= x + x 0 2x 0 per x x 0,

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "= x + x 0 2x 0 per x x 0,"

Transcript

1 Lezione el 17 ottobre. Derivate 1. Derivata i una funzione in un punto Definizione 1 Sia f una funzione efinita in un intorno I i un punto x 0. Per ciascun x I con x = x 0 consieriamo: l incremento a x 0 a x, l incremento a f (x 0 ) a f (x), e il rapporto incrementale i f a x 0 a x ; iciamo ce f e erivabile in x 0 se e solo se il rapporto incrementale i f a x 0 a x converge a un numero reale per x x 0 ; il ite si ice erivata i f in x 0 e si scrive f (x 0 ); in simboli: Alcuni esempi. f (x 0 ) = x x0. 1- Sia f : R R una funzione costante f (x) = c, e sia x 0 R; per x R con x = x 0 si a = c c = 0 0 per x x 0, cosi f (x 0 ) = 0. Dunque una funzione costante e erivabile in ogni punto, e in ciascun punto a erivata nulla. 2- Sia f : R R un polinomio i primo grao f (x) = mx + q, e sia x 0 R; per x R con x = x 0 si a = mx + q (mx 0 + q) = m m per x x 0, cosi f (x 0 ) = m. Dunque un polinomio i primo grao e erivabile in ogni punto, e in ciascun punto a erivata uguale al coefficiente el termine i I grao. 3- Sia f : R R il monomio i secono grao f (x) = x 2, e sia x 0 R; per x R con x = x 0 si a = x2 x 2 0 = x + x 0 2x 0 per x x 0, cosi f (x 0 ) = 2x 0. Dunque il monomio i secono grao e erivabile in ogni punto, e in ciascun punto a erivata uguale al oppio ell orinata el punto.

2 2. Un moo equivalente i efinire rapporti incrementali e erivata. Definizione 2 Sia f una funzione efinita in un intorno I i un punto x 0. Per ciascun R abbastanza piccolo con = 0 consieriamo: l incremento a x 0 a x 0 +, l incremento f (x 0 + ) f (x 0 ) a f (x 0 ) a f (x 0 + ), e il rapporto incrementale i f a x 0 con incremento f (x 0 + ) f (x 0 ) ; iciamo ce f e erivabile in x 0 se e solo se il rapporto incrementale i f a x 0 con incremento converge a un numero reale per 0; il ite si ice erivata i f in x 0 e si scrive f (x 0 ); in simboli: Esempio. f f (x (x 0 ) = 0 + ) f (x 0 ) Sia f : R R il monomio i secono grao f (x) = x 2, e sia x 0 R; per R con = x 0 si a f (x 0 + ) f (x 0 ) cosi f (x 0 ) = 2x 0. = (x 0 + ) 2 x 2 0 = 2x 0 + 2x 0 per 0, 3. Interpretazione geometrica Sia ata una funzione f efinita in un intorno I i un punto x 0. A ciascun punto x I sull asse elle ascisse corrispone un punto f (x) sull asse elle orinate, e questi ue punti iniviuano un punto P = (x, f (x)) el grafico i f ; iniciamo con P 0 = (x 0, f (x 0 )) il punto i associato a x 0. Per ciascun x I con x = x 0 si a = penenza el segmento P 0 P. Dunque l evenienza ce il rapporto incrementale a x 0 a x tena a un ite finito equivale l evenienza ce la penenza el segmento P 0 P tena a una penenza ite finita, per x x 0. In caso affermativo, iciamo ce la erivata f (x 0 ) i f in x 0 e la penenza el grafico i f in P 0 e iciamo ce la retta per P 0 avente penenza f (x 0 ) y f (x 0 ) = f (x 0 )( ) e la retta tangente al grafico i f in P 0.

3 4. Esempio Sia f : R R, f (x) = x 2 ; il grafico i f e la parabola i equazione y = x 2. Per x 0 = 1 2 si a f ( 1 2 ) = 1; la tangente al grafico i f nel suo punto ( 2 1, 1 4 ) e la retta i equazione y 1 4 = 1 (x 1 2 ), cioe y = x 1 4. Per ciascun x 0 R si a f (x 0 ) = 2x 0. La tangente al grafico y = x 2 i f nel suo punto (x 0, x0 2 ) e la retta y x0 2 = 2x 0( ), cioe y = 2x 0 x x0 2. Nella figura seguente riportiamo alcuni punti el grafico i f, e le rette tangenti in essi al grafico i f. 5. Interpretazione cinematica 1 1 Sia ata una funzione f efinita in un intorno I i un punto x 0. Interpretiamo x come coorinata i tempo (rispetto a un certo riferimento), f (x) come coorinata i posizione su una retta (rispetto a un certo riferimento), e quini interpretiamo f come la legge el moto i un punto materiale p su una retta. Per ciascun istante x I con x = x 0 si a = velocita meia i p nell intervallo [x 0, x]. Dunque l evenienza ce il rapporto incrementale a x 0 a x tena a un ite finito equivale l evenienza ce la velocita meia el punto p nell intervallo [x 0, x] tena a una velocita ite finita, per x x 0. In caso affermativo, iciamo ce la erivata f (x 0 ) i f in x 0 e la velocita istantanea el punto p all istante x 0.

4 6. Derivate estre, sinistre Definizione 3 Sia ata una funzione f efinita in un intorno estro I i un punto x 0. Diciamo erivata estra i f in x 0 e iniciamo con f +(x 0 ) il ite, se esiste, el rapporto incrementale i f a x 0 a x per x x + 0 ; in simboli: f +(x 0 ) = x x + 0 Equivalentemente: f +(x f (x 0 ) = 0 + ) f (x 0 ). 0 + Analogamente: Definizione 4 Sia ata una funzione f efinita in un intorno sinistro I i un punto x 0. Diciamo erivata sinistra i f in x 0 e iniciamo con f (x 0 ) il ite, se esiste, el rapporto incrementale i f a x 0 a x per x x 0 ; in simboli: f (x 0 ) = x x 0 Equivalentemente... Si a Proposizione 1 Sia ata una funzione f efinita in un intorno I i un punto x 0. La funzione f a erivata in x 0 se e solo se a erivata estra in x 0, a erivata sinistra in x 0 e tali erivate coinciono; in tal caso, il valore comune i tali erivate e la erivata i f in x 0 : f (x 0 ) = f (x 0 ) = f +(x 0 ). 7. Altri esempi 1- Consieriamo la funzione f : R R efinita a { 0 per x = 0 f (x) = 1 per x = 0, e il punto x 0 = 0. Ci cieiamo se f a erivata estra in 0. Si a f (0 + ) f (0) = 1 + per 0+ Dunque f non a erivata estra in 0. Cio basta per affermare ce f non e erivabile in 0. Ci cieiamo se f a erivata sinistra in 0. Si a f (0 + ) f (0) = 1 per 0.

