Induzione elettromagnetica

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Induzione elettromagnetica"

Transcript

1 Induzione elettromagnetica 1. Induzione elettromagnetica 2. Esperienze di Faraday 3. Legge di Faraday Neumann Lenz

2 Induzione elettromagnetica (1) La rivoluzione determinata dall'utilizzo dell'energia elettrica su larga scala non poteva fondarsi sulla produzione di corrente ad opera della pila di Volta. Ci voleva un modo più efficace di produrre corrente. Spesso, nella storia della fisica, si è ragionato per analogie e simmetrie; nel caso dell'elettromagnetismo gli scienziati dell'epoca si domandarono: Se la corrente genera un campo magnetico, può un campo magnetico generare una corrente? Nel 1821, un anno dopo la scoperta di Oersted, il giovane inglese Michael Faraday ( ), assistente di chimica autodidatta, ebbe l'incarico di compilare una storia delle esperienze recenti sull'elettromagnetismo. Michael Faraday ( )

3 Induzione elettromagnetica (2) Faraday ripeté le esperienze nel suo laboratorio e ne programmò altri; si soffermò in particolare sull'andamento della forza magnetica nello spazio che descrisse in termini di linee di campo. Fu Faraday, come già sappiamo, il primo a proporre la descrizione grafica del campo magnetico (e in seguito anche quella del campo elettrico) in termini di linee di campo, cui attribuiva una vera e propria presenza fisica nello spazio, mentre gli scienziati contemporanei ne parlavano in termini di azione a distanza. Nel 1824 Faraday tentò di produrre corrente per mezzo del magnetismo e a questo problema dedicò diversi anni, finché, nel 1831, arrivò quasi per caso alla soluzione del problema. Michael Faraday ( )

4 Induzione elettromagnetica (3) Nel 1831 Faraday ( ) scoprì il fenomeno dell induzione magnetica, la creazione cioè di un campo elettrico per mezzo di un campo magnetico. Essa è di fondamentale importanza in quanto, a differenza dell elettromagnetismo che fornisce i mezzi per trasformare l energia elettrica in lavoro (vedi motore elettrico) l induzione elettromagnetica fornisce i mezzi per trasformare il lavoro meccanico in corrente elettrica. Le centrali elettriche si basano sul principio dell induzione. Michael Faraday ( )

5 Induzione elettromagnetica (4) Una carica elettrica in quiete genera nello spazio circostante un campo elettrico

6 Induzione elettromagnetica (5) Un magnete in quiete genera nello spazio circostante un campo magnetico

7 Induzione elettromagnetica (6) Una corrente elettrica (cariche elettriche in movimento di moto uniforme) genera nello spazio circostante un campo magnetico con le stesse proprietà di quello creato da un magnete. X

8 Induzione elettromagnetica (7) Un campo elettrico genera un campo magnetico Viceversa: Un campo magnetico riesce a generare una corrente elettrica? (e quindi una ddp ed un campo elettrico)

9 Induzione elettromagnetica (8) Dai suoi esperimenti Faraday scopre che 1. Un campo magnetico variabile genera una f.e.m. indotta (cioè si assiste alla circolazione di corrente anche in circuiti senza generatore) 2. Il campo magnetico indotto è tale da opporsi alla causa che l ha generato (cioè la corrente indotta crea a sua volta un campo magnetico che si va ad opporre a quello esistente)

10 Esperienze di Faraday (0) Magnete fermo, circuito fermo: quando non c è moto relativo fra il magnete ed il circuito non si induce un campo elettrico

11 Esperienze di Faraday (1) 1.Magnete in moto circuito fermo Se c è moto relativo magnete - circuito, si produce un campo elettrico. La d.d.p. che si produce si dice f.e.m. indotta e la corrente che circola si dice corrente indotta

12 Esperienze di Faraday (1) Infatti se un magnete è posto vicino ad un circuito conduttore chiuso, nel circuito si manifesta una f.e.m. quando il magnete è messo in movimento. Tale f.e.m. è rilevabile sotto forma di corrente, cioè delle cariche libere messe in moto nel conduttore, mediante un amperometro. Si verifica che l entità della f.e.m., e quindi della corrente, dipende dalla velocità del moto del magnete relativamente al circuito. La corrente ha direzione nel circuito che dipende dal fatto che il magnete sia avvicinato o allontanato.

13 Esperienze di Faraday (2) 2. Magnete fermo circuito in moto Se c è moto relativo tra magnete - circuito, si produce un campo elettrico e quindi una f.e.m. indotta.

14 Esperienze di Faraday (3) 3. I circuito fermo II circuito in moto Se c è moto relativo circuito - circuito, il circuito induttore produce nel circuito indotto (senza generatore) una f.e.m. indotta circuito indotto circuito induttore

15 Esperienze di Faraday (3) Infatti un fenomeno analogo al circuito fermo magnete in movimento si manifesta se al posto del magnete in movimento abbiamo un circuito in cui la corrente varia col tempo: circuito fermo circuito in movimento. Si verifica che se il circuito con corrente variabile genera un campo magnetico, concatenato al circuito in cui misuriamo la corrente, osserviamo una f.e.m. indotta, e quindi una corrente indotta.

16 Esperienze di Faraday (4) Posso produrre una f.e.m. indotta: 1.variando l intensità della corrente elettrica nel circuito induttore

17 Esperienze di Faraday (5) Posso produrre una f.e.m. indotta: 2.variando la superficie del circuito immerso nel campo magnetico

18 Esperienze di Faraday (6) Posso produrre una f.e.m. indotta: 3.variando l angolo di rotazione della bobina immersa nel campo magnetico (Spira rotante in un c. magnetico stazionario)

19 Esperienze di Faraday (7) Posso produrre una f.e.m. indotta: 4.Conduttore in movimento in un campo magnetico stazionario. Gli elettroni di conduzione nella sbarretta PQ sentono una forza che li mette in moto verso Q. Se le cariche si muovono, significa che nella barretta si viene a creare un campo elettrico.

20 Induzione elettromagnetica La f.e.m. legata al movimento è un aspetto particolare di un fenomeno più generale detto induzione elettromagnetica. Viene indotta nel circuito una f.e.m. indotta finché dura nel tempo una variazione: 1. Dell intensità, del verso, della direzione o di una qualunque combinazione di essi di un campo magnetico intercettato da un circuito oppure 2. Dell area di un circuito immesso in un campo magnetico oppure 3. Dell orientamento del circuito nel campo magnetico

21 f.e.m. indotta in un conduttore in moto Consideriamo la sbarretta metallica di lunghezza l che si muove verso destra, con velocità v costante e perpendicolare al campo magnetico uniforme B. Ogni carica q dentro la sbarretta si muove con la stessa velocità v e risente di una forza di Lorentz FL = qvb. Con la regola mano destra, valutiamo lo spostamento degli elettroni di conduzione che sono spinti verso Q e lasciano in P la stessa quantità di carica positiva. Se la sbarretta è isolata, le cariche + e si accumulano fino a quando la repulsione elettrostatica tra esse diventa uguale alla forza magnetica. Quando le due forze si bilanciano, si raggiunge l equilibrio e non avviene più alcuna separazione di carica. F L = qv B P F L Q

22 f.e.m. indotta in un conduttore in moto Ma se la sbarretta conduttrice si muove, perpendicolarmente ad un campo magnetico uniforme, a contatto con una guida conduttrice che forma un circuito, le cariche accumulatesi agli estremi della sbarretta possono scorrere lungo la guida e la f.e.m. indotta dalla forza di Lorentz genera una corrente indotta i nel circuito. F L conseguenza della forza di Lorentz

