Esercitazioni del 18 marzo Calcolo della curvatura di un arco di curva regolare γ in R 3

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Esercitazioni del 18 marzo Calcolo della curvatura di un arco di curva regolare γ in R 3"

Transcript

1 Esercitazioni el 18 marzo 2013 Calcolo ella curvatura i un arco i curva regolare γ in R 3 Consieriamo un arco i curva regolare γ, escritta analiticamente a una parametrizzazione α : I R 3, con I intervallo in R: t α(t) = (x(t), y(t), z(t)) Abbiamo visto che per ogni t I il vettore α (t) è tangente alla curva γ nel punto α(t). La conoscenza i α ( t) permette quini i scrivere l equazione ella retta tangente a γ in α( t). In forma parametrica questa è infatti ata a Esempio r(t) = α( t) + tα ( t), t R. Descrivere la retta tangente alla spirale i Archimee, parametrizzata a α(t) = (t cost, t sin t), t [0, 2π] nel punto α(π/2). soluzione: Il punto corrisponente al valore el parametro t = π/2 ha coorinate α(π/2) = (0, π/2). Il vettore tangente alla curva è ato a α (t) = (cost t sin t, sin t + t cost). In t = π/2 abbiamo α (π/2) = ( π/2, 1). La retta passante per il punto (0, π/2) e iretta lungo il vettore ( π/2, 1) ha equazione parametrica ( r(t) = 0, π ) + t ( π ) 2 2, 1 = ( π 2 t, π ) 2 + t, t (, + ) Versore tangente, versore normale e curvatura Introuciamo ora un parametro reale positivo che esprime la rapiità con cui varia la irezione ella retta tangente. Il primo passo è la efinizione el versore tangente alla curva γ nel punto α(t). Viene inicato con T(t) e si calcola ivieno il vettore tangente α (t) per la sua norma: T(t) := α (t) α (t) Per costruzione T(t) è un vettore i norma 1 tangente punto per punto alla curva γ. Notiamo che, per l ipotesi i regolarità ella curva, α (t) 0 per ogni t, e quini

2 T(t) è sempre ben efinito. Il passo successivo è lo stuio ella variazione i T(t) lungo la curva, ovvero el vettore T(t). Tale vettore ha le seguenti caratteristiche: t 1. La irezione i T(t) è sempre ortogonale a quella i T(t), infatti, ato che t T(t) = 1 per ogni t abbiamo: 0 = t (T(t) T(t)) = 2T(t) t T(t). Definiamo versore normale alla curva γ nel punto α(t) il vettore i norma 1 con la irezione e il verso i T(t). Tale versore, ortogonale a T(t), viene t inicato con N(t) e è ato a N(t) := tt(t) t T(t) 2. Per quanto riguara la norma i T(t), intuitivamente questa esprimerà la t velocità i variazione ella irezione ella retta tangente. In particolare, se T(t) = 0 per ogni t, allora la costanza el versore tangente ci irà che t la curva γ è una retta 1. Viceversa, quanto maggiore sarà T(t), tanto t maggiore sarà la rapiità con cui γ si allontana alla sua retta tangente in α(t). Sulla base i queste consierazioni efiniamo la curvatura i γ nel punto α(t) come il numero reale positivo ato a t k(t) := T(t) (1) α (t) Inipenenza alla parametrizzazione Il parametro k(t) efinito all equazione (1) è una caratteristica geometrica ella curva γ, nel punto α(t). In altre parole, se parametrizziamo γ con un nuova parametrizzazione β : I R 3, il valore ella curvatura non cambia. In particolare, se la curva γ viene parametrizzata in funzione el parametro arco s: s α(s) = (x(s), y(s), z(s)), s [0, L], allora le formule assumono una forma particolarmente semplice che mette in evienza il significato geometrico el parametro k: T(s) = α (s), k(s) = s T(s) 1 Provate per esercizio a imostrare questa affermazione

3 Raggio i curvatura e cerchio osculatore Definiamo raggio i curvatura il valore ρ(t) = 1. Tale numero reale positivo rappresenta il raggio el cerchio osculatore ella curva γ nel punto α(t). Il cerchio k(t) passante per α(t) che meglio approssima la curva γ in un intorno i α(t). Tale cerchio giace sul piano iniviuato ai versori T(t) e N(t), etto piano osculatore. Il centro è il punto C ottenuto parteno al punto α(t) e muovenosi i una istanza pari a ρ(t) nella irezione el versore N(t): Esempio: elica cilinrica C = α(t) + ρ(t)n(t) Calcolare punto per punto il versore tangente, il versore normale e la curvatura ell arco i elica cilinrica parametrizzato a: α(t) = (R cost, R sin t, ht), t R Desfrivere il cerchio osculatore nel punto α(π/2). Soluzione: il versore tangente è ato a: α (t) = ( R sin t, Rcost, h), α (t) = R 2 + h 2, T(t) = α (t) α (t) = 1 sin t, R cost, h) R2 + h2( R t T(t) = 1 cost, R sin t, 0), R2 + h2( R Il versore normale è quini ato a: N(t) = tt(t) t T(t) t T(t) = = ( cos t, sin t, 0), R R2 + h 2. e la curvatura 2 a: K(t) = t T(t) α (t) = R R 2 + h 2. 2 Riflettete sulla ipenenza i k ai parametri R e h, teneno conto el loro significato geometrico