5 Dunque f non a erivata sinistra in 0. Questi risultati potevano essere previsti usano l interpretazione geometrica ella erivata. 2- Consieriamo la funzione g : [0, + [ R efinita a g(x) = x. e il punto x 0 = 0. La funzione non e efinita in alcun intorno sinistro i 0, unque non e efinta alcuna erivata sinistra in 0. Ci cieiamo se g a erivata estra in 0. Si a f (0 + ) f (0) = 0 = 1 + per 0 +. Dunque g non a erivata estra in 0. Questi risultati potevano essere previsti usano l interpretazione geometrica ella erivata. 3- Consieriamo la funzione v : R R efinita a v(x) = x, e il punto x 0 = 0. Per > 0 si a v(0 + ) v(0) = = 1 1 per 0+. Dunque v a erivata estra in 0 e v +(0) = 1. Per < 0 si a v(0 + ) v(0) = = 1 1 per 0+. Dunque v a erivata sinistra in 0 e v (0) = 1. Le ue erivate estra e sinistra i v in 0 sono iverse, unque si a ce v non e erivabile in 0. Questi risultati potevano essere previsti usano l interpretazione geometrica ella erivata. La funzione consierata nel primo esempio e iscontinua in 0 e non e erivabile in 0; le funzioni consierate negli altri ue esempi sono continue in 0 e non sono erivabili in 0. Proposizione 2 Sia f : I R, con I intorno i x 0. Se f e erivabile in x 0 allora f e continua in x 0. Dimostrazione f (x) = f (x 0 ) + = f (x 0 ) + f (x) f (x 0) ( ) f (x 0 ) + f (x 0 )0 = f (x 0 ) per x x 0.

6 8. Di solito, consiereremo funzioni f : A R, ove A e un intervallo, o un unione i intervalli (non riotti a un punto). Se f e erivabile in ogni punto x i A, allora si a una funzione A R x f (x) ce viene etta funzione erivata i f, e inicata con f. Ci sono vari moi i inicare la erivata i f in un punto x 0 : f f (x 0 ), x, (D f )(x 0 ), x=x0 cui corrisponono vari moi i inicare la funzione erivata: f, f x, D f. Spesso una funzione viene consierata come un espressione f (x) in una variabile reale x, e la erivazione come un operatore, inicato con x o D, ce trasforma l espressione f (x) in una nuova espressione x ( f (x)), D( f (x)). 9. Alcuni esempi i funzioni erivate i funzioni potenza. 1- Abbiamo visto ce la funzione potenza R R, x x 2 e erivabile sul suo ominio R, e la sua funzione erivata e ata a ( x 2 ) = 2x. x 2- Consieriamo ora R R, x x 3. Fissato un qualsiasi x 0 R, per x R si a = x3 x0 3 = ()(x 2 + xx 0 + x0 2) = x 2 + xx 0 + x0 2 3x2 0 per x x 0. Dunque la funzione x x 3 e erivabile sul suo ominio R, e la sua funzione erivata e ata a ( x 3 ) = 3x 2. x 3- Consieriamo ora R R, x x n,

7 ove n e un intero positivo. Fissato un qualsiasi x 0 R, per x R si a = xn x n 0 = ()(x n 1 + x n 2 x x n 1 0 ) = x n 1 + x n 2 x x n 1 0 nx n 1 0 per x x 0. Dunque la funzione x x 3 e erivabile sul suo ominio R, e la sua funzione erivata e ata a x (xn ) = nx n Funzioni potenza. Ciascuna funzione potenza ]0, + [ R, x x α (α R) e erivabile sul suo ominio ]0, + [, e la sua funzione erivata e ata a x (xα ) = αx α 1. Per α 0 la funzione potenza x α e efinita ance per x = 0; se α 1, allora la funzione e erivabile ance in 0, e si a x α /x x=0 = 0; se 0 < α < 1, la funzione non e erivabile in x = 0. Per α Z la funzione potenza x α e efinita e erivabile su R \ 0, e se α = 0 e efinita e erivabile su tutto R; vale sempre la regola i erivazione soprascritta. 11. Funzione esponenziale. La funzione esponenziale R R, x e x e erivabile su R e coincie con la sua funzione erivata: x (ex ) = e x. Questo fatto eriva a un ite notevole sull esponenziale. Dato x 0 R, si a e x0+ e x 0 = e x 0 e 1, passano al ite per 0 si a e x0+ e x 0 0 unque ex x = e x 0, x 0 R. x=x0 = e x 0 0 e 1 = e x0 1 = e x 0 ;

8 12. Funzione Logaritmo. La funzione logaritmo ]0, + [ R, x log x; e erivabile sul suo ominio ]0, + [ e la sua funzione erivata e : x (log x) = 1 x. Questo fatto eriva a un ite notevole sul logaritmo. Dato x 0 R, si a log (x 0 + ) log x 0 ( ) = log x0 + x 0 passano al ite per 0 si a unque log x x log (x 0 + ) log x 0 0 = 1 x=x0 x 0, x 0 R. 13. Funzioni trigonometrice La funzione seno R R, x sin x e erivabile su R e la sua funzione erivata e : La funzione coseno R R, x cos x ) (1 = log + x0 ) (1 = log + x0 1, x x 0 0 ) = 1 log (1 + x0 = 1 1 = 1 ; x 0 0 x x 0 x 0 0 (sin x) = cos x. x e erivabile su R e la sua funzione erivata e : (cos x) = sin x. x

Derivate. Derivata di una funzione in un punto. = velocita media di P nell intervallo [x. = pendenza del segmento P 0 P.

Derivate. Derivata di una funzione in un punto. = velocita media di P nell intervallo [x. = pendenza del segmento P 0 P. Derivate Derivata di una funzione in un punto Definizione Interpretazioni Definizione 1 Sia f : I x0 R una funzione definita in un intorno I x0 di un punto x 0 Per ciascun x I x0 con x = x 0 consideriamo

Dettagli

f(x) f(x 0 ) = m R ; (1.1) lim f(x) f(x 0 ) m(x x 0 ) lim (x x 0 ) f (n) (x 0 )

f(x) f(x 0 ) = m R ; (1.1) lim f(x) f(x 0 ) m(x x 0 ) lim (x x 0 ) f (n) (x 0 ) I polinomi i Taylor Il resto i Peano Una funzione f efinita in un intorno i un punto x 0 si ice erivabile in x 0 se e solo se a sua volta la (1.1) equivale a lim f(x) f(x 0 ) x x 0 = m R ; (1.1) f(x) f(x

Dettagli

Università degli Studi di Palermo Facoltà di Economia. Dipartimento di Scienze Economiche, Aziendali e Statistiche. Appunti del corso di Matematica

