I Appello di Calcolo delle Probabilità Cognome: Laurea Triennale in Matematica 2012/13 Nome: 30 gennaio

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "I Appello di Calcolo delle Probabilità Cognome: Laurea Triennale in Matematica 2012/13 Nome: 30 gennaio"

Transcript

1 I Appello di Calcolo delle Probabilità Cognome: Laurea Triennale in Matematica /3 Nome: 3 gennaio 3 Se non è espressamente indicato il contrario, per la soluzione degli esercizi è possibile usare tutti i risultati visti a lezione compresi quelli di cui non è stata fornita la dimostrazione. PATE I Esercizi,, 3 Esercizio. Nei quesiti seguenti, con dado si intende un dado regolare a sei facce e con moneta si intende una moneta equilibrata. a Si determini la probabilità p risp. q che lanciando due dadi risp. tre dadi il punteggio totale sia 5. b Gaia è indecisa su quanti dadi lanciare. Per sciogliere questo dilemma, affida la scelta al lancio di una moneta: se esce testa, ne lancia due; se invece esce croce, ne lancia tre. Se accade che il punteggio totale ottenuto è pari a 5, ritenete più probabile che Gaia abbia lanciato due dadi oppure tre? O forse le due eventualità sono equiprobabili? Si motivi quantitativamente e, se si vuole, anche qualitativamente la risposta. Soluzione. a Lo spazio di probabilità naturale è dato dall insieme Ω = {,, 3,, 5, } risp. Ω = {,, 3,, 5, } 3, munito della probabilità uniforme. Si ottiene p = 3 = 9 risp. q = = 3, perché ci sono risp. modi possibili di ottenere un punteggio totale pari a 5 lanciando due risp. tre dadi. b Introducendo gli eventi A := Gaia sceglie due dadi e B := il punteggio totale è pari a 5, si ha PA = e PB A = p, PB Ac = q per il punto precedente. Quindi Per la formula di Bayes e di conseguenza PB = PB APA + PB A c PA c = p + q. PA B = PB APA PB = p p = p + q p + q, PA c B = PA B = q p + q. Quindi, sapendo che si è verificato B, ossia che il punteggio totale è pari a 5, l eventualità condizionalmente più probabile è che Gaia abbia lanciato due dadi, perché p > q e dunque PA B > PA c B.

2 Esercizio. Dieci coppie di sposi partecipano alla seguente lotteria. A ciascuna delle venti persone viene consegnato un biglietto, e tra questi ce ne sono sei speciali. Se in una coppia sia il marito che la moglie ricevono un biglietto speciale, la coppia vince un viaggio per le isole Dodo; altrimenti, la coppia in questione non vince niente. [Può essere utile numerare le persone da a, indicando ad esempio ogni marito con un numero dispari e la rispettiva moglie con il numero pari successivo. In questo modo, la prima coppia corrisponde a {, }, la seconda a {3, }, ecc.] a Si calcoli la probabilità p che una coppia fissata ad esempio, la prima vinca il viaggio. b Si calcoli la probabilità q che due coppie fissate distinte ad esempio, le prime due vincano entrambe il viaggio. Introduciamo ora, per ogni i {,..., }, la variabile aleatoria X i che assume il valore se la coppia i-esima vince il viaggio, e se non lo vince. Indichiamo quindi con S il numero di coppie che vincono il viaggio, e con T il numero di coppie che non lo vincono. c Si calcolino EX i e CovX i, X j per ogni i, j {,..., }. d Si deducano ES e VarS. e Si ricavino infine ET e VarT. N.B. Se lo si desidera, la risposta a un quesito può essere lasciata espressa in termini delle risposte ai quesiti precedenti. Soluzione. a Sia Ω := {ω {,..., } : ω = } l insieme dei sottoinsiemi di {,..., } con elementi, munito della probabilità uniforme. Sappiamo che Ω =. Sia A i := l i-esima coppia vince il viaggio. L evento A coincide con l insieme degli ω Ω che contengono e. Ogni tale ω è determinato dalla scelta dei rimanenti punti in {3,,..., }, che può essere fatta in 8 modi. Quindi 8 p = PA = = 5 9. È charo che il risultato è lo stesso per qualsiasi coppia fissata, ossia PA i = p per ogni i. b Ogni ω A A contiene per costruzione i punti,, 3, e pertanto restano da scegliere i rimanenti punti in {5,..., }, scelta che ha esiti possibili. Un discorso analogo si può fare per A i A j con i j, pertanto q = PA i A j = A i A j = = 5 3 Ω c Si ha X i = Ai Bep quindi EX i = p e, per i = j, CovX i, X i = VarX i = p p. Se i j si ha EX i X j = E Ai A j = PA i A j = q, quindi CovX i, X j = EX i X j EX i EX j = q p. d Si ha S = X X = i= X i pertanto ES = EX i = EX = p, VarS = i= i= VarX i + i j= CovX i, X j = = VarX + 9 CovX, X = p p + 9 q p. e Dato che T = S, si ha ET = ES e VarT = VarS, per le proprietà di trasformazione di valor medio e varianza.

