moti periodici In generale possiamo definire periodici quei fenomeni che si ripetono ad intervalli regolari rispetto ad una variabile indipendente come il tempo, lo spazio o una combinazione di entrambi.

Dettagli

Teorema dell energia cinetica

Teorema dell energia cinetica Teorema dell energia cinetica L. P. 23 Marzo 2010 Il teorema dell energia cinetica Il teorema dell energia cinetica è una relazione molto importante in Meccanica. L enunceremo nel caso semplice di un punto

Dettagli

196 L Fs cos cos J 0,98. cos30 135,8 F F// F , N. mv mv

196 L Fs cos cos J 0,98. cos30 135,8 F F// F , N. mv mv Problemi sul lavoro Problema Un corpo di massa 50 kg viene trascinato a velocità costante per 0 m lungo un piano orizzontale da una forza inclinata di 45 rispetto all orizzontale, come in figura. Sapendo

Dettagli

III ESERCITAZIONE. Soluzione. (F x û x + F y û y ) (dx û x + dy û y ) (1)

III ESERCITAZIONE. Soluzione. (F x û x + F y û y ) (dx û x + dy û y ) (1) III ESERCITAZIONE 1. Lavoro Una particella è sottoposta ad una forza F =axy û x ax û y, dove a=6 N/m e û x e û y sono i versori degli assi x e y. Si calcoli il lavoro compiuto dalla forza F quando la particella

Dettagli

Problema 1: SOLUZIONE: 1) La velocità iniziale v 0 si ricava dal principio di conservazione dell energia meccanica; trascurando

Problema 1: SOLUZIONE: 1) La velocità iniziale v 0 si ricava dal principio di conservazione dell energia meccanica; trascurando Problema : Un pallina di gomma, di massa m = 0g, è lanciata verticalmente con un cannoncino a molla, la cui costante elastica vale k = 4 N/cm, ed è compressa inizialmente di δ. Dopo il lancio, la pallina

Dettagli

Compito del 14 giugno 2004

Compito del 14 giugno 2004 Compito del 14 giugno 004 Un disco omogeneo di raggio R e massa m rotola senza strisciare lungo l asse delle ascisse di un piano verticale. Il centro C del disco è collegato da una molla di costante elastica

Dettagli

Fisica Generale I (primo modulo) A.A , 9 febbraio 2009

Fisica Generale I (primo modulo) A.A , 9 febbraio 2009 Fisica Generale I (primo modulo) A.A. 2008-09, 9 febbraio 2009 Esercizio 1. Due corpi di massa M 1 = 10kg e M 2 = 5Kg sono collegati da un filo ideale passante per due carrucole prive di massa, come in

Dettagli

L Oscillatore Armonico

L Oscillatore Armonico L Oscillatore Armonico Descrizione del Fenomeno (max 15) righe Una molla esercita su un corpo una forza di intensità F=-kx, dove x è l allungamento o la compressione della molla e k una costante [N/m]

Dettagli

7. Forze elastiche. Nella figura 1 il periodo è T = 2s e corrisponde ad un moto unidimensionale limitato tra i valori x = 0 ed x = 1.

7. Forze elastiche. Nella figura 1 il periodo è T = 2s e corrisponde ad un moto unidimensionale limitato tra i valori x = 0 ed x = 1. 1 Moti periodici 7. Forze elastiche Un caso particolare di moto accelerato è un moto periodico. In figura 1 è riportato un esempio di moto periodico unidimensionale. Un moto periodico si ripete identicamente

Dettagli

Errata Corrige. Quesiti di Fisica Generale

Errata Corrige. Quesiti di Fisica Generale 1 Errata Corrige a cura di Giovanni Romanelli Quesiti di Fisica Generale per i C.d.S. delle Facoltà di Scienze di Prof. Carla Andreani Dr. Giulia Festa Dr. Andrea Lapi Dr. Roberto Senesi 2 Copyright@2010

Dettagli

Studio delle oscillazioni del pendolo semplice e misura dell accelerazione di gravita g.

