Rappresentazioni alternative dell orientamento
|
|
|
- Edmondo Foti
- 10 anni fa
- Visualizzazioni
Transcript
1 Corso di Robotica 1 Rappresentazioni alternative dell orientamento (angoli di Eulero e roll-pitch-yaw) Trasformazioni omogenee Prof. lessandro De Luca Robotica 1 1
2 Rappresentazioni minimali matrici di rotazione: 9 elementi - 3 relazioni ortogonalità - 3 relazioni unitarietà = 3 grandezze indipendenti problema diretto problema inverso sequenza di 3 rotazioni intorno ad assi indipendenti fissi (a i ) o mobili (a i ) sequenze possibili distinte (ad es., XYX) di fatto solo 1 perché {(a 1 α 1 ), (a α ), (a 3 α 3 )} { (a 3 α 3 ), (a α ), (a 1 α 1 )} Robotica 1
3 x z z R z (ψ) = ngoli di Eulero ZX Z 1 R z (φ) = SR φ φ x SR y y cos φ sin φ 0 sin φ cos φ θ z x x z SR cos ψ sin ψ 0 sin ψ cos ψ z z ψ y θ y x ψ R x (θ) = cos θ sin θ 0 sin θ cos θ x y y SR Robotica 1 3
4 ngoli di Eulero ZX Z Problema diretto: dati φ, θ, ψ ; ricavare R R ZX Z (φ, θ, ψ) = R Z (φ) R X (θ) R Z (ψ) ordine di definizione della concatenazione = cφ cψ - sφ cθ sψ - cφ sψ - sφ cθ cψ sφ sθ sφ cψ + cφ cθ sψ - sφ sψ - cφ cθ cψ - cφ sθ sθ sψ sθ cψ cθ dato un vettore v = (x,y,z ) espresso in SR le sue coordinate in SR sono date da v = R ZX Z (φ, θ, ψ) v l orientamento di SR è lo stesso che si avrebbe con la sequenza di rotazioni: ψ intorno a z, θ intorno a x (fisso), φ intorno a z (fisso) Robotica 1 4
5 ngoli di Eulero ZX Z Problema inverso: data R = {r ij }; ricavare φ, θ, ψ r 11 r 1 r 13 r 1 r r 3 r 31 r 3 r 33 = cφ cψ - sφ cθ sψ - cφ sψ - sφ cθ cψ sφ sθ sφ cψ + cφ cθ sψ - sφ sψ - cφ cθ cψ - cφ sθ sθ sψ sθ cψ cθ r 13 + r 3 = s θ, r 33 = cθ θ = TN{ ± r 13 + r 3, r 33 } se sθ 0 due valori che differiscono per il segno r 31 /sθ = sψ, r 3 /sθ = cψ ψ = TN{ r 31 /sθ, r 3 /sθ } analogamente: φ = TN{ r 13 /sθ, -r 3 /sθ } si ottiene sempre una coppia di soluzioni c è sempre una singolarità (qui θ = 0, ± π) Robotica 1 5
6 x x z ngoli di Roll-Pitch-Yaw 1 ROLL z z R X (ψ) = ψ ψ y y cos ψ sin ψ 0 sin ψ cos ψ C R Z (φ)c T con R Z (φ) = z 3 θ x x YW cos φ sin φ 0 sin φ cos φ θ z z y y x y φ PITCH φ z C 1 R Y (θ)c 1 T con R Y (θ) = cos θ 0 sin θ sin θ 0 cos θ x y y
7 ngoli di Roll-Pitch-Yaw (su XYZ fissi) Problema diretto: dati ψ, θ, φ ; ricavare R R RPY (ψ, θ, φ) = R Z (φ) R Y (θ) R X (ψ) ordine di definizione = notare l ordine! cφ cθ cφ sθ sψ - sφ cψ cφ sθ cψ + sφ sψ sφ cθ sφ sθ sψ + cφ cψ sφ sθ cψ - cφ sψ - sθ cθ sψ cθ cψ Problema inverso: data R = {r ij }; ricavare ψ, θ, φ r 3 + r 33 = c θ, r 31 = -sθ θ = TN{-r 31, ± r 3 + r 33 } se cθ 0 due valori simmetrici rispetto a π/ r 3 /cθ = sψ, r 33 /cθ = cψ ψ = TN{r 3 /cθ, r 33 /cθ} analogamente: φ = TN{ r 1 /cθ, r 11 /cθ } singolarità per θ = ± π/ + k π Robotica 1 7
8 perché in questo ordine? R RPY (ψ, θ, φ) = R Z (φ) R Y (θ) R X (ψ) ordine di definizione ordine inverso nel prodotto occorre riportare ogni rotazione della sequenza sull asse fisso originario concatenazione di tre rotazioni: [ ] [ ] [ ] R RPY (ψ, θ, φ) = [R X (ψ)] [R XT (ψ) R Y (θ) R X (ψ)] [R XT (ψ) R YT (θ) R Z (φ) R Y (θ) R X (ψ)] = R Z (φ) R Y (θ) R X (ψ) Robotica 1 8
9 Trasformazioni omogenee P B p p SR B p B relazione affine O B SR O p = p B + R B B p p hom = p R B p B B p = = T B B p hom relazione lineare vettore in coordinate omogenee matrice 4X4 di trasformazione omogenea Robotica 1 9
10 Proprietà della matrice T descrive la relazione (posizione e orientamento relativi) tra sistemi di riferimento trasforma la rappresentazione di un vettore posizione (applicato) da un riferimento ad un altro è un operatore di roto-traslazione su vettori nello spazio è sempre invertibile ( T B ) -1 = B T è componibile, cioè T C = T B B T C attenzione, non commuta! Robotica 1 10