4 Il raggio i curvatura è ato a ρ(t) = 1 K(t) = R2 + h 2 R, e, analogamente alla curvatura, non ipene al parametro t, quini non varia lungo la curva. Esercizio per casa: Provate a calcolare il versore tangente, il versore normale e la curvatura ell arco i elica cilinrica utilizzano la parametrizzazione ella curva in funzione el parametro arco s, ricavata nelle esercitazioni el 11/3/2013. Il cerchio osculatore nel punto α(π/2)) = (0, R, hπ/2) 1. giace sul piano iniviuato a N(π/2) = (0, 1, 0) e T(π/2) = 2. ha raggio pari a ρ = R2 +h 2 R, 3. il centro è il punto C = α(π/2)) + ρn(π/2) = (0, 1, 0) + R2 + h 2 1 R 2 +h 2 ( R, 0, h), R (0, 1, 0) = (0, h2 /R, 0). Esercizio per casa: Mostrate che la rappresentazione parametrica per il cerchio osculatore in funzione el parametro arco s è la seguente β(s) = C ρ cos(s/ρ)n(π/2) + ρ sin(s/ρ)t(π/2) ( ) = (0, h 2 /R, 0) R2 + h 2 sr R2 + h cos (0, 1, 0) + 2 R R 2 + h 2 R s [0, 2πρ]. Provate a isegnare tale curva. Analogia cinematica Se riguariamo la parametrizzazione α : I R 3 ella curva γ come la legge oraria el moto i un punto materiale, allora il parametro t viene interpretato come la variabile tempo, mentre il vettore α(t) viene interpretato come il vettore posizione el punto materiale all istante t. Analogamente α (t) va interpretato come il vettore velocitaà istantanea v(t) e α (t) come il vettore accellerazione a(t). Proviamo a scrivere tali vettori metteno in evienza T, N e k. Scriviamo il vettore velocità v(t) metteno in evienza la sua norma: α (t) v(t) = v(t) T(t) ( ) sr sin ( R, 0, h) R 2 + h 2

5 Il vettore accelerazione quini è ato a a(t) = t v(t) = t ( v(t) T(t)) = t ( v(t) )T(t) + v(t) t T(t) = t ( v(t) )T(t) + v(t) 2 k(t)n(t) Nell ultima riga si vee come il vettore accellerazione istantanea viene scomposto in 2 componenti: una tangente al moto (iretta lungo il versore T), la componente tangenziale, e una ortogonale al moto (iretta lungo il versore N), la componenete centripeta. Quest ultima aumenta all aumentare ella curvatura e el moulo ella velocità istantanea. In altre parole, affinché la traiettoria el punto escriva curva γ, è necessaria una forza in grao i prourre, oltre alla componente tangenziale ell accelerazione, anche quella centripeta. Quest ultima sarà tanto più grane quanto maggiore sarà la curvatura i γ e la velocità el punto materiale. Una formula alternativa per il calcolo i k A volte, per semplificare i calcoli, è utile calcolare la curvatura k utilizzano la seguente formula 3 : K(t) = α (t) α (t) α (t) 3 Esempio: Calcolare la curvatura ella curva γ nel piano xy grafico ella funzione y = x 2. Soluzione: Parametrizzaimo γ nel moo seguente Abbiamo allora: α(t) = (t, t 2, 0), t R. α (t) = (1, 2t, 0) α (t) = (0, 2, 0) α (t) α (t) = (0, 0, 2) K(t) = α (t) α (t) α (t) 3 = 2 (1 + 4t 2 ) 3/2 Notiamo che k(t) assume il valore massimo per t = 0, ovvero nel vertice (0, 0) ella parabola y = x 2. Esercizio per casa: Ricavate il versore tangente e il versore normale in tutti i punti ella curva γ. 3 Provate a imostrarla per esercizio

Curve in R n. Curve parametrizzate.

Curve in R n. Curve parametrizzate. Curve in R n Generalmente ci sono ue moi per escrivere una curva in R n, ovvero è possibile scrivere un equazione parametrica o un equazione cartesiana. Esempio: una retta in R 2 può essere escritta in

Dettagli

Esercizi di riepilogo sulle curve. 1. Si fornisca una parametrizzazione per le seguenti curve:

Esercizi di riepilogo sulle curve. 1. Si fornisca una parametrizzazione per le seguenti curve: Esercizi di riepilogo sulle curve. Si fornisca una parametrizzazione per le seguenti curve: (a) l ellisse = {(x, y) R x + y = } α(t) = (3 cost, sin t), t [, π]. (b) = {(x, y) R x + y =, x } α(t) = (3 cost,

Dettagli

Esercitazioni del 11 marzo Ricerca della parametrizzazione di una curva γ in R 3

Esercitazioni del 11 marzo Ricerca della parametrizzazione di una curva γ in R 3 Esercizio 1 Esercitazioni del 11 marzo 213 Ricerca della parametrizzazione di una curva γ in R 3 Fornire una parametrizzazione per l arco di curva γ appartenente alla superficie di equazione z = 2y 2 x

Dettagli

Esercizi su curvatura e torsione.

Esercizi su curvatura e torsione. Esercizi su curvatura e torsione. e-mail: maurosaita@tiscalinet.it Versione provvisoria, gennaio 016. 1 Indice 1 Curvatura e torsione 1.1 Curve parametrizzate alla lunghezza d arco................... 1.

Dettagli

APPUNTI DI FISICA MATEMATICA A.A. 2014/15

APPUNTI DI FISICA MATEMATICA A.A. 2014/15 APPUNTI DI FISICA MATEMATICA A.A. 214/15 PARTE PRIMA: SISTEMI MECCANICI I Introuzione e richiami i cinematica In questa prima parte el corso si applicano metoi matematici rigorosi nell ambito i moelli

Dettagli

Curve parametrizzate. Esercizi. 1 Curve parametrizzate con parametri arbitrari. Curvatura. Torsione

Curve parametrizzate. Esercizi. 1 Curve parametrizzate con parametri arbitrari. Curvatura. Torsione Curve parametrizzate. Esercizi Mauro Saita e-mail: maurosaita@tiscalinet.it Versione provvisoria, gennaio 014. 1 1 Curve parametrizzate con parametri arbitrari. Curvatura. Torsione Qui di seguito si riporta

Dettagli

Geometria Differenziale 2017/18 Esercizi I

Geometria Differenziale 2017/18 Esercizi I Geometria Differenziale 17/18 Esercizi I 1 Esercizi sulle curve piane 1.1 Esercizio Si consideri la curva parametrizzata sin t, t [, π]. cos(t) a) Stabilire per quali valori di t la parametrizzazione è

Dettagli

Meccanica Applicata Alle Macchine. Elementi di Meccanica Teorica ed Applicata

Meccanica Applicata Alle Macchine. Elementi di Meccanica Teorica ed Applicata Meccanica Applicata Alle Macchine (Ingegneria Energetica) Elementi i Meccanica Teorica e Applicata (Scienze per l Ingegneria) Università egli Stui i oma La Sapienza Una traccia egli argomenti el Corso

