11. Equazioni quasilineari del primo ordine

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "11. Equazioni quasilineari del primo ordine"

Transcript

1 11. Equazioni quasilineari el primo orine Una equazione quasilineare el primo orine in ue variabili è una espressione el tipo (1) a(x, y, u)u x + b(x, y, u)u y = c(x, y, u) ove x e y variano in un aperto A R 2 e i coefficienti a, b, c sono funzioni regolari el loro argomento. Se introuciamo il vettore (vettore caratteristico) v = (a, b, c) è chiaro che la relazione preceente si può scrivere come v (u x, u y, 1) = 0. Poichè il vettore (u x, u y, 1) rappresenta la irezione normale alla superficie S grafico ella funzione u = u(x, y), possiamo ire che u è soluzione ella (1), se e solo se il vettore caratteristico è contenuto nel piano tangente alla superficie grafico. Per questo motivo iciamo che S = graf(u) è una superficie integrale per la (1). Se riferiamo le linee caratteristiche (ossia le linee la cui tangente in ogni punto coincie con la irezione el vettore caratteristico) al parametro t, esse sono efinite al sistema i equazioni ifferenziali el primo orine in forma normale x = a(x, y, z) y (2) = b(x, y, z) z = c(x, y, z) Osserviamo che la soluzione i questo sistema ifferenziale ipene a tre costanti arbitrarie e in generale, unque, riempe lo spazio. Inoltre vale il seguente risultato, i cui omettiamo la semplice imostrazione. Proposizione 1. - Sia S una superficie integrale per la (1). Se una linea caratteristica λ ha in comune con S un punto P 0 (x 0, y 0, z 0 ) la caratteristica meesima giace interamente su S. Questo ci ice che una superficie integrale S è costituita a una semplice infinità i linee caratteristiche, le quali, per il teorema i esistenza e unicità el sistema (2), goono chiaramente elle seguenti proprietà: a) ue linee caratteristiche non hanno punti in comune; b) per un punto arbitrario i S passa una e una sola caratteristica. Tutto questo ci permette i risolvere rapiamente, con semplici consierazioni i carattere geometrico, il problema i Cauchy per la (1), che consiste nell inicare una linea L i equazioni parametriche x = f(s) y = g(s) z = h(s) 11.1

2 che sia contenuta nella superficie S. In altri termini, cerchiamo una funzione z = u(x, y) tale che h(s) = u(f(s), g(s)). Frequentemente la variabile y assume il significato i variabile temporale; in tal caso si parla anche i problema ai valori iniziali e si assegna, allora, u(x, 0) = h(x), che equivale, nella notazione preceente, a porre x = s y = 0 z = h(s). Geometricamente questo significa che la linea L è assegnata nel piano xz. che Assumiamo, unque, che le funzioni f, g, h siano i classe C 1 nell intervallo [0, 1] e (3) f (s) 2 + g (s) 2 > 0 s [0, 1]. Geometricamente questo equivale a richieere che siano regolari sia la linea L sia la sua proiezione L 0 sul piano xy. Inoltre la (3) equivale a supporre che in nessun punto ella L la tangente sia parallela all asse elle z e questo riflette la conizione che in nessun punto i L il piano tangente è parallelo all asse elle z (in tal caso, infatti, u x e u y non potrebbero essere continue). Richieiamo, inoltre, che le funzioni a, b, c siano i classe C 1 in un aperto Ω R 3 che contiene la curva L. Noi cerchiamo, unque, una funzione z = u(x, y) che sia una soluzione locale el Problema i Cauchy per la (1), ossia che sia efinita in un intorno ella L. Per quanto etto sopra, la soluzione è ata alla soluzione el seguente Problema i Cauchy (4) x(t, s) = a(x(t, s), y(t, s), z(t, s)), y(t, s) = b(x(t, s), y(t, s), z(t, s)), z(t, s) = c(x(t, s), y(t, s), z(t, s)), x(0, s) = f(s) y(0, s) = g(s) z(0, s) = h(s). Osserviamo innanzi tutto che la (4) efinisce effettivamente una superficie regolare se il vettore P t P s non si annulla mai nell insieme i efinizione elle variabili s e t. Questa conizione equivale a affermare che in ogni punto il piano tangente è ben efinito. Analiticamente abbiamo i j k x t y t z t x s y s z s 0 y t y s z t z s i + z t z s x t x s 11.2 j + x t x s y t y s k 0.

3 Tuttavia, se vogliamo mettere la nostra superficie nella forma z = u(x, y), una conizione sufficiente fornita al Teorema i Dini garantisce che basta assumere (5) x t(0, s) y t (0, s) x s (0, s) y s (0, s) 0 s [0, 1]. Dal momento che le x e y sono i classe C 1, per il Teorema ella permanenza el segno la conizione (5) garantisce che ci si può porre nella forma z = u(x, y) in tutto un intorno ella linea L. Teneno conto ella (4), la (5) si riscrive come (6) a(f(s), g(s), h(s)) b(f(s), g(s), h(s)) f (s) g (s) 0 s [0, 1]. Geometricamente la (6) esprime il fatto che la proiezione L 0 ella linea L sul piano xy e la proiezione v 0 el vettore caratteristico sullo stesso piano non evono essere mutualmente tangenti. Ritroviamo, unque, anche in questo contesto la conizione già vista per le equazioni ifferenziali alle erivate parziali el secono orine, per cui le linee che portano i ati non evono essere tangenti in alcun punto alle linee caratteristiche. Osserviamo che la (6) è i importanza assolutamente fonamentale: nel caso non valga, infatti, non è possibile garantire l esistenza e/o l unicità ella soluzione per il Problema i Cauchy per la (1). Se abbiamo a che fare con una equazione lineare a(x, y)u x + b(x, y)u y = c(x, y)u + (x, y) si ripete pari pari tutto il iscorso preceente, teneno conto che le linee caratteristiche risolvono x(t, s) = a(x(t, s), y(t, s)), x(0, s) = f(s) (7) y(t, s) = b(x(t, s), y(t, s)), y(0, s) = g(s) z(t, s) = c(x(t, s), y(t, s))z(t, s) + (x(t, s), y(t, s)), z(0, s) = h(s). Quanto fatto finora, unque, prova l esistenza ella soluzione. La sua unicità segue al fatto che ogni altra superficie integrale passante per L ovrebbe contenere le caratteristiche che intersecano L e quini forzatamente coincie con quanto testè trovato. Sinteticamente, unque, abbiamo imostrato il seguente Teorema 1. - Supponiamo che f, g, h siano funzioni i classe C 1 nell intervallo [0, 1] e soisfino f (s) 2 + g (s) 2 > 0 per ogni s [0, 1]. Supponiamo, inoltre, che a, b, c siano funzioni i classe C 1 in un aperto Ω R 3 che contiene la linea L parametrizzata a f, g e h. Supponiamo, inoltre, che per ogni s [0, 1] risulti g (s)a(f(s), g(s), h(s)) f (s)b(f(s), g(s), h(s))