11 Inversa di una trasformazione omogenea p = p B + R B B p B p = B p B + B R p = - R B T p B + R B T p R B p B B R B p B = R B T - R B T p B T B B T ( T B ) -1 Robotica 1 11
12 Descrizione di un compito SR E descrizione assoluta del task descrizione del task relativa all end-effector SR B SR T 1 3 W T T = W T B B T E E T T nota, montato il robot cinematica diretta del braccio (funzione di q) SR W B T E (q) = W T B -1 W T T E T T -1 = cost Robotica 1 1
13 Commenti finali sulle matrici T sono lo strumento principale per il calcolo della cinematica diretta dei robot manipolatori si usano in molti settori applicativi (robotici e non) nel posizionamento di una telecamera (matrice b T c con i parametri estrinseci di posa) in computer graphics, per le trasformazioni di visualizzazione di solidi 3D al variare del punto di osservazione T B = R B α x α y α z p B σ tutti nulli in robotica coefficienti di deformazione prospettica coefficiente di scalatura sempre unitario in robotica Robotica 1 13
4. Proiezioni del piano e dello spazio
4. Proiezioni del piano e dello spazio La visualizzazione di oggetti tridimensionali richiede di ottenere una vista piana dell'oggetto. Questo avviene mediante una sequenza di operazioni. Innanzitutto,
Test, domande e problemi di Robotica industriale
Test, domande e problemi di Robotica industriale 1. Quale, tra i seguenti tipi di robot, non ha giunti prismatici? a) antropomorfo b) cilindrico c) polare d) cartesiano 2. Un volume di lavoro a forma di
CONI, CILINDRI, SUPERFICI DI ROTAZIONE
CONI, CILINDRI, SUPERFICI DI ROTAZIONE. Esercizi x + z = Esercizio. Data la curva x, calcolare l equazione del cilindro avente γ y = 0 come direttrice e con generatrici parallele al vettore v = (, 0, ).
Processo di rendering
Processo di rendering Trasformazioni di vista Trasformazioni di vista Il processo di visione in tre dimensioni Le trasformazioni di proiezione 2 Rendering nello spazio 2D Il processo di rendering (visualizzazione)
Universita degli Studi di Roma Tor Vergata Facolta di Ingegneria Elettronica
Universita degli Studi di Roma Tor Vergata Facolta di Ingegneria Elettronica Terzo Appello del corso di Geometria e Algebra II Parte - Docente F. Flamini, Roma, 7/09/2007 SVOLGIMENTO COMPITO III APPELLO
1 Introduzione alla Meccanica Razionale 1 1.1 Che cos è la Meccanica Razionale... 1 1.2 Un esempio... 2
Indice 1 Introduzione alla Meccanica Razionale 1 1.1 Che cos è la Meccanica Razionale..................... 1 1.2 Un esempio................................. 2 2 Spazi Vettoriali, Spazio e Tempo 7 2.1 Cos
Trasformazioni nello spazio Grafica 3d
Trasformazioni nello spazio Grafica 3d Giancarlo RINALDO [email protected] Dipartimento di Matematica Università di Messina Trasformazioni nello spaziografica 3d p. 1 Introduzione In questa lezione
GEOMETRIA I Corso di Geometria I (seconda parte)
Corso di Geometria I (seconda parte) anno acc. 2009/2010 Cambiamento del sistema di riferimento in E 3 Consideriamo in E 3 due sistemi di riferimento ortonormali R e R, ed un punto P (x, y, z) in R. Lo
Lezione: rappresentazione. rototraslazioni. Tutte e sole le isometrie (trasf. rigide) = roto-traslazioni = rotazioni (*) + traslazioni
[GAME DEV] Mirco Lezione Lezione: rappresentazione rototraslazioni Marco Tarini Reminder Tutte e sole le isometrie (trasf. rigide) = roto-traslazioni = rotazioni (*) + traslazioni Rotazioni (*) : quante
Proiezioni Grafica 3d
Proiezioni Grafica 3d Giancarlo RINALDO [email protected] Dipartimento di Matematica Università di Messina ProiezioniGrafica 3d p. 1 Introduzione Il processo di visualizzazione in 3D è intrinsecamente
Controllo del moto e robotica industriale
Controllo del moto e robotica industriale (Prof. Rocco) Appello del 27 Febbraio 2008 Cognome:... Nome:... Matricola:... Firma:... Avvertenze: Il presente fascicolo si compone di 8 pagine (compresa la copertina).