Dettagli

Analisi Matematica 2. Curve e integrali curvilinei. Curve e integrali curvilinei 1 / 29

Analisi Matematica 2. Curve e integrali curvilinei. Curve e integrali curvilinei 1 / 29 Analisi Matematica 2 Curve e integrali curvilinei Curve e integrali curvilinei 1 / 29 Curve in R 2 e R 3 Intuitivamente: una curva é un insieme di punti nello spazio in cui una particella puó muoversi

Dettagli

Esercizi I : curve piane

Esercizi I : curve piane Esercizi I : curve piane. Esercizio Si consideri la curva parametrizzata sin t, t [, 2π]. cos(2t) a) Stabilire per quali valori di t la parametrizzazione è regolare. b) Sia Γ la traccia di α. Descrivere

Dettagli

1 Rette e piani nello spazio

1 Rette e piani nello spazio 1 Rette e piani nello spazio Esercizio 1.1 È assegnato un riferimento cartesiano 0xyz. Sono assegnati la retta x = t, r : y = t, z = t, il piano π : x + y + z = 0 ed il punto P = (1, 1, 1). Scrivere le

Dettagli

Note del corso di Analisi matematica 2 per il corso di laurea in ingegneria Edile-Architettura a.a

Note del corso di Analisi matematica 2 per il corso di laurea in ingegneria Edile-Architettura a.a Note del corso di Analisi matematica 2 per il corso di laurea in ingegneria Edile-Architettura a.a. 2018-2019 Le presenti note sono una sintetica descrizione degli argomenti svolti a lezione. Non sostituiscono,

Dettagli

0.1 Arco di curva regolare

0.1 Arco di curva regolare .1. ARCO DI CURVA REGOLARE 1.1 Arco di curva regolare Se RC(O, i, j, k ) è un riferimento cartesiano fissato per lo spazio euclideo E, e se v (t) = x(t) i + y(t) j + z(t) k è una funzione a valori vettoriali

Dettagli

Vi prego di segnalare ogni inesattezza o errore tipografico a

Vi prego di segnalare ogni inesattezza o errore tipografico a ESERCIZI DI GEOMETRIA 4 Vi prego di segnalare ogni inesattezza o errore tipografico a mll@unife.it Geometria proiettiva Esercizio 1. Dire quali tra le seguenti coordinate omogenee dei punti in P 2 rappresentano

Dettagli

Curve nel piano ane euclideo e nello spazio ane euclideo

Curve nel piano ane euclideo e nello spazio ane euclideo Curve nel piano ane euclideo e nello spazio ane euclideo 13 Dicembre 2018 Federico Lastaria. Analisi e Geometria 1. Curve nel piano e nello spazio. 1/29 Curve parametrizzate regolari e biregolari. Denizione

Dettagli

Esercizi su Derivate parziali, differenziabilità e piani tangenti

Esercizi su Derivate parziali, differenziabilità e piani tangenti Esercizi su Derivate parziali, ifferenziabilità e piani tangenti 1. Per le funzioni che seguono, eterminare il graiente ella funzione ata nel punto inicato e l equazione el piano tangente al grafico ella

Dettagli

Analisi Matematica II (Prof. Paolo Marcellini)

Analisi Matematica II (Prof. Paolo Marcellini) Analisi Matematica II Prof. Paolo Marcellini) Università degli Studi di Firenze Corso di laurea in Matematica Esercitazione del 5//14 Michela Eleuteri 1 eleuteri@math.unifi.it web.math.unifi.it/users/eleuteri

Dettagli

Curve. Hynek Kovarik. Analisi Matematica 2. Università di Brescia. Hynek Kovarik (Università di Brescia) Curve Analisi Matematica 2 1 / 28

Curve. Hynek Kovarik. Analisi Matematica 2. Università di Brescia. Hynek Kovarik (Università di Brescia) Curve Analisi Matematica 2 1 / 28 Curve Hynek Kovarik Università di Brescia Analisi Matematica 2 Hynek Kovarik (Università di Brescia) Curve Analisi Matematica 2 1 / 28 Curve Definizione (Curva in R n ) Chiamiamo curva a valori in R n

Dettagli

Angolo polare, versori radiale e trasverso

Angolo polare, versori radiale e trasverso Angolo polare, versori radiale e trasverso Desideriamo descrivere il moto di un corpo puntiforme che ruota su una circonferenza attorno ad un asse fisso. Nella figura l asse di rotazione coincide con l

Dettagli

Geometria Differenziale

Geometria Differenziale Geometria Differenziale Prova scritta di Geometria Differenziale 18.03.2016 Ingegneria Meccanica, a.a. 2015-2016 Cognome...................................... Nome......................................

Dettagli

Le curve differenziabili. (Appunti per il corso di geometria III) Vincenzo Ancona Una curva differenziabile regolare e un applicazione

Le curve differenziabili. (Appunti per il corso di geometria III) Vincenzo Ancona Una curva differenziabile regolare e un applicazione Le curve differenziabili (Appunti per il corso di geometria III) Vincenzo Ancona 1. Curve differenziabili. Definizione 1.1. Una curva differenziabile regolare e un applicazione α(t) = (α 1 (t), α 2 (t),

Dettagli

Politecnico di Milano Corso di Analisi e Geometria 1. Federico Lastaria. Curve nello spazio Gennaio Lunghezza d arco

Politecnico di Milano Corso di Analisi e Geometria 1. Federico Lastaria. Curve nello spazio Gennaio Lunghezza d arco Politecnico di Milano Corso di Analisi e Geometria 1 Federico Lastaria Curve nello spazio Gennaio 013 Indice 1 Lunghezza d arco 1 1.1 Parametrizzazione alla lunghezza d arco..................... 1. Ogni

Dettagli

Esercizi 5 soluzioni

Esercizi 5 soluzioni Esercizi 5 soluzioni Alessandro Savo, Geometria Differenziale 27-8 Esercizi su geodetiche e curve su superfici. Esercizio Determinare l area della regione del paraboloide z = x 2 + y 2 compresa tra i piani

Dettagli

ESERCIZI SULLE CURVE

ESERCIZI SULLE CURVE ESERCIZI SULLE CURVE VALENTINA CASARINO Esercizi per il corso di Fondamenti di Analisi Matematica, (Ingegneria Gestionale, dell Innovazione del Prodotto, Meccanica e Meccatronica, Università degli studi