4 Allora esiste unica in un intorno ella linea L la soluzione el Problema i Cauchy per la (1) assegnato lungo la stessa L. Osservazione 1. - È chiaro che l intervallo [0, 1] richiesto per la s può equivalentemente essere sostituito a qualunque altro intervallo chiuso e limitato. Inoltre quanto fatto qui per il caso elle ue variabili può essere generalizzato a un numero arbitrario i variabili. Osservazione 2. - Il metoo consierato (ovuto originariamente a Cauchy) fornisce una soluzione locale el Problema i Cauchy per la (1), ossia la superficie integrale S è efinita solo in un intorno ella L. Ci si potrebbe chieere se questo sia solo un limite erivante al metoo utilizzato o se esprima, invece, una situazione più generale. Come mostreremo nel prossimo esempio, è facile renersi conto che si tratta i una conseguenza iretta e ineliminabile ella non linearità ell equazione. Esempio. - Consieriamo l equazione quasi lineare (8) uu x + u y = 0 nota come equazione i Burgers. Se interpretiamo la variabile y come tempo, si tratta i un esempio monoimensionale molto semplice i legge i conservazione: si può porre, infatti, nella forma ( ) u 2 u y + = 0 2 che è appunto tipica per le leggi i conservazione. Se, inoltre, leggiamo x come la variabile spaziale i un problema monoimensionale e u(x, y) come un campo i velocità lungo l asse x (ossia u = x y ), osserviamo che possiamo riscrivere y u(x(y), y) = u x x + u y = uu x + u y = 0 e quini ogni particella si muove con velocità costante, al momento che l accelerazione è nulla. Detto in altri termini, u è costante lungo le linee x = x(y) proiezioni elle caratteristiche nel piano xy. Se h(x) = u(x, 0) escrive la istribuzione iniziale i velocità, la soluzione el Problema i Cauchy per la (8) è ata a x(t, s) = z(t, s), x(0, s) = s y(t, s) = 1, y(0, s) = 0 z(t, s) = 0, z(0, s) = h(s) a cui traiamo x = s + zt x y = t z = h(s) 11.4

5 che fornisce la soluzione in forma implicita u = h(x uy). Come icevamo sopra, la funzione u ha il valore costante u = h(s) lungo la proiezione C s ella caratteristica nel piano xy che passa per il punto (0, s) e che ha equazione (9) x = s + h(s)y Fisicamente la (9) rappresenta la legge oraria i una particella che all istante y = 0 occupa la posizione x 0 = s. Due iverse caratteristiche C s1 e C s2 si intersecano nel punto (x, y) ato alla soluzione el sistema { x = s1 + h(s 1 )y a cui in particolare si ricava x = s 2 + h(s 2 )y (10) ȳ = s 2 s 1 h(s 2 ) h(s 1 ). Dal momento che siamo interessati alla soluzione per y > 0, qualora h sia una funzione crescente, il valore fornito alla (10) è negativo e non crea alcun problema. Nel caso, invece, h sia ecrescente, allora la (10) inica l esistenza i un valore i y per cui la u iviene singolare. Questo è eviente a un punto i vista analitico, perchè in ȳ si intersecano ue rette lungo le quali u assume ue valori istinti. Fisicamente questo corrispone al fatto che una particella più veloce collie con una più lenta che le sta avanti. Possiamo rappresentare questo fenomeno graficamente. Grafico i h(x) 1 x y y=1 A B C 1 x 11.5

6 Se consieriamo la regione 0 t 1, in A le proiezioni elle caratteristiche hanno tutte penenza 1 e lungo i esse la funzione u vale 1; in C le proiezioni hanno penenza infinita e la soluzione vale costantemente 0; in B osserviamo che gli intervalli in x nei quali u ecresce a 1 a 0 si fanno sempre più piccoli al crescere i t fino a che nel punto (1, 1) una soluzione continua non può più esistere. Possiamo rappresentare la u a istanti successivi, per cogliere ancor meglio la natura el fenomeno. t 1 t t 3 t =1 1 1 La natura ella singolarità è ancora più chiara se seguiamo i valori ella erivata u x (x, y) lungo la (9). Da u = h(x uy) otteniamo u x = h (x uy)(1 u x y) e teneno conto che ci muoviamo lungo la caratteristica ricaviamo u x = h (s) 1 + h (s). Se, unque, il ato iniziale è ecrescente (h (s) < 0), u x esploe per y = 1 h (s) il cui valore minimo corrispone al valore s = s 0 in cui h ha un minimo. Possiamo, perciò concluere che al tempo T = 1 h (s 0 la soluzione mostra il cosietto blow up e non possono più esistere ) soluzioni i classe C 1 oltre T. Questo conferma l esistenza puramente locale (in tempo) ella soluzione (problema che ha motivato l introuzione i questo esempio). D altro canto, poichè in natura esistono fenomeni iscontinui che presentano la permanenza i singolarità el tipo ora incontrato, l esempio mostra la necessità i introurre un nuovo concetto i soluzione, che permetta i affrontare aeguatamente il problema. Tutto ciò, peraltro, esce ai limiti el corso. Osserviamo infine che il comportamento ora osservato può essere generalizzato al caso i equazioni el tipo u y + a(u)u x = 0 pressochè con il meesimo tipo i conclusioni. 11.6

Equazioni Differenziali alle Derivate Parziali del primo ordine semilineari

Equazioni Differenziali alle Derivate Parziali del primo ordine semilineari Equazioni Differenziali alle Derivate Parziali el primo orine semilineari Analisi Matematica III C. Lattanzio B. Rubino 1 Teoria Per equazione ifferenziale alle erivate parziali el primo orine semilineare

Dettagli

= x + x 0 2x 0 per x x 0,

= x + x 0 2x 0 per x x 0, Lezione el 17 ottobre. Derivate 1. Derivata i una funzione in un punto Definizione 1 Sia f una funzione efinita in un intorno I i un punto x 0. Per ciascun x I con x = x 0 consieriamo: l incremento a x