RETTE, PIANI, SFERE, CIRCONFERENZE
RETTE, PIANI, SFERE, CIRCONFERENZE 1. Esercizi Esercizio 1. Dati i punti A(1, 0, 1) e B(, 1, 1) trovare (1) la loro distanza; () il punto medio del segmento AB; (3) la retta AB sia in forma parametrica,
Trasformazioni 2D. Grande differenza rispetto alla grafica raster!
Trasformazioni 2D Il grande vantaggio della grafica vettoriale è che le immagini vettoriali descrivono entità matematiche È immediato manipolare matematicamente tali entità In quasi tutte le manipolazioni
Versione 1.0-21 febbraio 2005
Corso di Laurea di I livello in Ingegneria Meccanica note alle lezioni di: Complementi di Meccanica Applicata alle Macchine, 3CFU Versione 1.0-21 febbraio 2005 Benedetto Allotta 1 Allotta Complementi di
GIROSCOPIO. Scopo dell esperienza: Teoria fisica. Verificare la relazione: ω p = bmg/iω
GIROSCOPIO Scopo dell esperienza: Verificare la relazione: ω p = bmg/iω dove ω p è la velocità angolare di precessione, ω è la velocità angolare di rotazione, I il momento principale d inerzia assiale,
Le trasformazioni geometriche
Le trasformazioni geometriche Le trasformazioni geometriche Le trasformazioni affini del piano o affinità Le similitudini Le isometrie Le traslazioni Le rotazioni Le simmetrie assiale e centrale Le omotetie
Algebra Lineare e Geometria
Algebra Lineare e Geometria Corso di Laurea in Ingegneria Elettronica A.A. 2013-2014 Prova d esame del 16/06/2014. 1) a) Determinare la matrice associata all applicazione lineare T : R 3 R 4 definita da
FUNZIONE REALE DI UNA VARIABILE
FUNZIONE REALE DI UNA VARIABILE Funzione: legge che ad ogni elemento di un insieme D (Dominio) tale che D R, fa corrispondere un elemento y R ( R = Codominio ). f : D R : f () = y ; La funzione f(): A
METODO PER LA DESCRIZIONE DEL CAMPO MAGNETICO ROTANTE
Ing. ENRICO BIAGI Docente di Tecnologie elettrice, Disegno, Progettazione ITIS A. Volta - Perugia ETODO PER LA DESCRIZIONE DEL CAPO AGNETICO ROTANTE Viene illustrato un metodo analitico-grafico per descrivere
Esempi di funzione. Scheda Tre
Scheda Tre Funzioni Consideriamo una legge f che associa ad un elemento di un insieme X al più un elemento di un insieme Y; diciamo che f è una funzione, X è l insieme di partenza e X l insieme di arrivo.
Processo di rendering
Processo di rendering 1 Trasformazioni di vista Trasformazioni di vista Il processo di visione in tre dimensioni Le trasformazioni di proiezione I parametri della vista 3D I sistemi di coordinate 2 I parametri
ESTRAZIONE DI DATI 3D DA IMMAGINI DIGITALI. (Visione 3D)
ESTRAZIONE DI DATI 3D DA IMMAGINI DIGITALI () Una immagine (digitale) permette di percepire solo una rappresentazione 2D del mondo La visione 3D si pone lo scopo di percepire il mondo per come è in 3 dimensioni
ed é dato, per P (t) una qualsiasi parametrizzazione di cui sopra, da
1 Integrali su una curva regolare Sia C R N una curva regolare, ossia: (1) C é l immagine di una funzione P (t) definita in un intervallo [a, b] (qui preso chiuso e limitato), tipicamente chiuso e limitato,
6. Calcolare le derivate parziali prime e seconde, verificando la validità del teorema di Schwarz:
FUNZIONI DI PIU VARIABILI Esercizi svolti. Determinare il dominio delle seguenti funzioni e rappresentarlo graficamente : (a) f log( x y ) (b) f log(x + y ) (c) f y x 4 (d) f sin(x + y ) (e) f log(xy +
MOMENTI DI INERZIA. m i. i=1
MOMENTI DI INEZIA Massa Ad ogni punto materiale si associa uno scalare positivo m che rappresenta la quantità di materia di cui è costituito il punto. m, la massa, è costante nel tempo. Dato un sistema
Forze come grandezze vettoriali
Forze come grandezze vettoriali L. Paolucci 23 novembre 2010 Sommario Esercizi e problemi risolti. Per la classe prima. Anno Scolastico 2010/11 Parte 1 / versione 2 Si ricordi che la risultante di due
Capitolo 5. Funzioni. Grafici.