3 3 Esercizio 3. Siano X e Y variabili aleatorie reali indipendenti, entrambe con distribuzione N,. Definiamo S := X, T := Y, U := S + T. a Si mostri che S e T hanno entrambe distribuzione Gamma,. Si spieghi perché sono variabili aleatorie indipendenti. [Sugg. Si esprima la funzione di ripartizione di S in termini di quella di X, e poi si ricavi la densità] b Dopo aver spiegato perché la variabile aleatoria U è assolutamente continua, si mostri che essa ha densità f U x = e x/. c Si determini per quali valori di α si ha EU α <. Soluzione 3. a Le variabili aleatorie S e T sono indipendenti e hanno la stessa distribuzione, perché sono ottenute applicando la stessa funzione misurabile alle variabili aleatorie indipendenti e con la stessa distribuzione X e Y. Chiaramente F S s = per s <, mentre per s F S s = PS s = PX s = P s X s = F X s F X s. Dato che F X è di classe C, con derivata F X x = π e x /, segue che F S è C a tratti, pertanto S è assolutamente continua con densità data per s da f S s = F Ss = s f X s + s f X s = π s e s, mentre f S s = per s <. Questa è proprio la densità di una Gamma,, perché Γ = π. b Per un risultato visto a lezione, U Gamma, = Exp, perché somma di due variabili aleatorie Gamma, indipendenti. La densità di una Exp è proprio e x/. c Dato che U è una variabile aleatoria q.c. positiva, il valor medio EU α è sempre ben definito in [, + ]. Inoltre EU α = x α f U x dx = x α e x/ dx = α z α e z dz, col cambio di variabili x = z. L integrale è finito su ogni compatto di,, perché la funzione integranda è continua; inoltre è finito sul dominio [, +, perché z α e z < e z/ per z sufficientemente grande. Infine, per z c è una singolarità se α <, che è integrabile se e solo se α >. In definitiva, EU α < se e solo se α > e in tal caso EU α = α Γα+.

4 PATE II Esercizi, 5, Esercizio. Sia X, Y un vettore aleatorio bidimensionale assolutamente continuo, con densità f X,Y x, y = x + y Dx, y, dove D := {x, y : x >, y >, x + y < }. a Si determini la distribuzione della variabile aleatoria Z := X + Y, riconoscendola come notevole. b Si mostri che le componenti X e Y hanno la stessa densità fx = log x, x. c Si mostri che la funzione di ripartizione F = F X di X soddisfa la relazione F x x log per x. x d Siano ora {X k } k N variabili aleatorie reali i.i.d. con la stessa distribuzione di X. Definiamo per n N la variabile aleatoria reale W n := n log n min{x,..., X n }. Si mostri che W n converge in distribuzione per n verso un limite notevole. Soluzione. a Applicando la formula mostrata a lezione, Z ha densità f Z z = f X,Y x, z x dx = z Dx, z x dx = z,zx dx, z =, z, cioè Z U,. b X e Y hanno la stessa densità per simmetria, data da x [ ] x fx = f X,Y x, y dy =, x x + y dy =,x logx+y c Si ha F x = x ft dt = x logt dt = x logx + da cui si ottiene che F x x log x, come richiesto: infatti F x x log = + x log per x, x d Per t si ha F Wn t =, mentre per t > t n F Wn t = F. n log n Per il punto precedente F x x log x, pertanto t t n log n F n log n n log n log t = t n log n = t { } log log n log t + t n log n n, pertanto lim F W n n t = x = log dt = x log x +, { } log n + log log n log t lim t n = e n n t = F W t, con W Exp. Ciò significa che W n W Exp in distribuzione. x, x.

5 5 Esercizio 5. Si ricordi che, per ogni variabile aleatoria reale positiva X, vale la formula EX = + PX > t dt. a Si deduca che, se X è una variabile aleatoria reale positiva, { < + se EX < ε > : PX > εn = + se EX =. n N Siano ora {X n } n N variabili aleatorie reali positive, definite sullo stesso spazio di probabilità e con la stessa legge ma non necessariamente indipendenti. Sia m := EX [, + ] e definiamo W n := X n n. b Se m < +, si mostri che W n q.c.. c Se m = + e in aggiunta le variabili aleatorie {X n } n N sono indipendenti e dunque i.i.d., si mostri che W n q.c.. Che cosa si può dire sulla convergenza in probabilità di W n? d Per concludere, si dia un esempio di successione {T n } n N di variabili aleatorie i.i.d. tale che log T n q.c.. n Si noti che è sufficiente specificare la distribuzione di T come si preferisce: discreta, assolutamente continua,.... Soluzione 5. da cui segue che a La funzione t PX > t è decrescente, pertanto per ogni ε > e n N PX > εn ε εn εn ε n N PX > εn EX = PX > t dt PX > εn ε, PX > t dt ε n N PX > εn. Questo mostra che la convergenza/divergenza della serie n N PX > εn è equivalente a EX < / EX = +. b Per un criterio visto a lezione, corollario del lemma di Borel-Cantelli, per avere W n q.c. basta mostrare che per ogni ε > PX > εn < n N P W n > ε = n N PX n > εn = n N il che avviene se EX <, per il punto precedente. c Per il punto precedente, in questo caso n N P W n > ε = n N PX n > εn = n N PX > εn =. Dato che gli eventi { W n > ε} sono indipendenti, per Borel-Cantelli si ha P lim sup{ W n > ε} n =, ε >. Questo chiaramente mostra che W n q.c. abbiamo anche visto un criterio a lezione. Tuttavia continua a valere la convergenza in probabilità W n. Infatti per ε > P W n > ε = PX n > εn = PX > εn = F X εn, e dato che lim x + F X x = per ogni funzione di ripartizione, si ha P W n > ε.

