f(x) f(x 0 ) = m R ; (1.1) lim f(x) f(x 0 ) m(x x 0 ) lim (x x 0 ) f (n) (x 0 )

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "f(x) f(x 0 ) = m R ; (1.1) lim f(x) f(x 0 ) m(x x 0 ) lim (x x 0 ) f (n) (x 0 )"

Transcript

1 I polinomi i Taylor Il resto i Peano Una funzione f efinita in un intorno i un punto x 0 si ice erivabile in x 0 se e solo se a sua volta la (1.1) equivale a lim f(x) f(x 0 ) x x 0 = m R ; (1.1) f(x) f(x 0 ) m(x x 0 ) lim = 0 (1.2) x x 0 e quini f è erivabile in x 0 se e solo se esiste un polinomio i primo grao P (x) tale che f(x) P (x) = o(x x 0 ). Come è noto, in questo caso il coefficiente m i x in P (x) si enota con f (x 0 ). Pertanto, se f è erivabile in x 0, risulta f(x) = f(x 0 ) + f (x 0 )(x x 0 ) + o(x x 0 ) ; (1.3) la retta y = f(x 0 ) + f (x 0 )(x x 0 ) prene il nome i retta tangente al grafico i f nel punto x 0. Essa etermina l unico polinomio i primo grao P (x) tale che f(x) P (x) = o(x x 0 ). Ci poniamo il problema i generalizzare la relazione (1.3); in particolare, ci chieiamo se sia possibile approssimare la funzione f con polinomi i grao n, impiegano unque espressioni più lunghe, ma otteneno in cambio una migliore approssimazione quano x x 0. La risposta a questo problema è ata al seguente Teorema 1. (Polinomio i Taylor con resto i Peano) Sia I R un intervallo, x 0 I, e f : I R una funzione erivabile n 1 volte in I e n volte in x 0. Allora esiste uno e un solo polinomio P (x), i grao minore o uguale a n, tale che f(x) = P (x) + o((x x 0 ) n ), e risulta P (x) = f(x 0 ) + f (x 0 )(x x 0 ) + f (x 0 ) (x x 0 ) f (n) (x 0 ) (x x 0 ) n. (1.4) Osservazione 1. Nell enunciato el Teorema 1 si ice che il polinomio P (x) ha grao minore o uguale a n perché alcuni ei coefficienti in (1.4) (o anche tutti) possono essere nulli. Osservazione 2. Quano n = 1, (1.4) restituisce l equazione ella retta tangente. Quini il Teorema 1 è ovviamente vero per n = 1. 1

2 2 Osservazione 3. La tesi el Teorema 1 si può riscrivere in moi equivalenti, quali a esempio: f(x 0 + h) = f(x 0 ) + f (x 0 )h + f (x 0 ) f(x) = f(x 0 ) + f (x 0 )(x x 0 ) + f (x 0 ) (x x 0 ) h f (n) (x 0 ) h n + o(h n ), x 0 + h I ; (1.5) + f (n) (x 0 ) (x x 0 ) n + q(x)(x x 0 ) n con lim q(x) = 0. Nel seguito, se g è una funzione erivabile k volte in x 0, porremo P k (g; x 0 )(x) = g(x 0 ) + g (x 0 )(x x 0 ) + g (x 0 ) (1.6) (x x 0 ) g(k) (x 0 ) (x x 0 ) k. (1.7) k! Definizione 1. Il polinomio P k (g; x 0 )(x) si ice polinomio i Taylor relativo alla funzione g i grao k e i punto iniziale x 0. Osservazione 4. È immeiato verificare che P k(g; x 0 )(x 0 ) = g(x 0 ). Definizione 2. La ifferenza R k (g; x 0 )(x) = g(x) P k (g; x 0 )(x) si ice resto k esimo per x x 0. La tesi el Teorema 1 ice che R n (f; x 0 )(x) = o((x x 0 ) n ). Quano il resto n esimo si pone in questa forma, in letteratura matematica si usa ire che il resto è espresso in forma i Peano. Per imostrare il Teorema 1 ci occorrono ue lemmi. Lemma 1. Risulta Dimostrazione. Osservano che (x x 0 ) k x x P k(g; x 0 )(x) = x P k(g; x 0 )(x) = P k 1 (g ; x 0 )(x). (1.8) k! = (x x 0) k 1 (k 1)!, abbiamo subito = g (x 0 ) + g (x 0 )(x x 0 ) + g(3) (x 0 ) (x x 0 ) g(k) (x 0 ) (k 1)! (x x 0) k 1 = = P k 1 (g ; x 0 )(x). Osservazione 5. Iterano il Lemma 1 otteniamo che ( ) j P k (g; x 0 )(x) = P k j(g (j) ; x 0 )(x) (1.9) x e unque ( ) j ( g(x) P k (g; x 0 )(x)) = 0, j = 0, 1, 2,..., k. (1.10) x x=x 0 In altre parole, generalizzano l osservazione 4, possiamo ire che una funzione g erivabile k volte e il suo polinomio i Taylor P (g; x 0 )(x) coinciono nel punto iniziale insieme con tutte le erivate sino all orine k.

3 3 Lemma 2. Sia Q(x) un polinomio i grao minore o uguale a k, e supponiamo che Allora Q(x) 0. x R : Q(x) = o((x x) k ). (1.11) Dimostrazione. Supponiamo per assuro che Q(x) non sia il polinomio nullo. Dalla (1.11) sappiamo che x è una raice i Q(x); ato che Q ha grao minore o uguale a k, la raice x può avere molteplicità m : 1 m k. Pertanto, al teorema i Ruffini, si ha Q(x) = (x x) m Q 1 (x) (1.12) con Q 1 (x) 0. Quini, alla (1.12) otteniamo che Q(x) = O((x x) m ), il che è incompatibile con l ipotesi Q(x) = o((x x) k ). Dimostrazione el Teorema 1. Dobbiamo imostrare che f(x) = P n (f; x 0 )(x) + o((x x 0 ) n ) (1.13) e che P n (f; x 0 )(x) è l unico polinomio i grao minore o uguale a n per cui la (1.13) sia vera. L unicità si imostra immeiatamente: se Q 1 (x), Q 2 (x) sono ue polinomi i grao minore o uguale a n tali che f(x) = Q 1 (x) + o((x x 0 ) n ), f(x) = Q 2 (x) + o((x x 0 ) n ) (1.14) allora alla (1.14) abbiamo { Q 1 (x) = f(x) + o((x x 0 ) n ) Q 2 (x) = f(x) + o((x x 0 ) n ) e al Lemma 2 segue che Q 1 (x) Q 2 (x) 0. = Q 1 (x) Q 2 (x) = o((x x 0 ) n ) (1.15) Il resto ella imostrazione si svolge meiante inuzione su n. Più precisamente, enotiamo con Prop(n) la proposizione, ipenente all inice n, { } Per ogni funzione g(x) efinita su I, erivabile n 1 volte in I Prop(n) = e n volte in x 0, risulta g(x) P n (g; x 0 )(x) = o((x x 0 ) n (1.16) ) Noi vogliamo imostrare che Prop(n) è vera n N. Prop(1) è vera (vei Osservazione 2). Supponiamo che Prop(n 1) sia vera, e imostriamo che allora anche Prop(n) è vera. Sia unque g(x) una funzione efinita su I, erivabile n 1 volte in I e n volte in x 0. Vogliamo imostrare che g(x) P n (g; x 0 )(x) lim (x x 0 ) n = 0 (1.17) Il limite nella (1.17) si presenta in forma 0 0 (vei Osservazione 4), e siamo nelle ipotesi per applicare il Teorema ell Hopital. Abbiamo x [g(x) P n(g; x 0 )(x)] = g (x) P n 1 (g ; x 0 )(x) per il Lemma 1; x [(x x 0) n ] = n(x x 0 ) n 1 ; e all ipotesi inuttiva (Prop(n 1) è vera) abbiamo lim g (x) P n 1 (g ; x 0 )(x) n(x x 0 ) n 1 = 0. (1.18) Dalle (1.18) e al Teorema ell Hopital segue la (1.17), e pertanto Prop(n) è vera.