Studio delle oscillazioni del pendolo semplice e misura dell accelerazione di gravita g. Studio delle oscillazioni del pendolo semplice e misura dell accelerazione di gravita g. Abstract (Descrivere brevemente lo scopo dell esperienza) In questa esperienza vengono studiate le proprieta del

Dettagli

Oscillazioni smorzate, forzate RISONANZA

Oscillazioni smorzate, forzate RISONANZA Oscillazioni smorzate, forzate RISONANZA 1 Consideriamo un punto materiale P di massa m vincolato ad una guida rettilinea liscia e fissa e soggetto alle seguenti forze: Una forza elastica, esercitata da

Dettagli

Prova del 6 Marzo, Traccia della soluzione. Problema n. 1. BDA = α 2. sin α α = 1 e che analogamente si dimostra l altro limite notevole tan α

Prova del 6 Marzo, Traccia della soluzione. Problema n. 1. BDA = α 2. sin α α = 1 e che analogamente si dimostra l altro limite notevole tan α IIASS International Institute for Advanced Scientific Studies Eduardo R. Caianiello Circolo di Matematica e Fisica Dipartimento di Fisica E.R. Caianiello Università di Salerno Premio Eduardo R. Caianiello

Dettagli

Lezione 8: Sistemi ad un grado di libertà: l oscillatore elementare (8)

Lezione 8: Sistemi ad un grado di libertà: l oscillatore elementare (8) Lezione 8: Sistemi ad un grado di libertà: l oscillatore elementare (8) Federico Cluni 3 marzo 205 Fattore di amplificazione in termini di velocità e accelerazione Nel caso l oscillatore elementare sia

Dettagli

Fisica 1 Anno Accademico 2011/2012

Fisica 1 Anno Accademico 2011/2012 Matteo Luca Ruggiero DISAT@Politecnico di Torino Anno Accademico 2011/2012 (7 Maggio - 11 Maggio 2012) Sintesi Abbiamo introdotto riformulato il teorema dell energia cinetica in presenza di forze non conservative,

Dettagli

Esercitazione VI - Leggi della dinamica III

Esercitazione VI - Leggi della dinamica III Esercitazione VI - Leggi della dinamica III Esercizio 1 I corpi 1, 2 e 3 rispettivamente di massa m 1 = 2kg, m 2 = 3kg ed m 3 = 4kg sono collegati come in figura tramite un filo inestensibile. Trascurando

Dettagli

Ricordiamo ora che a è legata ad x (derivata seconda) ed otteniamo

Ricordiamo ora che a è legata ad x (derivata seconda) ed otteniamo Moto armonico semplice Consideriamo il sistema presentato in figura in cui un corpo di massa m si muove lungo l asse delle x sotto l azione della molla ideale di costante elastica k ed in assenza di forze

Dettagli

Secondo Appello Estivo del corso di Fisica del

Secondo Appello Estivo del corso di Fisica del Secondo Appello Estivo del corso di Fisica del 25.7.2012 Corso di laurea in Informatica A.A. 2011-2012 (Prof. Paolo Camarri) Cognome: Nome: Matricola: Anno di immatricolazione: Problema n.1 Una semisfera

Dettagli

Fisica. Esercizi. Mauro Saita Versione provvisoria, febbraio 2013.