Dettagli

Sistemi di due equazioni differenziali del primo ordine a coefficienti costanti

Sistemi di due equazioni differenziali del primo ordine a coefficienti costanti Sistemi i ue equazioni ifferenziali el primo orine a coefficienti costanti Enrico Schlesinger In questo paragrafo si risolve il sistema i equazioni ifferenziali x ax + by () y cx + y ove x e y sono ue

Dettagli

Una volgare introduzione alle EDO

Una volgare introduzione alle EDO Una volgare introuzione alle EDO Tiziano Penati 1 Primitive Abbiamo già incontrato un esempio semplice i equazioni ifferenziali orinarie (EDO): il calcolo i primitive. Vale la pena infatti i ricorare che

Dettagli

Nozioni elementari di calcolo differenziale e integrale

Nozioni elementari di calcolo differenziale e integrale Nozioni elementari i calcolo ifferenziale e integrale DIPARTIMENTO DI FISICA E INFN UNIVERSITÀ DEL SALENTO a.a. 013/014 L. Renna - Dipartimento i Fisica 1 Sommario 1 Funzioni... 3 Derivate... 4 3 Integrali...

Dettagli

ESERCITAZIONE DELL 11 DICEMBRE 2008 SOLUZIONI Corso di Matematica I per Geologia. dx dx dx sin x = (sin x)2 + (cos x) 2. (1)

ESERCITAZIONE DELL 11 DICEMBRE 2008 SOLUZIONI Corso di Matematica I per Geologia. dx dx dx sin x = (sin x)2 + (cos x) 2. (1) ESERCITAZIONE DELL DICEMBRE 008 SOLUZIONI Corso i Matematica I per Geologia A. Calcolare le erivate elle seguenti funzioni:. sin cos, sin 3, e sin 3 4 cos 3; +. log, log, arctan. Soluzioni.. Prima erivata.

Dettagli

Lezione XII Analisi Formale

Lezione XII Analisi Formale SCENZA DE MATERAL Chimica Fisica Lezione X Analisi Formale Dr. Fabio Mavelli Dipartimento i Chimica Università egli Stui i Bari Analisi Cinetica Fenomenologica Analisi Cinetica Fenomenologica Meccanismo

Dettagli

Esercitazioni del 18 marzo Calcolo della curvatura di un arco di curva regolare γ in R 3

Esercitazioni del 18 marzo Calcolo della curvatura di un arco di curva regolare γ in R 3 Esercitazioni el 18 marzo 2013 Calcolo ella curvatura i un arco i curva regolare γ in R 3 Consieriamo un arco i curva regolare γ, escritta analiticamente a una parametrizzazione α : I R 3, con I intervallo

Dettagli

5 DERIVATA. 5.1 Continuità

5 DERIVATA. 5.1 Continuità 5 DERIVATA 5. Continuità Definizione 5. Sia < a < b < +, f : (a, b) R e c (a, b). Diciamo che f è continua in c se sono verificate le ue conizioni: (i) c esiste (ii) = f(c) c Si osservi che nella efinizione

Dettagli

12. Teoria qualitativa

12. Teoria qualitativa 12. Teoria qualitativa Si esaminano le conizioni i regolarità per un campo vettoriale, che garantiscono esistenza e unicità ella soluzione per l equazione ifferenziale associata. La conizione i Lipschitz,

Dettagli

E sem pi di E serci zi e Qui z d E sam e

E sem pi di E serci zi e Qui z d E sam e E sem pi i E serci zi e Qui z E sam e Eser cit azion i i Cont r olli Au t om at ici Quiz. Il segnale x(t), antitrasformata i Laplace i X(s) = s(s+a) : è nullo per t=0 [x(0) = 0]; ha erivata nulla per t=0

Dettagli

Curve in R n. Curve parametrizzate.

Curve in R n. Curve parametrizzate. Curve in R n Generalmente ci sono ue moi per escrivere una curva in R n, ovvero è possibile scrivere un equazione parametrica o un equazione cartesiana. Esempio: una retta in R 2 può essere escritta in

Dettagli

Spazi di Haar e polinomi in più variabili

Spazi di Haar e polinomi in più variabili Spazi i Haar e polinomi in più variabili Davie Boscaini Queste sono le note a cui ho tratto il seminario el giorno 25 Ottobre 2011. Per scriverle mi sono basato sul secono capitolo el testo Scattare Data

Dettagli

Meccanica Applicata Alle Macchine. Elementi di Meccanica Teorica ed Applicata

Meccanica Applicata Alle Macchine. Elementi di Meccanica Teorica ed Applicata Meccanica Applicata Alle Macchine (Ingegneria Energetica) Elementi i Meccanica Teorica e Applicata (Scienze per l Ingegneria) Università egli Stui i oma La Sapienza Una traccia egli argomenti el Corso

Dettagli

f(x) f(x 0 ) = m R ; (1.1) lim f(x) f(x 0 ) m(x x 0 ) lim (x x 0 ) f (n) (x 0 )

f(x) f(x 0 ) = m R ; (1.1) lim f(x) f(x 0 ) m(x x 0 ) lim (x x 0 ) f (n) (x 0 ) I polinomi i Taylor Il resto i Peano Una funzione f efinita in un intorno i un punto x 0 si ice erivabile in x 0 se e solo se a sua volta la (1.1) equivale a lim f(x) f(x 0 ) x x 0 = m R ; (1.1) f(x) f(x

Dettagli

Complementi di Analisi Matematica e Statistica 04/07/ Testo e Soluzioni

Complementi di Analisi Matematica e Statistica 04/07/ Testo e Soluzioni Complementi i Analisi Matematica e Statistica 04/07/016 - Testo e Soluzioni Parte A 1. Esercizio A1: Dati α, β, Si consieri la seguente serie i potenze: e αn n + 1 ( β)n. eterminare il raggio i convergenza

Dettagli

19 Marzo Equazioni differenziali.

19 Marzo Equazioni differenziali. 19 Marzo 2019 Equazioni differenziali. Definizione 1. Si chiama equazione differenziale una relazione che coinvolge una o più derivate di una funzione incognita y(x), la funzione stessa, funzioni di x

Dettagli

DERIVATE DIREZIONALI ITERATE

DERIVATE DIREZIONALI ITERATE Analisi Matematica II, Anno Accaemico 206-207. Ingegneria Eile e Architettura Vincenzo M. Tortorelli FOGLIO DI TEORIA n. 0 SVILUPPI DI TAYLOR DERIVATE DIREZIONALI ITERATE Se v R è non nullo è efinito l