Capitolo 5 Funzioni. Grafici. Definizione: Una funzione f di una variabile reale,, è una corrispondenza che associa ad ogni numero reale appartenente ad un insieme D f R un unico numero reale, y R, denotato
Federico Lastaria. Analisi e Geometria 2. Matrici simmetriche. Il teorema spettrale. 1/24
Contenuto Endomorfismi auto-aggiunti. Matrici simmetriche. Il teorema spettrale Gli autovalori di una matrice simmetrica sono tutti reali. (Dimostrazione fatta usando i numeri complessi). Dimostrazione
x 1 + x 2 3x 4 = 0 x1 + x 2 + x 3 = 0 x 1 + x 2 3x 4 = 0.
Problema. Sia W il sottospazio dello spazio vettoriale R 4 dato da tutte le soluzioni dell equazione x + x 2 + x = 0. (a. Sia U R 4 il sottospazio dato da tutte le soluzioni dell equazione Si determini
a) Il campo di esistenza di f(x) è dato da 2x 0, ovvero x 0. Il grafico di f(x) è quello di una iperbole -1 1
LE FUNZIONI EALI DI VAIABILE EALE Soluzioni di quesiti e problemi estratti dal Corso Base Blu di Matematica volume 5 Q[] Sono date le due funzioni: ) = e g() = - se - se = - Determina il campo di esistenza
Capitolo 1. Integrali multipli. 1.1 Integrali doppi su domini normali. Definizione 1.1.1 Si definisce dominio normale rispetto all asse
Contenuti 1 Integrali multipli 2 1.1 Integralidoppisudomininormali... 2 1.2 Cambiamento di variabili in un integrale doppio. 6 1.3 Formula di Gauss-Green nel piano e conseguenze. 7 1.4 Integralitripli...
DOMINIO E LIMITI. Esercizio 3 Studiare gli insiemi di livello della funzione f, nei seguenti casi: 1) f(x,y) = y2 x 2 + y 2.
FUNZIONI DI DUE VARIABILI 1 DOMINIO E LIMITI Domini e disequazioni in due variabili. Insiemi di livello. Elementi di topologia (insiemi aperti, chiusi, limitati, convessi, connessi per archi; punti di
3. Vettori, Spazi Vettoriali e Matrici
3. Vettori, Spazi Vettoriali e Matrici Vettori e Spazi Vettoriali Operazioni tra vettori Basi Trasformazioni ed Operatori Operazioni tra Matrici Autovalori ed autovettori Forme quadratiche, quadriche e
Analisi Matematica di circuiti elettrici
Analisi Matematica di circuiti elettrici Eserciziario A cura del Prof. Marco Chirizzi 2011/2012 Cap.5 Numeri complessi 5.1 Definizione di numero complesso Si definisce numero complesso un numero scritto
Dinamica del corpo rigido: Appunti.
Dinamica del corpo rigido: Appunti. I corpi rigidi sono sistemi di punti materiali, discreti o continui, che hanno come proprietà peculiare quella di conservare la loro forma, oltre che il loro volume,
Teoria in sintesi 10. Attività di sportello 1, 24 - Attività di sportello 2, 24 - Verifica conclusiva, 25. Teoria in sintesi 26
Indice L attività di recupero 6 Funzioni Teoria in sintesi 0 Obiettivo Ricerca del dominio e del codominio di funzioni note Obiettivo Ricerca del dominio di funzioni algebriche; scrittura del dominio Obiettivo
ALGORITMO DEL SIMPLESSO
ALGORITMO DEL SIMPLESSO ESERCITAZIONI DI RICERCA OPERATIVA 1 ESERCIZIO 1. Risolvere il seguente programma lineare (a) con il metodo del simplesso e (b) con il metodo grafico. (1) min x 1 x () (3) (4) (5)
ISTITUTO ISTRUZIONE SUPERIORE
ISTITUTO ISTRUZIONE SUPERIORE Federico II di Svevia Indirizzi: Liceo Scientifico Classico Linguistico Artistico e Scienze Applicate Via G. Verdi, 1 85025 MELFI (PZ) Tel. 097224434/35 Cod. Min.: PZIS02700B
Controlli Automatici T. Trasformata di Laplace e Funzione di trasferimento. Parte 3 Aggiornamento: Settembre 2010. Prof. L.