Fisica. Esercizi. Mauro Saita   Versione provvisoria, febbraio 2013. Fisica. Esercizi Mauro Saita e-mail: maurosaita@tiscalinet.it Versione provvisoria, febbraio 2013. Indice 1 Principi di conservazione. 1 1.1 Il pendolo di Newton................................ 1 1.2 Prove

Dettagli

Problemi di dinamica del punto materiale

Problemi di dinamica del punto materiale Problemi di dinamica del punto materiale 1. Un corpo di massa M = 200 kg viene lanciato con velocità v 0 = 36 km/ora su un piano inclinato di un angolo θ = 30 o rispetto all orizzontale. Nel salire, il

Dettagli

Soluzioni della prima prova di accertamento Fisica Generale 1

Soluzioni della prima prova di accertamento Fisica Generale 1 Corso di Laurea in Ineneria Biomedica, dell Informazione, Elettronica e Informatica Canale 2 (S. Amerio, L. Martucci) Padova, 20 aprile 2013 Soluzioni della prima prova di accertamento Fisica Generale

Dettagli

CORSO DI COMPLEMENTI DI MECCANICA. Prof. Vincenzo Niola

CORSO DI COMPLEMENTI DI MECCANICA. Prof. Vincenzo Niola CORSO DI COMPLEMENTI DI MECCANICA Prof. Vincenzo Niola SISTEMI A DUE GRADI DI LIBERTÀ Lo studio dei sistemi a più gradi di libertà verrà affrontato facendo riferimento, per semplicità, solo a sistemi conservativi,

Dettagli

Fenomeni Oscillatori: Equazioni di Base della Meccanica del Punto Materiale

Fenomeni Oscillatori: Equazioni di Base della Meccanica del Punto Materiale Fenomeni Oscillatori: Equazioni di Base della Meccanica del Punto Materiale Lezione del Corso di Esercitazioni di Laboratorio di Meccanica, Roma, 5 Maggio, 2014 Roberto Bonciani 1, Diparto di Fisica dell

Dettagli

Elasticità e onde Caratteristica di elasticità di un corpo

Elasticità e onde Caratteristica di elasticità di un corpo 9. Elasticità e onde Caratteristica di elasticità di un corpo Facendo riferimento per esempio a una sbarra lunga l, con sezione trasversale A, sollecitata da una forza F (trazione o compressione) diretta

Dettagli

Esercitazioni di Fisica 1

Esercitazioni di Fisica 1 Esercitazioni di Fisica 1 Ultima versione: 6 novembre 2013 Paracadutista (attrito viscoso). Filo con massa che pende da un tavolo. 1 Studio del moto di un paracadutista Vogliamo studiare il moto di un

Dettagli

Formulazione dell equazione del moto. Prof. Adolfo Santini - Dinamica delle Strutture 1

Formulazione dell equazione del moto. Prof. Adolfo Santini - Dinamica delle Strutture 1 Formulazione dell equazione del moto Prof. Adolfo Santini - Dinamica delle Strutture 1 Sistema a un grado di libertà In alcuni sistemi strutturali la massa, lo smorzamento e la rigidezza sono concentrati

Dettagli

Si consideri un punto materiale in moto su una traiettoria curvilinea e soggetto ad una forza non costante. F i F 2 F N

Si consideri un punto materiale in moto su una traiettoria curvilinea e soggetto ad una forza non costante. F i F 2 F N Lavoro ed energia 1 Si consideri un punto materiale in moto su una traiettoria curvilinea e soggetto ad una forza non costante. F i F 2 F N 2 vettorizzare una traiettoria Si divide la traiettoria s in

Dettagli

Meccanica Applicata alle Macchine

Meccanica Applicata alle Macchine Meccanica Applicata alle Macchine 06-11-013 TEMA A 1. Un cilindro ed una sfera omogenei di uguale massa m ed uguale raggio r sono collegati tra loro da un telaio di massa trascurabile mediante coppie rotoidali

Dettagli

VELOCITA' CRITICHE FLESSIONALI

VELOCITA' CRITICHE FLESSIONALI VELOCITA' CRITICHE FLESSIONALI Si consideri un albero privo di massa recante in posizione intermedia un corpo puntiforme di massa "M". Se la massa viene spostata dalla sua posizione di equilibrio in direzione