Università degli Studi di Palermo Facoltà di Economia. Dipartimento di Scienze Economiche, Aziendali e Statistiche. Appunti del corso di Matematica Università egli Stui i Palermo Facoltà i Economia Dipartimento i Scienze Economice, Azienali e Statistice Appunti el corso i Matematica 08 - Derivate Anno Accaemico 2015/2016 M. Tumminello, V. Lacagnina,

Dettagli

d f dx (x 0), (D f )(x 0 ), cui corrispondono vari modi di indicare la funzione derivata:

d f dx (x 0), (D f )(x 0 ), cui corrispondono vari modi di indicare la funzione derivata: Derivate Di solito, considereremo funzioni f : A R, dove A e un intervallo, o un unione di intervalli non ridotti a un punto. Indicato con B l insieme dei punti nei quali f e derivabile 1 si a una funzione

Dettagli

ESERCITAZIONE DELL 11 DICEMBRE 2008 SOLUZIONI Corso di Matematica I per Geologia. dx dx dx sin x = (sin x)2 + (cos x) 2. (1)

ESERCITAZIONE DELL 11 DICEMBRE 2008 SOLUZIONI Corso di Matematica I per Geologia. dx dx dx sin x = (sin x)2 + (cos x) 2. (1) ESERCITAZIONE DELL DICEMBRE 008 SOLUZIONI Corso i Matematica I per Geologia A. Calcolare le erivate elle seguenti funzioni:. sin cos, sin 3, e sin 3 4 cos 3; +. log, log, arctan. Soluzioni.. Prima erivata.

Dettagli

Nozioni elementari di calcolo differenziale e integrale

Nozioni elementari di calcolo differenziale e integrale Nozioni elementari i calcolo ifferenziale e integrale DIPARTIMENTO DI FISICA E INFN UNIVERSITÀ DEL SALENTO a.a. 013/014 L. Renna - Dipartimento i Fisica 1 Sommario 1 Funzioni... 3 Derivate... 4 3 Integrali...

Dettagli

5 DERIVATA. 5.1 Continuità

5 DERIVATA. 5.1 Continuità 5 DERIVATA 5. Continuità Definizione 5. Sia < a < b < +, f : (a, b) R e c (a, b). Diciamo che f è continua in c se sono verificate le ue conizioni: (i) c esiste (ii) = f(c) c Si osservi che nella efinizione

Dettagli

Analisi Matematica 1, parte B Laurea in Matematica

Analisi Matematica 1, parte B Laurea in Matematica Analisi Matematica 1, parte B Laurea in Matematica Prima settimana Sia x una variabile reale efinita in un intorno bucato i 0 in seguito x enoterà un incremento infinitesimo). Una funzione R x) si ice

Dettagli

Matematica e statistica Versione didascalica: parte 1

Matematica e statistica Versione didascalica: parte 1 Matematica e statistica Versione iascalica: parte 1 Sito web el corso http://www.labmat.it/iattica Docente: Prof. Sergio Invernizzi, Università i Trieste e-mail: inverniz@units.it 2. Derivata e integrale

Dettagli

Curve in R n. Curve parametrizzate.

Curve in R n. Curve parametrizzate. Curve in R n Generalmente ci sono ue moi per escrivere una curva in R n, ovvero è possibile scrivere un equazione parametrica o un equazione cartesiana. Esempio: una retta in R 2 può essere escritta in

Dettagli

1. Teorema del valor medio D ora in poi ciascun intervallo considerato verra tacitamente assunto non ridotto

1. Teorema del valor medio D ora in poi ciascun intervallo considerato verra tacitamente assunto non ridotto Lezione del 22 ottobre. 1. Teorema del valor medio D ora in poi ciascun intervallo considerato verra tacitamente assunto non ridotto ad un punto. Data una funzione f definita su un intervallo [a, b], derivabile

Dettagli

Derivate di ordine superiore

Derivate di ordine superiore Derivate di ordine superiore Derivate di ordine superiore Il processo che porta alla definizione di derivabilta e di derivata di una funzione in un punto si puo iterare per dare per ogni intero positivo

Dettagli

Funzioni olomorfe e serie di potenze di una variabile complessa

Funzioni olomorfe e serie di potenze di una variabile complessa MATeXp Analisi infinitesimale Capitolo I37: Funzioni olomorfe e serie i potenze i una variabile complessa Contenuti elle sezioni a. Conizioni i monogeneità e funzioni olomorfe p.1 b. Serie i potenze e

Dettagli

Formule di derivazione

Formule di derivazione Formule i erivazione Corrao Mascia 14 icembre 2018 Qui vengono presentate alcune formule i erivazione e, al contempo, si mostrano vari esempi el loro utilizzo. 1 Linearità, prootto e rapporto Come a titolo

Dettagli

11. Equazioni quasilineari del primo ordine

11. Equazioni quasilineari del primo ordine 11. Equazioni quasilineari el primo orine Una equazione quasilineare el primo orine in ue variabili è una espressione el tipo (1) a(x, y, u)u x + b(x, y, u)u y = c(x, y, u) ove x e y variano in un aperto

Dettagli

ε = ε = x TFA A048. Matematica applicata Incontro del 16 aprile 2014, ore 17-19

ε = ε = x TFA A048. Matematica applicata Incontro del 16 aprile 2014, ore 17-19 TFA A048. Matematica applicata Incontro el 16 aprile 014, ore 17-19 Appunti i iattica ella matematica applicata all economia e alla finanza. Funzioni (i una variabile) utilizzate nello stuio ell Economia

Dettagli

Lezione 18 (8 gennaio) Limiti

Lezione 18 (8 gennaio) Limiti Lezione 18 (8 gennaio) Limiti Ripasso f x = ln 3 x 1 D = (1, + ) ln 3 x 1 + x 1 = ln 3 1 + 1 = ln 3 = ln(+ ) = + 0 + ln 3 x + x 1 = ln 3 + 1 = ln 3 + = ln(0+ ) = 1 Esempi di forme indeterminate x + x3

Dettagli

Derivate. 24 settembre 2007

Derivate. 24 settembre 2007 Derivate 24 settembre 2007 Rapporto incrementale di una funzione Siano f : X R e x 0 X. La funzione g x0 (x) = f(x) f(x 0) x x 0 si chiama rapporto incrementale di f relativo al punto x 0. E[g x0 ] = X

Dettagli

LA DERIVATA DI UNA FUNZIONE. Prof Giovanni Ianne

LA DERIVATA DI UNA FUNZIONE. Prof Giovanni Ianne LA ERIVATA I UNA FUNZIONE Pro. Giovanni Ianne /22 Come si determina la retta tangente a una curva in un punto P? Per una circonerenza, la tangente è la retta che interseca la curva solo in P. IL PROBLEMA

Dettagli

DERIVATE. Equazione della retta tangente al grafico di f nel suo punto P(x 0 ;y 0 ):