6 d Per il punto precedente, è sufficiente che Elog T n = +. Ad esempio, si può scegliere F Xn x = x [, x, così che PX n > x = x per x >. Ponendo T n := e Xn, si ha Elog T n = EX n = PX n > x dx = +.

7 7 Esercizio. Si consideri la catena di Markov X = {X n } n N a valori nell insieme E = {,, 3,, 5}, corrispondente al seguente grafo: 5 3 a Si scriva la matrice di transizione della catena, si identifichino le classi di comunicazione e si classifichino gli stati transitori, ricorrenti positivi, ricorrenti nulli, determinandone il periodo. b Si mostri che esiste un unica probabilità invariante e la si determini, notando che non è reversibile. Se la catena parte inizialmente dallo stato, per tempi lunghi è più probabile trovarla nello stato o nello stato 3? Soluzione. a La catena è irriducibile e finita, quindi tutti gli stati sono ricorrenti positivi e hanno lo stesso periodo. Per determinarlo, si noti che si ha p p p > e p 3 p 3 p 3 p >, e dato che il M.C.D. tra e 3 vale, la catena è aperiodica. b Essendo irriducibile e ricorrente positiva, esiste un unica probabilità invariante. Imponendo l equazione π i = k E π kp ki per i =,, 3, si ottiene π = π π = π + π 3 π 3 = π + π, π = π + π 5 da cui, ponendo π := α, si ricava facilmente π = α π = α π = 3 α. π 3 = α π = α Imponendo che π + π + π 3 + π + π 5 = si ottiene infine π = π = 7, π 3 = 3, π = 7, π 5 =. Per il teorema di convergenza all equilibrio si ha lim n PX n = j X = i = π j, pertanto è più probabile che per tempi lunghi la catena si trovi nello stato invece che nello stato 3, essendo π > π 3.

II Appello di Calcolo delle Probabilità Laurea Triennale in Matematica 2016/17

II Appello di Calcolo delle Probabilità Laurea Triennale in Matematica 2016/17 II Appello di Calcolo delle Probabilità Laurea Triennale in Matematica 6/7 Martedì 4 febbraio 7 Cognome: Nome: Email: Se non è espressamente indicato il contrario, per la soluzione degli esercizi è possibile

Dettagli

Calcolo delle Probabilità 2017/18 Foglio di esercizi 8

Calcolo delle Probabilità 2017/18 Foglio di esercizi 8 Calcolo delle Probabilità 07/8 Foglio di esercizi 8 Catene di Markov e convergenze Si consiglia di svolgere gli esercizi n 9,,,, 5 Catene di Markov Esercizio (Baldi, Esempio 5) Si consideri il grafo costituito

Dettagli

I Appello di Calcolo delle Probabilità Laurea Triennale in Matematica 2016/17

I Appello di Calcolo delle Probabilità Laurea Triennale in Matematica 2016/17 I Appello di Calcolo delle Probabilità Laurea Triennale in Matematica 6/7 Martedì 3 gennaio 7 Cognome: Nome: Email: Se non è espressamente indicato il contrario, per la soluzione degli esercizi è possibile

Dettagli

UNIVERSITA` di ROMA TOR VERGATA

UNIVERSITA` di ROMA TOR VERGATA UNIVERSITA` di ROMA TOR VERGATA Corso di PS2-Probabilità 2 P.Baldi appello, 7 giugno 200 Corso di Laurea in Matematica Esercizio Siano X, Y v.a. indipendenti di legge Ŵ(2, λ). Calcolare densità e la media

Dettagli

I Appello di Processi Stocastici Cognome: Laurea Magistrale in Matematica 2014/15 Nome: 23 Giugno

I Appello di Processi Stocastici Cognome: Laurea Magistrale in Matematica 2014/15 Nome: 23 Giugno I Appello di Processi Stocastici Cognome: Laurea Magistrale in Matematica 014/15 Nome: 3 Giugno 015 Email: Quando non è espressamente indicato il contrario, per la soluzione degli esercizi è possibile

Dettagli

Calcolo delle Probabilità 2

Calcolo delle Probabilità 2 Prova d esame di Calcolo delle Probabilità 2 Maggio 2006 Sia X una variabile aleatoria distribuita secondo la densità seguente ke x 1 x < 0 f X (x) = 1/2 0 x 1. 1. Determinare il valore del parametro reale

Dettagli

(a) Qual è la probabilità che un neonato sopravviva al primo anno?