Dettagli

IL MOTO ARMONICO QUALCHE RIMANDO ALLA FORZA CENTRIPETA E AL MOTO CIRCOLARE

IL MOTO ARMONICO QUALCHE RIMANDO ALLA FORZA CENTRIPETA E AL MOTO CIRCOLARE www.aliceappunti.altervista.org IL MOTO ARMONICO QUALCHE RIMANDO ALLA FORZA CENTRIPETA E AL MOTO CIRCOLARE Nel moto circolare uniforme, il moto è generato da una accelerazione centripeta, diretta verso

Dettagli

m = 53, g L = 1,4 m r = 25 cm

m = 53, g L = 1,4 m r = 25 cm Un pendolo conico è formato da un sassolino di 53 g attaccato ad un filo lungo 1,4 m. Il sassolino gira lungo una circonferenza di raggio uguale 25 cm. Qual è: (a) la velocità del sassolino; (b) la sua

Dettagli

MOTO CIRCOLARE VARIO

MOTO CIRCOLARE VARIO MOTO ARMONICO E MOTO VARIO PROF. DANIELE COPPOLA Indice 1 IL MOTO ARMONICO ------------------------------------------------------------------------------------------------------ 3 1.1 LA LEGGE DEL MOTO

Dettagli

Esame scritto Fisica 1 del 21 giugno 2006 - soluzione

Esame scritto Fisica 1 del 21 giugno 2006 - soluzione Esame scritto Fisica 1 del 1 giugno 006 - soluzione Nota: i valori numerici sono diversi nelle varie copie del compito, e quindi qui vengono indicati i ragionamenti e le formule da utilizzare ma non i

Dettagli

S.Barbarino - Appunti di Fisica - Scienze e Tecnologie Agrarie. Cap. 2. Cinematica del punto

S.Barbarino - Appunti di Fisica - Scienze e Tecnologie Agrarie. Cap. 2. Cinematica del punto SBarbarino - Appunti di Fisica - Scienze e Tecnologie Agrarie Cap 2 Cinematica del punto 21 - Posizione, velocitá e accelerazione di una particella La posizione di una particella puó essere definita, ad

Dettagli

Cinematica del punto materiale

Cinematica del punto materiale Cinematica del punto materiale Punto materiale Velocità e accelerazione Moto rettilineo uniforme Moto naturalmente accelerato Moto parabolico Moto armonico Antonio Pierro Per consigli, suggerimenti, eventuali

Dettagli

DINAMICA 2. Quantità di moto e urti Attrito tra solidi Attrito viscoso Forza elastica Proprietà meccaniche dei solidi Forza centripeta

DINAMICA 2. Quantità di moto e urti Attrito tra solidi Attrito viscoso Forza elastica Proprietà meccaniche dei solidi Forza centripeta DINAMICA 2 Quantità di moto e urti Attrito tra solidi Attrito viscoso orza elastica Proprietà meccaniche dei solidi orza centripeta 2 Seconda Legge di Newton: quantità di moto Dalla seconda Legge di Newton

Dettagli

Risoluzione problema 1

Risoluzione problema 1 UNIVERSITÀ DEGLI STUDI DI PDOV FCOLTÀ DI INGEGNERI Ing. MeccanicaMat. Pari. 015/016 1 prile 016 Una massa m 1 =.5 kg si muove nel tratto liscio di un piano orizzontale con velocita v 0 = 4m/s. Essa urta

Dettagli

Dinamica del punto materiale: problemi con gli oscillatori.

Dinamica del punto materiale: problemi con gli oscillatori. Dinamica del punto materiale: problemi con gli oscillatori. Problema: Una molla ideale di costante elastica k = 300 Nm 1 e lunghezza a riposo l 0 = 1 m pende verticalmente avendo un estremità fissata ad

Dettagli

Il Corso di Fisica per Scienze Biologiche

Il Corso di Fisica per Scienze Biologiche Il Corso di Fisica per Scienze Biologiche Ø Prof. Attilio Santocchia Ø Ufficio presso il Dipartimento di Fisica (Quinto Piano) Tel. 075-585 2708 Ø E-mail: attilio.santocchia@pg.infn.it Ø Web: http://www.fisica.unipg.it/~attilio.santocchia