23 f.e.m. indotta in un conduttore in moto Le cariche separate all estremità del conduttore in movimento danno luogo ad una f.e.m. indotta dovuta al movimento della sbarretta. La f.e.m. esiste finché la sbarretta si muove. F L = qv Se la sbarretta si ferma, la forza di Lorentz si annulla, con il risultato che l attrazione elettrostatica riunisce le cariche + e e la f.e.m. si annulla. La f.e.m. della sbarretta è simile a quella tra i poli di una batteria. La f.e.m. della batteria è ottenuta da reazioni chimiche, mentre la f.e.m. in questo caso è generata dall agente esterno che sposta la sbarretta nel campo magnetico (p.es. la mano). B

24 f.e.m. indotta in un conduttore in moto Determinazione dell intensità della f.e.m. dovuta al movimento: Il lavoro sugli elettroni di conduzione non è compiuto da un generatore, ma dalla forza di Lorentz, che li sposta lungo la sbarretta di lunghezza l. Il lavoro compiuto da F L è : LL = FL l = ev La f.e.m. indotta si ottiene dal rapporto tra il lavoro compiuto per spostare una carica e la carica stessa. f.e.m. Se la resistenza del circuito è R, in esso scorrerà una corrente i = v = Bl R L L e = ev e Bl = v Bl Bl

25 f.e.m. indotta in un conduttore in moto A questo punto qualcuno si starà chiedendo. Ma non ci aveva detto che la Forza di Lorentz non compie lavoro? A cosa è dovuta questa evidente contraddizione? Teniamo presente che gli elettroni che si stanno muovendo nella sbarretta in movimento NON SONO COMPLETAMENTE LIBERI DI MUOVERSI (come accadeva agli elettroni lanciati con velocità v in un campo magnetico uniforme), ma sono vincolati a farlo nella direzione parallela alla sbarretta conduttrice. v + La velocità degli elettroni lungo la sbarretta non è solo, ma cioè è data dalla velocità di trascinamento sommata alla velocità di deriva v v d

26 f.e.m. indotta in un conduttore in moto La forza magnetica complessiva che agisce sui singoli elettroni è: F = e ( v + v ) xb = evxb ev xb d d F d F v F tot = F v + F d

27 f.e.m. indotta in un conduttore in moto L energia elettrica che si ottiene per mezzo del fenomeno dell induzione magnetica non viene dal nulla!!! Ciò che si ritrova sotto forma di corrente elettrica non è altro che il lavoro meccanico compiuto per muovere la sbarra (o per far ruotare la spira: devo contrastare il momento della forza). Infatti si deve contrastare la forza F che si viene ad esercitare sulla sbarretta in quanto a) è percorsa da corrente b) è immersa nel campo Bil magnetico. Tale forza ha modulo pari a Bil e ha verso opposto a quella della velocità. Pag(247) F

28 Dimostrazione della legge di Faraday Neumann Determiniamo matematicamente la legge di Faraday- Neumann servendoci di un caso particolare, anche se la legge ha validità del tutto generale, nel senso che ogni volta che il flusso Φ (B) del campo magnetico, attraverso la superficie delimitata dal circuito, varia nel tempo, si genera una f.e.m indotta e perciò una corrente indotta nel circuito tali che f.e.m = Ri. La produzione della corrente indotta dipende dalla rapidità con cui varia il flusso di B nel tempo, infatti la corrente è più intensa quanto più è rapida la variazione di Φ (B). da pag. 247 Caforio

29 Descrizione della situazione Consideriamo il caso di un campo magnetico uniforme, perpendicolare al foglio, come in figura, e di una spira che viene estratta dal campo con velocità v. La spira è parallela al foglio. Estraendo la spira dal campo magnetico si produce in essa una f.e.m indotta, e quindi una corrente indotta, che cessa se fermiamo la spira. Questo accade perché gli elettroni di conduzione si muovono anch essi con velocità v mentre muoviamo la spira e risultano soggetti alla forza di Lorentz = qv B = ev B F L avendo indicato con e la carica elementare dell elettrone e con il segno meno la sua carica.

30 Dimostrazione della legge di Faraday Neumann Con la regola della mano destra si verifica che la forza F è diretta da A verso B. Lungo il tratto AB della spira gli elettroni si muovono da A verso B per effetto della forza di Lorentz. Nella spira si genera una corrente indotta diretta da B verso A. Lungo i lati AD e BC la forza di Lorentz è diretta perpendicolarmente e non provoca il moto degli elettroni di conduzione lungo tali lati. Il lato DC è fuori dal campo magnetico e i suoi elettroni non subiscono alcuna forza. Gli unici responsabili della corrente indotta sono, pertanto, gli elettroni del lato AB.

31 Dimostrazione della legge di Faraday Neumann La situazione può anche essere interpretata come segue: possiamo pensare che il lato AB si comporti come una pila, visto che è il responsabile della corrente circolante nella spira; per ottenere lo stesso effetto potremmo inserire al posto del lato AB una pila nella spira ferma, avente il polo - in B e il polo + in A che generi una d.d.p. uguale a quella che fa circolare corrente nella spira.

32 Calcolo della forza elettromotrice Ricordando la legge che esprime la d.d.p. tra due punti a distanza d: possiamo pensare di applicarla al lato AB della spira. V = E d V = f.e.m. Chiamando l la sua lunghezza e abbiamo : V V = E l E = E = l f.e.m. Possiamo quindi ritenere che la d.d.p. che si crea tra A e B sia la causa del moto degli elettroni, come se ad essi fosse applicata la forza elettrica : F = q E = e E f.e.m. Questa forza è in modulo uguale alla forza di Lorentz: pertanto si ha F = e f.e.m. l = e v B = f.e.m. l e l = v B l f.e.m. = v B l

33 . Calcolo della variazione del flusso del C.M. Passiamo ora al calcolo del flusso del campo magnetico attraverso la superficie delimitata dalla spira che sta uscendo dal campo magnetico con velocità. Sia x il tratto in uscita percorso dalla spira nel tempo t, con x = v t. Nel tempo t il flusso del campo magnetico subisce questa variazione: Φ = Φ finale Φ iniziale = [ ] [ Bl ( l x ) ] Bl = Bl x B in quanto il flusso si ottiene dal prodotto scalare del campo magnetico B per la superficie attraversata ( essendo qui la spira perpendicolare a ) Vedi figura pag

34 . Legge di Faraday-Neumann Tenete presente che la variazione di flusso è negativa perché la spira sta uscendo dal campo e diminuisce la porzione di superficie attraversata dalle linee di forza di B. Calcoliamo ora il rapporto tra Φ e t, cioè la variazione del flusso nel tempo e osserviamo facilmente che esso è l opposto della fem f già trovata prima. Φ t = B l x t = Blv = f.e.m. Scriviamo pertanto la legge di Faraday e deduciamo anche il valore della corrente indotta Φ 1 f.e.m. = i = t R Φ t

35 Legge di Faraday (1) Sperimentalmente si osserva che: Se una carica elettrica o un circuito chiuso privo di generatori di f.e.m. si trovano immersi in un campo magnetico variabile nel tempo, la carica si mette in movimento mentre il circuito risulta percorso da una corrente indotta e quindi si genera una f.e.m. indotta. f.e.m. = Φ t che è la f.e.m indotta che si genera, IN MEDIA, nel circuito durante l intervallo di tempo considerato. Flusso dell induzione magnetica concatenato con la linea chiusa