(a) Qual è la probabilità che un neonato sopravviva al primo anno? II Appello di Probabilità e Statistica Cognome: Laurea in Matematica Nome: 2 luglio 2009 Matricola: ESERCIZIO. Per una certa specie africana di uccelli, i neonati hanno indipendentemente l uno dal l altro

Dettagli

0 se y c 1 (y)) se c < y < d. 1 se y d

0 se y c 1 (y)) se c < y < d. 1 se y d Capitolo. Parte IX Exercise.. Sia X una variabile aleatoria reale assolutamente continua e sia (a,b) un intervallo aperto (limitato o illimitato) di R, tale che P(X (a,b)) =. Sia ϕ : (a,b) R una funzione

Dettagli

Prova scritta di Probabilità e Statistica Appello unico, II sessione, a.a. 2015/ Settembre 2016

Prova scritta di Probabilità e Statistica Appello unico, II sessione, a.a. 2015/ Settembre 2016 Prova scritta di Probabilità e Statistica Appello unico, II sessione, a.a. 205/206 20 Settembre 206 Esercizio. Un dado equilibrato viene lanciato ripetutamente. Indichiamo con X n il risultato dell n-esimo

Dettagli

Catene di Markov - Foglio 1

Catene di Markov - Foglio 1 Catene di Markov - Foglio 1 1. Una pedina si muove su un circuito circolare a 4 vertici, numerati da 1 a 4. La pedina si trova inizialmente nel vertice 1. Ad ogni passo un giocatore lancia un dado equilibrato:

Dettagli

UNIVERSITA` di ROMA TOR VERGATA

UNIVERSITA` di ROMA TOR VERGATA UNIVERSITA` di ROMA TOR VERGATA Corso di PS2-Probabilità 2 PBaldi appello, 23 giugno 29 Corso di Laurea in Matematica Esercizio Per α 2 consideriamo la catena di Markov su {, 2, 3} associata alla matrice

Dettagli

CP410: Esonero 1, 31 ottobre 2013

CP410: Esonero 1, 31 ottobre 2013 Dipartimento di Matematica, Roma Tre Pietro Caputo 2013-14, I semestre 31 ottobre, 2013 CP410: Esonero 1, 31 ottobre 2013 Cognome Nome Matricola Firma 1. Fare un esempio di successione di variabili aleatorie

Dettagli

Scrivere su ogni foglio NOME e COGNOME. Le risposte devono essere giustificate sui fogli protocollo e riportate nel foglio RISPOSTE.

Scrivere su ogni foglio NOME e COGNOME. Le risposte devono essere giustificate sui fogli protocollo e riportate nel foglio RISPOSTE. CORSO DI CALCOLO DELLE PROBABILITÀ o modulo - PROVA d esame del 9/02/200 - Laurea Quadriennale in Matematica - Prof. Nappo Scrivere su ogni foglio NOME e COGNOME. Le risposte devono essere giustificate

Dettagli

Calcolo delle Probabilità e Statistica, Ingegneria Civile e A&T e Informatica I prova finale a.a. 2016/17

Calcolo delle Probabilità e Statistica, Ingegneria Civile e A&T e Informatica I prova finale a.a. 2016/17 Calcolo delle Probabilità e Statistica, Ingegneria Civile e A&T e Informatica I prova finale aa 6/ Punteggi: : 3 + 6; : + + + ; 3: + Una scatola contiene monete; 8 di queste sono equilibrate, mentre le

Dettagli

CP110 Probabilità: Esame 4 luglio Testo e soluzione

CP110 Probabilità: Esame 4 luglio Testo e soluzione Dipartimento di Matematica, Roma Tre Pietro Caputo 2011-12, II semestre 4 luglio, 2012 CP110 Probabilità: Esame 4 luglio 2012 Testo e soluzione 1. (6 pts) Una scatola contiene 10 palline numerate da 1

Dettagli

Esame di Calcolo delle Probabilità del 11 dicembre 2007 (Corso di Laurea Triennale in Matematica, Università degli Studi di Padova).

Esame di Calcolo delle Probabilità del 11 dicembre 2007 (Corso di Laurea Triennale in Matematica, Università degli Studi di Padova). Esame di Calcolo delle Probabilità del dicembre 27 (Corso di Laurea Triennale in Matematica, Università degli Studi di Padova). Cognome Nome Matricola Es. Es. 2 Es. Es. 4 Somma Voto finale Attenzione:

Dettagli

Esercizi di Calcolo delle Probabilità

Esercizi di Calcolo delle Probabilità Esercizi di Calcolo delle Probabilità Versione del 1/05/005 Corso di Statistica Anno Accademico 00/05 Antonio Giannitrapani, Simone Paoletti Calcolo delle probabilità Esercizio 1. Un dado viene lanciato