Dettagli

AM210/ : Tracce delle lezioni- Settimana XI

AM210/ : Tracce delle lezioni- Settimana XI AM21/213-14: Tracce elle lezioni- Settimana XI PROBLEMA DI CAUCHY Esistenza e unicitá locale, unicitá globale, soluzione massimale. Teorema i Picar locale) esistenza/unicitá locale in ipotesi Lip loc )

Dettagli

APPUNTI DI FISICA MATEMATICA A.A. 2014/15

APPUNTI DI FISICA MATEMATICA A.A. 2014/15 APPUNTI DI FISICA MATEMATICA A.A. 214/15 PARTE PRIMA: SISTEMI MECCANICI I Introuzione e richiami i cinematica In questa prima parte el corso si applicano metoi matematici rigorosi nell ambito i moelli

Dettagli

Applicazioni chimiche dell integrazione sistemi di equazioni differenziali

Applicazioni chimiche dell integrazione sistemi di equazioni differenziali Applicazioni chimiche ell integrazione sistemi i equazioni ifferenziali Cinetica i reazione con intermeio Si consieri una reazione chimica el tipo: A + 2 B C che, segueno un meccanismo a ue step, procee

Dettagli

Esercizi su Derivate parziali, differenziabilità e piani tangenti

Esercizi su Derivate parziali, differenziabilità e piani tangenti Esercizi su Derivate parziali, ifferenziabilità e piani tangenti 1. Per le funzioni che seguono, eterminare il graiente ella funzione ata nel punto inicato e l equazione el piano tangente al grafico ella

Dettagli

PARTICELLA LIBERA IN UNA DIMENSIONE. L equazione di Schrödinger per una particella libera in una dimensione è. t (x) = 2m t.

PARTICELLA LIBERA IN UNA DIMENSIONE. L equazione di Schrödinger per una particella libera in una dimensione è. t (x) = 2m t. 4/ PARTICELLA LIBERA 09/0 PARTICELLA LIBERA IN UNA DIMENSIONE L equazione i Schröinger per una particella libera in una imensione è ) i ħ t ψ ˆp t x) = m ψ t x). Poiché Ĥ ) i πħ) exp / ħ px = p m ) i πħ)

Dettagli

1. Teorema del valor medio D ora in poi ciascun intervallo considerato verra tacitamente assunto non ridotto

1. Teorema del valor medio D ora in poi ciascun intervallo considerato verra tacitamente assunto non ridotto Lezione del 22 ottobre. 1. Teorema del valor medio D ora in poi ciascun intervallo considerato verra tacitamente assunto non ridotto ad un punto. Data una funzione f definita su un intervallo [a, b], derivabile

Dettagli

1 Ampliamento del piano e coordinate omogenee

1 Ampliamento del piano e coordinate omogenee 1 Ampliamento del piano e coordinate omogenee Vogliamo dare una idea, senza molte pretese, dei concetti che stanno alla base di alcuni calcoli svolti nella classificazione delle coniche. Supponiamo di

Dettagli

Interazione tra i modelli quasi stazionari: il risuonatore

Interazione tra i modelli quasi stazionari: il risuonatore Interazione tra i moelli quasi stazionari: il risuonatore Il sistema in esame è un cavo coassiale chiuso alle ue estremità, che geometricamente può essere rappresentato tramite ue cilinri come in fig.1.

Dettagli

SIA DATO UN SOLENOIDE RETTILINEO DI LUNGHEZZA d, RAGGIO R e COSTITUITO DA N SPIRE.

SIA DATO UN SOLENOIDE RETTILINEO DI LUNGHEZZA d, RAGGIO R e COSTITUITO DA N SPIRE. POBLEMA 11 SIA DATO UN SOLENOIDE ETTILINEO DI LUNGHEZZA, AGGIO e COSTITUITO DA N SPIE. A) DETEMINAE IL CAMPO MAGNETICO PODOTTO LUNGO L ASSE DEL SOLENOIDE. Un solenoie rettilineo è costituito a un filo

Dettagli

Equazioni differenziali II. Elisabetta Colombo

Equazioni differenziali II. Elisabetta Colombo Corso di Approfondimenti di Matematica per Biotecnologie, Anno Accademico 2014-2015, http://users.mat.unimi.it/users/colombo/programmabio.html Eq. diff.ii Eq. diff.ii 1 2 I differenziali I Esercizio Quali

Dettagli

Syllabus di equazioni differenziali a derivate parziali

Syllabus di equazioni differenziali a derivate parziali Syllabus i equazioni ifferenziali a erivate parziali Equazioni Le tre famiglie più note i equazioni ifferenziali a erivate parziali sono le equazioni ellittiche, le equazioni paraboliche e le equazioni

Dettagli

Massimi e minimi vincolati

Massimi e minimi vincolati Massimi e minimi vincolati Data una funzione G C 1 (D), dove D è un aperto di R 2, sappiamo bene dove andare a cercare gli eventuali punti di massimo e minimo relativi. Una condizione necessaria affinché

Dettagli

Università degli Studi di Palermo Facoltà di Economia. Dipartimento di Scienze Economiche, Aziendali e Statistiche. Appunti del corso di Matematica

Università degli Studi di Palermo Facoltà di Economia. Dipartimento di Scienze Economiche, Aziendali e Statistiche. Appunti del corso di Matematica Università egli Stui i Palermo Facoltà i Economia Dipartimento i Scienze Economice, Azienali e Statistice Appunti el corso i Matematica 08 - Derivate Anno Accaemico 2015/2016 M. Tumminello, V. Lacagnina,

Dettagli

Equazioni differenziali II. Elisabetta Colombo

Equazioni differenziali II. Elisabetta Colombo Corso di Approfondimenti di Matematica per Biotecnologie, Anno Accademico 2011-2012, http://users.mat.unimi.it/users/colombo/programmabio.html Eq. diff.ii Eq. diff.ii 1 2 I differenziali Esercizio Quali

Dettagli

1 Equazioni Differenziali

1 Equazioni Differenziali Equazioni Differenziali Un equazione differenziale è un equazione che esprime un legame tra una variabile indipendente x (o t, quando ci riferiamo al tempo) una variabile dipendente y o incognita che sta

Dettagli

Dinamica dei Sistemi Multicorpo Esempi di reti elettriche

Dinamica dei Sistemi Multicorpo Esempi di reti elettriche Dinamica ei Sistemi Multicorpo Esempi i reti elettriche Basilio Bona Dipartimento i Automatica e Informatica Politecnico i Torino versione provvisoria: 3 novembre 2003 1 Basilio Bona - Esempi i Sistemi