36 Legge di Faraday (2) Legge di Faraday-Neumann In un circuito immerso in un campo magnetico si produce una f.e.m. pari alla rapidità di variazione del flusso del campo magnetico nel tempo, cioè, calcolando il limite per t che tende a zero, pari alla derivata rispetto al tempo del flusso del campo magnetico attraverso il circuito stesso: Legge di Lenz dφ(b) Φ f.e.m. indotta = dt

37 Legge di Lenz (1) Il segno che compare nella formula prende il nome di Legge di Lenz La corrente indotta in una spira conduttrice chiusa ha un verso tale da opporsi alla variazione che l ha generata. Il segno della f.e.m. indotta è tale da creare una corrente che a sua volta genera un campo magnetico che si oppone alla variazione del campo magnetico che ha indotto la f.e.m., in piena coerenza con il PRINCIPIO DI CONSERVAZIONE DELL ENERGIA La corrente indotta ha sempre verso tale da opporsi alla causa che l ha generata

38 Legge di Lenz (2) d Φ (B) 1 d Φ (B) fem i = dt i i = R dt

39 Legge di Faraday-Neumann-Lenz (2) Il risultato ottenuto è valido anche se L non è un conduttore, ma è una curva chiusa ideale. In conclusione possiamo affermare che: un campo magnetico dipendente dal tempo genera un campo elettrico indotto tale che la circuitazione del campo elettrico lungo un percorso arbitrario chiuso sia eguale ed opposta alla derivata rispetto al tempo del flusso del campo magnetico attraverso una superficie avente per contorno quel percorso. f.e.m. indotta = d Φ dt (B) III equazione di Maxwell

40 Legge di Faraday-Neumann-Lenz (3) Conclusione: la legge dell induzione elettromagnetica, può essere impiegata quando la variazione del flusso magnetico è dovuta: ad una variazione del campo magnetico o ad un movimento o ad una deformazione rispetto al campo magnetico del circuito lungo il quale è calcolata la f.e.m., o ad una azione combinata di questi processi. Su questa legge si basa il funzionamento del generatore elettrico e del trasformatore. f.e.m. indotta = d Φ dt (B)

41 Alternatore L esperimento di Faraday è, in pratica, l invenzione dell alternatore, in cui la variazione di flusso di B è ottenuta facendo ruotare una serie di bobine all interno di un campo magnetico

42 Alternatore E da notare che l alternatore non produce energia dal nulla, ma converte in elettrica l energia meccanica sviluppata generalmente da moto di una turbina, a sua volta azionata o dall acqua o dal vapore

43 Dinamo Nella dinamo la bobina è invece fissa, mentre sono dei magneti permanenti a ruotare

44 Trasformatore Nel trasformatore una corrente alternata in una bobina (inducente) produce una variazione di flusso magnetico in una seconda bobina (indotta) e quindi una ddp, ovvero una corrente indotta, con intensità e tensione diverse dalla corrente originaria

Flusso del campo magnetico

Flusso del campo magnetico Lezione 19 Flusso del campo magnetico Il flusso magnetico o flusso di B attraverso una superficie aperta delimitata da un contorno chiuso e dato da Se il contorno chiuso e un circuito, il flusso in questione

Dettagli

LABORATORIO DI FISICA. Elettromagnetismo

LABORATORIO DI FISICA. Elettromagnetismo MINISTERO DELL ISTRUZIONE,UNIVERSITA E RICERCA ISTITUTO TECNICO INDUSTRIALE STATALE L. DA Vinci Via G. Rosato, 5-66034 L a n c i a n o (Ch) Tel. 087242556 Fax 0872702934 E-mail: chtf0200l@istruzione.it

Dettagli

Induzione e.m. generazione di corrente dovuta al moto relativo del magnete rispetto alla spira. un campo magnetico variabile genera una corrente

Induzione e.m. generazione di corrente dovuta al moto relativo del magnete rispetto alla spira. un campo magnetico variabile genera una corrente Induzione e.m. generazione di corrente dovuta al moto relativo del magnete rispetto alla spira un campo magnetico variabile genera una corrente INDUZIONE ELETTROMAGNETICA - ESPERIENZA 1 magnete N S µ-amperometro

Dettagli

Con gli esperimenti di Faraday ( 1831 ) l'elettromagnetismo si complica

Con gli esperimenti di Faraday ( 1831 ) l'elettromagnetismo si complica Elettromagnetismo prima di Faraday: campi elettrici e campi magnetici Correnti elettriche creano campi magnetici Cariche elettriche creano campi elettrici Con gli esperimenti di Faraday ( 1831 ) l'elettromagnetismo

Dettagli

Induzione magnetica. Corrente indotta. Corrente indotta. Esempio. Definizione di flusso magnetico INDUZIONE MAGNETICA E ONDE ELETTROMAGNETICHE

Induzione magnetica. Corrente indotta. Corrente indotta. Esempio. Definizione di flusso magnetico INDUZIONE MAGNETICA E ONDE ELETTROMAGNETICHE Induzione magnetica INDUZIONE MAGNETICA E ONDE ELETTROMAGNETICHE Che cos è l induzione magnetica? Si parla di induzione magnetica quando si misura una intensità di corrente diversa da zero che attraversa

Dettagli

Limature di ferro orientate secondo le linee del campo magnetico generato da una barra

Limature di ferro orientate secondo le linee del campo magnetico generato da una barra Magnetismo naturale Un magnete (o calamita) è un corpo che genera una forza su un altro magnete che può essere sia attrattiva che repulsiva. Intorno al magnete c è un campo magnetico. Il nome deriva dal

Dettagli

Legge di Faraday. x x x x x x x x x x E B. x x x x x x x x x x R x x x x x x x x x x. x x x x x x x x x x. x x x x x x x x x x E B 1

Legge di Faraday. x x x x x x x x x x E B. x x x x x x x x x x R x x x x x x x x x x. x x x x x x x x x x. x x x x x x x x x x E B 1 B ds Legge di Faraday E x x x x x x x x x x E B x x x x x x x x x x R x x x x x x x x x x B 1 x x x x x x x x x x E x x x x x x x x x x E Schema Generale Elettrostatica moto di una carica q in un campo

Dettagli

Lezione 18. Magnetismo WWW.SLIDETUBE.IT

Lezione 18. Magnetismo WWW.SLIDETUBE.IT Lezione 18 Magnetismo Cenni di magnetismo Già a Talete (600 a.c.) era noto che la magnetitite ed alcune altre pietre naturali (minerali di ferro, trovati a Magnesia in Asia Minore) avevano la proprietà

Dettagli

ELETTROSTATICA + Carica Elettrica + Campi Elettrici + Legge di Gauss + Potenziale Elettrico + Capacita Elettrica

ELETTROSTATICA + Carica Elettrica + Campi Elettrici + Legge di Gauss + Potenziale Elettrico + Capacita Elettrica ELETTROSTATICA + Carica Elettrica + Campi Elettrici + Legge di Gauss + Potenziale Elettrico + Capacita Elettrica ELETTRODINAMICA + Correnti + Campi Magnetici + Induzione e Induttanza + Equazioni di Maxwell

Dettagli

GRANDEZZE ELETTRICHE E COMPONENTI

GRANDEZZE ELETTRICHE E COMPONENTI Capitolo3:Layout 1 17-10-2012 15:33 Pagina 73 CAPITOLO 3 GRANDEZZE ELETTRICHE E COMPONENTI OBIETTIVI Conoscere le grandezze fisiche necessarie alla trattazione dei circuiti elettrici Comprendere la necessità

Dettagli

- semplicità delle macchine generatrici (alternatori) - possibilità di utilizzare semplicemente i trasformatori