4 4 Il resto i Lagrange Il teorema 1 mostra che R n (f; x 0 )(x), quano x x 0, è un infinitesimo i orine superiore a (x x 0 ) n. Questo, però, non ci permette i are una stima quantitativa i R n (f; x 0 )(x) per x x 0. Si pensi, a esempio, alla formulazione nella (1.6), per cui R n (f; x 0 )(x) = q(x)(x x 0 ) n. Noi sappiamo che lim q(x) = 0, e quini ε > 0 δ > 0 : q(x) < ε x I : x x 0 < δ, ma non possiamo sapere, fissato ε > 0, quanto sia piccolo δ. Dunque non possiamo sapere i quanto obbiamo avvicinarci al punto x 0 prima che il resto R n sia minore i una quantità prefissata. Per stimare il resto n esimo su tutto l intervallo I ci sarà utile il seguente teorema, che esprime R n in moo iverso, ma che richiee maggiori ipotesi i regolarità su f(x). Teorema 2. (Polinomio i Taylor con resto i Lagrange) Sia I R un intervallo, x 0 I, e f : I R una funzione erivabile n+1 volte in I. Allora, x I ξ, strettamente compreso fra x 0 e x, tale che R n (f; x 0 ) = f(x) P n (f; x 0 )(x) = f (n+1) (ξ) (n + 1)! (x x 0) n+1. (1.19) Quano il resto n esimo si pone nella forma ella (1.19), in letteratura matematica si usa ire che il resto è espresso in forma i Lagrange. Questo nome è coerente col fatto che, per n = 0, la (1.19) costituisce la tesi el teorema el valor meio. Per imostrare questo teorema abbiamo bisogno i un lemma preliminare. Lemma 3. Sia g : [a, b] R una funzione erivabile n + 1 volte. Supponiamo che Allore ξ (a, b) : g (n+1) (ξ) = 0. g(a) = g (a) = g (a) = = g (n) (a) = 0, g(b) = 0. (1.20) Dimostrazione. Per il teorema i Rolle x 1 (a, b) : g (x 1 ) = 0. Applicano nuovamente il teorema i Rolle alla funzione g (x) sull intervallo [a, x 1 ] abbiamo che x 2 (a, x 1 ) : g (x 2 ) = 0. Iterano questo proceimento, giungiamo a un punto x n in cui g (n) (x n ) = 0. Usano ancora una volta il teorema i Rolle per la funzione g (n) (x) sull intervallo [a, x n ] otteniamo che ξ : g (n+1) (ξ) = 0. Osservazione 6. Naturalmente il lemma preceente è valio anche se supponiamo g(a) = 0, g(b) = g (b) = g (b) = = g (n) (b) = 0. (1.21) Dimostrazione el Teorema 2. Fissiamo x I, x x 0. Definiamo g(t) = f(t) P n (f; x 0 )(t) f(x) P n(f; x 0 )(x) (x x 0 ) n+1 (t x 0 ) (n+1) (1.22) Dall osservazione 5 sappiamo che f(t) P n (f; x 0 )(t) si annulla in t = x 0 insieme con le sue erivate sino all orine n; lo stesso vale per (t x 0 ) (n+1), e quini g(x 0 ) = g (x 0 ) = g (x 0 ) = = g (n) (x 0 ) = 0. (1.23)

5 5 Inoltre g(x) = f(x) P n (f; x 0 )(x) f(x) P n(f; x 0 )(x) (x x 0 ) n+1 (x x 0 ) (n+1) = 0. (1.24) Pertanto possiamo applicare a g(t), ristretta all intervallo i estremi x 0 e x, il Lemma 3: esiste unque ξ, strettamente compreso fra x 0 e x, tale che g (n+1) (ξ) = 0. Ma, teneno conto el fatto che la erivata (n + 1) sima i un polinomio i grao minore o uguale a n è ienticamente nulla, e osservano che la erivata (n + 1) sima i (t x 0 ) n+1 è uguale a (n + 1)!, alla (1.22) si ha Quini che è equivalente a (1.19). g (n+1) (t) = f (n+1) (t) f(x) P n(f; x 0 )(x) (x x 0 ) n+1 (n + 1)!. (1.25) 0 = g (n+1) (ξ) = f (n+1) (ξ) f(x) P n(f; x 0 )(x) (x x 0 ) n+1 (n + 1)! (1.26) Alcuni esempi i utilizzo el resto i Lagrange Calcolo el numero e. Consieriamo la funzione f(x) = e x, e preniamo x = 0 come punto iniziale ei polinomi i Taylor. Allora, utilizzano la formula i Taylor con resto i Lagrange, abbiamo e x = 1 + x + x2 + + xn + e ξ (n + 1)! (1.27) ove, per ogni fissato x, ξ è un opportuno punto intermeio fra 0 e x. In particolare, fissato x = 1 e n N, esiste ξ (0, 1) tale che e = Pertanto, teneno conto el fatto che e < 3 e ξ < 1, ( 0 < e ) < e ξ (n + 1)!. (1.28) e ξ (n + 1)!. (1.29) Se vogliamo calcolare e con un errore minore, a esempio, i 10 3, obbiamo scegliere n in moo che 3/(n + 1)! < Se n = 6, 3/(n + 1)! = 3/7! = 3/5040 < Quini ( 0 < e ) = e ! 720 < (1.30) In effetti 1957 = 2, ; e 2, (1.31) 720 Per are un iea ella ifferenza i efficienza fra il calcolo appena effettuato e il calcolo i e meiante la efinizione i limite ella successione monotóna crescente a n = ( 1 + n) 1 n (che converge molto lentamente), si tenga presente che a ,

6 6 Approssimazione ella funzione sin x. Consieriamo la funzione sin x sull intervallo [0, π 2 ]. Com è noto, conoscere la funzione sin x in [0, π 2 ] vuol ire conoscere sin x e cos x su tutto R. Preniamo x = 0 come punto iniziale e scriviamo la formula i Taylor con resto i Lagrange per il polinomio i grao 8 (che in realtà è i grao 7 perché il coefficiente i x 8 è nullo): sin x = x x3 3! + x5 5! x7 + (cos ξ)x9 7! 9! (1.32) Sull intervallo (0, π 2 ) si ha 0 < cos ξ < 1. Quini ) 0 < sin x (x x3 3! + x5 5! x7 = (cos ξ) x9 7! 9! < 1 ( π ) 9 1, , x [0, π 9! 2 2 ]. (1.33) Dunque il polinomio P (x) = x x3 3! + x5 5! x7 7! (1.34) approssima la funzione sin x a meno i su tutto l intervallo [0, π 2 ], conclusione che non avremmo potuto imostrare limitanoci al solo Teorema 1.