Dettagli

Esercizi 2: Curve dello spazio Soluzioni

Esercizi 2: Curve dello spazio Soluzioni Esercizi 2: Curve dello spazio Soluzioni. Esercizio Si consideri la curva (elica circolare): a α(t) = a sin t, t R, bt dove a >. a) Calcolare curvatura e torsione di α nel generico punto t. b) Determinare

Dettagli

Equazioni Differenziali alle Derivate Parziali del primo ordine semilineari

Equazioni Differenziali alle Derivate Parziali del primo ordine semilineari Equazioni Differenziali alle Derivate Parziali el primo orine semilineari Analisi Matematica III C. Lattanzio B. Rubino 1 Teoria Per equazione ifferenziale alle erivate parziali el primo orine semilineare

Dettagli

Capitolo 18 ELEMENTI DI GEOMETRIA DIFFERENZIALE Funzioni a valori vettoriali

Capitolo 18 ELEMENTI DI GEOMETRIA DIFFERENZIALE Funzioni a valori vettoriali Capitolo 18 ELEMENTI DI GEOMETRIA DIFFERENZIALE 18.1 Funzioni a valori vettoriali Siano a e b due numeri reali con a < b. Sono allora individuati i seguenti sottoinsiemi dell asse reale: (a, b) = { x R

Dettagli

Esercizi di Cinematica

Esercizi di Cinematica Esercizio 1 Esercizi di Cinematica Esercitazioni di Fisica LA per ingegneri - A.A. 2009-2010 Data la legge oraria: s(t) = a t 3 b t + c (con a = 3 ms 3, b = 2 ms 1, c = 1 m) calcolare la posizione e la

Dettagli

11. Equazioni quasilineari del primo ordine

11. Equazioni quasilineari del primo ordine 11. Equazioni quasilineari el primo orine Una equazione quasilineare el primo orine in ue variabili è una espressione el tipo (1) a(x, y, u)u x + b(x, y, u)u y = c(x, y, u) ove x e y variano in un aperto

Dettagli

Es. 1 Es. 2 Es. 3 Es. 4 Totale Teoria. Punteggi degli esercizi: Es.1: 8 punti; Es.2: 8 punti; Es.3: 8 punti; Es.4: 6 punti.

Es. 1 Es. 2 Es. 3 Es. 4 Totale Teoria. Punteggi degli esercizi: Es.1: 8 punti; Es.2: 8 punti; Es.3: 8 punti; Es.4: 6 punti. Es. 1 Es. 2 Es. 3 Es. Totale Teoria Analisi e Geometria 1 Seconda prova in itinere 0 Febbraio 2013 Compito A Docente: Politecnico di Milano Ingegneria Industriale Cognome: Nome: Matricola: Punteggi degli

Dettagli

= x + x 0 2x 0 per x x 0,

= x + x 0 2x 0 per x x 0, Lezione el 17 ottobre. Derivate 1. Derivata i una funzione in un punto Definizione 1 Sia f una funzione efinita in un intorno I i un punto x 0. Per ciascun x I con x = x 0 consieriamo: l incremento a x

Dettagli

FAM. Un PM si muove nel piano xy e la sua traiettoria è un arco di cerchio di raggio R.

FAM. Un PM si muove nel piano xy e la sua traiettoria è un arco di cerchio di raggio R. Serie 9: Meccanica II FAM C. Ferrari Esercizio 1 Moto circolare uniforme (bis) Un PM si muove nel piano xy e la sua traiettoria è un arco di cerchio di raggio R. 1. Parametrizza la traiettoria con l ascissa

Dettagli

Complementi di Analisi Matematica e Statistica 04/07/ Testo e Soluzioni

Complementi di Analisi Matematica e Statistica 04/07/ Testo e Soluzioni Complementi i Analisi Matematica e Statistica 04/07/016 - Testo e Soluzioni Parte A 1. Esercizio A1: Dati α, β, Si consieri la seguente serie i potenze: e αn n + 1 ( β)n. eterminare il raggio i convergenza

Dettagli

SIA DATO UN SOLENOIDE RETTILINEO DI LUNGHEZZA d, RAGGIO R e COSTITUITO DA N SPIRE.

SIA DATO UN SOLENOIDE RETTILINEO DI LUNGHEZZA d, RAGGIO R e COSTITUITO DA N SPIRE. POBLEMA 11 SIA DATO UN SOLENOIDE ETTILINEO DI LUNGHEZZA, AGGIO e COSTITUITO DA N SPIE. A) DETEMINAE IL CAMPO MAGNETICO PODOTTO LUNGO L ASSE DEL SOLENOIDE. Un solenoie rettilineo è costituito a un filo

Dettagli

Curve e integrali curvilinei

Curve e integrali curvilinei 6 Curve e integrali curvilinei 6.1. Esempi ed esercizi svolti e/o proposti Esempio 6.1.1. Si consideri la curva parametrica ϕ: t [0,2π] ϕ(t) = (acos(t),asin(t),bt) R 3 dove a e b sono due costanti positive.

Dettagli

Geometria Differenziale: Parte 2

Geometria Differenziale: Parte 2 Geometria Differenziale: Parte 2 A. Savo Indice delle sezioni 1. Curve dello spazio 2. Curvatura e torsione, formule di Frenet 3. Teoremi di rigidità 4. Esercizi 1 Curve dello spazio La definizione di

Dettagli

Università del Sannio

Università del Sannio Università del Sannio Corso di Fisica 1 Lezione 4 Prof.ssa Stefania Petracca 1 Vettore posizione Per poter generalizzare i concetti introdotti nella lezione precedente al caso bidimensionale, e successivamente

Dettagli

Curve e superfici parametrizzate. R. Notari

Curve e superfici parametrizzate. R. Notari Curve e superfici parametrizzate R. Notari 17 Aprile 2006 1 1. Cambi di parametro. Proposizione 1 Sia L : t (a, b) P (t) = (x(t), y(t), z(t)) R 3 una curva regolare, e sia ϕ : s (c, d) ϕ(s) (a, b) una

Dettagli

Geometria Differenziale: Parte 2

Geometria Differenziale: Parte 2 Geometria Differenziale: Parte 2 A. Savo Indice delle sezioni 1. Curve dello spazio 2. Curvatura e torsione, formule di Frenet 3. Teoremi di rigidità 4. Esercizi 1 Curve dello spazio La definizione di

Dettagli

Geometria Differenziale: soluzioni test

Geometria Differenziale: soluzioni test Geometria Differenziale: soluzioni test Esercizio. Sia α : I R 3 una curva biregolare dello spazio, parametrizzata dall ascissa curvilinea. a) Definire curvatura, torsione e riferimento di Frenet di α.