DERIVATE. Equazione della retta tangente al grafico di f nel suo punto P(x 0 ;y 0 ): DERIVATE La derivata di una funzione in un punto c, quando esiste, rappresenta il coefficiente angolare della retta tangente al grafico della funzione nel suo punto di ascissa c: f ( c) = Df ( c) = m tg

Dettagli

Matematica Lezione 18

Matematica Lezione 18 Università di Cagliari Corso di Laurea in Farmacia Matematica Lezione 18 Sonia Cannas 4/12/2018 Metodo di bisezione Se f : [a, b] R è continua e tale che f (a) f (b) < 0 sono soddisfatte le ipotesi del

Dettagli

4. CALCOLO DIFFERENZIALE PER FUNZIONI DI UNA VARIABILE REALE.

4. CALCOLO DIFFERENZIALE PER FUNZIONI DI UNA VARIABILE REALE. 4. CALCOLO DIFFERENZIALE PER FUNZIONI DI UNA VARIABILE REALE. Molto spesso rappresenta l evoluzione di un fenomeno al passare del tempo. Se siamo interessati a sapere con che rapidità il fenomeno si evolve

Dettagli

1 REGOLE DI DERIVAZIONE

1 REGOLE DI DERIVAZIONE UNIVERSITÀ DEGLI STUDI DI ROMA LA SAPIENZA - Facoltà i Farmacia e Meicina - Corso i Laurea in CTF REGOLE DI DERIVAZIONE Prima i tutto ricoriamo che la erivata i una funzione f in x è il ite el rapporto

Dettagli

Derivate. Rette per uno e per due punti. Rette per uno e per due punti

Derivate. Rette per uno e per due punti. Rette per uno e per due punti Introduzione Rette per uno e per due punti Rette per uno e per due punti Rette secanti e tangenti Derivata d una funzione in un punto successive Derivabilità a destra e a sinistra Rette per uno e per due

Dettagli

1 di 27 29/12/2018, 00:01

1 di 27 29/12/2018, 00:01 Stuente: Data: Docente: Luciano Seta Corso: Metoi matematici per l'economia Attività: La erivazione prima parte 1. Trova la penenza ella curva nel punto assegnato. P A. 0 1 C. 1 3 D. 3 4. In quale punto

Dettagli

Analisi matematica I. Sviluppi di Taylor e applicazioni. Sviluppi di Taylor. Operazioni sugli sviluppi di Taylor e applicazioni

Analisi matematica I. Sviluppi di Taylor e applicazioni. Sviluppi di Taylor. Operazioni sugli sviluppi di Taylor e applicazioni Analisi matematica I e applicazioni Operazioni sugli sviluppi di Taylor e applicazioni 2 2006 Politecnico di Torino 1 e applicazioni Formule di Taylor con resto di Peano: caso e n =0 n =1 Formule di Taylor

Dettagli

Derivate delle funzioni reali

Derivate delle funzioni reali Capitolo I0: Derivate elle funzioni reali Contenuti elle sezioni a Derivata p b Derivabilità e continuità, erivate i erivate p5 c Derivate i combinazioni lineari, prootti e quozienti i funzioni p7 Derivate

Dettagli

Equazioni Differenziali alle Derivate Parziali del primo ordine semilineari

Equazioni Differenziali alle Derivate Parziali del primo ordine semilineari Equazioni Differenziali alle Derivate Parziali el primo orine semilineari Analisi Matematica III C. Lattanzio B. Rubino 1 Teoria Per equazione ifferenziale alle erivate parziali el primo orine semilineare

Dettagli

CLASSE 5^ A LICEO SCIENTIFICO 27 Aprile 2017 Integrali

CLASSE 5^ A LICEO SCIENTIFICO 27 Aprile 2017 Integrali CSSE 5^ ICEO SCIENTIFICO 7 prile 7 Integrali Problema Data la funzione, con, : etermina i coefficienti,, in moo che il punto ; sia un massimo relativo e la retta 36 sia asintoto obliquo; B esegui lo stuio

Dettagli

Corso di Analisi Matematica Limiti di funzioni

Corso di Analisi Matematica Limiti di funzioni Corso di Analisi Matematica Limiti di funzioni Laurea in Informatica e Comunicazione Digitale A.A. 2013/2014 Università di Bari ICD (Bari) Analisi Matematica 1 / 39 1 Definizione di ite 2 Il calcolo dei

Dettagli

Funzione derivabile. La derivata.

Funzione derivabile. La derivata. Funzione derivabile. La derivata. Dati: f I R funzione; I R intervallo aperto ; x 0 I. Definizione (Derivata come limite del rapporto incrementale) Se esiste finito (cioè, non + o ) il limite del rapporto

Dettagli

Meccanica Applicata Alle Macchine. Elementi di Meccanica Teorica ed Applicata

Meccanica Applicata Alle Macchine. Elementi di Meccanica Teorica ed Applicata Meccanica Applicata Alle Macchine (Ingegneria Energetica) Elementi i Meccanica Teorica e Applicata (Scienze per l Ingegneria) Università egli Stui i oma La Sapienza Una traccia egli argomenti el Corso

Dettagli

Corso di Analisi Matematica. Calcolo differenziale

Corso di Analisi Matematica. Calcolo differenziale a.a. 2013/14 Laurea triennale in Informatica Corso di Analisi Matematica Calcolo differenziale Avvertenza Questi sono appunti informali delle lezioni, che vengono resi disponibili per comodità degli studenti.

Dettagli

Capitolo III : Calcolo differenziale

Capitolo III : Calcolo differenziale Liceo Lugano, 0-0 4B (Luca Rovelli) Capitolo III : Calcolo ifferenziale La tangente a una curva Ricora innanzitutto ce, se f : y = m + q è una funzione affine, il numero reale m rappresenta il coefficiente

Dettagli

M174sett.tex. 4a settimana Inizio 22/10/2007. Terzo limite fondamentale (sul libro, p. 113, è chiamato secondo ) lim x 1 x 0 x

M174sett.tex. 4a settimana Inizio 22/10/2007. Terzo limite fondamentale (sul libro, p. 113, è chiamato secondo ) lim x 1 x 0 x M74sett.te 4a settimana Inizio 22/0/2007 Terzo ite fondamentale (sul libro, p. 3, è chiamato secondo ) e 0 =. La tangente al grafico nel punto (0,0) risulta y = (vedremo poi perché). Ricordare che e è

Dettagli

Funzioni. iniettiva se x y = f (x) f (y) o, equivalentemente, f (x) = f (y) = x = y

Funzioni. iniettiva se x y = f (x) f (y) o, equivalentemente, f (x) = f (y) = x = y Funzioni. Dati due insiemi A e B (non necessariamente distinti) si chiama funzione da A a B una qualunque corrispondenza (formula, regola) che associa ad ogni elemento di A uno ed un solo elemento di B.

Dettagli

Osservazione: ogni informazione ricavata va inserita immediatamente nel grafico.