- semplicità delle macchine generatrici (alternatori) - possibilità di utilizzare semplicemente i trasformatori ITCG CATTANEO CON LICEO DALL AGLIO - via M. di Canossa - Castelnovo ne Monti (RE) SEZIONE I.T.I. Le Correnti Alternate Come vedremo è piuttosto semplice produrre tensioni, e di conseguenza correnti, che

Dettagli

Inizia presentazione

Inizia presentazione Inizia presentazione Che si misura in ampère può essere generata In simboli A da pile dal movimento di spire conduttrici all interno di campi magnetici come per esempio nelle dinamo e negli alternatori

Dettagli

Induzione Magnetica Legge di Faraday

Induzione Magnetica Legge di Faraday nduzione Magnetica egge di Faraday ezione 8 (oltre i campi elettrostatico, magnetostatico, e le correnti stazionarie) Variazione nel tempo del campo : Muovendo un magnete vicino a una spira connessa ad

Dettagli

Il campo magnetico. 1. Fenomeni magnetici 2. Calcolo del campo magnetico 3. Forze su conduttori percorsi da corrente 4. La forza di Lorentz

Il campo magnetico. 1. Fenomeni magnetici 2. Calcolo del campo magnetico 3. Forze su conduttori percorsi da corrente 4. La forza di Lorentz Il campo magnetico 1. Fenomeni magnetici 2. Calcolo del campo magnetico 3. Forze su conduttori percorsi da corrente 4. La forza di Lorentz 1 Lezione 1 - Fenomeni magnetici I campi magnetici possono essere

Dettagli

CORRENTE ELETTRICA. La grandezza fisica che descrive la corrente elettrica è l intensità di corrente.

CORRENTE ELETTRICA. La grandezza fisica che descrive la corrente elettrica è l intensità di corrente. CORRENTE ELETTRICA Si definisce CORRENTE ELETTRICA un moto ordinato di cariche elettriche. Il moto ordinato è distinto dal moto termico, che è invece disordinato, ed è sovrapposto a questo. Il moto ordinato

Dettagli

funziona meglio con FIREFOX! FENOMENI ELETTROSTATICI mappa 1 mappa 2 mappa 3 mappa 4 http://cmap.ihmc.us/

funziona meglio con FIREFOX! FENOMENI ELETTROSTATICI mappa 1 mappa 2 mappa 3 mappa 4 http://cmap.ihmc.us/ mappa 1 mappa 2 mappa 3 mappa 4 http://cmap.ihmc.us/ funziona meglio con FIREFOX! FENOMENI ELETTROSTATICI Struttura dell'atomo (nucleo, protoni, neutroni, elettroni); cariche elettriche elementari (elettrone,

Dettagli

ENERGIA ELETTRICA: Generatori e tipi di collegamento. Istituto Paritario Scuole Pie Napoletane - Anno Scolastico 2012-13 -

ENERGIA ELETTRICA: Generatori e tipi di collegamento. Istituto Paritario Scuole Pie Napoletane - Anno Scolastico 2012-13 - ENERGIA ELETTRICA: Generatori e tipi di collegamento Quando un conduttore in movimento attraversa le linee di forza di un campo magnetico, nel conduttore si genera una forza elettromotrice indotta in grado

Dettagli

Due cariche positive si respingono, due cariche negative si respingono, una carica positiva e una negativa si attraggono.

Due cariche positive si respingono, due cariche negative si respingono, una carica positiva e una negativa si attraggono. 2012 11 08 pagina 1 Carica elettrica Esistono cariche elettriche di due tipi: positiva e negativa. Due cariche positive si respingono, due cariche negative si respingono, una carica positiva e una negativa

Dettagli

LA CORRENTE ELETTRICA Prof. Erasmo Modica erasmo@galois.it

LA CORRENTE ELETTRICA Prof. Erasmo Modica erasmo@galois.it LA CORRENTE ELETTRICA Prof. Erasmo Modica erasmo@galois.it L INTENSITÀ DELLA CORRENTE ELETTRICA Consideriamo una lampadina inserita in un circuito elettrico costituito da fili metallici ed un interruttore.

Dettagli

FISICA (modulo 1) PROVA SCRITTA 10/02/2014

FISICA (modulo 1) PROVA SCRITTA 10/02/2014 FISICA (modulo 1) PROVA SCRITTA 10/02/2014 ESERCIZI E1. Un proiettile del peso di m = 10 g viene sparato orizzontalmente con velocità v i contro un blocco di legno di massa M = 0.5 Kg, fermo su una superficie

Dettagli

11. Macchine a corrente continua. unità. 11.1 Principio di funzionamento

11. Macchine a corrente continua. unità. 11.1 Principio di funzionamento 11. Macchine a corrente continua unità 11.1 Principio di funzionamento Si consideri una spira rotante con velocità angolare costante e immersa in un campo magnetico costante come in figura 11.1. I lati

Dettagli

Macchina sincrona (alternatore)

Macchina sincrona (alternatore) Macchina sincrona (alternatore) Principio di funzionamento Le macchine sincrone si dividono in: macchina sincrona isotropa, se è realizzata la simmetria del flusso; macchina sincrona anisotropa, quanto

Dettagli

La corrente elettrica

La corrente elettrica Lampadina Ferro da stiro Altoparlante Moto di cariche elettrice Nei metalli i portatori di carica sono gli elettroni Agitazione termica - moto caotico velocità media 10 5 m/s Non costituiscono una corrente

Dettagli

Campo elettrico per una carica puntiforme

Campo elettrico per una carica puntiforme Campo elettrico per una carica puntiforme 1 Linee di Campo elettrico A. Pastore Fisica con Elementi di Matematica (O-Z) 2 Esercizio Siano date tre cariche puntiformi positive uguali, fisse nei vertici

Dettagli

Il Corso di Fisica per Scienze Biologiche

Il Corso di Fisica per Scienze Biologiche Il Corso di Fisica per Scienze Biologiche Ø Prof. Attilio Santocchia Ø Ufficio presso il Dipartimento di Fisica (Quinto Piano) Tel. 075-585 2708 Ø E-mail: attilio.santocchia@pg.infn.it Ø Web: http://www.fisica.unipg.it/~attilio.santocchia

Dettagli

E l e t t r o m a g n e t i s m o. Saggio Finale

E l e t t r o m a g n e t i s m o. Saggio Finale Corso abilitante IX ciclo Classe di concorso A038 ( Fisica ) Anno Accademico 2007 / 2008 (1 anno ) Specializzando: ( matr. 3801/SS ) E l e t t r o m a g n e t i s m o prof. Saggio Finale 1. Presentazione

Dettagli

Magnetismo. limatura di ferro. Fenomeno noto fin dall antichità. Da Magnesia città dell Asia Minore - Magnetite

Magnetismo. limatura di ferro. Fenomeno noto fin dall antichità. Da Magnesia città dell Asia Minore - Magnetite Magnetismo Alcuni minerali (ossidi di ferro) attirano la limatura di ferro. Fenomeno noto fin dall antichità. Da Magnesia città dell Asia Minore - Magnetite Proprietà non uniforme. Se si ricava opportuno

Dettagli

CdL Professioni Sanitarie A.A. 2012/2013. Unità 7: Forze elettriche e magnetiche

CdL Professioni Sanitarie A.A. 2012/2013. Unità 7: Forze elettriche e magnetiche L. Zampieri Fisica per CdL Professioni Sanitarie A.A. 12/13 CdL Professioni Sanitarie A.A. 2012/2013 Unità 7: Forze elettriche e magnetiche Forza elettrica e corrente Carica elettrica e legge di Coulomb