Dettagli

Analisi vettoriale. Gradiente di una funzione

Analisi vettoriale. Gradiente di una funzione Graiente i una funzione Data la funzione scalare f(, ) f( P) f f seguente relazione vettoriale: gra f = f = i j + Per una funzione f( P) f( z,, ) = abbiamo: Per una funzione a n variabili f ( P) f ( )

Dettagli

Il sostegno di una curva C è l immagine Im C della funzione C, cioè l insieme di tutti i punti C(t), al variare di t in [a, b]: R 2

Il sostegno di una curva C è l immagine Im C della funzione C, cioè l insieme di tutti i punti C(t), al variare di t in [a, b]: R 2 urve parametrizzate Definizione Una curva parametrizzata nello spazio R 3 è una funzione [a, b] R 3 t (t) = (x(t), (t), z(t)) t [a, b] Il sostegno di una curva è l immagine Im della funzione, cioè l insieme

Dettagli

Geometria 3 A.A Esercizi. Irriducibilità di polinomi di più variabili. Discriminante.

Geometria 3 A.A Esercizi. Irriducibilità di polinomi di più variabili. Discriminante. Geometria 3 A.A. 2017 2018 Esercizi Irriducibilità di polinomi di più variabili. Discriminante. Risultante. Sia K un campo. Si dimostri che un polinomio f(x) K[x] di grado d, dove 2 d 3, è riducibile se

Dettagli

Provadiprova 1 - aggiornamento del 23 Ottobre 2013

Provadiprova 1 - aggiornamento del 23 Ottobre 2013 Università di Trento - Corso di Laurea in Ingegneria Civile e Ambientale Analisi matematica - a.a. 03-4 - Prof. Gabriele Anzellotti Provadiprova - aggiornamento del 3 Ottobre 03 a) Curve: rappresentazione

Dettagli

τ (τ vettore tangente al posto di u) ^ ^ G. Bracco - Appunti di Fisica Generale

τ (τ vettore tangente al posto di u) ^ ^ G. Bracco - Appunti di Fisica Generale Consideriamo ancora l accelerazione scomposta in comp.tang e radiale e vediamo di ricavare analiticamente le relazioni già incontrate. u(t+δt) Δθ Δu Ricordiamo che la derivata di un vettore w=(x,y,z) in

Dettagli

Es. 1 Es. 2 Es. 3 Es. 4 Totale Teoria. Punteggi degli esercizi: Es.1: 8 punti; Es.2: 8 punti; Es.3: 8 punti; Es.4: 8 punti.

Es. 1 Es. 2 Es. 3 Es. 4 Totale Teoria. Punteggi degli esercizi: Es.1: 8 punti; Es.2: 8 punti; Es.3: 8 punti; Es.4: 8 punti. Es. Es. Es. 3 Es. 4 Totale Teoria Analisi e Geometria Terzo appello 8 Settembre 4 Compito B Docente: Politecnico di Milano Ingegneria Industriale Cognome: Nome: Matricola: Punteggi degli esercizi: Es.:

Dettagli

Esercizi di Cinematica

Esercizi di Cinematica Esercizio 1 Esercizi di Cinematica Esercitazioni di Fisica LA per ingegneri - A.A. 2007-2008 Data la legge oraria: s(t) = a t 3 b t + c (con a = 3 ms 3, b = 2 ms 1, c = 1 m) calcolare la posizione e la

Dettagli

Prova scritta di Geometria differenziale - 27/2/2012

Prova scritta di Geometria differenziale - 27/2/2012 Prova scritta di Geometria differenziale - 27/2/2012 Tempo disponibile: 3 ore Non sono ammesse calcolatrici, appunti o libri di testo. Una copia degli appunti è disponibile per libera consultazione alla

Dettagli

Cinematica del punto materiale

Cinematica del punto materiale Cinematica del punto materiale La cinematica è quella parte della fisica (meccanica) che si occupa di descrivere il moto dei corpi, senza porsi il problema di identificare le cause che lo determinano.

Dettagli

Integrale curvilinei (o di densità) 19 Novembre 2018

Integrale curvilinei (o di densità) 19 Novembre 2018 Integrale curvilinei (o di densità) 19 Novembre 2018 Indice: urve parametrizzate nello spazio. Lunghezza di una curva. Integrali curvilinei. Applicazioni geometriche e fisiche. Federico Lastaria. Analisi

Dettagli

Politecnico di Milano Corso di Analisi e Geometria 1. Federico Lastaria. Curve nello spazio 18 Gennaio 2016

Politecnico di Milano Corso di Analisi e Geometria 1. Federico Lastaria. Curve nello spazio 18 Gennaio 2016 Politecnico di Milano Corso di Analisi e Geometria 1 Federico Lastaria Curve nello spazio 18 Gennaio 016 Indice 1 Introduzione euristica alla curvatura di una curva piana Lunghezza d arco 3.1 Parametrizzazione

Dettagli

Curve nello spazio Federico Lastaria, Analisi e Geometria 1. Politecnico di Milano Corso di Analisi e Geometria 1

Curve nello spazio Federico Lastaria, Analisi e Geometria 1. Politecnico di Milano Corso di Analisi e Geometria 1 Politecnico di Milano Corso di Analisi e Geometria 1 Federico Lastaria federico.lastaria@polimi.it Introduzione alla geometria 16 Gennaio 2017 Indice 1 Introduzione euristica alla curvatura di una curva

Dettagli

CINEMATICA. Prof Giovanni Ianne

CINEMATICA. Prof Giovanni Ianne CINEMATICA Il moto e la velocità L accelerazione Moto rettilineo uniforme Moto rettilineo uniformemente accelerato Moti periodici e composti il moto e la velocità Un corpo è in moto quando la sua posizione

Dettagli

CINEMATICA DEL PUNTO MATERIALE: MOTI RETTILINEI E INTRODUZIONE AL MOTO IN PIÙ DIMENSIONI PROF. FRANCESCO DE PALMA

CINEMATICA DEL PUNTO MATERIALE: MOTI RETTILINEI E INTRODUZIONE AL MOTO IN PIÙ DIMENSIONI PROF. FRANCESCO DE PALMA CINEMATICA DEL PUNTO MATERIALE: MOTI RETTILINEI E INTRODUZIONE AL MOTO IN PIÙ DIMENSIONI PROF. FRANCESCO DE PALMA Sommario INTRODUZIONE ALLA CINEMATICA... 3 MOTO RETTILINEO UNIFORMEMENTE ACCELERATO...