Parte 3 Aggiornamento: Settembre 2010 Parte 3, 1 Trasformata di Laplace e Funzione di trasferimento Prof. Lorenzo Marconi DEIS-Università di Bologna Tel. 051 2093788 Email: [email protected] URL:
Appunti sul corso di Complementi di Matematica- modulo Analisi Prof. B.Bacchelli
Appunti sul corso di Complementi di Matematica- modulo Analisi Prof. B.Bacchelli 09- Integrale doppio: Riferimenti: R.Adams, Calcolo ifferenziale 2. Capitoli 5.1, 5.2, 5.4. Esercizi 5.3, 5.4 Integrale
2. Giovedì 5/03/2015, 11 13. ore: 2(4) Spazi vettoriali euclidei. Vettori nello spazio fisico: Prodotto scalare e prodotto
Registro delle lezioni di MECCANICA 1 Corso di Laurea in Matematica 8 CFU - A.A. 2014/2015 docente: Francesco Demontis ultimo aggiornamento: 21 maggio 2015 1. Lunedì 2/03/2015, 11 13. ore: 2(2) Presentazione
Dimensione di uno Spazio vettoriale
Capitolo 4 Dimensione di uno Spazio vettoriale 4.1 Introduzione Dedichiamo questo capitolo ad un concetto fondamentale in algebra lineare: la dimensione di uno spazio vettoriale. Daremo una definizione
IL SISTEMA CARTOGRAFICO NAZIONALE
IL SISTEMA CARTOGRAFICO NAZIONALE La Il paragrafo è intitolato La Carta di Gauss poiché, delle infinite formule che si possono adottare per mettere in corrispondenza i punti dell'ellissoide con quelli
Osservazioni sulla continuità per le funzioni reali di variabile reale
Corso di Matematica, I modulo, Università di Udine, Osservazioni sulla continuità Osservazioni sulla continuità per le funzioni reali di variabile reale Come è noto una funzione è continua in un punto
Analisi Matematica 2 per Matematica Esempi di compiti, primo semestre 2011/2012
Analisi Matematica 2 per Matematica Esempi di compiti, primo semestre 211/212 Ricordare: una funzione lipschitziana tra spazi metrici manda insiemi limitati in insiemi limitati; se il dominio di una funzione
Lezioni di ROBOTICA, & VISIONE ARTIFICIALE Dispense per il corso
Lezioni di ROBOTICA, & VISIONE ARTIFICIALE Dispense per il corso Prof. Ing. Domenico PRATTICHIZZO Ing. Gian Luca MARIOTTINI (Ph.D. Student) SIRS Lab - Dipartimento di Ingegneria dell Informazione Indice
Rendering I - geometric processing
Rendering I - geometric processing Dove si descrivono i principali metodi di alto livello utilizzati per ottenere una immagine a partire da una descrizione degli oggetti 3D Introduzione Trasformazioni
A.1 Definizione e rappresentazione di un numero complesso
441 APPENDICE A4 NUMERI COMPLESSI A.1 Definizione e rappresentazione di un numero complesso Si riepilogano i concetti e le operazioni elementari relativi ai numeri complessi. Sia z un numero complesso;
FUNZIONE. Si scrive: A B f: A B x y=f(x) (si legge: f funzione da A in B) x f y= f(x)
1 FUNZIONE Dati gli insiemi A e B, si definisce funzione da A in B una relazione o legge o corrispondenza che ad ogni elemento di A associa uno ed un solo elemento di B. Si scrive: A B f: A B f() (si legge:
APPUNTI SUL CAMPO MAGNETICO ROTANTE
APPUTI UL CAPO AGETICO ROTATE Campo agnetico Rotante ad una coppia polare Consideriamo la struttura in figura che rappresenta la vista, in sezione trasversale, di un cilindro cavo, costituito da un materiale
Esempio. Approssimazione con il criterio dei minimi quadrati. Esempio. Esempio. Risultati sperimentali. Interpolazione con spline cubica.