Dettagli

isolanti e conduttori

isolanti e conduttori 1. ELETTROMAGNETISMO 1.1. Carica elettrica 1.1.1. Storia: Franklin Thomson Rutherford Millikan 1.1.2. L atomo: struttura elettroni di valenza (legame metallico) isolanti e conduttori ATOMO legge di conservazione

Dettagli

Lezione 42: l'induzione elettromagnetica

Lezione 42: l'induzione elettromagnetica Lezione 42 - pag.1 Lezione 42: l'induzione elettromagnetica 42.1. Gli esperimenti di Faraday L'esperimento di Oersted del 1820 dimostrò che una corrente elettrica produce un campo magnetico. Subito gli

Dettagli

Liceo Scientifico Statale A. Volta, Torino Anno scolastico 2015 / 2016

Liceo Scientifico Statale A. Volta, Torino Anno scolastico 2015 / 2016 Liceo Scientifico Statale A. Volta, Torino Anno scolastico 2015 / 2016 FISICA ELETTROMAGNETISMO FISICA MODERNA classe 5 B MAG. 2016 Esercitazione di Fisica in preparazione all Esame di Stato A.S. 2015-2016

Dettagli

Università del Salento Corso di Laurea Triennale in Ingegneria Industriale Appello di FISICA GENERALE 2 del 27/01/15

Università del Salento Corso di Laurea Triennale in Ingegneria Industriale Appello di FISICA GENERALE 2 del 27/01/15 Università del Salento Corso di Laurea Triennale in Ingegneria Industriale Appello di FISICA GENERALE 2 del 27/01/15 Esercizio 1 (9 punti): Una distribuzione di carica è costituita da un guscio sferico

Dettagli

1-LA FISICA DEI CAMPI ELETTRICI E MAGNETICI.

1-LA FISICA DEI CAMPI ELETTRICI E MAGNETICI. 1-LA FISICA DEI CAMPI ELETTRICI E MAGNETICI. Tutti i fenomeni elettrici e magnetici hanno origine da cariche elettriche. Per comprendere a fondo la definizione di carica elettrica occorre risalire alla

Dettagli

Cap 3.1- Prima legge della DINAMICA o di Newton

Cap 3.1- Prima legge della DINAMICA o di Newton Parte I Cap 3.1- Prima legge della DINAMICA o di Newton Cap 3.1- Prima legge della DINAMICA o di Newton 3.1-3.2-3.3 forze e principio d inerzia Abbiamo finora studiato come un corpo cambia traiettoria

Dettagli

I poli magnetici isolati non esistono

I poli magnetici isolati non esistono Il campo magnetico Le prime osservazioni dei fenomeni magnetici risalgono all antichità Agli antichi greci era nota la proprietà della magnetite di attirare la limatura di ferro Un ago magnetico libero

Dettagli

Università degli studi di Catania Corso di laurea in fisica

Università degli studi di Catania Corso di laurea in fisica Università degli studi di Catania Corso di laurea in fisica Esame di Laboratorio di Fisica II Tesina sulla prova pratica di laboratorio realizzata il 0/04/004 da Enrica Trovato matricola n. 665/000043

Dettagli

quale agisce una forza e viceversa. situazioni. applicate a due corpi che interagiscono. Determinare la forza centripeta di un

quale agisce una forza e viceversa. situazioni. applicate a due corpi che interagiscono. Determinare la forza centripeta di un CLASSE Seconda DISCIPLINA Fisica ORE SETTIMANALI 3 TIPO DI PROVA PER GIUDIZIO SOSPESO Test a risposta multipla MODULO U.D Conoscenze Abilità Competenze Enunciato del primo principio della Calcolare l accelerazione

Dettagli

ELETTROSTATICA + Carica Elettrica + Campi Elettrici + Legge di Gauss + Potenziale Elettrico + Capacita Elettrica

ELETTROSTATICA + Carica Elettrica + Campi Elettrici + Legge di Gauss + Potenziale Elettrico + Capacita Elettrica ELETTROSTATICA + Carica Elettrica + Campi Elettrici + Legge di Gauss + Potenziale Elettrico + Capacita Elettrica ELETTRODINAMICA + Correnti + Campi Magnetici + Induzione e Induttanza + Equazioni di Maxwell

Dettagli

LA GRANDE SINTESI DI MAXWELL. Abbiamo incontrato Maxwell in termodinamica (teoria Teoria Cinetica dei Gas ) Nella distribuzione maxwelliana dei gas.

LA GRANDE SINTESI DI MAXWELL. Abbiamo incontrato Maxwell in termodinamica (teoria Teoria Cinetica dei Gas ) Nella distribuzione maxwelliana dei gas. LA GRANDE SINTESI DI MAXWELL Abbiamo incontrato Maxwell in termodinamica (teoria Teoria Cinetica dei Gas ) Nella distribuzione maxwelliana dei gas. Il maggior contributo alla fisica lo ha dato alla straordinaria

Dettagli

Corrente elettrica. Esempio LA CORRENTE ELETTRICA CONTINUA. Cos è la corrente elettrica? Definizione di intensità di corrente elettrica

Corrente elettrica. Esempio LA CORRENTE ELETTRICA CONTINUA. Cos è la corrente elettrica? Definizione di intensità di corrente elettrica Corrente elettrica LA CORRENTE ELETTRICA CONTINUA Cos è la corrente elettrica? La corrente elettrica è un flusso di elettroni che si spostano dentro un conduttore dal polo negativo verso il polo positivo

Dettagli

Il Corso di Fisica per Scienze Biologiche

Il Corso di Fisica per Scienze Biologiche Il Corso di Fisica per Scienze Biologiche Ø Prof. Attilio Santocchia Ø Ufficio presso il Dipartimento di Fisica (Quinto Piano) Tel. 075-585 2708 Ø E-mail: attilio.santocchia@pg.infn.it Ø Web: http://www.fisica.unipg.it/~attilio.santocchia

Dettagli

LICEO SCIENTIFICO G. LEOPARDI A.S. 2010-2011 FENOMENI MAGNETICI FONDAMENTALI

LICEO SCIENTIFICO G. LEOPARDI A.S. 2010-2011 FENOMENI MAGNETICI FONDAMENTALI LICEO SCIENTIFICO G. LEOPARDI A.S. 2010-2011 FENOMENI MAGNETICI FONDAMENTALI Prof. Euro Sampaolesi IL CAMPO MAGNETICO TERRESTRE Le linee del magnete-terra escono dal Polo geomagnetico Nord ed entrano nel

Dettagli

TERZA LEZIONE (4 ore): INTERAZIONE MAGNETICA

TERZA LEZIONE (4 ore): INTERAZIONE MAGNETICA TERZA LEZIONE (4 ore): INTERAZIONE MAGNETICA Evidenza dell interazione magnetica; sorgenti delle azioni magnetiche; forze tra poli magnetici, il campo magnetico Forza magnetica su una carica in moto; particella

Dettagli

Corso di fisica generale con elementi di fisica tecnica

Corso di fisica generale con elementi di fisica tecnica Corso di fisica generale con elementi di fisica tecnica Aniello (Daniele) Mennella Dipartimento di Fisica Secondo modulo Parte prima (fondamenti di elettromagnetismo) Lezione 3 Campi magnetici e forza

Dettagli

FAM. Serie 34: Elettrodinamica IX. Esercizio 1 Legge di Faraday e legge di Lenz. C. Ferrari. Considera una spira come nella figura qui sotto

FAM. Serie 34: Elettrodinamica IX. Esercizio 1 Legge di Faraday e legge di Lenz. C. Ferrari. Considera una spira come nella figura qui sotto Serie 34: Elettrodinamica IX FAM C. Ferrari Esercizio 1 Legge di Faraday e legge di Lenz Considera una spira come nella figura qui sotto n C S 1. Disegna la corrente indotta nella spira se il campo magnetico