Dettagli

Esercizi proposti di Fondamenti di Automatica - Parte 2

Esercizi proposti di Fondamenti di Automatica - Parte 2 Esercizi proposti i Fonamenti i Automatica - Parte Febbraio 5 Es. Dimostrare che le matrici A, a elementi reali, e A D, a elementi complessi, sono simili. α ω α + ω A, A ω α D α ω Es. Calcolare e A t e

Dettagli

Interazione tra i modelli quasi stazionari: il risuonatore

Interazione tra i modelli quasi stazionari: il risuonatore Interazione tra i moelli quasi stazionari: il risuonatore Il sistema in esame è un cavo coassiale chiuso alle ue estremità, che geometricamente può essere rappresentato tramite ue cilinri come in fig.1.

Dettagli

Gennaio 17. January 24, 2017

Gennaio 17. January 24, 2017 Gennaio 7 January 24, 207 Prova scritta di Geometria Differenziale 7.0.207 Ingegneria Meccanica, a.a. 206-207 Cognome...................................... Nome...................................... L

Dettagli

La forza è detta forza di Lorentz. Nel Sistema Internazionale l unità di misura

La forza è detta forza di Lorentz. Nel Sistema Internazionale l unità di misura 13. Magnetismo 13.1 La forza i Lorentz. Il magnetismo è un fenomeno noto a molti secoli, ma fino all inizio ell ottocento la teoria trattava i calamite, aghi magnetici e elle loro interazioni con il magnetismo

Dettagli

Geometria 3 A.A Esercizi. Irriducibilità di polinomi di più variabili. Discriminante.

Geometria 3 A.A Esercizi. Irriducibilità di polinomi di più variabili. Discriminante. Geometria 3 A.A. 2015 2016 Esercizi Irriducibilità di polinomi di più variabili. Discriminante. Risultante. Si dimostri che il polinomio di Fermat f(x 1,..., x n ) = x d 1 + + x d n è irriducibile in C[x

Dettagli

Cognome: Nome: Matr. (e x 1 x)(1 x) 2/3 x (sin x) a

Cognome: Nome: Matr. (e x 1 x)(1 x) 2/3 x (sin x) a Es. 1 Es. 2 Es. 3 Es. 4 T. Totale Analisi e Geometria 1 Docente: Gianluca Mola 27/1/29 Ing. Industriale Cognome: Nome: Matr. Nello spazio sottostante gli esercizi devono essere riportati sia i risultati

Dettagli

CINEMATICA DEL PUNTO MATERIALE

CINEMATICA DEL PUNTO MATERIALE CINEMATICA DEL PUNTO MATERIALE Regole di derivazione per il prodotto scalare e per il prodotto vettore Sia v funzione di un parametro reale t, t.c. 5 v : R R 3 t 7 v (t). (1) Proprietà: 1. Limite. Il concetto

Dettagli

Curve. Riccarda Rossi. Analisi Matematica B. Università di Brescia. Riccarda Rossi (Università di Brescia) Curve Analisi Matematica B 1 / 66

Curve. Riccarda Rossi. Analisi Matematica B. Università di Brescia. Riccarda Rossi (Università di Brescia) Curve Analisi Matematica B 1 / 66 Curve Riccarda Rossi Università di Brescia Analisi Matematica B Riccarda Rossi (Università di Brescia) Curve Analisi Matematica B 1 / 66 Introduzione Le curve sono particolari campi vettoriali Le vedremo

Dettagli

GEOMETRIA B Esercizi

GEOMETRIA B Esercizi GEOMETRIA B 2016-17 BARBARA NELLI A.A. 2016-17 Alcuni degli esercizi sono presi dal libro DC [1]. 1. Esercizi Esercizio 1.1. Sia α : I R 3 una curva parametrizzata e sia v R 3 un vettore fissato. Assumiamo

Dettagli

Analisi Matematica 2

Analisi Matematica 2 Esercizio 1 Analisi Matematica 2 12 gennaio 2017 Si consideri la curva piana γ di parametrizzazione α(t) = (sin(t), sin(2t)), t [0, π]. 1. Si disegni (approssimativamente) il suo sostegno, specificando

Dettagli

Politecnico di Milano Ingegneria Industriale Analisi e Geometria 1 Seconda prova in itinere 31 gennaio 2011

Politecnico di Milano Ingegneria Industriale Analisi e Geometria 1 Seconda prova in itinere 31 gennaio 2011 Politecnico di Milano Ingegneria Industriale Analisi e Geometria Seconda prova in itinere 3 gennaio Cognome: Nome: Matricola: Compito A Es. : 8 punti Es. : 8 punti Es. 3: 8 punti Es. 4: 8 punti Es. 5:

Dettagli

Esercizi su curve e integrali di linea. 1. Si forniscano almeno due parametrizzazioni per la semicirconferenza

Esercizi su curve e integrali di linea. 1. Si forniscano almeno due parametrizzazioni per la semicirconferenza Esercizi su curve e integrali di linea 1. Si forniscano almeno due parametrizzazioni per la semicirconferenza : {(x, y) R, x + y 4, y } Soluzione: possibili parametrizzazioni per la curva sono: α 1 (t)

Dettagli

Parte 1: Curve piane

Parte 1: Curve piane Parte 1: Curve piane A. Savo 1 Curve Generalmente, per curva si intende: Un insieme di livello di una funzione di due variabili (ad esempio, se la funzione è f(x, y) = x 2 + y 2, allora f 1 (1) = {(x,

Dettagli

Es. 1 Es. 2 Es. 3 Es. 4 Totale Teoria. Punteggi degli esercizi: Es.1: 8 punti; Es.2: 8 punti; Es.3: 8 punti; Es.4: 8 punti.