Dettagli

MOMENTI DI INERZIA PER CORPI CONTINUI

MOMENTI DI INERZIA PER CORPI CONTINUI MOMENTI D INERZIA E PENDOLO COMPOSTO PROF. FRANCESCO DE PALMA Indice 1 INTRODUZIONE -------------------------------------------------------------------------------------------------------------- 3 2 MOMENTI

Dettagli

Elementi di base delle vibrazioni meccaniche

Elementi di base delle vibrazioni meccaniche Elementi di base delle vibrazioni meccaniche Vibrazioni Le vibrazioni sono fenomeni dinamici che ci circondano costantemente. La luce, il suono, il calore sono i fenomeni vibratori a noi più evidenti.

Dettagli

Tempi Moduli Unità /Segmenti. 2.1 La conservazione dell energia meccanica

Tempi Moduli Unità /Segmenti. 2.1 La conservazione dell energia meccanica PERCORSO FORMATIVO DEL 3 ANNO - CLASSE 3 A L LSSA A. S. 2015/2016 Tempi Moduli Unità /Segmenti MODULO 0: Ripasso e consolidamento di argomenti del biennio MODULO 1: Il moto dei corpi e le forze. (Seconda

Dettagli

Esercizio 1 Meccanica del Punto

Esercizio 1 Meccanica del Punto Esercizio 1 Meccanica del Punto Una molla di costante elastica k e lunghezza a riposo L 0 è appesa al soffitto di una stanza di altezza H. All altra estremità della molla è attaccata una pallina di massa

Dettagli

Università del Sannio

Università del Sannio Università del Sannio Corso di Fisica 1 Lezione 6 Dinamica del punto materiale II Prof.ssa Stefania Petracca 1 Lavoro, energia cinetica, energie potenziali Le equazioni della dinamica permettono di determinare

Dettagli

Esercizio (tratto dal Problema 4.24 del Mazzoldi 2)

Esercizio (tratto dal Problema 4.24 del Mazzoldi 2) 1 Esercizio (tratto dal Problema 4.4 del Mazzoldi ) Due masse uguali, collegate da un filo, sono disposte come in figura. L angolo vale 30 o, l altezza vale 1 m, il coefficiente di attrito massa-piano

Dettagli

Lezione 4 Energia potenziale e conservazione dell energia

Lezione 4 Energia potenziale e conservazione dell energia Lezione 4 Energia potenziale e conservazione dell energia 4. Energia potenziale e conservazione dell energia Energia potenziale di: Forza peso sulla superficie terrestre Serway, Cap 7 U = mgh di un corpo

Dettagli

Sistemi vibranti ad 1 gdl

Sistemi vibranti ad 1 gdl Università degli Studi di Bergamo Dipartimento di Ingegneria Sistemi vibranti ad 1 gdl - vibrazioni forzate - rev. 1. Le vibrazioni forzate di un sistema ad 1 gdl sono descritte dall equazione: mẍ + cẋ

Dettagli

Forza viscosa. Abbiamo visto che la forza di attrito in un fluido può essere modellizzata come: F A = kv legge di Stokes (1) F = kv 2 v v

Forza viscosa. Abbiamo visto che la forza di attrito in un fluido può essere modellizzata come: F A = kv legge di Stokes (1) F = kv 2 v v Forza viscosa 1 / 44 Abbiamo visto che la forza di attrito in un fluido può essere modellizzata come: F A = kv legge di Stokes (1) F = kv 2 v v attrito turbolento (2) Per entrambi i modelli l equazione

Dettagli

Valutazione della capacità dissipativa di un sistema strutturale

Valutazione della capacità dissipativa di un sistema strutturale Tecniche innovative per l identificazione delle caratteristiche dinamiche delle strutture e del danno Valutazione della capacità dissipativa di un sistema strutturale Prof. Ing. Felice Carlo PONZO - Ing.