Dettagli

ELETTROMAGNETISMO E SUPERCONDUTTIVITA - NODI E PCK - L INDUZIONE ELETTROMAGNETICA E LA FORZA DI LORENTZ

ELETTROMAGNETISMO E SUPERCONDUTTIVITA - NODI E PCK - L INDUZIONE ELETTROMAGNETICA E LA FORZA DI LORENTZ L INDUZIONE ELETTROMAGNETICA E LA FORZA DI LORENTZ 1) Nella tua classe hai posto il seguente problema: avendo un magnete cilindrico ed una spira in cui è inserita una lampadina, stabilisci in quale/i situazione/i

Dettagli

RIASSUNTO DI FISICA 3 a LICEO

RIASSUNTO DI FISICA 3 a LICEO RIASSUNTO DI FISICA 3 a LICEO ELETTROLOGIA 1) CONCETTI FONDAMENTALI Cariche elettriche: cariche elettriche dello stesso segno si respingono e cariche elettriche di segno opposto si attraggono. Conduttore:

Dettagli

Generazione campo magnetico

Generazione campo magnetico ELETTRO-MAGNETISMO Fra magnetismo ed elettricità esistono stretti rapporti: La corrente elettrica genera un campo magnetico; Un campo magnetico può generare elettricità. Generazione campo magnetico Corrente

Dettagli

Tesina di scienze. L Elettricità. Le forze elettriche

Tesina di scienze. L Elettricità. Le forze elettriche Tesina di scienze L Elettricità Le forze elettriche In natura esistono due forme di elettricità: quella negativa e quella positiva. Queste due energie si attraggono fra loro, mentre gli stessi tipi di

Dettagli

Carica positiva e carica negativa

Carica positiva e carica negativa Elettrostatica Fin dal 600 a.c. si erano studiati alcuni effetti prodotti dallo sfregamento di una resina fossile, l ambra (dal cui nome in greco electron deriva il termine elettricità) con alcuni tipi

Dettagli

Generatore di Forza Elettromotrice

Generatore di Forza Elettromotrice CIRCUITI ELETTRICI Corrente Elettrica 1. La corrente elettrica è un flusso ordinato di carica elettrica. 2. L intensità di corrente elettrica (i) è definita come la quantità di carica che attraversa una

Dettagli

Michele D'Amico (premiere) 6 May 2012

Michele D'Amico (premiere) 6 May 2012 Michele D'Amico (premiere) CORRENTE ELETTRICA 6 May 2012 Introduzione La corrente elettrica può essere definita come il movimento ordinato di cariche elettriche, dove per convenzione si stabilisce la direzione

Dettagli

CORRENTE ELETTRICA Intensità e densità di corrente sistema formato da due conduttori carichi a potenziali V 1 e V 2 isolati tra loro V 2 > V 1 V 2

CORRENTE ELETTRICA Intensità e densità di corrente sistema formato da due conduttori carichi a potenziali V 1 e V 2 isolati tra loro V 2 > V 1 V 2 COENTE ELETTICA Intensità e densità di corrente sistema formato da due conduttori carichi a potenziali V 1 e V isolati tra loro V > V 1 V V 1 Li colleghiamo mediante un conduttore Fase transitoria: sotto

Dettagli

Corrente ele)rica. Cariche in movimento e legge di Ohm

Corrente ele)rica. Cariche in movimento e legge di Ohm Corrente ele)rica Cariche in movimento e legge di Ohm Corrente ele)rica Nei metalli si possono avere elettroni che si muovono anche velocemente fra un estremo e l altro del metallo, ma la risultante istante

Dettagli

Strane anomalie di un motore omopolare Di Valerio Rizzi e Giorgio Giurini

Strane anomalie di un motore omopolare Di Valerio Rizzi e Giorgio Giurini Strane anomalie di un motore omopolare Di Valerio Rizzi e Giorgio Giurini Gli scriventi, in qualità di studiosi del generatore omopolare hanno deciso di costruire questo motore per cercare di capire le

Dettagli

ESERCIZIO 1. (a) Quanta carica attraversa un punto del filo in 5,0 min?

ESERCIZIO 1. (a) Quanta carica attraversa un punto del filo in 5,0 min? ESECIZIO Un filo è percorso dalla corrente di 3,0 A. (a) Quanta carica attraversa un punto del filo in 5,0 min? (b) Se la corrente è dovuta a un flusso di elettroni, quanti elettroni passano per un punto

Dettagli

CONDUTTORI, CAPACITA' E DIELETTRICI

CONDUTTORI, CAPACITA' E DIELETTRICI CONDUTTORI, CAPACITA' E DIELETTRICI Capacità di un conduttore isolato Se trasferiamo una carica elettrica su di un conduttore isolato questa si distribuisce sulla superficie in modo che il conduttore sia

Dettagli

LA CORRENTE ELETTRICA CONTINUA

LA CORRENTE ELETTRICA CONTINUA LA CORRENTE ELETTRICA CONTINUA (Fenomeno, indipendente dal tempo, che si osserva nei corpi conduttori quando le cariche elettriche fluiscono in essi.) Un conduttore metallico è in equilibrio elettrostatico

Dettagli

IL CAMPO MAGNETICO. V Scientifico Prof.ssa Delfino M. G.

IL CAMPO MAGNETICO. V Scientifico Prof.ssa Delfino M. G. IL CAMPO MAGNETICO V Scientifico Prof.ssa Delfino M. G. UNITÀ - IL CAMPO MAGNETICO 1. Fenomeni magnetici 2. Calcolo del campo magnetico 3. Forze su conduttori percorsi da corrente 4. La forza di Lorentz

Dettagli

INTRODUZIONE. Nei nostri esperimenti abbiamo verificato la legge di Lenz ma non ne abbiamo sentito gli effetti.

INTRODUZIONE. Nei nostri esperimenti abbiamo verificato la legge di Lenz ma non ne abbiamo sentito gli effetti. INTRODUZIONE Il nostro lavoro muove dallo studio del superamento della visione meccanicistica avvenuta nel contesto dello studio delle interazioni elettriche e magnetiche fra la fine del 7 e l inizio dell

Dettagli

Magnetismo. Roberto Cirio. Corso di Laurea in Chimica e Tecnologia Farmaceutiche Anno accademico 2007 2008 Corso di Fisica

Magnetismo. Roberto Cirio. Corso di Laurea in Chimica e Tecnologia Farmaceutiche Anno accademico 2007 2008 Corso di Fisica Roberto Cirio Corso di Laurea in Chimica e Tecnologia Farmaceutiche Anno accademico 2007 2008 Corso di Fisica La lezione di oggi I magneti Il campo magnetico Il ciclotrone Fisica a.a. 2007/8 2 I magneti

Dettagli

Lezione 14: L energia

Lezione 14: L energia Lezione 4 - pag. Lezione 4: L energia 4.. L apologo di Feynman In questa lezione cominceremo a descrivere la grandezza energia. Per iniziare questo lungo percorso vogliamo citare, quasi parola per parola,

Dettagli

Le macchine elettriche

Le macchine elettriche Le macchine elettriche Cosa sono le macchine elettriche? Le macchine elettriche sono dispositivi atti a: convertire energia elettrica in energia meccanica; convertire energia meccanica in energia elettrica;

Dettagli

Piano Lauree Scientifiche 2011/2012 Scheda M 1 Interazione magnetiche. Studente: Previsione e osservazione qualitativa e quantitativa dei fenomeni