= x + x 0 2x 0 per x x 0,

= x + x 0 2x 0 per x x 0, Lezione el 17 ottobre. Derivate 1. Derivata i una funzione in un punto Definizione 1 Sia f una funzione efinita in un intorno I i un punto x 0. Per ciascun x I con x = x 0 consieriamo: l incremento a x

Dettagli

Università degli Studi di Palermo Facoltà di Economia. Dipartimento di Scienze Economiche, Aziendali e Statistiche. Appunti del corso di Matematica

Università degli Studi di Palermo Facoltà di Economia. Dipartimento di Scienze Economiche, Aziendali e Statistiche. Appunti del corso di Matematica Università egli Stui i Palermo Facoltà i Economia Dipartimento i Scienze Economice, Azienali e Statistice Appunti el corso i Matematica 08 - Derivate Anno Accaemico 2015/2016 M. Tumminello, V. Lacagnina,

Dettagli

DERIVATE DIREZIONALI ITERATE

DERIVATE DIREZIONALI ITERATE Analisi Matematica II, Anno Accaemico 206-207. Ingegneria Eile e Architettura Vincenzo M. Tortorelli FOGLIO DI TEORIA n. 0 SVILUPPI DI TAYLOR DERIVATE DIREZIONALI ITERATE Se v R è non nullo è efinito l

Dettagli

Spazi di Haar e polinomi in più variabili

Spazi di Haar e polinomi in più variabili Spazi i Haar e polinomi in più variabili Davie Boscaini Queste sono le note a cui ho tratto il seminario el giorno 25 Ottobre 2011. Per scriverle mi sono basato sul secono capitolo el testo Scattare Data

Dettagli

Sappiamo che una funzione definita in un intervallo aperto I ed ivi derivabile è anche differenziabile, ossia che, fissato x 0 I, si ha.

Sappiamo che una funzione definita in un intervallo aperto I ed ivi derivabile è anche differenziabile, ossia che, fissato x 0 I, si ha. La formula di Taylor Sappiamo che una funzione definita in un intervallo aperto I ed ivi derivabile è anche differenziabile, ossia che, fissato x 0 I, si ha dove f(x) = f(x 0 ) + f (x 0 )(x x 0 ) + ω(x)(x

Dettagli

Funzione derivabile. La derivata.

Funzione derivabile. La derivata. Funzione derivabile. La derivata. Dati: f I R funzione; I R intervallo aperto ; x 0 I. Definizione (Derivata come limite del rapporto incrementale) Se esiste finito (cioè, non + o ) il limite del rapporto

Dettagli

1 prof. Claudio Saccon, Dipartimento di Matematica Applicata, () December 30, / 26

1 prof. Claudio Saccon, Dipartimento di Matematica Applicata, () December 30, / 26 ANALISI 1 1 UNDICESIMA LEZIONE DODICESIMA LEZIONE TREDICESIMA LEZIONE Derivata - definizione e teoremi di calcolo delle derivate Massimi e minimi relativi e teorema di Fermat Teorema di Lagrange Monotonia

Dettagli

Analisi matematica I. Sviluppi di Taylor e applicazioni. Sviluppi di Taylor. Operazioni sugli sviluppi di Taylor e applicazioni

Analisi matematica I. Sviluppi di Taylor e applicazioni. Sviluppi di Taylor. Operazioni sugli sviluppi di Taylor e applicazioni Analisi matematica I e applicazioni Operazioni sugli sviluppi di Taylor e applicazioni 2 2006 Politecnico di Torino 1 e applicazioni Formule di Taylor con resto di Peano: caso e n =0 n =1 Formule di Taylor

Dettagli

Analisi Matematica 1, parte B Laurea in Matematica

Analisi Matematica 1, parte B Laurea in Matematica Analisi Matematica 1, parte B Laurea in Matematica Prima settimana Sia x una variabile reale efinita in un intorno bucato i 0 in seguito x enoterà un incremento infinitesimo). Una funzione R x) si ice

Dettagli

Definizione (Derivata come limite del rapporto incrementale) Se esiste finito (cioè, non + o ) il limite del rapporto incrementale

Definizione (Derivata come limite del rapporto incrementale) Se esiste finito (cioè, non + o ) il limite del rapporto incrementale Funzione derivabile. La derivata. Dati: f I R funzione; I R intervallo aperto ; x 0 I. Definizione (Derivata come ite del rapporto incrementale) Se esiste finito (cioè, non + o ) il ite del rapporto incrementale

Dettagli

12. Teoria qualitativa

12. Teoria qualitativa 12. Teoria qualitativa Si esaminano le conizioni i regolarità per un campo vettoriale, che garantiscono esistenza e unicità ella soluzione per l equazione ifferenziale associata. La conizione i Lipschitz,

Dettagli

5 DERIVATA. 5.1 Continuità

5 DERIVATA. 5.1 Continuità 5 DERIVATA 5. Continuità Definizione 5. Sia < a < b < +, f : (a, b) R e c (a, b). Diciamo che f è continua in c se sono verificate le ue conizioni: (i) c esiste (ii) = f(c) c Si osservi che nella efinizione

Dettagli

ESERCITAZIONE DELL 11 DICEMBRE 2008 SOLUZIONI Corso di Matematica I per Geologia. dx dx dx sin x = (sin x)2 + (cos x) 2. (1)

ESERCITAZIONE DELL 11 DICEMBRE 2008 SOLUZIONI Corso di Matematica I per Geologia. dx dx dx sin x = (sin x)2 + (cos x) 2. (1) ESERCITAZIONE DELL DICEMBRE 008 SOLUZIONI Corso i Matematica I per Geologia A. Calcolare le erivate elle seguenti funzioni:. sin cos, sin 3, e sin 3 4 cos 3; +. log, log, arctan. Soluzioni.. Prima erivata.

Dettagli

Politecnico di Milano Corso di Analisi e Geometria 1. Federico Lastaria Formule di Taylor Ottobre 2012

Politecnico di Milano Corso di Analisi e Geometria 1. Federico Lastaria Formule di Taylor Ottobre 2012 Politecnico di Milano Corso di Analisi e Geometria 1 Federico Lastaria federico.lastaria@polimi.it Formule di Taylor Ottobre 2012 Indice 1 Formule di Taylor 1 1.1 Il polinomio di Taylor...............................