Osservazione: ogni informazione ricavata va inserita immediatamente nel grafico. 1. Dominio 2. Limiti => eventuali asintoti 3. Studio del segno (opzionale) Osservazione: ogni informazione ricavata va inserita immediatamente nel grafico. Se x x0 f(x) = ± x = x 0 asintoto verticale Se

Dettagli

Definizione (Derivata come limite del rapporto incrementale) Se esiste finito (cioè, non + o ) il limite del rapporto incrementale

Definizione (Derivata come limite del rapporto incrementale) Se esiste finito (cioè, non + o ) il limite del rapporto incrementale Funzione derivabile. La derivata. Dati: f I R funzione; I R intervallo aperto ; x 0 I. Definizione (Derivata come ite del rapporto incrementale) Se esiste finito (cioè, non + o ) il ite del rapporto incrementale

Dettagli

3. CALCOLO DIFFERENZIALE PER FUNZIONI DI UNA VARIABILE REALE.

3. CALCOLO DIFFERENZIALE PER FUNZIONI DI UNA VARIABILE REALE. 3. CALCOLO DIFFERENZIALE PER FUNZIONI DI UNA VARIABILE REALE. Molto spesso y = f(x) rappresenta l evoluzione di un fenomeno al passare del tempo x.se siamo interessati a sapere con che rapidità il fenomeno

Dettagli

Nicola De Rosa, Liceo scientifico scuole italiane all estero Europa sessione ordinaria 2012, matematicamente.it

Nicola De Rosa, Liceo scientifico scuole italiane all estero Europa sessione ordinaria 2012, matematicamente.it Nicola De Rosa, Liceo scientifico scuole italiane all estero Europa sessione orinaria, matematicamente.it PROBLEMA La funzione f è efinita e erivabile sull intervallo chiuso 7, e è f. Il grafico i y f

Dettagli

25 IL RAPPORTO INCREMENTALE - DERIVATE

25 IL RAPPORTO INCREMENTALE - DERIVATE 25 IL RAPPORTO INCREMENTALE - DERIVATE Definizione Sia f una funzione reale di variabile reale. Allora, dati x, y domf con x y, si definisce il rapporto incrementale di f tra x e y come P f (x, y = f(x

Dettagli

Esercitazioni del 18 marzo Calcolo della curvatura di un arco di curva regolare γ in R 3

Esercitazioni del 18 marzo Calcolo della curvatura di un arco di curva regolare γ in R 3 Esercitazioni el 18 marzo 2013 Calcolo ella curvatura i un arco i curva regolare γ in R 3 Consieriamo un arco i curva regolare γ, escritta analiticamente a una parametrizzazione α : I R 3, con I intervallo

Dettagli

ESERCIZIO n.9. B 7cm H 3cm. b 3cm d 1cm. c 2cm. d d d

ESERCIZIO n.9. B 7cm H 3cm. b 3cm d 1cm. c 2cm. d d d ESERCZO n.9 Data la sezione cava riportata in Figura, eterminare: a) gli assi principali centrali i inerzia; ) l ellisse principale centrale i inerzia; c) il nocciolo centrale i inerzia; ) i momenti i

Dettagli

Esercizi svolti di geometria delle aree Alibrandi U., Fuschi P., Pisano A., Sofi A. ESERCIZIO n.8

Esercizi svolti di geometria delle aree Alibrandi U., Fuschi P., Pisano A., Sofi A. ESERCIZIO n.8 ESERCZO n.8 Data la sezione riportata in Figura, eterminare: a) gli assi principali centrali i inerzia; ) l ellisse principale centrale i inerzia; c) il nocciolo centrale i inerzia. 8cm 1cm cm A#8 1 1.

Dettagli

Matematica e Statistica per Scienze Ambientali

Matematica e Statistica per Scienze Ambientali per Scienze Ambientali Derivate - Appunti 1 1 Dipartimento di Matematica Sapienza, Università di Roma Roma, Novembre 2013 Retta secante un grafico e rapporto incrementale Sia f una funzione e x 0 un punto

Dettagli

Corso di Analisi Matematica

Corso di Analisi Matematica Corso di Laurea in Ingegneria Edile Corso di DERIVATE Lucio Demeio Dipartimento di Ingegneria Industriale e delle Scienze Matematiche Secanti e tangenti Sia f : D R, sia I = [a, b] oppure I = (a, b),

Dettagli

DERIVATE DIREZIONALI ITERATE

DERIVATE DIREZIONALI ITERATE Analisi Matematica II, Anno Accaemico 206-207. Ingegneria Eile e Architettura Vincenzo M. Tortorelli FOGLIO DI TEORIA n. 0 SVILUPPI DI TAYLOR DERIVATE DIREZIONALI ITERATE Se v R è non nullo è efinito l

Dettagli

Politecnico di Milano Corso di Analisi e Geometria 1. Federico Lastaria

Politecnico di Milano Corso di Analisi e Geometria 1. Federico Lastaria Politecnico di Milano Corso di Analisi e Geometria 1 Federico Lastaria federico.lastaria@poi.it Limiti di derivate. Punti angolosi e di cuspide. Ottobre 2012 Indice 1 Limiti della derivata e punti di non

Dettagli

Esercitazione 9 - Funzioni

Esercitazione 9 - Funzioni Esercitazione 9 - Funzioni DEFINIZIONI DI BASE Dati due insiemi X e Y, si dice funzione f : X Y una legge che associa ad ogni elemento X uno ed un solo elemento = f() Y. L insieme X è il dominio della

Dettagli

Esercizi svolti di geometria delle aree Alibrandi U., Fuschi P., Pisano A., Sofi A. ESERCIZIO n.6

Esercizi svolti di geometria delle aree Alibrandi U., Fuschi P., Pisano A., Sofi A. ESERCIZIO n.6 ESERCZO n.6 Data la sezione riportata in Figura, eterminare: a) gli assi principali centrali i inerzia; b) l ellisse principale centrale i inerzia; c) il nocciolo centrale i inerzia. 6cm cm A#6 1 1. Determinazione

Dettagli

Istituzioni di Matematiche quarta parte

Istituzioni di Matematiche quarta parte Istituzioni di Matematiche quarta parte anno acc. 2012/2013 Univ. degli Studi di Milano Cristina Turrini (Univ. degli Studi di Milano) Istituzioni di Matematiche 1 / 22 index Derivate 1 Derivate 2 Teoremi

Dettagli

Appunti di Matematica 5 - Derivate - Derivate. Considero una funzione e sia e definita in un intorno completo di.