Es. 1 Es. 2 Es. 3 Es. 4 Totale Teoria. Punteggi degli esercizi: Es.1: 8 punti; Es.2: 8 punti; Es.3: 8 punti; Es.4: 8 punti. Es. 1 Es. 2 Es. 3 Es. 4 Totale Teoria Analisi e Geometria 1 Seconda prova in itinere 1 Febbraio 21 Compito A Docente: Politecnico di Milano Ingegneria Industriale Cognome: Nome: Matricola: Punteggi degli

Dettagli

Es. 1 Es. 2 Es. 3 Es. 4 Totale Teoria

Es. 1 Es. 2 Es. 3 Es. 4 Totale Teoria Es. 1 Es. Es. 3 Es. 4 Totale Teoria Analisi e Geometria I Ing. AER-MEC-ENG Seconda prova in itinere 31 gennaio 11 Cognome (stampatello): Nome: Matricola: c I seguenti quesiti e il relativo svolgimento

Dettagli

ARGOMENTI MATEMATICA PER L INGEGNERIA

ARGOMENTI MATEMATICA PER L INGEGNERIA ARGOMENTI DI MATEMATICA PER L INGEGNERIA VOLUME 2 Esercizi proposti Quando non diversamente precisato, nel seguito si intenderà( sempre che nel piano sia stato introdotto un sistema cartesiano ortogonale

Dettagli

Geometria Differenziale 2017/18 Esercizi 3

Geometria Differenziale 2017/18 Esercizi 3 Geometria Differenziale 217/18 Esercizi 3 1 Superfici I 1.1 Esercizio a) Verificare che l ellissoide Σ : x2 a 2 + y2 b 2 + z2 c 2 = 1 è una superficie regolare in tutti i suoi punti. b) Dare una parametrizzazione

Dettagli

Esercizi sull integrazione

Esercizi sull integrazione ANALII MAMAICA -B (L-Z) (C.d.L. Ing. Gestionale) Università di Bologna - A.A.8-9 - Prof. G.Cupini sercizi sull integrazione (Grazie agli studenti del corso che comunicheranno eventuali errori) sercizio.

Dettagli

Geometria 3 A.A Esercizi. Irriducibilità di polinomi di più variabili. Discriminante.

Geometria 3 A.A Esercizi. Irriducibilità di polinomi di più variabili. Discriminante. Geometria 3 A.A. 2016 2017 Esercizi Irriducibilità di polinomi di più variabili. Discriminante. Risultante. Si dimostri che il polinomio f(x, y) = x 2 y +x 5 +1 è irriducibile in C[x, y]. Sia K un campo.

Dettagli

ESERCITAZIONE DELL 11 DICEMBRE 2008 SOLUZIONI Corso di Matematica I per Geologia. dx dx dx sin x = (sin x)2 + (cos x) 2. (1)

ESERCITAZIONE DELL 11 DICEMBRE 2008 SOLUZIONI Corso di Matematica I per Geologia. dx dx dx sin x = (sin x)2 + (cos x) 2. (1) ESERCITAZIONE DELL DICEMBRE 008 SOLUZIONI Corso i Matematica I per Geologia A. Calcolare le erivate elle seguenti funzioni:. sin cos, sin 3, e sin 3 4 cos 3; +. log, log, arctan. Soluzioni.. Prima erivata.

Dettagli

Nozioni elementari di calcolo differenziale e integrale

Nozioni elementari di calcolo differenziale e integrale Nozioni elementari i calcolo ifferenziale e integrale DIPARTIMENTO DI FISICA E INFN UNIVERSITÀ DEL SALENTO a.a. 013/014 L. Renna - Dipartimento i Fisica 1 Sommario 1 Funzioni... 3 Derivate... 4 3 Integrali...

Dettagli

Politecnico di Milano Ingegneria Industriale Analisi e Geometria 1 Secondo Appello 9 Luglio 2014

Politecnico di Milano Ingegneria Industriale Analisi e Geometria 1 Secondo Appello 9 Luglio 2014 Politecnico di Milano Ingegneria Industriale Analisi e Geometria Secondo Appello 9 Luglio Cognome: Nome: Matricola: Compito A Es: punti Es: 6 punti Es: 8 punti Es: 8 punti Totale Data la funzione f : D

Dettagli

E sem pi di E serci zi e Qui z d E sam e

E sem pi di E serci zi e Qui z d E sam e E sem pi i E serci zi e Qui z E sam e Eser cit azion i i Cont r olli Au t om at ici Quiz. Il segnale x(t), antitrasformata i Laplace i X(s) = s(s+a) : è nullo per t=0 [x(0) = 0]; ha erivata nulla per t=0

Dettagli

Esercitazione di Analisi Matematica II

Esercitazione di Analisi Matematica II Esercitazione di Analisi Matematica II Barbara Balossi 06/04/2017 Esercizi di ripasso Esercizio 1 Sia data l applicazione lineare f : R 3 R 3 definita come f(x, y, z) = ( 2x + y z, x 2y + z, x y). a) Calcolare

Dettagli

Geometria 3 A.A Esercizi

Geometria 3 A.A Esercizi Geometria 3 A.A. 2014 2015 Esercizi Equivalenza omo- Omotopia di applicazioni contiue. topica. Si dimostri che lo spazio X = {x R 2 : x 1} è connesso. Si dimostri che lo spazio topologico è connesso. X

Dettagli

Esercizi sull integrazione I

Esercizi sull integrazione I ANALII MAEMAICA -2 (C.d.L. Ing. per l ambiente e il territorio) - COMPL. I ANALII MAEMAICA (A-K) (C.d.L. Ing. Civile) A.A.28-29 - Prof. G.Cupini Esercizi sull integrazione I (Grazie agli studenti del corso