Dettagli

Esercizi settimana 5. Esercizi applicati. Esercizio 1. Si considerino tre monete truccate, ognuna con probabilità 2 3

Esercizi settimana 5. Esercizi applicati. Esercizio 1. Si considerino tre monete truccate, ognuna con probabilità 2 3 1 Esercizi settimana 5 Esercizi applicati Esercizio 1. Si considerino tre monete truccate, ognuna con probabilità 3 di ottenere testa. Se scegliete la prima moneta vincete 10 punti se esce testa e punti

Dettagli

CP110 Probabilità: Esame del 6 giugno Testo e soluzione

CP110 Probabilità: Esame del 6 giugno Testo e soluzione Dipartimento di Matematica, Roma Tre Pietro Caputo 21-11, II semestre 6 giugno, 211 CP11 Probabilità: Esame del 6 giugno 211 Testo e soluzione 1. (6 pts) Ci sono 6 palline, di cui nere e rosse. Ciascuna,

Dettagli

CP410: Esonero 1, 7 novembre, 2018

CP410: Esonero 1, 7 novembre, 2018 Dipartimento di Matematica, Roma Tre Pietro Caputo 2018-19, I semestre 7 novembre, 2018 CP410: Esonero 1, 7 novembre, 2018 Cognome Nome Matricola Firma 1. Sia X una variabile aleatoria su uno spazio di

Dettagli

) la sua densità discreta sarà della forma. p X (0) = 1 2, p X(1) = 1 2,

) la sua densità discreta sarà della forma. p X (0) = 1 2, p X(1) = 1 2, Esercizi settimana 6 Esercizi applicati Esercizio. Siano X e Y due v.a. discrete indipendenti tali che X B(, ) e Y B(, ), n 0. (i) Si calcoli la legge di X + Y ; (ii) Si calcoli la legge di X Y ; (iii)

Dettagli

Corso di laurea in Ingegneria civile - ambientale - edile Esame di Analisi matematica II Prova scritta del 29 giugno 2018

Corso di laurea in Ingegneria civile - ambientale - edile Esame di Analisi matematica II Prova scritta del 29 giugno 2018 Corso di laurea in Ingegneria civile - ambientale - edile Esame di Analisi matematica II Prova scritta del 29 giugno 28 Esercizio Si consideri la successione di funzioni {f n } n N + definita da f n (x)

Dettagli

Esonero di Analisi Matematica II (A)

Esonero di Analisi Matematica II (A) Esonero di Analisi Matematica II (A) Ingegneria Edile, 8 aprile 3. Studiare la convergenza del seguente integrale improprio: + x log 3 x (x ) 3 dx.. Studiare la convergenza puntuale ed uniforme della seguente

Dettagli

Corso di Laurea Triennale in Matematica Calcolo delle Probabilità I (docenti G. Nappo, F. Spizzichino)

Corso di Laurea Triennale in Matematica Calcolo delle Probabilità I (docenti G. Nappo, F. Spizzichino) Corso di Laurea Triennale in Matematica Calcolo delle Probabilità I (docenti G. Nappo, F. Spizzichino Prova di Mercoledì giugno 4 (tempo a disposizione: ore. Scrivere su ogni foglio NOME e COGNOME. Le

Dettagli

Traccia della soluzione degli esercizi del Capitolo 4

Traccia della soluzione degli esercizi del Capitolo 4 Traccia della soluzione degli esercizi del Capitolo 4 Esercizio 6 Sia X una v.c. uniformenente distribuita nell intervallo ( π, π ), cioè f X (x) = π ( π, π ) (x). Posto Y = cos(x), trovare la distribuzione

Dettagli

Esercizi di Calcolo delle Probabilità

Esercizi di Calcolo delle Probabilità Esercizi di Calcolo delle Probabilità M. Pratelli e M. Romito Gli esercizi che seguono sono stati proposti nel corso Probabilità dell Università di Pisa negli a.a. 2012-13 e 2013-14 (M. Romito) e 2014-15

Dettagli

Scrivere su ogni foglio NOME e COGNOME. Le risposte devono essere giustificate sui fogli protocollo e riportate nel foglio RISPOSTE.

Scrivere su ogni foglio NOME e COGNOME. Le risposte devono essere giustificate sui fogli protocollo e riportate nel foglio RISPOSTE. Corso di Laurea Triennale in Matematica Corso di Calcolo delle Probabilità (docenti G. Nappo, F. Spizzichino prova scritta giugno 5 (tempo a disposizione: ore La prova scritta consiste nello svolgimento

Dettagli

PROVE SCRITTE DI MATEMATICA APPLICATA, ANNO 2006/07

PROVE SCRITTE DI MATEMATICA APPLICATA, ANNO 2006/07 PROVE SCRITTE DI MATEMATICA APPLICATA, ANNO 006/07 Esercizio 1 Prova scritta del 16/1/006 In un ufficio postale lavorano due impiegati che svolgono lo stesso compito in maniera indipendente, sbrigando