Piano Lauree Scientifiche 2011/2012 Scheda M 1 Interazione magnetiche. Studente: Previsione e osservazione qualitativa e quantitativa dei fenomeni . Studente: Scuola e classe: Data:.. Laboratorio Materiali Programma DataStudio Sensore di Corrente/Tensione Pasco sensore di Forza PAsco Interfaccia PASPort-USB Link Magnete solenoide bussola Generatore

Dettagli

Storia dei generatori di tensione e della corrente elettrica

Storia dei generatori di tensione e della corrente elettrica Storia dei generatori di tensione e della corrente elettrica Prof. Daniele Ippolito Liceo Scientifico Amedeo di Savoia di Pistoia 1778 Alessandro Volta, in analogia al potenziale gravitazionale definito

Dettagli

E 0 = E 1 2 + E 0. 2 = E h. = 3.2kV / m. 2 1 x. κ 1. κ 2 κ 1 E 1 = κ 2 E 2. = κ 1 E 1 x ε 0 = 8

E 0 = E 1 2 + E 0. 2 = E h. = 3.2kV / m. 2 1 x. κ 1. κ 2 κ 1 E 1 = κ 2 E 2. = κ 1 E 1 x ε 0 = 8 Solo Ingegneria dell Informazione e Ingegneria dell Energia (Canale 2 e DM 59) Problema Due condensatori piani C e C, uguali ad armature quadrate separate dalla distanza, sono connessi in parallelo. Lo

Dettagli

Gli alimentatori stabilizzati: cenni alle problematiche relative alla trasmissione di

Gli alimentatori stabilizzati: cenni alle problematiche relative alla trasmissione di Gli alimentatori stabilizzati: cenni alle problematiche relative alla trasmissione di energia elettrica Abbiamo già accennato nella dispensa sugli alimentatori stabilizzati che la necessità del loro utilizzo

Dettagli

Corrente Elettrica. dq dt

Corrente Elettrica. dq dt Corrente Elettrica Finora abbiamo considerato le cariche elettriche fisse: Elettrostatica Consideriamole adesso in movimento! La carica in moto forma una corrente elettrica. L intensità di corrente è uguale

Dettagli

Programmazione Modulare

Programmazione Modulare Indirizzo: BIENNIO Programmazione Modulare Disciplina: FISICA Classe: 2 a D Ore settimanali previste: (2 ore Teoria 1 ora Laboratorio) Prerequisiti per l'accesso alla PARTE D: Effetti delle forze. Scomposizione

Dettagli

Elettrostatica. 1. La carica elettrica 2. La legge di Coulomb 3. Il campo elettrostatico 4. Il potenziale elettrico 5. Condensatori e dielettrici

Elettrostatica. 1. La carica elettrica 2. La legge di Coulomb 3. Il campo elettrostatico 4. Il potenziale elettrico 5. Condensatori e dielettrici Elettrostatica 1. La carica elettrica 2. La legge di Coulomb 3. Il campo elettrostatico 4. Il potenziale elettrico 5. Condensatori e dielettrici Prof. Giovanni Ianne 1 L ELETTRIZZAZIONE PER STROFINIO Un

Dettagli

Correnti e circuiti a corrente continua. La corrente elettrica

Correnti e circuiti a corrente continua. La corrente elettrica Correnti e circuiti a corrente continua La corrente elettrica Corrente elettrica: carica che fluisce attraverso la sezione di un conduttore in una unità di tempo Q t Q lim t 0 t ntensità di corrente media

Dettagli

Corso di fisica generale con elementi di fisica tecnica

Corso di fisica generale con elementi di fisica tecnica Corso di fisica generale con elementi di fisica tecnica Aniello (Daniele) Mennella Dipartimento di Fisica Secondo modulo Parte prima (fondamenti di elettromagnetismo) Lezione 1 Carica elettrica, legge

Dettagli

Corrente elettrica stazionaria

Corrente elettrica stazionaria Corrente elettrica stazionaria Negli atomi di un metallo gli elettroni periferici non si legano ai singoli atomi, ma sono liberi di muoversi nel reticolo formato dagli ioni positivi e sono detti elettroni

Dettagli

Generatore di forza elettromotrice f.e.m.

Generatore di forza elettromotrice f.e.m. Generatore di forza elettromotrice f.e.m. Un dispositivo che mantiene una differenza di potenziale tra una coppia di terminali batterie generatori elettrici celle solari termopile celle a combustibile

Dettagli

Definizione di mutua induzione

Definizione di mutua induzione Mutua induzione Definizione di mutua induzione Una induttanza produce un campo magnetico proporzionale alla corrente che vi scorre. Se le linee di forza di questo campo magnetico intersecano una seconda

Dettagli

LICEO STATALE A.VOLTA COLLE DI VAL D ELSA PROGRAMMA DI FISICA SVOLTO NELLA CLASSE VA ANNO SCOLASTICO 2014/2015

LICEO STATALE A.VOLTA COLLE DI VAL D ELSA PROGRAMMA DI FISICA SVOLTO NELLA CLASSE VA ANNO SCOLASTICO 2014/2015 LICEO STATALE A.VOLTA COLLE DI VAL D ELSA PROGRAMMA DI FISICA SVOLTO NELLA CLASSE VA ANNO SCOLASTICO 2014/2015 Insegnante: LUCIA CERVELLI Testo in uso: Claudio Romeni FISICA E REALTA Zanichelli Su alcuni

Dettagli

Il magnetismo. Il campo magnetico

Il magnetismo. Il campo magnetico Il magnetismo Un magnete (o calamita) è un corpo che genera intorno a sé un campo di forza che attrae il ferro Un magnete naturale è un minerale contenente magnetite, il cui nome deriva dal greco "pietra

Dettagli

Esempio Esame di Fisica Generale I C.d.L. ed.u. Informatica

Esempio Esame di Fisica Generale I C.d.L. ed.u. Informatica Esempio Esame di Fisica Generale I C.d.L. ed.u. Informatica Nome: N.M.: 1. 1d (giorno) contiene all incirca (a) 8640 s; (b) 9 10 4 s; (c) 86 10 2 s; (d) 1.44 10 3 s; (e) nessuno di questi valori. 2. Sono

Dettagli

approfondimento Corrente elettrica e circuiti in corrente continua

approfondimento Corrente elettrica e circuiti in corrente continua approfondimento Corrente elettrica e circuiti in corrente continua Corrente elettrica e forza elettromotrice La conduzione nei metalli: Resistenza e legge di Ohm Energia e potenza nei circuiti elettrici

Dettagli

Energia e Lavoro. In pratica, si determina la dipendenza dallo spazio invece che dal tempo

Energia e Lavoro. In pratica, si determina la dipendenza dallo spazio invece che dal tempo Energia e Lavoro Finora abbiamo descritto il moto dei corpi (puntiformi) usando le leggi di Newton, tramite le forze; abbiamo scritto l equazione del moto, determinato spostamento e velocità in funzione

Dettagli

ISTITUTO TECNICO NAUTICO "L. GIOVANNI LIZZIO PROF. SALVATORE GRASSO PROGRAMMA SVOLTO MODULO 0 : "RICHIAMI RELATIVI AL PRIMO ANNO"

ISTITUTO TECNICO NAUTICO L. GIOVANNI LIZZIO PROF. SALVATORE GRASSO PROGRAMMA SVOLTO MODULO 0 : RICHIAMI RELATIVI AL PRIMO ANNO 1 ISTITUTO TECNICO NAUTICO "L. RIZZO" - RIPOSTO ------------------------------------ ANNO SCOLASTICO : 2014-2015 CLASSE : SECONDA SEZIONE : D MATERIA D'INSEGNAMENTO : FISICA E LABORATORIO DOCENTI : PROF.