Dettagli

Esercizio (tratto dal problema 7.36 del Mazzoldi 2)

Esercizio (tratto dal problema 7.36 del Mazzoldi 2) Esercizio (tratto dal problema 7.36 del Mazzoldi 2) Un disco di massa m D = 2.4 Kg e raggio R = 6 cm ruota attorno all asse verticale passante per il centro con velocità angolare costante ω = 0 s. ll istante

Dettagli

LAVORO ED ENERGIA. Dott.ssa Silvia Rainò

LAVORO ED ENERGIA. Dott.ssa Silvia Rainò 1 LAVORO ED ENERGIA Dott.ssa Silvia Rainò Lavoro ed Energia 2 Consideriamo il moto di un oggetto vincolato a muoversi su una traiettoria prestabilita, ad esempio: Un treno vincolato a muoversi sui binari.

Dettagli

M? La forza d attrito coinvolta è quella tra i due blocchi occorre quindi visualizzare la reazione normale al piano di contatto Il diagramma delle

M? La forza d attrito coinvolta è quella tra i due blocchi occorre quindi visualizzare la reazione normale al piano di contatto Il diagramma delle 6.25 (6.29 VI ed) vedi dispense cap3-mazzoldi-dinamica-part2 Dueblocchisonocomeinfiguraconm=16kg, M=88kgeconcoeff. d attrito statico tra i due blocchi pari a = 0.38. La superficie su cui poggia M è priva

Dettagli

Stabilità e risposte di sistemi elementari

Stabilità e risposte di sistemi elementari Parte 4 Aggiornamento: Settembre 2010 Parte 4, 1 Stabilità e risposte di sistemi elementari Prof. Lorenzo Marconi DEIS-Università di Bologna Tel. 051 2093788 Email: lmarconi@deis.unibo.it URL: www-lar.deis.unibo.it/~lmarconi

Dettagli

Corso Meccanica Anno Accademico 2016/17 Scritto del 24/07/2017

Corso Meccanica Anno Accademico 2016/17 Scritto del 24/07/2017 Esercizio n. 1 Un punto materiale di massa m è vincolato a muoversi sotto l azione della gravità su un vincolo bilaterale (vedi figura) formato da un arco di circonferenza, AB, sotteso ad un angolo di

Dettagli

Problema (tratto dal 7.42 del Mazzoldi 2)

Problema (tratto dal 7.42 del Mazzoldi 2) Problema (tratto dal 7.4 del azzoldi Un disco di massa m D e raggio R ruota attorno all asse verticale passante per il centro con velocità angolare costante ω. ll istante t 0 viene delicatamente appoggiata

Dettagli

Esercizi Concetto di energia

Esercizi Concetto di energia Esercizi Concetto di energia 1. Determinare il numero reale m in modo che il vettore X = (m, - m, m - 1) risulti complanare con i vettori: U = ( 3,, 1) e V = (-1,,-1). Soluzione: Se i vettori X, U e V

Dettagli

Facoltà di Farmacia - Anno Accademico A 08 Aprile 2015 Esercitazione in itinere

Facoltà di Farmacia - Anno Accademico A 08 Aprile 2015 Esercitazione in itinere Facoltà di Farmacia - Anno Accademico 2014-2015 A 08 Aprile 2015 Esercitazione in itinere Corso di Laurea: Laurea Specialistica in FARMACIA Nome: Cognome: Matricola Aula: Riportare sul presente foglio

Dettagli

parametri della cinematica

parametri della cinematica Cinematica del punto Consideriamo il moto di una particella: per particella si intende sia un corpo puntiforme (ad es. un elettrone), sia un qualunque corpo esteso che si muove come una particella, ovvero

Dettagli

VII ESERCITAZIONE - 29 Novembre 2013

VII ESERCITAZIONE - 29 Novembre 2013 VII ESERCITAZIONE - 9 Novembre 013 I. MOMENTO DI INERZIA DEL CONO Calcolare il momento di inerzia di un cono omogeneo massiccio, di altezza H, angolo al vertice α e massa M, rispetto al suo asse di simmetria.