Esempio Risultati sperimentali Approssimazione con il criterio dei minimi quadrati Esempio Interpolazione con spline cubica. Esempio 1 Come procedere? La natura del fenomeno suggerisce che una buona approssimazione
Laboratorio di Matematica Computazionale A.A. 2007-2008 - Laboratorio nr.8
Laboratorio di Matematica Computazionale A.A. 2007-2008 - Laboratorio nr.8 Complementi di grafica 2D Un fondo di investimento ventennale frutta il 5% di interessi composti annualmente. Un capitale di 10.000
Il concetto di valore medio in generale
Il concetto di valore medio in generale Nella statistica descrittiva si distinguono solitamente due tipi di medie: - le medie analitiche, che soddisfano ad una condizione di invarianza e si calcolano tenendo
8 - Analisi della deformazione
8 - Analisi della deformazione ü [A.a. - : ultima revisione 6 ottobre ] Esercizio n. Si supponga di voler conoscere sperimentalmente lo stato di deformazione in un punto M di un solido. A tal fine, si
Esercizi svolti. 1. Si consideri la funzione f(x) = 4 x 2. a) Verificare che la funzione F(x) = x 2 4 x2 + 2 arcsin x è una primitiva di
Esercizi svolti. Si consideri la funzione f() 4. a) Verificare che la funzione F() 4 + arcsin è una primitiva di f() sull intervallo (, ). b) Verificare che la funzione G() 4 + arcsin π è la primitiva
L EQUILIBRIO UNIVERSALE dalla meccanica celeste alla fisica nucleare
L EQUILIBRIO UNIVERSALE dalla meccanica celeste alla fisica nucleare Cap.4 giroscopio, magnetismo e forza di Lorentz teoria del giroscopio Abbiamo finora preso in considerazione le condizionidi equilibrio
RICHIAMI SULLE MATRICI. Una matrice di m righe e n colonne è rappresentata come
RICHIAMI SULLE MATRICI Una matrice di m righe e n colonne è rappresentata come A = a 11 a 12... a 1n a 21 a 22... a 2n............ a m1 a m2... a mn dove m ed n sono le dimensioni di A. La matrice A può
09 - Funzioni reali di due variabili reali
Università degli Studi di Palermo Facoltà di Economia CdS Sviluppo Economico e Cooperazione Internazionale Appunti del corso di Matematica 09 - Funzioni reali di due variabili reali Anno Accademico 2013/2014
Ricerca Operativa A.A. 2007/2008. 10. Dualità in Programmazione Lineare
Ricerca Operativa A.A. 2007/2008 10. Dualità in Programmazione Lineare Luigi De Giovanni - Ricerca Operativa - 10. Dualità in Programmazione Lineare 10.1 Soluzione di un problema di PL: punti di vista
RAPPRESENTAZIONE GRAFICA E ANALISI DEI DATI SPERIMENTALI CON EXCEL
RAPPRESENTAZIONE GRAFICA E ANALISI DEI DATI SPERIMENTALI CON EXCEL 1 RAPPRESENTAZIONE GRAFICA Per l analisi dati con Excel si fa riferimento alla versione 2007 di Office, le versioni successive non differiscono
Analisi sensitività. Strumenti per il supporto alle decisioni nel processo di Valutazione d azienda
Analisi sensitività. Strumenti per il supporto alle decisioni nel processo di Valutazione d azienda Premessa Con l analisi di sensitività il perito valutatore elabora un range di valori invece di un dato
LE TRASFORMAZIONI GEOMETRICHE NEL PIANO
LE TRASFORMAZIONI GEOMETRICHE NEL PIANO Una trasformazione geometrica è una funzione che fa corrispondere a ogni punto del piano un altro punto del piano stesso Si può pensare come MOVIMENTO di punti e
b) Il luogo degli estremanti in forma cartesiana è:
Soluzione della simulazione di prova del 9/5/ PROBLEMA È data la funzione di equazione: k f( ). a) Determinare i valori di k per cui la funzione ammette punti di massimo e minimo relativi. b) Scrivere
TRASFORMAZIONI GEOMETRICHE NEL PIANO. Parte 1
TRASFORMAZIONI GEOMETRICHE NEL PIANO Parte 1 La geometria è la scienza che studia la forma e l estensione dei corpi e le trasformazioni che questi possono subire. In generale per trasformazione geometrica
Trasformazioni Geometriche 1 Roberto Petroni, 2011
1 Trasformazioni Geometriche 1 Roberto etroni, 2011 Trasformazioni Geometriche sul piano euclideo 1) Introduzione Def: si dice trasformazione geometrica una corrispondenza biunivoca che associa ad ogni
Meccanica. Componenti, mobilità, strutture
Meccanica Componenti, mobilità, strutture Tipi di giunti rotazione o traslazione. Z Z GIUNTI di ROTAZIONE Z1 GIUNTO di TRASLAZIONE Z2 Tipi di link Spesso allungati Ogni geometria Componenti, mobilità,
FONDAMENTI DI SEGNALI E TRASMISSIONE 6 Laboratorio
FONDAMENTI DI SEGNALI E TRASMISSIONE 6 Laboratorio Paolo Mazzucchelli [email protected] Quantizzazione Il segnale y(t) non solo è campionato sull asse dei tempi, ma anche i valori di ordinata sono
bensì una tendenza a ruotare quando vengono applicate in punti diversi di un corpo
Momento di una forza Nella figura 1 è illustrato come forze uguali e contrarie possono non produrre equilibrio, bensì una tendenza a ruotare quando vengono applicate in punti diversi di un corpo esteso.