Dettagli

Q 1 = +3 10-5 C carica numero 1 Q 2 = +4 10-5 C carica numero 2 forza esercitata tra le cariche distanza tra le cariche, incognita

Q 1 = +3 10-5 C carica numero 1 Q 2 = +4 10-5 C carica numero 2 forza esercitata tra le cariche distanza tra le cariche, incognita Problema n 1 A quale distanza, una dall'altra bisogna porre nel vuoto due cariche (Q 1 =3 10-5 C e Q 2 =4 10-5 C) perché esse esercitino una sull'altra la forza di 200 N? Q 1 = +3 10-5 C carica numero

Dettagli

Vengono detti attuatori i dispositivi in grado di agire sull ambiente esterno comandati da segnali elettrici.

Vengono detti attuatori i dispositivi in grado di agire sull ambiente esterno comandati da segnali elettrici. GLI ATTUATORI Vengono detti attuatori i dispositivi in grado di agire sull ambiente esterno comandati da segnali elettrici. La casistica è assai vasta ; sono comuni i semplici azionamenti magnetici (elettromagneti

Dettagli

La corrente e le leggi di Ohm

La corrente e le leggi di Ohm La corrente e le leggi di Ohm Elettroni di conduzione La conduzione elettrica, che definiremo successivamente, consiste nel passaggio di cariche elettriche da un punto ad un altro di un corpo conduttore.

Dettagli

L avviamento dei motori asincroni

L avviamento dei motori asincroni L avviamento dei motori asincroni Un problema rilevante è quello dell avviamento dei motori. Nei motori asincroni infatti, durante l avviamento, circolano nel motore correnti notevoli sia perché la resistenza

Dettagli

Fisica Generale II Facoltà di Ingegneria. a.a. 2013/2014 Prof. Luigi Renna Programma dettagliato

Fisica Generale II Facoltà di Ingegneria. a.a. 2013/2014 Prof. Luigi Renna Programma dettagliato 1 Fisica Generale II Facoltà di Ingegneria. a.a. 2013/2014 Prof. Luigi Renna Programma dettagliato Libro di testo: P. Mazzoldi M. Nigro C. Voci: Elementi di FISICA Elettromagnetismo Onde II edizione (EdiSES,

Dettagli

Per dare una risposta al quesito che abbiamo posto, consideriamo il sistema schematizzato in figura.

Per dare una risposta al quesito che abbiamo posto, consideriamo il sistema schematizzato in figura. Verifica dei postulati di Einstein sulla velocità della luce, osservazioni sull esperimento di Michelson e Morley Abbiamo visto che la necessità di introdurre un mezzo come l etere nasceva dalle evidenze

Dettagli

dove Q è la carica che attraversa la sezione S del conduttore nel tempo t;

dove Q è la carica che attraversa la sezione S del conduttore nel tempo t; CAPITOLO CIRCUITI IN CORRENTE CONTINUA Definizioni Dato un conduttore filiforme ed una sua sezione normale S si definisce: Corrente elettrica i Q = (1) t dove Q è la carica che attraversa la sezione S

Dettagli

La corrente e le leggi di Ohm

La corrente e le leggi di Ohm La corrente e le leggi di Ohm Elettroni di conduzione La conduzione elettrica, che definiremo successivamente, consiste nel passaggio di cariche elettriche da un punto ad un altro di un corpo conduttore.

Dettagli

- LAVORO - - ENERGIA MECCANICA - - POTENZA -

- LAVORO - - ENERGIA MECCANICA - - POTENZA - Danilo Saccoccioni - LAVORO - - ENERGIA MECCANICA - - POTENZA - Indice Lavoro compiuto da una forza relativo ad uno spostamento pag. 1 Lavoro ed energia cinetica 3 Energia potenziale 4 Teorema di conservazione

Dettagli

Il potenziale a distanza r da una carica puntiforme è dato da V = kq/r, quindi è sufficiente calcolare V sx dovuto alla carica a sinistra:

Il potenziale a distanza r da una carica puntiforme è dato da V = kq/r, quindi è sufficiente calcolare V sx dovuto alla carica a sinistra: 1. Esercizio Calcolare il potenziale elettrico nel punto A sull asse di simmetria della distribuzione di cariche in figura. Quanto lavoro bisogna spendere per portare una carica da 2 µc dall infinito al

Dettagli

Argomenti delle lezioni del corso di Elettromagnetismo 2010-11

Argomenti delle lezioni del corso di Elettromagnetismo 2010-11 Argomenti delle lezioni del corso di Elettromagnetismo 2010-11 14 marzo (2 ore) Introduzione al corso, modalità del corso, libri di testo, esercitazioni. Il fenomeno dell elettricità. Elettrizzazione per

Dettagli

Lezione 16. Motori elettrici: introduzione

Lezione 16. Motori elettrici: introduzione Lezione 16. Motori elettrici: introduzione 1 0. Premessa Un azionamento è un sistema che trasforma potenza elettrica in potenza meccanica in modo controllato. Esso è costituito, nella sua forma usuale,

Dettagli

PRODUZIONE DI ENERGIA DA FONTI RINNOVABILI RISPARMIO ENERGETICO

PRODUZIONE DI ENERGIA DA FONTI RINNOVABILI RISPARMIO ENERGETICO IPIA C.A. DALLA CHIESA OMEGNA PROGETTO ALTERNANZA SCUOLA LAVORO classi 4 e 5 MANUTENTORI PRODUZIONE DI ENERGIA DA FONTI RINNOVABILI RISPARMIO ENERGETICO prof. Massimo M. Bonini MACCHINE PER LA GENERAZIONE

Dettagli

FISICA E LABORATORIO

FISICA E LABORATORIO Programma di FISICA E LABORATORIO Anno Scolastico 2014-2015 Classe V P indirizzo OTTICO Docente Giuseppe CORSINO Programma di FISICA E LABORATORIO Anno Scolastico 2013-2014 Classe V P indirizzo OTTICO

Dettagli

Condensatore elettrico

Condensatore elettrico Condensatore elettrico Sistema di conduttori che possiedono cariche uguali ma di segno opposto armature condensatore La presenza di cariche crea d.d.p. V (tensione) fra i due conduttori Condensatore piano

Dettagli

Lunedì 20 dicembre 2010. Docente del corso: prof. V. Maiorino

Lunedì 20 dicembre 2010. Docente del corso: prof. V. Maiorino Lunedì 20 dicembre 2010 Docente del corso: prof. V. Maiorino Se la Terra si spostasse all improvviso su un orbita dieci volte più lontana dal Sole rispetto all attuale, di quanto dovrebbe variare la massa

Dettagli

COPPIE E FORZE PER MACCHINE ELETTRICHE

COPPIE E FORZE PER MACCHINE ELETTRICHE Zeno Martini (admin) COPPIE E FORZE PER MACCHINE ELETTRICHE 14 May 2009 Introduzione L'articolo sull'energia magnetica si concludeva con l'osservazione che, in un sistema elettromeccanico, il movimento

Dettagli

Università degli studi di Salerno corso di studi in Ingegneria Informatica TUTORATO DI FISICA. Lezione 5 - Meccanica del punto materiale

Università degli studi di Salerno corso di studi in Ingegneria Informatica TUTORATO DI FISICA. Lezione 5 - Meccanica del punto materiale Università degli studi di Salerno corso di studi in Ingegneria Informatica TUTORATO DI FISICA Esercizio 1 Lezione 5 - Meccanica del punto materiale Un volano è costituito da un cilindro rigido omogeneo,

Dettagli