Dettagli

Corso di Analisi Matematica. Polinomi e serie di Taylor

Corso di Analisi Matematica. Polinomi e serie di Taylor a.a. 2011/12 Laurea triennale in Informatica Corso di Analisi Matematica Polinomi e serie di Taylor Avvertenza Questi sono appunti informali delle lezioni, che vengono resi disponibili per comodità degli

Dettagli

Calcolo differenziale II

Calcolo differenziale II Calcolo differenziale II Hynek Kovarik Università di Brescia Analisi Matematica 1 Hynek Kovarik (Università di Brescia) Derivate (II) Analisi Matematica 1 1 / 36 Massimi e minimi Definizione Sia A R, f

Dettagli

x 3 2x 2 + 6x x 4 3x = lim x(6 2x + x 2 ) x( 3 + x 3 ) (6 2x + x 2 ) ( 3 + x 3 ) = lim = 2

x 3 2x 2 + 6x x 4 3x = lim x(6 2x + x 2 ) x( 3 + x 3 ) (6 2x + x 2 ) ( 3 + x 3 ) = lim = 2 Calcolo di forme indeterminate del tipo 0/0 Quando si deve calcolare il limite di rapporto di funzioni infintesime per x 0, si raccoglie la potenza di x al minimo esponente. Es. lim x 0 x 3 2x 2 + 6x x

Dettagli

Formule di derivazione

Formule di derivazione Formule i erivazione Corrao Mascia 14 icembre 2018 Qui vengono presentate alcune formule i erivazione e, al contempo, si mostrano vari esempi el loro utilizzo. 1 Linearità, prootto e rapporto Come a titolo

Dettagli

Raccolta degli Scritti d Esame di ANALISI MATEMATICA U.D. 2 assegnati nei Corsi di Laurea di Fisica, Fisica Applicata, Matematica

Raccolta degli Scritti d Esame di ANALISI MATEMATICA U.D. 2 assegnati nei Corsi di Laurea di Fisica, Fisica Applicata, Matematica DIPARTIMENTO DI MATEMATICA Università degli Studi di Trento Via Sommarive - Povo (TRENTO) Raccolta degli Scritti d Esame di ANALISI MATEMATICA U.D. 2 assegnati nei Corsi di Laurea di Fisica, Fisica Applicata,

Dettagli

1. Calcolo Differenziale per funzioni di una variabile

1. Calcolo Differenziale per funzioni di una variabile 1. Calcolo Differenziale per funzioni di una variabile 1.1 Definizione di Derivata e prime proprietà Definizione 1.1 Sia f :]a, b[ R, x 0 ]a, b[. Allora esiste δ > 0 : x 0 + ]a, b[, 0 < < δ. Se esiste

Dettagli

Polinomi di Taylor. Hynek Kovarik. Università di Brescia. Analisi Matematica 1

Polinomi di Taylor. Hynek Kovarik. Università di Brescia. Analisi Matematica 1 Polinomi di Taylor Hynek Kovarik Università di Brescia Analisi Matematica 1 Hynek Kovarik (Università di Brescia) Polinomi di Taylor Analisi Matematica 1 1 / 18 Introduzione Sia f : I R e sia x 0 I. Problemi:

Dettagli

Sviluppo di Taylor. Continuando analogamente, otteniamo

Sviluppo di Taylor. Continuando analogamente, otteniamo Sviluppo di Taylor Vogliamo determinare il polinomio che meglio approssima una funzione f(x) in un dato punto x 0 Sia f:i R con x 0 I Per determinare la miglior approssimazione lineare, vogliamo determinare

Dettagli

Matematica e Statistica per Scienze Ambientali

Matematica e Statistica per Scienze Ambientali per Scienze Ambientali Derivate - Appunti 1 1 Dipartimento di Matematica Sapienza, Università di Roma Roma, Novembre 2013 Retta secante un grafico e rapporto incrementale Sia f una funzione e x 0 un punto

Dettagli

Curve in R n. Curve parametrizzate.

Curve in R n. Curve parametrizzate. Curve in R n Generalmente ci sono ue moi per escrivere una curva in R n, ovvero è possibile scrivere un equazione parametrica o un equazione cartesiana. Esempio: una retta in R 2 può essere escritta in

Dettagli

Analisi Matematica 1 Foglio 1 Lunedì 3 ottobre. f(x) = log x 2 6x + 5.

Analisi Matematica 1 Foglio 1 Lunedì 3 ottobre. f(x) = log x 2 6x + 5. Analisi Matematica Foglio Lunedì 3 ottobre Esercizio. Trovare il dominio naturale della funzione f data da ( ) f(x) = log x 2 6x + 5. Esercizio 2. Dire quali tra le seguenti funzioni sono iniettive :.

Dettagli

Esercizi con i teoremi di de L Hôpital e la formula di Taylor. Mauro Saita Versione provvisoria.

Esercizi con i teoremi di de L Hôpital e la formula di Taylor. Mauro Saita  Versione provvisoria. Esercizi con i teoremi di de L Hôpital e la formula di Taylor. Mauro Saita e-mail maurosaita@tiscalinet.it Versione provvisoria. Novembre 05 Esercizi proposti durante le esercitazioni del corso di Analisi

Dettagli

Lezioni sulla formula di Taylor.

Lezioni sulla formula di Taylor. Lezioni sulla formula di Taylor. Sviluppo di Taylor: sia x 0 punto interno del dominio di f funzione localmente regolare in x 0 (f C (I), con I intorno di x 0 ), allora f si scrive localmente in x 0 come

Dettagli

Analisi Matematica A Soluzioni prova scritta parziale n. 2

Analisi Matematica A Soluzioni prova scritta parziale n. 2 Analisi Matematica A Soluzioni prova scritta parziale n Corso di laurea in Fisica, 018-019 4 febbraio 019 1 Dimostrare che per ogni λ R l equazione e x = 1 x x + λ ha una e una sola soluzione x = x(λ Dimostrare

Dettagli

Una volgare introduzione alle EDO

Una volgare introduzione alle EDO Una volgare introuzione alle EDO Tiziano Penati 1 Primitive Abbiamo già incontrato un esempio semplice i equazioni ifferenziali orinarie (EDO): il calcolo i primitive. Vale la pena infatti i ricorare che

Dettagli

Esercitazioni di Analisi Matematica 1 Prof. A. Bonfiglioli

Esercitazioni di Analisi Matematica 1 Prof. A. Bonfiglioli Esercitazioni i Analisi Matematica 1 Prof. A. Bonfiglioli Foglio 8 - Limiti con la Formula i Taylor Esercizio 1. Nonostante in generale non sia vero che o( ) sia anche un o(x 6 ) (mentre è vero il viceversa),

Dettagli

Funzioni continue. Hynek Kovarik. Università di Brescia. Analisi Matematica 1

Funzioni continue. Hynek Kovarik. Università di Brescia. Analisi Matematica 1 Funzioni continue Hynek Kovarik Università di Brescia Analisi Matematica 1 Hynek Kovarik (Università di Brescia) Funzioni continue Analisi Matematica 1 1 / 44 Funzioni continue Definizione Siano f : A

Dettagli

Nozioni elementari di calcolo differenziale e integrale

Nozioni elementari di calcolo differenziale e integrale Nozioni elementari i calcolo ifferenziale e integrale DIPARTIMENTO DI FISICA E INFN UNIVERSITÀ DEL SALENTO a.a. 013/014 L. Renna - Dipartimento i Fisica 1 Sommario 1 Funzioni... 3 Derivate... 4 3 Integrali...

Dettagli

LA FORMULA DI TAYLOR

LA FORMULA DI TAYLOR LA FORMULA DI TAYLOR LORENZO BRASCO Indice. Definizioni e risultati. Sviluppi notevoli 3.. Esponenziale 4.. Seno 4.3. Coseno 4.4. Una funzione razionale 5.5. Logaritmo 6 3. Esercizi 6. Definizioni e risultati

Dettagli

Serie di Taylor. Hynek Kovarik. Analisi Matematica 2. Università di Brescia

Serie di Taylor. Hynek Kovarik. Analisi Matematica 2. Università di Brescia Serie di Taylor Hynek Kovarik Università di Brescia Analisi Matematica 2 Hynek Kovarik (Università di Brescia) Serie di Taylor Analisi Matematica 2 1 / 16 Serie di Taylor Il nostro obiettivo è di scrivere

Dettagli

Studi di funzione, invertibilità, Taylor

Studi di funzione, invertibilità, Taylor Studi di funzione, invertibilità, Taylor 1. Studiare le funzioni elencate:dominio di definizione; asintoti; crescenza e decrescenza; punti di non derivabilità, max/min locali; convessità. (a f (x x 2 ln(x

Dettagli

Riferimenti: R.Adams, Calcolo Differenziale 2. Capitoli 3.4, 3.9. Esercizi 3.4, 3.9.