2) Sul piano coordinato z = 0 studiare il fascio Φ di coniche di equazione. determinando in particolare le sue coniche spezzate ed i suoi punti base.
DPARTMENTO D MATEMATCA E NFORMATCA Corso di Laurea in ngegneria Telematica Prova scritta di Elementi di Algebra e Geometria assegnata il 18/7/02 È assegnato l endomorfismo f : R 3 R 3 definito dalle relazioni
Laboratorio di Fisica 3 Ottica 2. Studenti: Buoni - Giambastiani - Leidi Gruppo: G09
Laboratorio di Fisica 3 Ottica 2 Studenti: Buoni - Giambastiani - Leidi Gruppo: G09 24 febbraio 2015 1 Lunghezza d onda di un laser He-Ne 1.1 Scopo dell esperienza Lo scopo dell esperienza è quello di
Indicando con x i minuti di conversazione effettuati in un mese, con la spesa totale nel mese e con il costo medio al minuto:
PROBLEMA 1. Il piano tariffario proposto da un operatore telefonico prevede, per le telefonate all estero, un canone fisso di 10 euro al mese, più 10 centesimi per ogni minuto di conversazione. Indicando
Diagonalizzazione di matrici e applicazioni lineari
CAPITOLO 9 Diagonalizzazione di matrici e applicazioni lineari Esercizio 9.1. Verificare che v = (1, 0, 0, 1) è autovettore dell applicazione lineare T così definita T(x 1,x 2,x 3,x 4 ) = (2x 1 2x 3, x
Programmazione per competenze del corso Matematica, Secondo biennio
Programmazione per del corso Matematica, Secondo biennio Competenze di area Traguardi per lo sviluppo delle degli elementi del calcolo algebrico algebriche di primo e secondo grado di grado superiore al
Lezione 16. Motori elettrici: introduzione
Lezione 16. Motori elettrici: introduzione 1 0. Premessa Un azionamento è un sistema che trasforma potenza elettrica in potenza meccanica in modo controllato. Esso è costituito, nella sua forma usuale,
fit-up), cioè ai problemi che si verificano all atto dell assemblaggio quando non si riescono a montare i diversi componenti del prodotto o quando il
Abstract Nel presente lavoro di tesi è stata analizzata l importanza che riveste l assemblaggio meccanico nelle diverse fasi del processo produttivo, centrando l attenzione sulle fasi di progettazione
Le principali istruzioni di Autocad
Le principali istruzioni di Autocad Informazioni generali Autocad è il primo software CAD(computer aided design) sviluppato per computer, introdotto nel 1982 da Autodesk. È utilizzato principalmente per
Sensori inerziali nei Mobile Mapping Systems. Corso di Metodologie Topografiche per l Ingegneria A.A. 2006/2007
Sensori inerziali nei Mobile Mapping Systems Corso di Metodologie Topografiche per l Ingegneria A.A. 2006/2007 MOTO DI UN CORPO RIGIDO NELLO SPAZIO: Descritto da 6 parametri: - un vettore posizione - 3
Proposta di soluzione della prova di matematica Liceo scientifico di Ordinamento - 2014
Proposta di soluzione della prova di matematica Liceo scientifico di Ordinamento - 14 Problema 1 Punto a) Osserviamo che g (x) = f(x) e pertanto g () = f() = in quanto Γ è tangente all asse delle ascisse,
Alcuni probelmi risolti
Alcuni probelmi risolti Esercizio 1: Svolgere l esempio 3 a p.115 del testo. Esercizio (Consideriamo nuovamente i dati dell esempio 3 p. 115 del testo.) Il prezzo P unitario ottenuto da un impresa nella
Esercizi su dominio limiti continuità - prof. B.Bacchelli. Riferimenti: R.Adams, Calcolo Differenziale 2. Capitoli 3.1, 3.2.
Esercizi su dominio iti continuità - prof. B.Bacchelli Riferimenti: R.Adams, Calcolo Differenziale 2. Capitoli 3., 3.2. - Esercizi 3., 3.2. ESERCIZI * Determinare e disegnare il dominio delle seguenti
MATEMATICA 2001. p = 4/6 = 2/3; q = 1-2/3 = 1/3. La risposta corretta è quindi la E).