Dettagli

Curve parametrizzate. Esercizi. 1 Curve parametrizzate con parametri arbitrari. Curvatura. Torsione

Curve parametrizzate. Esercizi. 1 Curve parametrizzate con parametri arbitrari. Curvatura. Torsione Curve parametrizzate. Esercizi Mauro Saita e-mail: maurosaita@tiscalinet.it Versione provvisoria, gennaio 014. 1 1 Curve parametrizzate con parametri arbitrari. Curvatura. Torsione Qui di seguito si riporta

Dettagli

Storia della Matematica

Storia della Matematica Lezione 20 1 1 Dipartimento di Matematica Sapienza, Università di Roma Roma, 13 Maggio 2014 Newton: serie della potenza di un binomio Da una lettera a Leibniz sappiamo che Newton era a conoscenza della

Dettagli

1 EQUAZIONI DI MAXWELL

1 EQUAZIONI DI MAXWELL 1 EQUAZIONI DI MAXWELL Il campo elettromagnetico è un campo i forze. Può essere utile utilizzare una efinizione oparativa i campo: iciamo che in unazona ello spazio è presente un campo seèutile associare

Dettagli

LE EQUAZIONI DIFFERENZIALI. che, insieme alle loro derivate, soddisfano un equazione differenziale.

LE EQUAZIONI DIFFERENZIALI. che, insieme alle loro derivate, soddisfano un equazione differenziale. LE EQUAZIONI DIFFERENZIALI I problemi incontrati fin ora nel corso di studi di matematica erano tutti di tipo numerico, cioè la loro risoluzione ha sempre portato alla determinazione di uno o più numeri

Dettagli

Test di autovalutazione

Test di autovalutazione Test i autovalutazione Marco Mougno Corso i laurea in Ingegneria per l Ambiente, le Risorse e il Territorio Facoltà i Ingegneria, Università i Firenze Via S. Marta 3, 5139 Firenze, Italia email: marco.mougno@unifi.it

Dettagli

ε = ε = x TFA A048. Matematica applicata Incontro del 16 aprile 2014, ore 17-19

ε = ε = x TFA A048. Matematica applicata Incontro del 16 aprile 2014, ore 17-19 TFA A048. Matematica applicata Incontro el 16 aprile 014, ore 17-19 Appunti i iattica ella matematica applicata all economia e alla finanza. Funzioni (i una variabile) utilizzate nello stuio ell Economia

Dettagli

Nome, Cognome: punti totali possibili, 50 punti corrispondono alla nota massima.

Nome, Cognome: punti totali possibili, 50 punti corrispondono alla nota massima. Nome, Cognome:................................................................ 55 punti totali possibili, 5 punti corrisponono alla nota massima. 3 ottobre 23 ing. Ivan Furlan . Controllo i un oscillatore

Dettagli

Equazioni separabili. Un esempio importante

Equazioni separabili. Un esempio importante Equazioni separabili. Un esempio importante Esempio La soluzione generale dell equazione y = αy, α R (1) è data da y(x) = Ke αx, K R (2) C è un unica soluzione costante: y = 0: cioè y(x) = 0 per ogni x.

Dettagli

Equazioni della fisica matematica

Equazioni della fisica matematica Equazioni ella fisica matematica Equazione i conservazione ella massa in fluioinamica Questo principio ella fisica si può scrivere come ρ = ρv n, t ove è una generica porzione i spazio occupata al fluio,

Dettagli

90 0 L F s (Lavoro motore- lavoro positivo) n n

90 0 L F s (Lavoro motore- lavoro positivo) n n Lavoro i una Forza. Siano ata una Forza costante F, applicata a corpo i massa m e sia s, il suo spostamento rettilineo el corpo, si chiama lavoro ella forza il prootto scalare tra la forza e lo spostamento.

Dettagli

Introduzione alle equazioni differenziali attraverso esempi. 20 Novembre 2018

Introduzione alle equazioni differenziali attraverso esempi. 20 Novembre 2018 Introduzione alle equazioni differenziali attraverso esempi 20 Novembre 2018 Indice: Equazioni separabili. Esistenza e unicità locale della soluzione di un Problemi di Cauchy. Equazioni differenziali lineari

Dettagli

Esercizi su curvatura e torsione.

Esercizi su curvatura e torsione. Esercizi su curvatura e torsione. e-mail: maurosaita@tiscalinet.it Versione provvisoria, gennaio 016. 1 Indice 1 Curvatura e torsione 1.1 Curve parametrizzate alla lunghezza d arco................... 1.

Dettagli

Geometria analitica: rette e piani

Geometria analitica: rette e piani Geometria analitica: rette e piani parametriche Allineamento nel piano nello spazio Angoli tra rette e distanza 2 2006 Politecnico di Torino 1 Esempio 2 Sia A = (1, 2). Per l interpretazione geometrica

Dettagli

Politecnico di Milano Ingegneria Industriale Analisi e Geometria 1 Seconda prova in itinere 31 gennaio 2011

Politecnico di Milano Ingegneria Industriale Analisi e Geometria 1 Seconda prova in itinere 31 gennaio 2011 Politecnico di Milano Ingegneria Industriale Analisi e Geometria Seconda prova in itinere 3 gennaio Cognome: Nome: Matricola: Compito A Es. : 8 punti Es. : 8 punti Es. 3: 8 punti Es. 4: 8 punti Es. 5:

Dettagli

CAPITOLO 24. Il modello di Friedmann Le equazioni di questo modello sono la (23 7) e la (23 4): R + k. Ṙ 2 + k = R

CAPITOLO 24. Il modello di Friedmann Le equazioni di questo modello sono la (23 7) e la (23 4): R + k. Ṙ 2 + k = R CAPITOLO 24 Dinamica cosmologica Nel cap. prec. abbiamo scritto le equazioni inamiche per un universo omogeneo e isotropo, e abbiamo iscusso i iversi contributi alla materia. Vogliamo ora stuiare l evoluzione

Dettagli

Soluzione. Il dominio E consiste nella parte di spazio contenuta nella sfera ma esterna al cono rappresentata in Figura 1. Infatti

Soluzione. Il dominio E consiste nella parte di spazio contenuta nella sfera ma esterna al cono rappresentata in Figura 1. Infatti Esercizio 1 (G. Ziglio). (6 punti) Calcolare il volume della porzione di spazio E interna alla sfera di equazione x 2 + y 2 + z 2 = 1 ed esterna al cono di equazione z 2 = x 2 + y 2 E = (x, y, z) R x 2