Riferimenti: R.Adams, Calcolo Differenziale 2. Capitoli 3.4, 3.9. Esercizi 3.4, 3.9. Appunti sul corso di Complementi di Matematica - mod Analisi prof. B.Baccelli 200/ 07 - Funzioni vettoriali, derivata della funzione composta, formula di Taylor. Riferimenti: R.Adams, Calcolo Differenziale

Dettagli

La formula di Taylor con resto di Peano. OSSERVAZIONE: se f è continua nel punto a possiamo scrivere (ricordando la definizione di o piccolo ) che

La formula di Taylor con resto di Peano. OSSERVAZIONE: se f è continua nel punto a possiamo scrivere (ricordando la definizione di o piccolo ) che 109 Lezioni 9-40 La formula di Taylor con resto di Peano OSSERVAZIONE: se f è continua nel punto a possiamo scrivere (ricordando la definizione di o piccolo ) che f(x) =f(a)+o(1) per x a; se f è derivabile

Dettagli

ε = ε = x TFA A048. Matematica applicata Incontro del 16 aprile 2014, ore 17-19

ε = ε = x TFA A048. Matematica applicata Incontro del 16 aprile 2014, ore 17-19 TFA A048. Matematica applicata Incontro el 16 aprile 014, ore 17-19 Appunti i iattica ella matematica applicata all economia e alla finanza. Funzioni (i una variabile) utilizzate nello stuio ell Economia

Dettagli

Sistemi di due equazioni differenziali del primo ordine a coefficienti costanti

Sistemi di due equazioni differenziali del primo ordine a coefficienti costanti Sistemi i ue equazioni ifferenziali el primo orine a coefficienti costanti Enrico Schlesinger In questo paragrafo si risolve il sistema i equazioni ifferenziali x ax + by () y cx + y ove x e y sono ue

Dettagli

Complementi di Analisi Matematica e Statistica 04/07/ Testo e Soluzioni

Complementi di Analisi Matematica e Statistica 04/07/ Testo e Soluzioni Complementi i Analisi Matematica e Statistica 04/07/016 - Testo e Soluzioni Parte A 1. Esercizio A1: Dati α, β, Si consieri la seguente serie i potenze: e αn n + 1 ( β)n. eterminare il raggio i convergenza

Dettagli

Peccati, Salsa, Squellati, Matematica per l economia e l azienda, EGEA 2004

Peccati, Salsa, Squellati, Matematica per l economia e l azienda, EGEA 2004 1 Peccati, Salsa, Squellati, Matematica per l economia e l azienda, EGEA 004 Formula di Taylor Generalizziamo la formula che abbiamo introdotto nella sezione 11 del capitolo 5, cercando d approssimare

Dettagli

ANALISI MATEMATICA. Ottavio Caligaris - Pietro Oliva

ANALISI MATEMATICA. Ottavio Caligaris - Pietro Oliva ANALISI MATEMATICA Ottavio Caligaris - Pietro Oliva CAPITOLO 9 LA DERIVABILITÀ. Consideriamo una funzione f continua in un punto x 0, avremo che, quando x si discosta di poco da x 0, f(x) è poco distante

Dettagli

Limiti e continuità. Teoremi sui limiti. Teorema di unicità del limite Teorema di permanenza del segno Teoremi del confronto Algebra dei limiti

Limiti e continuità. Teoremi sui limiti. Teorema di unicità del limite Teorema di permanenza del segno Teoremi del confronto Algebra dei limiti Limiti e continuità Teorema di unicità del ite Teorema di permanenza del segno Teoremi del confronto Algebra dei iti 2 2006 Politecnico di Torino 1 Se f(x) =` ` è unico Per assurdo, siano ` 6= `0 con f(x)

Dettagli

Polinomi di Taylor. Hynek Kovarik. Analisi A. Università di Brescia. Hynek Kovarik (Università di Brescia) Polinomi di Taylor Analisi A 1 / 27

Polinomi di Taylor. Hynek Kovarik. Analisi A. Università di Brescia. Hynek Kovarik (Università di Brescia) Polinomi di Taylor Analisi A 1 / 27 Polinomi di Taylor Hynek Kovarik Università di Brescia Analisi A Hynek Kovarik (Università di Brescia) Polinomi di Taylor Analisi A 1 / 27 Introduzione Sia f : I R e sia x 0 I. Problemi: come approssimare

Dettagli

Corso di Calcolo Numerico

Corso di Calcolo Numerico Corso di Laurea in Ingegneria Gestionale Sede di Fermo Corso di 3 - CALCOLO NUMERICO DELLE DERIVATE Introduzione Idea di base Introduzione Idea di base L idea di base per generare un approssimazione alla

Dettagli

I POLINOMI DI TAYLOR. c Paola Gervasio - Analisi Matematica 1 - A.A. 16/17 Sviluppi di Taylor cap7.pdf 1

I POLINOMI DI TAYLOR. c Paola Gervasio - Analisi Matematica 1 - A.A. 16/17 Sviluppi di Taylor cap7.pdf 1 I POLINOMI DI TAYLOR c Paola Gervasio - Analisi Matematica 1 - A.A. 16/17 Sviluppi di Taylor cap7.pdf 1 Il simbolo o piccolo Siano f (x) e g(x) funzioni infinitesime per x x 0 e consideriamo f (x) il lim

Dettagli

Dispense di Fisica Matematica. Prof. Maura Ughi

Dispense di Fisica Matematica. Prof. Maura Ughi Dispense i Fisica Matematica Prof. Maura Ughi 13 febbraio 2005 Capitolo 1 Equazioni ella Dinamica 1.1 Introuzione, Principio i D Alembert Una grossa scorciatoia mentale valia in Meccanica Classica è il

Dettagli

QUADRILATERO DI AREA MASSIMA ASSEGNATI I LATI

QUADRILATERO DI AREA MASSIMA ASSEGNATI I LATI 1 QUADRILATERO DI AREA MASSIMA ASSEGNATI I LATI Margherita Moretti (3D P.N.I.) Viviana Scoca (3D P.N.I.) Simone Moretti (3H P.N.I.) Abstract Si affronta il problema ella eterminazione el quarilatero i

Dettagli

I POLINOMI DI TAYLOR. c Paola Gervasio - Analisi Matematica 1 - A.A. 17/18 Sviluppi di Taylor cap7.pdf 1

I POLINOMI DI TAYLOR. c Paola Gervasio - Analisi Matematica 1 - A.A. 17/18 Sviluppi di Taylor cap7.pdf 1 I POLINOMI DI TAYLOR c Paola Gervasio - Analisi Matematica 1 - A.A. 17/18 Sviluppi di Taylor cap7.pdf 1 Calcolo di forme indeterminate del tipo 0/0 Avevamo già visto (cap4a.pdf, pag. 1) che quando si deve