Dettagli

Cinematica in due o più dimensioni

Cinematica in due o più dimensioni Cinematica in due o più dimensioni Le grandezze cinematiche fondamentali: posizione, velocità, accelerazione, sono dei vettori nello spazio a due o tre dimensioni, dotati di modulo, direzione, verso. In

Dettagli

Politecnico di Milano Ingegneria Industriale Analisi e Geometria 1 Terzo Appello 8 Settembre 2014

Politecnico di Milano Ingegneria Industriale Analisi e Geometria 1 Terzo Appello 8 Settembre 2014 Politecnico di Milano Ingegneria Industriale Analisi e Geometria Terzo Appello 8 Settembre 24 Cognome: Nome: Matricola: Compito A Es.: 9 punti Es.2: 8 punti Es.3: 8 punti Es.4: 8 punti Totale. Sia F la

Dettagli

CU. Proprietà differenziali delle curve

CU. Proprietà differenziali delle curve 484 A. Strumia, Meccanica razionale CU. Proprietà differenziali delle curve Richiamiamo in questa appendice alcune delle proprietà differenziali delle curve, che più frequentemente vengono utilizzate in

Dettagli

Cinematica: considerazioni generali

Cinematica: considerazioni generali Cinematica: considerazioni generali La cinematica studia la descrizione del moto dei corpi (cioè la posizione di un oggetto nello spazio e nel tempo) senza considerare le cause che hanno prodotto il moto.

Dettagli

Analisi Matematica 2

Analisi Matematica 2 Analisi Matematica 2 Differenziabilità per funzioni di due variabili Differenziabilità per funzioni di due variabili CCS Ingegneria Meccanica e Ingegneria Chimica 1 / 26 Differenziabilitá Data la funzione

Dettagli

Fisica I - Ing. Sicurezza e Protezione, prof. Schiavi A.A Soluzioni proposte per il Foglio di Esercizi n. 2

Fisica I - Ing. Sicurezza e Protezione, prof. Schiavi A.A Soluzioni proposte per il Foglio di Esercizi n. 2 Fisica I - Ing. Sicurezza e Protezione, prof. Schiavi A.A. 2004-2005 Soluzioni proposte per il Foglio di Esercizi n. 2 2.1. Il proiettile ed il sasso cadono lungo y per effetto della accelerazione di gravità

Dettagli

Teoria Es. 1 Es. 2 Totale Analisi e Geometria 1 Seconda Prova. Compito F. 14 Gennaio Cognome: Nome: Matricola:

Teoria Es. 1 Es. 2 Totale Analisi e Geometria 1 Seconda Prova. Compito F. 14 Gennaio Cognome: Nome: Matricola: Teoria Es. 1 Es. Totale Analisi e Geometria 1 Seconda Prova. Compito F. 14 Gennaio 019. Docente: Numero di iscrizione all appello: Cognome: Nome: Matricola: Istruzioni: Tutte le risposte devono essere

Dettagli

1 EQUAZIONI DI MAXWELL

1 EQUAZIONI DI MAXWELL 1 EQUAZIONI DI MAXWELL Il campo elettromagnetico è un campo i forze. Può essere utile utilizzare una efinizione oparativa i campo: iciamo che in unazona ello spazio è presente un campo seèutile associare

Dettagli

UNIVERSITÀ DI ROMA TOR VERGATA. Analisi Matematica II per Ingegneria Prof. C. Sinestrari

UNIVERSITÀ DI ROMA TOR VERGATA. Analisi Matematica II per Ingegneria Prof. C. Sinestrari UNIVERSITÀ DI ROMA TOR VERGATA Analisi Matematica II per Ingegneria Prof. C. Sinestrari Esercizi 17.XI.2017 1. Verificare che le curve definite dalle seguenti parametrizzazioni sono regolari, o regolari

Dettagli

Esercizi sulle funzioni f : R 2 R. Soluzioni

Esercizi sulle funzioni f : R 2 R. Soluzioni Esercizi sulle funzioni f : R R Soluzioni. Disegnare il grafico della funzione f : R R, nei casi: (a) f(, ) =. La funzione dipende solo dalla coordinata. In questo caso il grafico rappresenta un piano

Dettagli

Analisi Matematica 1, parte B Laurea in Matematica

Analisi Matematica 1, parte B Laurea in Matematica Analisi Matematica 1, parte B Laurea in Matematica Prima settimana Sia x una variabile reale efinita in un intorno bucato i 0 in seguito x enoterà un incremento infinitesimo). Una funzione R x) si ice

Dettagli

f(x) f(x 0 ) = m R ; (1.1) lim f(x) f(x 0 ) m(x x 0 ) lim (x x 0 ) f (n) (x 0 )

f(x) f(x 0 ) = m R ; (1.1) lim f(x) f(x 0 ) m(x x 0 ) lim (x x 0 ) f (n) (x 0 ) I polinomi i Taylor Il resto i Peano Una funzione f efinita in un intorno i un punto x 0 si ice erivabile in x 0 se e solo se a sua volta la (1.1) equivale a lim f(x) f(x 0 ) x x 0 = m R ; (1.1) f(x) f(x

Dettagli

1. Disegnare nel piano di Gauss i seguenti insiemi di numeri complessi:

1. Disegnare nel piano di Gauss i seguenti insiemi di numeri complessi: Politecnico di Milano Ingegneria Industriale Analisi e Geometria 1 Test di autovalutazione 1. Disegnare nel piano di Gauss i seguenti insiemi di numeri complessi: (a) A = {z C : z, 0 arg z /} (b) B = {w

Dettagli

Moto curvilineo piano in un sistema di coordinate polari Or

Moto curvilineo piano in un sistema di coordinate polari Or Moto curvilineo piano in un sistema di coordinate polari Or Legge oraria del moto curvilineo piano in un sistema Or,t: r(t) = r(t) u r (t). Derivazione del vettore velocità istantanea v(t) = dr(t)/dt:

Dettagli

LEZIONE 13. f + g: I R n

LEZIONE 13. f + g: I R n LEZINE 13 13.1. Funzioni a valori in R n. Ricordiamo che gli elementi R n sono le n uple ordinate ( 1,..., n ) di numeri reali. Se = ( 1,..., n ) R n e α R, poniamo + = ( 1 + 1,..., n + n ), α = (α 1,...,

Dettagli