Dettagli

Unità didattica 2. Seconda unità didattica (Fisica) 1. Corso integrato di Matematica e Fisica per il Corso di Farmacia

Unità didattica 2. Seconda unità didattica (Fisica) 1. Corso integrato di Matematica e Fisica per il Corso di Farmacia Unità didattica 2 Dinamica Leggi di Newton.. 2 Le forze 3 Composizione delle forze 4 Esempio di forza applicata...5 Esempio: il piano inclinato.. 6 Il moto del pendolo.. 7 La forza gravitazionale 9 Lavoro

Dettagli

ENERGIA MECCANICA. DOWNLOAD Il pdf di questa lezione (0404a.pdf) è scaricabile dal sito calvini/scamb/ 04/04/2012

ENERGIA MECCANICA. DOWNLOAD Il pdf di questa lezione (0404a.pdf) è scaricabile dal sito  calvini/scamb/ 04/04/2012 ENERGIA MECCANICA DOWNLOAD Il pdf di questa lezione (0404a.pdf) è scaricabile dal sito http://www.ge.infn.it/ calvini/scamb/ 04/04/2012 CONSERVAZIONE DELL ENERGIA MECCANICA L applicazione del teorema dell

Dettagli

Risposta temporale: esempi

Risposta temporale: esempi ...4 Risposta temporale: esempi Esempio. Calcolare la risposta al gradino unitario del seguente sistema: x(t) = u(t) s + 5 (s + )(s + ) y(t) Il calcolo della trasformata del segnale di uscita è immediato:

Dettagli

Esercizio (tratto dal Problema 3.35 del Mazzoldi 2)

Esercizio (tratto dal Problema 3.35 del Mazzoldi 2) 1 Esercizio (tratto dal Problema 3.35 del Mazzoldi 2) Un corpo sale lungo un piano inclinato (θ 18 o ) scabro (µ S 0.35, µ D 0.25), partendo dalla base con velocità v 0 10 m/s e diretta parallelamente

Dettagli

OSCILLATORE ARMONICO VERTICALE

OSCILLATORE ARMONICO VERTICALE OSCILLATORE ARMONICO VERTICALE Scopo dell'esperimento. Studiare mediante un sensore di movimento a ultrasuoni le oscillazioni libere e smorzate di un corpo agganciato ad una molla sospesa verticalmente.

Dettagli

IL MOTO ARMONICO OBIETTIVI

IL MOTO ARMONICO OBIETTIVI IL MOTO ARMONICO OBIETTIVI - Saper simulare il comportamento di un oscillatore armonico. - Verificare la potenza del metodo di calcolo ricorrente. - Verificare il legame tra i parametri fisici dell oscillatore

Dettagli

Grandezze angolari. Lineare Angolare Relazione x θ x = rθ. m I I = mr 2 F N N = rf sin θ 1 2 mv2 1

Grandezze angolari. Lineare Angolare Relazione x θ x = rθ. m I I = mr 2 F N N = rf sin θ 1 2 mv2 1 Grandezze angolari Lineare Angolare Relazione x θ x = rθ v ω v = ωr a α a = αr m I I = mr 2 F N N = rf sin θ 1 2 mv2 1 2 Iω 2 Energia cinetica In forma vettoriale: v = ω r questa collega la velocità angolare

Dettagli

Forze conservative. Conservazione dell energia. Sistemi a molti corpi 1 / 37

Forze conservative. Conservazione dell energia. Sistemi a molti corpi 1 / 37 Forze conservative Il nome forze conservative deriva dal fatto che le forze che appartengono a questa categoria sono tali da conservare l energia. Una forza è conservativa se il lavoro da essa compiuto

Dettagli