Dettagli

Analisi Matematica 1 Secondo appello

Analisi Matematica 1 Secondo appello Analisi Matematica 1 Secondo appello 11 febbraio 219 Testo A1 Consegnare solo questo foglio Prima parte: 2 punti per risposta corretta, 1 per ogni errore. Soglia minima 12/2. Seconda parte: Domande A e

Dettagli

Analisi Matematica (A L) Polinomi e serie di Taylor

Analisi Matematica (A L) Polinomi e serie di Taylor a.a. 2015/2016 Laurea triennale in Informatica Analisi Matematica (A L) Polinomi e serie di Taylor Nota: questo file differisce da quello proiettato in aula per la sola impaginazione. Polinomio di Taylor

Dettagli

41 POLINOMI DI TAYLOR

41 POLINOMI DI TAYLOR 4 POLINOMI DI TAYLOR DERIVATE DI ORDINI SUCCESSIVI Allo stesso modo della derivata seconda si definiscono per induzione le derivate di ordine k: la funzione derivata 0-ima di f si definisce ponendo f (0

Dettagli

Corso di Analisi Numerica

Corso di Analisi Numerica Corso di Laurea in Ingegneria Informatica Corso di 4 - DERIVAZIONE NUMERICA Lucio Demeio Dipartimento di Scienze Matematiche 1 Calcolo numerico delle derivate 2 3 Introduzione Idea di base L idea di base

Dettagli

Lezioni di Matematica 1 - I modulo

Lezioni di Matematica 1 - I modulo Lezioni di Matematica 1 - I modulo Luciano Battaia 14 novembre 2008 L. Battaia - http://www.batmath.it Matematica 1 - I mod. Lezione del 14/11/2008 1 / 22 Cr-decr-max-min Esempio 1 Esempio 2 Esempio 3

Dettagli

La formula di Taylor per funzioni di più variabili

La formula di Taylor per funzioni di più variabili La formula di Taylor per funzioni di più variabili Il polinomio di Taylor Due variabili. Sia A R 2 un aperto, f : A R una funzione sufficientemente regolare, (x, y) un punto di A. Sia (h, k) un vettore

Dettagli

Il teorema di Lagrange e la formula di Taylor

Il teorema di Lagrange e la formula di Taylor Il teorema di Lagrange e la formula di Taylor Il teorema del valor medio di Lagrange, valido per funzioni reali di una variabile reale, si estende alle funzioni reali di più variabili. Come si vedrà, questo

Dettagli

Calcolo differenziale

Calcolo differenziale CAPITOLO 5 Calcolo ifferenziale 1. Linearizzazione e erivabilità La nozione i erivata, i capitale importanza in matematica e nelle sue applicazioni, è legata all iea geometrica i retta tangente e all iea

Dettagli

Analisi 2. Roberto Monti. Appunti del Corso - Versione 5 Ottobre 2012

Analisi 2. Roberto Monti. Appunti del Corso - Versione 5 Ottobre 2012 Analisi 2 Roberto Monti Appunti del Corso - Versione 5 Ottobre 212 Indice Capitolo 1. Programma 5 Capitolo 2. Convergenza uniforme 7 1. Convergenza uniforme e continuità 7 2. Criterio di Abel Dirichlet

Dettagli

Esercizio 1. Per quali valori di h e k le seguenti funzione sono derivabili? x 3 sin 1 x 0. 0 x = 0. x cos 1 x > 0

Esercizio 1. Per quali valori di h e k le seguenti funzione sono derivabili? x 3 sin 1 x 0. 0 x = 0. x cos 1 x > 0 Sapienza Università di Roma - Facoltà I3S Corso di Laurea in Statistica Economia Finanza e Assicurazioni Corso di Laurea in Statistica Economia e Società Corso di Laurea in Statistica gestionale Matematica

Dettagli

Corso di laurea in Ingegneria civile - ambientale - edile Esame di Analisi matematica II Prova scritta del 29 giugno 2018

Corso di laurea in Ingegneria civile - ambientale - edile Esame di Analisi matematica II Prova scritta del 29 giugno 2018 Corso di laurea in Ingegneria civile - ambientale - edile Esame di Analisi matematica II Prova scritta del 29 giugno 28 Esercizio Si consideri la successione di funzioni {f n } n N + definita da f n (x)

Dettagli

Teoremi per la prima prova. Dimostrazioni. Federico Lastaria, Analisi e Geometria 1. Politecnico di Milano Corso di Analisi e Geometria 1

Teoremi per la prima prova. Dimostrazioni. Federico Lastaria, Analisi e Geometria 1. Politecnico di Milano Corso di Analisi e Geometria 1 Politecnico di Milano Corso di Analisi e Geometria 1 Federico Lastaria ederico.lastaria@polimi.it Teoremi per la prima prova. Dimostrazioni. 24 Ottobre 2018 Indice 1 Teoremi per la prima prova in itinere.

Dettagli

Corso di Analisi Matematica

Corso di Analisi Matematica Corso di Laurea in Ingegneria Edile Corso di TEOREMI DEL CALCOLO DIFFERENZIALE Lucio Demeio Dipartimento di Ingegneria Industriale e delle Scienze Matematiche Teorema di Estremi locali Richiamiamo la

Dettagli

8.1. Esercizio. Determinare massimo e minimo delle seguenti funzioni nei corrispondenti intervalli: 2 x 4 x in [0, 1]; e x2 in [ 2, 2]

8.1. Esercizio. Determinare massimo e minimo delle seguenti funzioni nei corrispondenti intervalli: 2 x 4 x in [0, 1]; e x2 in [ 2, 2] ANALISI Soluzione esercizi 25 novembre 2011 8.1. Esercizio. Determinare massimo e minimo delle seguenti funzioni nei corrispondenti intervalli: 2 x 4 x in [0, 1]; e x2 in [ 2, 2] cos x cos x in [ 2π, 2π];

Dettagli

ANALISI MATEMATICA 1 Area dell Ingegneria dell Informazione. Appello del

ANALISI MATEMATICA 1 Area dell Ingegneria dell Informazione. Appello del ANALISI MATEMATICA Area dell Ingegneria dell Informazione Appello del 3..7 TEMA Esercizio Calcolare l integrale log(3) 4 dx Svolgimento. Si ha log(3) 4 dx = (ponendo ex = t, per cui dx = dt/t) e = 4 3

Dettagli

ANALISI MATEMATICA. Ottavio Caligaris - Pietro Oliva

ANALISI MATEMATICA. Ottavio Caligaris - Pietro Oliva ANALISI MATEMATICA Ottavio Caligaris - Pietro Oliva CAPITOLO 12 LA FORMULA DI TAYLOR La formula di Taylor nasce dall esigenza di trovare buone approssimazioni, facilmente calcolabili, per le funzioni

Dettagli

9.2 La Formula di Taylor

9.2 La Formula di Taylor Università Roma Tre L. Chierchia 149 9.2 La Formula di Taylor Formula di Taylor al secondo ordine Dal punto di vista geometrico, l Osservazione 7.5 può essere parafrasata dicendo che, se f è derivabile