Appunti di Matematica 5 - Derivate - Derivate. Considero una funzione e sia e definita in un intorno completo di. Derivate Definizione di derivata di f(x) in x D o f Considero una funzione e sia e definita in un intorno completo di. Consideriamo il rapporto (detto rapporto incrementale ) È evidente che il rapporto

Dettagli

METODI MATEMATICI DELLA FISICA A.A. 2005/2006 Prof. C. Presilla. Prova in itinere 2 marzo 2006

METODI MATEMATICI DELLA FISICA A.A. 2005/2006 Prof. C. Presilla. Prova in itinere 2 marzo 2006 METODI MATEMATICI DELLA FISICA A.A. 005/006 Prof. C. Presilla Prova in itinere marzo 006 Cognome Nome penalità esercizio voto 3 4 5 6 Determinare e graficare il luogo ei punti z el piano comp- Esercizio

Dettagli

Derivazione. Lorenzo Pareschi. Dipartimento di Matematica & Facoltá di Architettura Universitá di Ferrara

Derivazione. Lorenzo Pareschi. Dipartimento di Matematica & Facoltá di Architettura Universitá di Ferrara Derivazione Lorenzo Pareschi Dipartimento di Matematica & Facoltá di Architettura Universitá di Ferrara http://utenti.unife.it/lorenzo.pareschi/ lorenzo.pareschi@unife.it Lorenzo Pareschi (Univ. Ferrara)

Dettagli

E sem pi di E serci zi e Qui z d E sam e

E sem pi di E serci zi e Qui z d E sam e E sem pi i E serci zi e Qui z E sam e Eser cit azion i i Cont r olli Au t om at ici Quiz. Il segnale x(t), antitrasformata i Laplace i X(s) = s(s+a) : è nullo per t=0 [x(0) = 0]; ha erivata nulla per t=0

Dettagli

Argomento 6: Derivate Esercizi. I Parte - Derivate

Argomento 6: Derivate Esercizi. I Parte - Derivate 6: Derivate Esercizi I Parte - Derivate E. 6.1 Calcolare le derivate delle seguenti funzioni: 1) log 5 3 + cos ) + 3 + 4 + 3 3) 5 tan 4) ( + 3e ) sin 5) arctan( + 1) 6) log 7) 10) + + 3 8) 3 3 1 + 16 11)

Dettagli

ESERCIZIO n.10. H 6cm d 2cm. d d d

ESERCIZIO n.10. H 6cm d 2cm. d d d ESERCZO n.1 Data la sezione riportata in Figura, eterminare: a) gli assi principali centrali i inerzia; b) l ellisse principale centrale i inerzia; c) il nocciolo centrale i inerzia; ) i momenti i inerzia

Dettagli

Corso di Analisi Matematica Calcolo differenziale per funzioni di una variabile

Corso di Analisi Matematica Calcolo differenziale per funzioni di una variabile Corso di Analisi Matematica Calcolo differenziale per funzioni di una variabile Laurea in Informatica e Comunicazione Digitale A.A. 2013/2014 Università di Bari ICD (Bari) Analisi Matematica 1 / 41 1 Derivata

Dettagli

Esercizi con soluzioni dell esercitazione del 31/10/17

Esercizi con soluzioni dell esercitazione del 31/10/17 Esercizi con soluzioni dell esercitazione del 3/0/7 Esercizi. Risolvere graficamente la disequazione 2 x 2 2 cos(πx). 2. Determinare l insieme di definizione della funzione arcsin(exp( x 2 )). 3. Trovare

Dettagli

rapporto tra l'incremento della funzione e l' incremento corrispondente della

rapporto tra l'incremento della funzione e l' incremento corrispondente della DERIVATA Sia y f() una funzione reale definita in un intorno di. Si consideri un incremento (positivo o negativo) di : h; la funzione passerà allora dal valore f( ) a quello di f( +h), subendo così un

Dettagli

FUNZIONI. y Y. Def. L insieme Y è detto codominio di f. Es. Siano X = R, Y = R e f : x y = 1 x associo il suo inverso). (ad un numero reale

FUNZIONI. y Y. Def. L insieme Y è detto codominio di f. Es. Siano X = R, Y = R e f : x y = 1 x associo il suo inverso). (ad un numero reale FUNZIONI Siano X e Y due insiemi. Def. Una funzione f definita in X a valori in Y è una corrispondenza (una legge) che associa ad ogni elemento X al più un elemento in Y. X Y Def. L insieme Y è detto codominio

Dettagli

La derivata. variabile indipendente x. Definiamo f := f(x) f(x 0 ) l incremento (positivo o negativo) della variabile dipendente.

La derivata. variabile indipendente x. Definiamo f := f(x) f(x 0 ) l incremento (positivo o negativo) della variabile dipendente. La derivata Sia f : domf R R; sia x 0 domf, f sia definita in I r (x 0 ) e sia x I r (x 0 ). ments Definiamo x := x x 0 l incremento (positivo o negativo) della f(x 0 ) + x + x) variabile indipendente

Dettagli

FUNZIONI. y Y. Def. L insieme Y è detto codominio di f. Es. Siano X = R, Y = R e f : x y = 1 x associo il suo inverso). (ad un numero reale

FUNZIONI. y Y. Def. L insieme Y è detto codominio di f. Es. Siano X = R, Y = R e f : x y = 1 x associo il suo inverso). (ad un numero reale FUNZIONI Siano X e Y due insiemi. Def. Una funzione f definita in X a valori in Y è una corrispondenza (una legge) che associa ad ogni elemento X al piú un elemento in Y. X Y Def. L insieme Y è detto codominio

Dettagli

ESERCIZIO n.10. H 6cm d 2cm. d d d

ESERCIZIO n.10. H 6cm d 2cm. d d d Esercizi svolti i geometria elle aree Alibrani U., Fuschi P., Pisano A., Sofi A. ESERCZO n.1 Data la sezione riportata in Figura, eterminare: a) gli assi principali centrali i inerzia; b) l ellisse principale

Dettagli

Complementi di Analisi Matematica e Statistica 04/07/ Testo e Soluzioni

Complementi di Analisi Matematica e Statistica 04/07/ Testo e Soluzioni Complementi i Analisi Matematica e Statistica 04/07/016 - Testo e Soluzioni Parte A 1. Esercizio A1: Dati α, β, Si consieri la seguente serie i potenze: e αn n + 1 ( β)n. eterminare il raggio i convergenza

Dettagli

Laurea in Informatica Corso di Analisi Matematica Calcolo differenziale per funzioni di una variabile

Laurea in Informatica Corso di Analisi Matematica Calcolo differenziale per funzioni di una variabile Laurea in Informatica Corso di Analisi Matematica Calcolo differenziale per funzioni di una variabile Docente: Anna Valeria Germinario Università di Bari A.V.Germinario (Università di Bari) Analisi Matematica

Dettagli

21 IL RAPPORTO INCREMENTALE - DERIVATE

21 IL RAPPORTO INCREMENTALE - DERIVATE 21 IL RAPPORTO INCREMENTALE - DERIVATE Definizione Sia f una funzione reale di variabile reale. Allora, dati x, y domf con x y, si definisce il rapporto incrementale di f tra x e y come P f (x, y = f(x