Dettagli

Analisi Matematica 2. Ottimizzazione in due variabili. Ottimizzazione in due variabili 1 / 31

Analisi Matematica 2. Ottimizzazione in due variabili. Ottimizzazione in due variabili 1 / 31 Analisi Matematica 2 Ottimizzazione in due variabili Ottimizzazione in due variabili 1 / 31 Ottimizzazione. Figure: Massimi e minimi relativi (o locali), Massimi e minimi assoluti (o globali) Ottimizzazione

Dettagli

Equazioni differenziali

Equazioni differenziali Equazioni differenziali Hynek Kovarik Università di Brescia Analisi Matematica 2 Hynek Kovarik (Università di Brescia) Equazioni differenziali Analisi Matematica 2 1 / 42 Equazioni differenziali Un equazione

Dettagli

Esercizi geometria analitica nello spazio. Corso di Laurea in Informatica. Docente: Andrea Loi. Correzione

Esercizi geometria analitica nello spazio. Corso di Laurea in Informatica. Docente: Andrea Loi. Correzione Esercizi geometria analitica nello spazio Corso di Laurea in Informatica Docente: Andrea Loi Correzione 1. Denotiamo con P 1, P 13, P 3, P 1, P, P 3, P i simmetrici di un punto P rispetto ai piani coordinati

Dettagli

Capitolo III : Calcolo differenziale

Capitolo III : Calcolo differenziale Liceo Lugano, 0-0 4B (Luca Rovelli) Capitolo III : Calcolo ifferenziale La tangente a una curva Ricora innanzitutto ce, se f : y = m + q è una funzione affine, il numero reale m rappresenta il coefficiente

Dettagli

Circonferenze del piano

Circonferenze del piano Circonferenze del piano 1 novembre 1 Circonferenze del piano 1.1 Definizione Una circonferenza è il luogo dei punti equidistanti da un punto fisso, detto centro. La distanza di un qualunque punto della

Dettagli

METODI MATEMATICI DELLA FISICA A.A. 2005/2006 Prof. C. Presilla. Prova in itinere 2 marzo 2006

METODI MATEMATICI DELLA FISICA A.A. 2005/2006 Prof. C. Presilla. Prova in itinere 2 marzo 2006 METODI MATEMATICI DELLA FISICA A.A. 005/006 Prof. C. Presilla Prova in itinere marzo 006 Cognome Nome penalità esercizio voto 3 4 5 6 Determinare e graficare il luogo ei punti z el piano comp- Esercizio

Dettagli

Analisi Matematica IV modulo Soluzioni prova scritta preliminare n. 1

Analisi Matematica IV modulo Soluzioni prova scritta preliminare n. 1 Analisi Matematica IV modulo Soluzioni prova scritta preliminare n. 1 Corso di laurea in Matematica, a.a. 2005-2006 27 aprile 2006 1. Disegnare approssimativamente nel piano (x, y) l insieme x 4 6xy 2

Dettagli

Si considera un corpo solido a forma di parallelepipedo, di spessore d [m] e facce maggiori con superficie S [m 2 ], tale che sia T 1

Si considera un corpo solido a forma di parallelepipedo, di spessore d [m] e facce maggiori con superficie S [m 2 ], tale che sia T 1 I sistemi termici La resistenza termica Se ue corpi aventi temperature iverse vengono messi a contatto, si ha un passaggio i quantità i calore al corpo a temperatura maggiore verso quello a temperatura

Dettagli

Analisi Matematica A e B Soluzioni prova scritta parziale n. 4

Analisi Matematica A e B Soluzioni prova scritta parziale n. 4 Analisi Matematica A e B Soluzioni prova scritta parziale n. Corso di laurea in Fisica, 08-09 7 aprile 09. Determinare le soluzioni u(x) dell equazione differenziale u + u u = sin x + ex + e x. Soluzione.

Dettagli

Teorema delle Funzioni Implicite

Teorema delle Funzioni Implicite Teorema delle Funzioni Implicite Sia F una funzione di due variabili definita in un opportuno dominio D di R 2. Consideriamo l equazione F (x, y) = 0, questa avrà come soluzioni coppie di valori (x, y)

Dettagli

ESERCIZIO n.10. H 6cm d 2cm. d d d

ESERCIZIO n.10. H 6cm d 2cm. d d d Esercizi svolti i geometria elle aree Alibrani U., Fuschi P., Pisano A., Sofi A. ESERCZO n.1 Data la sezione riportata in Figura, eterminare: a) gli assi principali centrali i inerzia; b) l ellisse principale

Dettagli

Analisi Matematica 1, parte B Laurea in Matematica

Analisi Matematica 1, parte B Laurea in Matematica Analisi Matematica 1, parte B Laurea in Matematica Prima settimana Sia x una variabile reale efinita in un intorno bucato i 0 in seguito x enoterà un incremento infinitesimo). Una funzione R x) si ice

Dettagli

Equazioni Differenziali (4)

Equazioni Differenziali (4) Equazioni Differenziali (4) Esercizio 1 Risolvere il problema di Cauchy y = e y x + y x, y(1) = 1. Esercizio 2 Risolvere il problema di Cauchy y = 2y 1 x 2 + 1 x, y(0) = 0. Esercizio 3 Risolvere il problema

Dettagli

LEZIONE 8. Figura 8.1.1

LEZIONE 8. Figura 8.1.1 LEZIONE 8 8.1. Equazioni parametriche di rette. In questo paragrafo iniziamo ad applicare quanto spiegato sui vettori geometrici per dare una descrizione delle rette nel piano e nello spazio. Sia r S 3

Dettagli

2. Analisi di un sistema caotico

2. Analisi di un sistema caotico . Analisi i un sistema caotico. Ricostruzione ello spazio elle fasi Il primo problema a risolvere nell analisi i un sistema caotico è la ricostruzione ello spazio elle fasi a partire a un segnale monoimensionale.