Dettagli

Calcolo delle Probabilità

Calcolo delle Probabilità Calcolo delle Probabilità Il calcolo delle probabilità studia i modelli matematici delle cosiddette situazioni di incertezza. Molte situazioni concrete sono caratterizzate a priori da incertezza su quello

Dettagli

DATI DELLO STUDENTE: NomeeCognome:... NumerodiMatricola:... PROCESSI STOCASTICI 09/09/2015, ESAME SCRITTO

DATI DELLO STUDENTE: NomeeCognome:... NumerodiMatricola:... PROCESSI STOCASTICI 09/09/2015, ESAME SCRITTO DATI DELLO STUDENTE: NomeeCognome:... NumerodiMatricola:... PROCESSI STOCASTICI 09/09/20, ESAME SCRITTO L uso di testi, appunti, formulari e gadget elettronici non è autorizzato. Avete 2 ore di tempo a

Dettagli

Corso di Laurea in Informatica Calcolo delle Probabilità e Statistica (269AA) A.A. 2017/18 - Prova scritta

Corso di Laurea in Informatica Calcolo delle Probabilità e Statistica (269AA) A.A. 2017/18 - Prova scritta Corso di Laurea in Informatica Calcolo delle Probabilità e Statistica (269AA A.A. 2017/18 - Prova scritta 2018-09-12 La durata della prova è di tre ore. Le risposte devono essere adeguatamente giustificate.

Dettagli

Esame di AM2 & EAP (270/04) a.a. 2009/10

Esame di AM2 & EAP (270/04) a.a. 2009/10 Quarto appello del 16 Luglio 2010 1. Un urna contiene delle palline numerate e distribuite in seguente maniera: Vengono estratte due palline senza rimpiazzo e siano X e Y rispettivamente il numero della

Dettagli

Esercizi settimana 4. Esercizi applicati. Esercizio 1. Si considerino tre monete truccate, ognuna con probabilità 2 3

Esercizi settimana 4. Esercizi applicati. Esercizio 1. Si considerino tre monete truccate, ognuna con probabilità 2 3 1 Esercizi settimana Esercizi applicati Esercizio 1. Si considerino tre monete truccate, ognuna con probabilità 3 di ottenere testa. Se scegliete la prima moneta vincete 10 punti se esce testa e punti

Dettagli

Esercizi: fascicolo 4

Esercizi: fascicolo 4 Esercizi: fascicolo 4 Esercizio 1 Dimostrare le seguenti proprietà (1), (2) e (3): (1) X 1 = 0 X 0; (2) X L 1 (Ω, P ), λ R λx 1 = λ X 1 ; (3) X, Y L 1 (Ω, P ) X + Y 1 X 1 + Y 1. Esercizio 2 Si estraggono

Dettagli

PROVE SCRITTE DI MATEMATICA APPLICATA, ANNO 2011/12

PROVE SCRITTE DI MATEMATICA APPLICATA, ANNO 2011/12 PROVE SCRITTE DI MATEMATICA APPLICATA, ANNO 0/ Esercizio Prova scritta del 7/06/0 Siano X e Y due v.a. indipendenti, con distribuzione continua Γ(, ). Si trovino la distribuzione di X Y e di (X Y ). Esercizio

Dettagli

Cognome Nome Matricola. Es. 1 Es. 2 Es. 3 Es. 4 Somma Voto finale

Cognome Nome Matricola. Es. 1 Es. 2 Es. 3 Es. 4 Somma Voto finale Esame di Calcolo delle Probabilità mod. B del 9 settembre 2003 (Corso di Laurea in Matematica, Università degli Studi di Padova). Cognome Nome Matricola Es. 1 Es. 2 Es. 3 Es. 4 Somma Voto finale Attenzione:

Dettagli

Prova Scritta di Probabilità e Statistica Cognome: Laurea in Matematica. 28 giugno 2012 Matricola: Nome:

Prova Scritta di Probabilità e Statistica Cognome: Laurea in Matematica. 28 giugno 2012 Matricola: Nome: Prova Scritta di Probabilità e Statistica Cognome: Laurea in Matematica Nome: 8 giugno 01 Matricola: ESERCIZIO 1. Sia (A n n una successione di eventi indipendenti, tali che P (A n 1 1 n. Sia B := + n=

Dettagli

CP410: Esame 2, 3 febbraio 2015

CP410: Esame 2, 3 febbraio 2015 Dipartimento di Matematica, Roma Tre Pietro Caputo 2014-15, I semestre 3 febbraio, 2015 CP410: Esame 2, 3 febbraio 2015 Cognome Nome Matricola Firma 1. Sia (Ω, F, P) lo spazio di probabilità definito da

Dettagli

Matematica con elementi di Informatica

Matematica con elementi di Informatica Variabili aleatorie Matematica con elementi di Informatica Tiziano Vargiolu Dipartimento di Matematica vargiolu@math.unipd.it Corso di Laurea Magistrale in Chimica e Tecnologie Farmaceutiche Anno Accademico