Dettagli

e 2x2 1 (x 2 + 2x 2) ln x

e 2x2 1 (x 2 + 2x 2) ln x Corso di laurea in Ingegneria delle Costruzioni A.A. 2016-17 Analisi Matematica - Esercitazione del 04-01-2017 Ripasso di alcuni argomenti in programma Gli esercizi sono divisi in più pagine, per separare

Dettagli

0.1 Spazi Euclidei in generale

0.1 Spazi Euclidei in generale 0.1. SPAZI EUCLIDEI IN GENERALE 1 0.1 Spazi Euclidei in generale Sia V uno spazio vettoriale definito su R. Diremo, estendendo una definizione data in precedenza, che V è uno spazio vettoriale euclideo

Dettagli

Derivate delle funzioni reali

Derivate delle funzioni reali Capitolo I0: Derivate elle funzioni reali Contenuti elle sezioni a Derivata p b Derivabilità e continuità, erivate i erivate p5 c Derivate i combinazioni lineari, prootti e quozienti i funzioni p7 Derivate

Dettagli

3. CALCOLO DIFFERENZIALE PER FUNZIONI DI UNA VARIABILE REALE.

3. CALCOLO DIFFERENZIALE PER FUNZIONI DI UNA VARIABILE REALE. 3. CALCOLO DIFFERENZIALE PER FUNZIONI DI UNA VARIABILE REALE. Molto spesso y = f(x) rappresenta l evoluzione di un fenomeno al passare del tempo x.se siamo interessati a sapere con che rapidità il fenomeno

Dettagli

Polinomio di Mac Laurin e di Taylor

Polinomio di Mac Laurin e di Taylor Università degli Studi di Palermo Facoltà di Economia Dip. di Scienze Statistiche e Matematiche Silvio Vianelli Appunti del corso di Matematica Generale Polinomio di Mac Laurin e di Taylor Anno Accademico

Dettagli

n (x i x j ), det V = i>j

n (x i x j ), det V = i>j Capitolo 4 Approssimazione 4.1 Richiami di teoria Prerequisiti: nozioni elementari di calcolo differenziale e integrale. Interpolazione Il problema dell interpolazione è un caso particolare del vasto settore

Dettagli

Lezione 11 (30 novembre)

Lezione 11 (30 novembre) Lezione 11 (30 novembre) Teorema di De l Hopital Massimi e minimi assoluti e relativi Funzioni limitate superiormente e inferiormente Legame tra derivata prima e crescita e decrescita della funzione Derivata

Dettagli

1 ANALISI MATEMATICA A - Esercizi della settimana 3

1 ANALISI MATEMATICA A - Esercizi della settimana 3 1 ANALISI MATEMATICA A - Esercizi della settimana 3 1.1 Esercizio Una funzione f : R R si dice pari se f (x) = f ( x) per ogni x R; una funzione g : R R si dice dispari se g(x) = g( x) per ogni x R. 1.

Dettagli

Corso di Laurea in Ingegneria Biomedica ed Elettronica Prima prova scritta di Analisi Matematica 1 del 18/12/2006

Corso di Laurea in Ingegneria Biomedica ed Elettronica Prima prova scritta di Analisi Matematica 1 del 18/12/2006 Corso di Laurea in Ingegneria Biomedica ed Elettronica Prima prova scritta di Analisi Matematica del 8/2/26 () Fornire la definizione di derivata ed il suo significato geometrico. (2) Enunciare e dimostrare

Dettagli

Limiti e continuità. Hynek Kovarik. Analisi A. Università di Brescia. Hynek Kovarik (Università di Brescia) Limiti e continuità Analisi A 1 / 68

Limiti e continuità. Hynek Kovarik. Analisi A. Università di Brescia. Hynek Kovarik (Università di Brescia) Limiti e continuità Analisi A 1 / 68 Limiti e continuità Hynek Kovarik Università di Brescia Analisi A Hynek Kovarik (Università di Brescia) Limiti e continuità Analisi A 1 / 68 Cenni di topologia La nozione di intorno Sia x 0 R e r > 0.

Dettagli

1) Applicando la definizione di derivata, calcolare la derivata in x = 0 delle funzioni: c) x + 1 d)x sin x.

1) Applicando la definizione di derivata, calcolare la derivata in x = 0 delle funzioni: c) x + 1 d)x sin x. Funzioni derivabili Esercizi svolti 1) Applicando la definizione di derivata, calcolare la derivata in x = 0 delle funzioni: a)2x 5 b) x 3 x 4 c) x + 1 d)x sin x. 2) Scrivere l equazione della retta tangente

Dettagli

1 Teorema di Bolzano. Definition 1 Sia A un insieme limitato. scriveremo e = sup A, se:

1 Teorema di Bolzano. Definition 1 Sia A un insieme limitato. scriveremo e = sup A, se: Teorema di Bolzano Sia A un sottoinsime di R. Un numero k si dice maggiorante di A se a k per ogni a A; un insieme che ammette maggioranti si dice limitato superiormente. Un numero h si dice minorante

Dettagli

CLASSIFICAZIONE DELLE SUPERFICI TOPOLOGICHE

CLASSIFICAZIONE DELLE SUPERFICI TOPOLOGICHE CLASSIFICAZIONE DELLE SUPERFICI TOPOLOGICHE E. Sernesi 1 Poligoni etichettati Denoteremo con il simbolo P 2n, o semplicemente con P, un poligono compatto e convesso i R 2, a 2n lati, n 2. Consiereremo

Dettagli

Metodi Matematici per l Economia anno 2017/2018 Gruppo B

Metodi Matematici per l Economia anno 2017/2018 Gruppo B Metodi Matematici per l Economia anno 2017/2018 Gruppo B Docente: Giacomo Dimarco Dipartimento di Matematica e Informatica Università di Ferrara https://sites.google.com/a/unife.it/giacomo-dimarco-home-page/

Dettagli

Approssimazione di dati e funzioni

Approssimazione di dati e funzioni Approssimazione di dati e funzioni Richiamiamo i principali metodi di approssimazione polinomiale di un insieme di dati (x i, y i ), i = 0,..., n. Le ordinate y i possono essere i valori assunti nei nodi

Dettagli

f (x) = f(x 2) f(x 1 ) x 2 x 1

f (x) = f(x 2) f(x 1 ) x 2 x 1 Lezioni 29-30 86 Il Teorema di Lagrange o del Valor Medio Abbiamo visto che molte proprietà importanti delle funzioni (crescenza, decrescenza, iniettività, ecc.) si esprimono tramite proprietà del rapporto

Dettagli

Nome, Cognome: punti totali possibili, 50 punti corrispondono alla nota massima.

Nome, Cognome: punti totali possibili, 50 punti corrispondono alla nota massima. Nome, Cognome:................................................................ 55 punti totali possibili, 5 punti corrisponono alla nota massima. 3 ottobre 23 ing. Ivan Furlan . Controllo i un oscillatore

Dettagli

ANALISI 1 - Teoremi e dimostrazioni vari

ANALISI 1 - Teoremi e dimostrazioni vari ANALISI 1 - Teoremi e dimostrazioni vari Sommario Proprietà dell estremo superiore per R... 2 Definitivamente... 2 Successioni convergenti... 2 Successioni monotone... 2 Teorema di esistenza del limite

Dettagli

Interpolazione. Corso di Calcolo Numerico, a.a. 2008/2009. Francesca Mazzia. Dipartimento di Matematica Università di Bari.