Dettagli

Programma svolto a.s. 2018/2019 Classe 1H Materia: Matematica Docente: De Rossi Francesco

Programma svolto a.s. 2018/2019 Classe 1H Materia: Matematica Docente: De Rossi Francesco Programma svolto a.s. 2018/2019 Classe 1H Materia: Matematica Docente: De Rossi Francesco - Matematica multimediale. bianco Vol 1 Autori: M. Bergamini, G. Barozzi Casa Editrice: Zanichelli codice ISBN

Dettagli

Regole di derivazione Ulteriori concetti Teorema di Fermat Monotonia e punti di estremo Convessità e punti di flesso Teorema di de l Hôpital

Regole di derivazione Ulteriori concetti Teorema di Fermat Monotonia e punti di estremo Convessità e punti di flesso Teorema di de l Hôpital Calcolo dierenziale Regole di derivazione Ulteriori concetti Teorema di Fermat Monotonia e punti di estremo Convessità e punti di lesso Teorema di de l Hôpital 2 2006 Politecnico di Torino 1 Calcolo dierenziale

Dettagli

Esperimentazioni di Fisica 1. Prova d esame del 22 gennaio 2019 SOLUZIONI

Esperimentazioni di Fisica 1. Prova d esame del 22 gennaio 2019 SOLUZIONI Esperimentazioni i Fisica 1 Prova esame el 22 gennaio 2019 SOLUZIONI Esp-1-Soluzioni - - Page 2 of 7 22/06/2018 1. (12 Punti) Quesito. Una misura ell accelerazione i gravità in un certo luogo è eseguita

Dettagli

Esercizi su Derivate parziali, differenziabilità e piani tangenti

Esercizi su Derivate parziali, differenziabilità e piani tangenti Esercizi su Derivate parziali, ifferenziabilità e piani tangenti 1. Per le funzioni che seguono, eterminare il graiente ella funzione ata nel punto inicato e l equazione el piano tangente al grafico ella

Dettagli

1) Applicando la definizione di derivata, calcolare la derivata in x = 0 delle funzioni: c) x + 1 d)x sin x.

1) Applicando la definizione di derivata, calcolare la derivata in x = 0 delle funzioni: c) x + 1 d)x sin x. Funzioni derivabili Esercizi svolti 1) Applicando la definizione di derivata, calcolare la derivata in x = 0 delle funzioni: a)2x 5 b) x 3 x 4 c) x + 1 d)x sin x. 2) Scrivere l equazione della retta tangente

Dettagli

y retta tangente retta secante y = f(x)

y retta tangente retta secante y = f(x) Retta tangente f(x ) 1 y P 1 retta secante y = f(x) y retta tangente y = f(x) f(x ) 0 P 0 f(x ) 0 P 0 O x 0 x 1 x quando P tende a P 0 1 O x 0 x Consideriamo una funzione continua f. Siano P 0 = (x 0,

Dettagli

Istituto Tecnico Nautico San Giorgio - Genova - Anno scolastico PROGRAMMA SVOLTO DI MATEMATICA

Istituto Tecnico Nautico San Giorgio - Genova - Anno scolastico PROGRAMMA SVOLTO DI MATEMATICA Classe: 1 a C Libro di testo: Bergamini Trifone Barozzi Matematica verde vol. 1 ed. Zanichelli Insiemi Definizione di insieme, rappresentazione grafica, tabulare, caratteristica di un insieme Gli insiemi

Dettagli

( ) ( ) DERIVATE. $ ed è finito lim

( ) ( ) DERIVATE. $ ed è finito lim DERIVATE La derivata di una unzione in un punto c, quando esiste, rappresenta il coeiciente angolare della retta tangente al graico della unzione nel suo punto di ascissa c: ( c) = D ( c) = m tg = tanα,

Dettagli

Derivate. Def. Sia f una funzione reale di variabile reale. Allora, dati x, y domf con x y, si definisce il rapporto incrementale di f tra x e y come

Derivate. Def. Sia f una funzione reale di variabile reale. Allora, dati x, y domf con x y, si definisce il rapporto incrementale di f tra x e y come Lezioni 21-22 72 Derivate Def. Sia f una funzione reale di variabile reale. Allora, dati x, y domf con x y, si definisce il rapporto incrementale di f tra x e y come P f (x, y) = f(x) f(y). x y OSSERVAZIONI:

Dettagli

Matematica I, Derivate e operazioni algebriche.

Matematica I, Derivate e operazioni algebriche. Matematica I, 6.0.202 Derivate e operazioni algebriche.. Prima di iniziare questa lezione, conviene rendere espliciti due fatti che sono impliciti nella definizione informale di derivata, banalmente verificabili

Dettagli

Si considera un corpo solido a forma di parallelepipedo, di spessore d [m] e facce maggiori con superficie S [m 2 ], tale che sia T 1

Si considera un corpo solido a forma di parallelepipedo, di spessore d [m] e facce maggiori con superficie S [m 2 ], tale che sia T 1 I sistemi termici La resistenza termica Se ue corpi aventi temperature iverse vengono messi a contatto, si ha un passaggio i quantità i calore al corpo a temperatura maggiore verso quello a temperatura

Dettagli

1) D0MINIO FUNZIONE. Determinare il dominio della funzione f (x) = 4 x 2 4x + 3 x 2 6x + 8 Deve essere. x 2 6x + 5 (x 1) (x 5)

1) D0MINIO FUNZIONE. Determinare il dominio della funzione f (x) = 4 x 2 4x + 3 x 2 6x + 8 Deve essere. x 2 6x + 5 (x 1) (x 5) ) DMINIO FUNZIONE Determinare il dominio della funzione f (x) = x x + x x + 8 x x + (x ) (x ) Deve essere = quindi x (, ] (, ] (, + ). x x + 8 (x ) (x ) Determinare il dominio della funzione f (x) = x

Dettagli

La derivata di una funzione in un punto

La derivata di una funzione in un punto La derivata di una unzione in un punto Il concetto di derivata di una unzione in un punto è strettamente associato a diversi siniicati:. ite del rapporto incrementale. coeiciente anolare della retta tanente

Dettagli

Analisi Matematica (A L) Polinomi e serie di Taylor

Analisi Matematica (A L) Polinomi e serie di Taylor a.a. 2015/2016 Laurea triennale in Informatica Analisi Matematica (A L) Polinomi e serie di Taylor Nota: questo file differisce da quello proiettato in aula per la sola impaginazione. Polinomio di Taylor

Dettagli

Derivate. Hynek Kovarik. Analisi A. Università di Brescia. Hynek Kovarik (Università di Brescia) Derivate Analisi A 1 / 33