Dettagli

2. Introduzione alla probabilità

2. Introduzione alla probabilità . Introduzione alla probabilità Carla Seatzu, 8 Marzo 008 Definizioni preliminari: Prova: è un esperimento il cui esito è aleatorio Spazio degli eventi elementari: è l insieme Ω di tutti i possibili esiti

Dettagli

Laurea triennale in INFORMATICA, Corso di CALCOLO DELLE PROBABILITÀ COMPITO - 2 luglio FOGLIO RISPOSTE

Laurea triennale in INFORMATICA, Corso di CALCOLO DELLE PROBABILITÀ COMPITO - 2 luglio FOGLIO RISPOSTE Laurea triennale in INFORMATICA, Corso di CALCOLO DELLE PROBABILITÀ COMPITO - 2 luglio 202 - FOGLIO RISPOSTE NOME e COGNOME SOLUZIONI CANALE: G. Nappo VOTO: N.B. Scrivere le risposte dei vari punti degli

Dettagli

Esame di Calcolo delle Probabilità del 12 dicembre 2005 (Corso di Laurea Triennale in Matematica, Università degli Studi di Padova).

Esame di Calcolo delle Probabilità del 12 dicembre 2005 (Corso di Laurea Triennale in Matematica, Università degli Studi di Padova). Esame di Calcolo delle Probabilità del 2 dicembre 2005 (Corso di Laurea Triennale in Matematica, Università degli Studi di Padova). Cognome Nome Matricola Es. Es. 2 Es. 3 Es. 4 Somma Voto parziale Prima

Dettagli

PROVE SCRITTE DI ANALISI MATEMATICA II (V.O.), ANNO 2002

PROVE SCRITTE DI ANALISI MATEMATICA II (V.O.), ANNO 2002 PROVE SCRITTE DI ANALISI MATEMATICA II (V.O.), ANNO 22 Prova scritta del 1/1/22 Si esamini la serie di funzioni: 1 log x (e n + n), definita per x IR. Si determini l insieme S in cui tale serie converge,

Dettagli

CP110 Probabilità: Esame del 15 settembre Testo e soluzione

CP110 Probabilità: Esame del 15 settembre Testo e soluzione Dipartimento di Matematica, Roma Tre Pietro Caputo 2009-2010, II semestre 15 settembre, 2010 CP110 Probabilità: Esame del 15 settembre 2010 Testo e soluzione 1. (6 pts) 10 carte numerate da 1 a 10 vengono

Dettagli

Correzione di Esercizi 4 di Calcolo delle Probabilità e Statistica. Mercoledì 4 maggio 2016

Correzione di Esercizi 4 di Calcolo delle Probabilità e Statistica. Mercoledì 4 maggio 2016 Correzione di Esercizi di Calcolo delle Probabilità e Statistica. Mercoledì maggio 6 Chun Tian. Answer of Exercise Figure. Catena di Markov.. (a) Le classi di equivalenza e i loro periodi. Da Figure, si

Dettagli

X (o equivalentemente rispetto a X n ) è la

X (o equivalentemente rispetto a X n ) è la Esercizi di Calcolo delle Probabilità della 5 a settimana (Corso di Laurea in Matematica, Università degli Studi di Padova). Esercizio 1. Siano (X n ) n i.i.d. di Bernoulli di parametro p e definiamo per

Dettagli

Due variabili aleatorie X ed Y si dicono indipendenti se comunque dati due numeri reali a e b si ha. P {X = a, Y = b} = P {X = a}p {Y = b}

Due variabili aleatorie X ed Y si dicono indipendenti se comunque dati due numeri reali a e b si ha. P {X = a, Y = b} = P {X = a}p {Y = b} Due variabili aleatorie X ed Y si dicono indipendenti se comunque dati due numeri reali a e b si ha P {X = a, Y = b} = P {X = a}p {Y = b} Una variabile aleatoria χ che assume i soli valori 1, 2,..., n

Dettagli

CP110 Probabilità: esame del 20 giugno 2017

CP110 Probabilità: esame del 20 giugno 2017 Dipartimento di Matematica, Roma Tre Pietro Caputo 6-7, II semestre giugno, 7 CP Probabilità: esame del giugno 7 Cognome Nome Matricola Firma Nota:. L unica cosa che si puo usare durante l esame è una

Dettagli

e n n xn ( 1) n ( 1) n n + 1 2e n x n 3n [ln x]n 1 n + 1 2e n 1

e n n xn ( 1) n ( 1) n n + 1 2e n x n 3n [ln x]n 1 n + 1 2e n 1 1) Studiare la seguente serie di funzioni en ( 1) n n x n 2) Studiare la seguente serie di funzioni ( 1) n n + 1 2e n xn 3) Studiare la seguente serie di funzioni 3n [ln x]n 1 2n 4) Studiare la seguente

Dettagli

Elementi di Probabilità e Statistica - 052AA - A.A

Elementi di Probabilità e Statistica - 052AA - A.A Elementi di Probabilità e Statistica - 05AA - A.A. 014-015 Prima prova di verifica intermedia - 9 aprile 015 Problema 1. Dati due eventi A, B, su uno spazio probabilizzato (Ω, F, P), diciamo che A è in

Dettagli

VETTORI DI VARIABILI ALEATORIE

VETTORI DI VARIABILI ALEATORIE VETTOI DI VAIABILI ALEATOIE E. DI NADO 1. Funzioni di ripartizione congiunte e marginali Definizione 1.1. Siano X 1, X 2,..., X n v.a. definite su uno stesso spazio di probabilità (Ω, F, P ). La n-pla

Dettagli

Scrivere su ogni foglio NOME e COGNOME. Le risposte devono essere giustificate sui fogli protocollo e riportate nel foglio RISPOSTE.