MATEMATICA 2001 66. Quale fra le seguenti affermazioni è sbagliata? A) Tutte le funzioni ammettono la funzione inversa B) Una funzione dispari è simmetrica rispetto all origine C) Una funzione pari è simmetrica
FUNZIONI LINEARI. FUNZIONE VALORE ASSOLUTO. Si chiama funzione lineare (o funzione affine) una funzione del tipo = +
FUNZIONI LINEARI. FUNZIONE VALORE ASSOLUTO Si chiama funzione lineare (o funzione affine) una funzione del tipo = + dove m e q sono numeri reali fissati. Il grafico di tale funzione è una retta, di cui
NAVIGAZIONE IN TEMPO REALE DI UN MANIPOLATORE ROBOTICO INDUSTRIALE IN PRESENZA DI OSTACOLI
NAVIGAZIONE IN TEMPO REALE DI UN MANIPOLATORE ROBOTICO INDUSTRIALE IN PRESENZA DI OSTACOLI Francesca Ballan Relatori: Dott. Ing. Tullio Facchinetti Chiar.ma Prof.ssa Antonella Ferrara Correlatori: Chiar.mo
Programma definitivo Analisi Matematica 2 - a.a. 2005-06 Corso di Laurea Triennale in Ingegneria Civile (ICI)
1 Programma definitivo Analisi Matematica 2 - a.a. 2005-06 Corso di Laurea Triennale in Ingegneria Civile (ICI) Approssimazioni di Taylor BPS, Capitolo 5, pagine 256 268 Approssimazione lineare, il simbolo
Sistemi di riferimento
Sistemi di riferimento Sistemi di riferimento Paolo Zatelli Dipartimento di Ingegneria Civile ed Ambientale Università di Trento Paolo Zatelli Università di Trento 1 / 40 Sistemi di riferimento Outline
CORSO di AUTOMAZIONE INDUSTRIALE
CORSO di AUTOMAZIONE INDUSTRIALE (cod. 8469) APPELLO del 10 Novembre 2010 Prof. Emanuele Carpanzano Soluzioni Esercizio 1 (Domande generali) 1.a) Controllo Modulante Tracciare qualitativamente la risposta
La Programmazione Lineare
4 La Programmazione Lineare 4.1 INTERPRETAZIONE GEOMETRICA DI UN PROBLEMA DI PROGRAMMAZIONE LINEARE Esercizio 4.1.1 Fornire una rappresentazione geometrica e risolvere graficamente i seguenti problemi
LA FUNZIONE DI TRASFERIMENTO
LA FUNZIONE DI TRASFERIMENTO Può essere espressa sia nel dominio della s che nel dominio della j Definizione nel dominio della s. è riferita ai soli sistemi con un ingresso ed un uscita 2. ha per oggetto
Autovalori e Autovettori
Daniela Lera Università degli Studi di Cagliari Dipartimento di Matematica e Informatica A.A. 2008-2009 Autovalori e Autovettori Definizione Siano A C nxn, λ C, e x C n, x 0, tali che Ax = λx. (1) Allora
Prof. Gabriele Vezzosi... Settore Inquadramento MAT03...
UNIVERSITÀ DEGLI STUDI Registro dell insegnamento Anno Accademico 2014/2015 Facoltà Ingegneria....................................... Insegnamento Matematica................................ Settore Mat03............................................
Forza. Forza. Esempi di forze. Caratteristiche della forza. Forze fondamentali CONCETTO DI FORZA E EQUILIBRIO, PRINCIPI DELLA DINAMICA
Forza CONCETTO DI FORZA E EQUILIBRIO, PRINCIPI DELLA DINAMICA Cos è una forza? la forza è una grandezza che agisce su un corpo cambiando la sua velocità e provocando una deformazione sul corpo 2 Esempi
2 + (σ2 - ρσ 1 ) 2 > 0 [da -1 ρ 1] b = (σ 2. 2 - ρσ1 σ 2 ) = (σ 1
1 PORTAFOGLIO Portafoglio Markowitz (2 titoli) (rischiosi) due titoli rendimento/varianza ( μ 1, σ 1 ), ( μ 2, σ 2 ) Si suppone μ 1 > μ 2, σ 1 > σ 2 portafoglio con pesi w 1, w 2 w 1 = w, w 2 = 1- w 1
Che cosa e come valutano le prove di matematica e con quali risultati. nell A.S. 2008 2009
Che cosa e come valutano le prove di matematica e con quali risultati nell A.S. 2008 2009 Presentazione a cura di Roberta Michelini Casalpusterlengo, 8 gennaio 2010 http://www.invalsi.it/esamidistato0809/