Derivate. Hynek Kovarik. Analisi A. Università di Brescia. Hynek Kovarik (Università di Brescia) Derivate Analisi A 1 / 33 Derivate Hynek Kovarik Università di Brescia Analisi A Hynek Kovarik (Università di Brescia) Derivate Analisi A 1 / 33 Definizione: rapporto incrementale Sia f : domf R R. Dati x 1, x 2 domf con x 1 x

Dettagli

MATEMATICA MATEMATICA FINANZIARIA

MATEMATICA MATEMATICA FINANZIARIA MATEMATICA e MATEMATICA FINANZIARIA a.a. 7-8 Corso di laurea in Economia Aziendale Fascicolo n. Limite di funzioni e applicazioni. Limite di una funzione Funzioni continue Calcolo dei iti Asintoti Prof.ssa

Dettagli

Analisi Matematica I per Ingegneria Gestionale, a.a Scritto del sesto appello, 16 luglio 2018 Testi 1

Analisi Matematica I per Ingegneria Gestionale, a.a Scritto del sesto appello, 16 luglio 2018 Testi 1 Scritto del sesto appello, 6 luglio 208 Testi Prima parte, gruppo.. Trovare α [0, 2π) per cui vale l identità trigonometrica sin(x π/3) = cos(x + α). 2. Trovare il polinomio di Taylor (in 0) di ordine

Dettagli

Soluzioni degli Esercizi per il Corso di Istituzioni di Matematica. x2 1 x x + 7 ; d) f (x) =

Soluzioni degli Esercizi per il Corso di Istituzioni di Matematica. x2 1 x x + 7 ; d) f (x) = Soluzioni degli Esercizi per il Corso di Istituzioni di Matematica 1 La retta tangente al grafico di f nel punto ( 0, f( 0 ha equazione y = f( 0 + f ( 0 ( 0. a y = 2; b y = log 2 (e( 1; c y = 1 2 + 1 4

Dettagli

Equazione della retta tangente al grafico di una funzione

Equazione della retta tangente al grafico di una funzione Equazione della retta tangente al grafico di una funzione Abbiamo già visto che in un sistema di assi cartesiani ortogonali, è possibile determinare l equazione di una retta r non parallela agli assi coordinati,

Dettagli

Analisi vettoriale. Gradiente di una funzione

Analisi vettoriale. Gradiente di una funzione Graiente i una funzione Data la funzione scalare f(, ) f( P) f f seguente relazione vettoriale: gra f = f = i j + Per una funzione f( P) f( z,, ) = abbiamo: Per una funzione a n variabili f ( P) f ( )

Dettagli

Esercizi proposti di Fondamenti di Automatica - Parte 2

Esercizi proposti di Fondamenti di Automatica - Parte 2 Esercizi proposti i Fonamenti i Automatica - Parte Febbraio 5 Es. Dimostrare che le matrici A, a elementi reali, e A D, a elementi complessi, sono simili. α ω α + ω A, A ω α D α ω Es. Calcolare e A t e

Dettagli

x 3 2x 2 + 6x x 4 3x = lim x(6 2x + x 2 ) x( 3 + x 3 ) (6 2x + x 2 ) ( 3 + x 3 ) = lim = 2

x 3 2x 2 + 6x x 4 3x = lim x(6 2x + x 2 ) x( 3 + x 3 ) (6 2x + x 2 ) ( 3 + x 3 ) = lim = 2 Calcolo di forme indeterminate del tipo 0/0 Quando si deve calcolare il limite di rapporto di funzioni infintesime per x 0, si raccoglie la potenza di x al minimo esponente. Es. lim x 0 x 3 2x 2 + 6x x

Dettagli

Corso di Laurea in Informatica Applicata Esame di Analisi Matematica Prova scritta del 10 gennaio 2007

Corso di Laurea in Informatica Applicata Esame di Analisi Matematica Prova scritta del 10 gennaio 2007 Corso di Laurea in Informatica Applicata Esame di Analisi Matematica Prova scritta del 0 gennaio 007 Primo esercizio. È assegnato il numero complesso z = + i. (a) Posto z = + i, determinare la forma trigonometrica

Dettagli

Gli insiemi, la logica

Gli insiemi, la logica Gli insiemi, la logica 1 Dato l insieme A = {x N : x < 5}, quale delle seguenti affermazioni è falsa: (a) 1 A (b) 5 / A (c) A (d) A risp (e) {1, } A Sono dati gli insiemi A = {, 5, 7, 9} e B = {5, 7} Quali

Dettagli

Limiti di funzioni 1 / 41

Limiti di funzioni 1 / 41 Limiti di funzioni 1 / 41 Comportamento agli estremi: operazione di ite 2 / 41 Sia f (x) una funzione definita su R e supponiamo di voler studiare l andamento della funzione agli estremi del dominio: x

Dettagli

Limiti. Limite di una funzione per x che tende a +,.

Limiti. Limite di una funzione per x che tende a +,. Limiti. Limite di una funzione per che tende a +,. Semiintorni. Fissati su una retta un primo ed un diverso secondo punto, consideriamo l identificazione sopra descritta dei numeri reali con punti sulla

Dettagli

Argomento 4. Calcolo dei limiti II: forme indeterminate

Argomento 4. Calcolo dei limiti II: forme indeterminate Argomento 4 Calcolo dei iti II: forme indeterminate Confronto tra infiniti (forme indeterminate e ) Definizione 4 Una funzione f si dice un infinito per x P se =+ o Date le funzioni f e g, infiniti per

Dettagli

Sistemi di due equazioni differenziali del primo ordine a coefficienti costanti

Sistemi di due equazioni differenziali del primo ordine a coefficienti costanti Sistemi i ue equazioni ifferenziali el primo orine a coefficienti costanti Enrico Schlesinger In questo paragrafo si risolve il sistema i equazioni ifferenziali x ax + by () y cx + y ove x e y sono ue

Dettagli

Lezione 4 (8/10/2014)

Lezione 4 (8/10/2014) Lezione 4 (8/10/2014) Esercizi svolti a lezione Nota 1. Teorema del valore intermedio: Se la funzione f(x) è continua in [a,b] e si a: f(a) < k (f(a) > k), f(b) > k (f(b) < k) allora esiste almeno un punto

Dettagli

Calcolo differenziale

Calcolo differenziale Calcolo ifferenziale 5 5.1 Derivate In molte situazioni, più ce il valore effettivo i una quantità conta quanto velocemente varia; ci interessa stuiare la variazione i quella quantità nel tempo (o in funzione

Dettagli

Retta Tangente. y retta tangente. retta secante y = f(x) f(x )

Retta Tangente. y retta tangente. retta secante y = f(x) f(x ) Retta Tangente f(x ) 1 y P 1 retta secante y = f(x) y retta tangente y = f(x) f(x ) 0 P 0 f(x ) 0 P 0 O x 0 x 1 x quando P tende a P 0 1 O x 0 x Consideriamo una funzione continua f. Siano P 0 = (x 0,

Dettagli