Dettagli

Sistemi di equazioni dierenziali ordinarie

Sistemi di equazioni dierenziali ordinarie 4 Giugno 2012 - Lab. i Complementi i Matematica e Calcolo Numerico Sistemi i equazioni ierenziali orinarie Inice 1 Cinetica i una reazione con intermeio 1 2 Cinetica i un ciclo catalitico 6 1 Cinetica

Dettagli

Funzioni olomorfe e serie di potenze di una variabile complessa

Funzioni olomorfe e serie di potenze di una variabile complessa MATeXp Analisi infinitesimale Capitolo I37: Funzioni olomorfe e serie i potenze i una variabile complessa Contenuti elle sezioni a. Conizioni i monogeneità e funzioni olomorfe p.1 b. Serie i potenze e

Dettagli

PDE lineari primo ordine

PDE lineari primo ordine PDE lineari primo ordine. Introduzione Un equazione lineare alle derivate parziali di primo ordine in R n é, indicato con x = x,..., x n }, un equazione della forma seguente: () n i= a i (x) u x i + b(x)

Dettagli

Es. 1 Es. 2 Es. 3 Es. 4 Totale. Cognome: Nome: Matricola: Punteggi degli esercizi: Es.1: 8 punti; Es.2: 8 punti; Es.3: 8 punti; Es.4: 8 punti.

Es. 1 Es. 2 Es. 3 Es. 4 Totale. Cognome: Nome: Matricola: Punteggi degli esercizi: Es.1: 8 punti; Es.2: 8 punti; Es.3: 8 punti; Es.4: 8 punti. Es Es Es Es Totale Analisi e Geometria Secondo compito in itinere 0 Gennaio 0 Compito A Docente: Politecnico di Milano Ingegneria Industriale Cognome: Nome: Matricola: Punteggi degli esercizi: Es: 8 punti;

Dettagli

ESERCIZIO n.10. H 6cm d 2cm. d d d

ESERCIZIO n.10. H 6cm d 2cm. d d d ESERCZO n.1 Data la sezione riportata in Figura, eterminare: a) gli assi principali centrali i inerzia; b) l ellisse principale centrale i inerzia; c) il nocciolo centrale i inerzia; ) i momenti i inerzia

Dettagli

Esercitazione n 6. Esercizio 1: Determinare i punti di massimo e minimo relativo delle seguenti funzioni: (b)f(x, y) = 4y 4 16x 2 y + x

Esercitazione n 6. Esercizio 1: Determinare i punti di massimo e minimo relativo delle seguenti funzioni: (b)f(x, y) = 4y 4 16x 2 y + x Esercitazione n 6 1 Massimi e minimi di funzioni di più variabili Esercizio 1: Determinare i punti di massimo e minimo relativo delle seguenti funzioni: (a)f(x, y) = x 3 + y 3 + xy (b)f(x, y) = 4y 4 16x

Dettagli

DINAMICA. F i + Φ i = R est. + R int. + R est.+ 0 R int., m i a i = m i

DINAMICA. F i + Φ i = R est. + R int. + R est.+ 0 R int., m i a i = m i DINAMICA Principi ella inamica e equazioni carinali Principio 1 (ella inamica o Principio Inerzia) Esiste un osservatore, chiamato inerziale o Galileiano, rispetto al quale un punto materiale isolato (

Dettagli

1 REGOLE DI DERIVAZIONE

1 REGOLE DI DERIVAZIONE UNIVERSITÀ DEGLI STUDI DI ROMA LA SAPIENZA - Facoltà i Farmacia e Meicina - Corso i Laurea in CTF REGOLE DI DERIVAZIONE Prima i tutto ricoriamo che la erivata i una funzione f in x è il ite el rapporto

Dettagli

IL TRASPORTO DEGLI INQUINANTI

IL TRASPORTO DEGLI INQUINANTI La iffusione molecolare La ispersione avviene principalmente in irezione longituinale rispetto al flusso meio, e le variazioni i velocità non spiegano l aumento l i ampiezza in irezione normale al moto

Dettagli

Problema di Cauchy e curve caratteristiche

Problema di Cauchy e curve caratteristiche Capitolo 11 Problema di Cauchy e curve caratteristiche 11.1 Equazioni alle derivate parziali del primo ordine Sia data un equazione differenziale alle derivate parziali nelle variabili x, y del primo ordine

Dettagli

Teoria Es. 1 Es. 2 Es.3 Es. 4 Totale. Cognome: Nome: Matricola: Prima Parte. x a dx

Teoria Es. 1 Es. 2 Es.3 Es. 4 Totale. Cognome: Nome: Matricola: Prima Parte. x a dx Teoria Es. Es. 2 Es. Es. 4 Totale Analisi e Geometria Appello 5/07/209 Docente: Numero di iscrizione all appello: Cognome: Nome: Matricola: Prima Parte (a) Prima domanda di teoria. ( punti) Enunciare e

Dettagli

Analisi vettoriale. Gradiente di una funzione

Analisi vettoriale. Gradiente di una funzione Graiente i una funzione Data la funzione scalare f(, ) f( P) f f seguente relazione vettoriale: gra f = f = i j + Per una funzione f( P) f( z,, ) = abbiamo: Per una funzione a n variabili f ( P) f ( )

Dettagli

ANALISI MATEMATICA A CORSO DI LAUREA TRIENNALE IN MATEMATICA

ANALISI MATEMATICA A CORSO DI LAUREA TRIENNALE IN MATEMATICA ANALISI MATEMATICA A CORSO DI LAUREA TRIENNALE IN MATEMATICA 6-7 Settimana : Equazioni Differenziali Esempio. L esempio più familiare di equazione differenziale proviene dalla legge di Newton. Se t y(t)

Dettagli

Analisi Matematica II Corso di Ingegneria Gestionale Compito del

Analisi Matematica II Corso di Ingegneria Gestionale Compito del Analisi Matematica II Corso di Ingegneria Gestionale Compito del --9 - È obbligatorio consegnare tutti i fogli, anche la brutta e il testo. - Le risposte senza giustificazione sono considerate nulle. Esercizio.

Dettagli

Cognome Nome Matricola Codice ESEMPIO 1

Cognome Nome Matricola Codice ESEMPIO 1 Cognome Nome Matricola Codice ESEMPIO 1 [1]. (***) Definizione di derivata di una funzione in un punto. Sia A R N ; sia a A; sia f : A R M ; sia f differenziabile in a; allora la derivata di f in a è...