Interpolazione. Corso di Calcolo Numerico, a.a. 2008/2009. Francesca Mazzia. Dipartimento di Matematica Università di Bari. Interpolazione Corso di Calcolo Numerico, a.a. 2008/2009 Francesca Mazzia Dipartimento di Matematica Università di Bari 17 Aprile 2009 Francesca Mazzia (Univ. Bari) Interpolazione 17/04/2006 1 / 37 Interpolazione

Dettagli

17 - Serie di funzioni

17 - Serie di funzioni Università degli Studi di Palermo Facoltà di Economia CdS Statistica per l Analisi dei Dati Appunti del corso di Matematica 7 - Serie di funzioni Anno Accademico 203/204 M. Tumminello, V. Lacagnina, A.

Dettagli

DIARIO DELLE LEZIONI DEL CORSO DI ANALISI MATEMATICA I (L Z) CORSO DI LAUREA IN INGEGNERIA AEROSPAZIALE

DIARIO DELLE LEZIONI DEL CORSO DI ANALISI MATEMATICA I (L Z) CORSO DI LAUREA IN INGEGNERIA AEROSPAZIALE DIARIO DELLE LEZIONI DEL CORSO DI ANALISI MATEMATICA I (L Z) 2011-2012 CORSO DI LAUREA IN INGEGNERIA AEROSPAZIALE DANIELE ANDREUCCI DIP. SCIENZE DI BASE E APPLICATE PER L INGEGNERIA UNIVERSITÀ LA SAPIENZA

Dettagli

2 ore Teorema dell unicità del limite, nel caso di limiti in R (con dim.). f(x) = +. Per b>1 di lim

2 ore Teorema dell unicità del limite, nel caso di limiti in R (con dim.). f(x) = +. Per b>1 di lim Lunedì 18 settembre, 2 ore. Numeri naturali. Principio di induzione. Teorema sulle dimostrazioni per induzione. Esempi di dimostrazione per induzione: dimostrazione della disuguaglianza di Bernoulli. Sommatorie

Dettagli

CORSO DI ANALISI MATEMATICA 2 SOLUZIONI ESERCIZI PROPOSTI 18/03/2013

CORSO DI ANALISI MATEMATICA 2 SOLUZIONI ESERCIZI PROPOSTI 18/03/2013 CORSO DI ANALISI MATEMATICA SOLUZIONI ESERCIZI PROPOSTI 8/03/03 D.BARTOLUCCI, D.GUIDO. La continuità uniforme I ESERCIZIO: Dimostrare che la funzione f(x) = x 3, x A = (, ] non è uniformemente continua

Dettagli

Le derivate parziali

Le derivate parziali Sia f(x, y) una funzione definita in un insieme aperto A R 2 e sia P 0 = x 0, y 0 un punto di A. Essendo A un aperto, esiste un intorno I(P 0, δ) A. Preso un punto P(x, y) I(P 0, δ), P P 0, possiamo definire

Dettagli

Istituzioni di Matematiche quarta parte

Istituzioni di Matematiche quarta parte Istituzioni di Matematiche quarta parte anno acc. 2012/2013 Univ. degli Studi di Milano Cristina Turrini (Univ. degli Studi di Milano) Istituzioni di Matematiche 1 / 22 index Derivate 1 Derivate 2 Teoremi

Dettagli

DERIVATE. Rispondere ai seguenti quesiti. Una sola risposta è corretta. 1. Data la funzione f(x) =2+ x 7, quale delle seguente affermazioni èvera?

DERIVATE. Rispondere ai seguenti quesiti. Una sola risposta è corretta. 1. Data la funzione f(x) =2+ x 7, quale delle seguente affermazioni èvera? DERIVATE Rispondere ai seguenti quesiti. Una sola risposta è corretta.. Data la funzione f(x) =+ x 7, quale delle seguente affermazioni èvera? (a) f(x) nonè derivabile in x =0 (b) f (0) = (c) f (0) = (d)

Dettagli

9 k. k. k=2. Soluzione: Ricordiamo la formula di Newton per le potenze del binomio: (a + b) n = a n k b k. k. k=0. (1 + 9) 100 = k 9 k, k

9 k. k. k=2. Soluzione: Ricordiamo la formula di Newton per le potenze del binomio: (a + b) n = a n k b k. k. k=0. (1 + 9) 100 = k 9 k, k Ingegneria Elettronica e Informatica Analisi Matematica 1a Foschi Compito del 18.1.018 1. Utilizzando la formula di Newton per le potenze del binomio calcola il valore della somma 9. = Soluzione: Ricordiamo

Dettagli

Capitolo III : Calcolo differenziale

Capitolo III : Calcolo differenziale Liceo Lugano, 0-0 4B (Luca Rovelli) Capitolo III : Calcolo ifferenziale La tangente a una curva Ricora innanzitutto ce, se f : y = m + q è una funzione affine, il numero reale m rappresenta il coefficiente

Dettagli

Teoremi per la prima prova. Dimostrazioni. Federico Lastaria, Analisi e Geometria 1. Politecnico di Milano Corso di Analisi e Geometria 1

Teoremi per la prima prova. Dimostrazioni. Federico Lastaria, Analisi e Geometria 1. Politecnico di Milano Corso di Analisi e Geometria 1 Politecnico di Milano Corso di Analisi e Geometria 1 Federico Lastaria federico.lastaria@polimi.it Teoremi per la prima prova. Dimostrazioni. 16 Ottobre 2017 Indice 1 Teoremi per la prima prova in itinere.

Dettagli

Principali differenze tra la ristampa 2014 e l edizione 2008

Principali differenze tra la ristampa 2014 e l edizione 2008 Principali differenze tra la ristampa 214 e l edizione 28 Di seguito sono riportate le principali modifiche apportate al testo dell edizione 28 con la ristampa riveduta e corretta del 214. Si avverte il

Dettagli

Corso di Analisi Numerica

Corso di Analisi Numerica Corso di Laurea in Ingegneria Informatica Corso di 3 - PROBLEMI DI INTERPOLAZIONE Lucio Demeio Dipartimento di Scienze Matematiche 1 Interpolazione: Polinomio di Lagrange 2 3 Introduzione Problemi di interpolazione

Dettagli

Syllabus di equazioni differenziali a derivate parziali

Syllabus di equazioni differenziali a derivate parziali Syllabus i equazioni ifferenziali a erivate parziali Equazioni Le tre famiglie più note i equazioni ifferenziali a erivate parziali sono le equazioni ellittiche, le equazioni paraboliche e le equazioni

Dettagli

Esonero di Analisi Matematica II (A)

Esonero di Analisi Matematica II (A) Esonero di Analisi Matematica II (A) Ingegneria Edile, 8 aprile 3. Studiare la convergenza del seguente integrale improprio: + x log 3 x (x ) 3 dx.. Studiare la convergenza puntuale ed uniforme della seguente

Dettagli

ANALISI MATEMATICA 1. (Ingegneria Industriale, corsi A e B) Esempi di prove scritte

ANALISI MATEMATICA 1. (Ingegneria Industriale, corsi A e B) Esempi di prove scritte ANALISI MATEMATICA 1 (Ingegneria Industriale, corsi A e B) Esempi di prove scritte Rispondere ai quesiti a risposta multipla Qi, risolvere gli esercizi Ei, enunciare le definizioni Di e svolgere le dimostrazioni

Dettagli