Dettagli

Formule di derivazione

Formule di derivazione Formule i erivazione Corrao Mascia 14 icembre 2018 Qui vengono presentate alcune formule i erivazione e, al contempo, si mostrano vari esempi el loro utilizzo. 1 Linearità, prootto e rapporto Come a titolo

Dettagli

LEZIONE 7. Figura 7.1

LEZIONE 7. Figura 7.1 LEZIONE 7 L obiettivo di questa e della prossima lezione è quello di spiegare quali siano i metodi per descrivere algebricamente oggetti geometrici ben noti quali rette e piani. Tali oggetti vengono detti

Dettagli

Derivate di ordine superiore

Derivate di ordine superiore Derivate di ordine superiore Derivate di ordine superiore Il processo che porta alla definizione di derivabilta e di derivata di una funzione in un punto si puo iterare per dare per ogni intero positivo

Dettagli

Complementi di Analisi Matematica. Foglio di esercizi n.6 16/3/2018 (Aggiornamento del 6/4/2018)

Complementi di Analisi Matematica. Foglio di esercizi n.6 16/3/2018 (Aggiornamento del 6/4/2018) Complementi di Analisi Matematica. Foglio di esercizi n.6 16/3/2018 (Aggiornamento del 6/4/2018) Esercizio 1 Si consideri l insieme Esercizi sulla funzione implicita e superfici Z = {(x, y) R 2 2y xe y

Dettagli

5π/2. 3π/2. y = f(x) π π. -5π/2-2π -3π/2 -π -π/2 π/2 π 3π/2 2π 5π/2 3π 7π. -π/2

5π/2. 3π/2. y = f(x) π π. -5π/2-2π -3π/2 -π -π/2 π/2 π 3π/2 2π 5π/2 3π 7π. -π/2 Corso di Laurea in Matematica Analisi 4 - SOLUZIONI /9/8) Docente: Claudia Anedda ) Data la funzione yx) x + π, x, π) prolungarla su tutto R in modo tale che sia una funzione π-periodica pari, disegnare

Dettagli

Matematica con elementi di Informatica

Matematica con elementi di Informatica Equazioni differenziali Matematica con elementi di Informatica Tiziano Vargiolu Dipartimento di Matematica vargiolu@math.unipd.it Corso di Laurea Magistrale in Chimica e Tecnologie Farmaceutiche. () Equazioni

Dettagli

Lezione Sfere nello spazio

Lezione Sfere nello spazio Lezione 12 12.1 Sfere nello spazio In questa lezione studieremo alcuni dei più semplici oggetti geometrici non lineari : circonferenze e sfere nello spazio S 3. Analizzeremo poi in dettaglio il caso delle

Dettagli

Matematica Domande di Algebra e Geometria Analitica

Matematica Domande di Algebra e Geometria Analitica Matematica Domande di Algebra e Geometria Analitica prof. Vincenzo De Felice 2015 O studianti, studiate le matematiche, e non edificate sanza fondamenti. Leonardo da Vinci (1452-1519). 1 2 Tutto per la

Dettagli

ULTERIORI ESERCIZI SUL CALCOLO DIFFERENZIALE

ULTERIORI ESERCIZI SUL CALCOLO DIFFERENZIALE ULTERIORI ESERCIZI SUL CALCOLO DIFFERENZIALE 1 Scrivi l equazione della retta tangente al grafico di f(x) = (1 + 2x) 4 nel suo punto di intersezione con l asse y 2 Scrivi l equazione della retta tangente

Dettagli

QUADRILATERO DI AREA MASSIMA ASSEGNATI I LATI

QUADRILATERO DI AREA MASSIMA ASSEGNATI I LATI 1 QUADRILATERO DI AREA MASSIMA ASSEGNATI I LATI Margherita Moretti (3D P.N.I.) Viviana Scoca (3D P.N.I.) Simone Moretti (3H P.N.I.) Abstract Si affronta il problema ella eterminazione el quarilatero i

Dettagli

Capitolo 2. Cenni di geometria analitica nel piano

Capitolo 2. Cenni di geometria analitica nel piano Capitolo Cenni di geometria analitica nel piano 1 Il piano cartesiano Il piano cartesiano è una rappresentazione grafica del prodotto cartesiano R = R R La rappresentazione grafica è possibile se si crea

Dettagli

Derivate delle funzioni reali

Derivate delle funzioni reali Capitolo I0: Derivate elle funzioni reali Contenuti elle sezioni a Derivata p b Derivabilità e continuità, erivate i erivate p5 c Derivate i combinazioni lineari, prootti e quozienti i funzioni p7 Derivate

Dettagli

Matematica e statistica Versione didascalica: parte 1

Matematica e statistica Versione didascalica: parte 1 Matematica e statistica Versione iascalica: parte 1 Sito web el corso http://www.labmat.it/iattica Docente: Prof. Sergio Invernizzi, Università i Trieste e-mail: inverniz@units.it 2. Derivata e integrale

Dettagli

GRAFICA E COMPUTER. 19 giugno () PLS-Grafica 19 giugno / 32

GRAFICA E COMPUTER. 19 giugno () PLS-Grafica 19 giugno / 32 GRAFICA E COMPUTER 19 giugno 2013 3 2 1 0 1 2 3 3 2 1 0 1 2 3 () PLS-Grafica 19 giugno 2013 1 / 32 Equazioni differenziali modellizzano fenomeni (fisici e non) che variano nel tempo partendo da dati noti,

Dettagli

verificando, in particolare, che si ha un flesso nel punto F (4, Determinare l equazione della retta tangente al grafico nel punto F.

verificando, in particolare, che si ha un flesso nel punto F (4, Determinare l equazione della retta tangente al grafico nel punto F. PROBLEMA 1 Assegnate due costanti reali a e b (con a > 0), si consideri la funzione q(t) così definita: q(t) = at e bt 1. A seconda dei possibili valori di a e b, discutere se nel grafico della funzione

Dettagli

Funzioni di più variabili a valori vettoriali n t m

Funzioni di più variabili a valori vettoriali n t m Funzioni di più variabili a valori vettoriali n t m Definizione f(x 1, x 2,...x n )=[f 1 (x 1, x 2,...x n ), f 2 (x 1, x 2,...x n ),...f m (x 1, x 2,...x n )] Funzione definita n d m Dove: n = dominio

Dettagli

Matematica e Statistica

Matematica e Statistica Matematica e Statistica Prova d Esame (26/07/2010) Università di Verona - Laurea in Biotecnologie - A.A. 2009/10 1 Matematica e Statistica Prova d Esame di MATEMATICA (26/07/2010) Università di Verona

Dettagli

La forza è detta forza di Lorentz. Nel Sistema Internazionale l unità di misura

La forza è detta forza di Lorentz. Nel Sistema Internazionale l unità di misura 13. Magnetismo 13.1 La forza i Lorentz. Il magnetismo è un fenomeno noto a molti secoli, ma fino all inizio ell ottocento la teoria trattava i calamite, aghi magnetici e elle loro interazioni con il magnetismo

Dettagli