Scrivere su ogni foglio NOME e COGNOME. Le risposte devono essere giustificate sui fogli protocollo e riportate nel foglio RISPOSTE. Corso di Laurea Triennale in Matematica Corso di Calcolo delle Probabilità 1 A. A. 4/5 a prova in itinere 8/6/5docenti G. Nappo, F. Spizzichino La prova scritta consiste nello svolgimento degli Esercizi

Dettagli

Quesiti di Metodi Matematici per l Ingegneria

Quesiti di Metodi Matematici per l Ingegneria Quesiti di Metodi Matematici per l Ingegneria Presentiamo una raccolta di quesiti per la preparazione alla prova orale del modulo di Metodi Matematici per l Ingegneria. Per una buona preparazione é consigliabile

Dettagli

Istituzioni di Probabilità Laurea magistrale in Matematica prova scritta del 22/7/2013

Istituzioni di Probabilità Laurea magistrale in Matematica prova scritta del 22/7/2013 Istituzioni di Probabilità Laurea magistrale in Matematica prova scritta del 22/7/213 Exercise 1 (punti 1 circa Diremo che un processo X = (X t t [,1] a valori reali è un ponte browniano se è un processo

Dettagli

Note di Teoria della Probabilità.

Note di Teoria della Probabilità. Note di Teoria della Probabilità. In queste brevi note, si richiameranno alcuni risultati di Teoria della Probabilità, riguardanti le conseguenze elementari delle definizioni di probabilità e σ-algebra.

Dettagli

Nome e cognome:... Matricola...

Nome e cognome:... Matricola... Nome e cognome:................................................... Matricola................. CALCOLO DELLE PROBABILITA - 0/07/008 CdS in Economia e Finanza - Cds in Informatica - Cds SIGAD Motivare dettagliatamente

Dettagli

Analisi Stocastica Programma del corso 2009/10

Analisi Stocastica Programma del corso 2009/10 Analisi Stocastica Programma del corso 2009/10 [13/01a] Introduzione. 0. Preludio (1 ora) [1] Descrizione del corso: obiettivi, prerequisiti, propedeuticità. Un esempio euristico: lavoro di una forza,

Dettagli

Calcolo delle Probabilità e Statistica Matematica Fisciano, 10/1/2012

Calcolo delle Probabilità e Statistica Matematica Fisciano, 10/1/2012 Fisciano, 10/1/2012 Esercizio 1 Un esperimento consiste nel generare a caso un vettore di interi (x 1, x 2, x 3, x 4 ), dove x i {1, 2, 3, 4, 5, 6} i. (i) Si individui lo spazio campionario, determinandone

Dettagli

CP110 Probabilità: Esame 2 settembre 2013 Testo e soluzione

CP110 Probabilità: Esame 2 settembre 2013 Testo e soluzione Diartimento di Matematica, Roma Tre Pietro Cauto 212-13, II semestre 2 settembre, 213 CP11 Probabilità: Esame 2 settembre 213 Testo e soluzione 1. (6 ts) Abbiamo due mazzi di carte francesi, il mazzo A

Dettagli

ESERCIZIO 1. Sia (Ω, P ) uno spazio di probabilità, e B un evento tale che P (B) > 0. Si dimostri che la mappa P (Ω B) = P (B) P (B) = 1.

ESERCIZIO 1. Sia (Ω, P ) uno spazio di probabilità, e B un evento tale che P (B) > 0. Si dimostri che la mappa P (Ω B) = P (B) P (B) = 1. Prova Scritta di Probabilità e Statistica Cognome: Laurea in Matematica Nome: 4 settembre Matricola: ESERCIZIO. Sia (Ω, P ) uno spazio di probabilità, e B un evento tale che P (B) >. Si dimostri che la

Dettagli

Statistica ARGOMENTI. Calcolo combinatorio

Statistica ARGOMENTI. Calcolo combinatorio Statistica ARGOMENTI Calcolo combinatorio Probabilità Disposizioni semplici Disposizioni con ripetizione Permutazioni semplici Permutazioni con ripetizioni Combinazioni semplici Assiomi di probabilità

Dettagli

Testi e soluzioni degli esercizi degli esami di Probabilitá del 25 Giugno 2004

Testi e soluzioni degli esercizi degli esami di Probabilitá del 25 Giugno 2004 Testi e soluzioni degli esercizi degli esami di Probabilitá del 5 Giugno 4 Esercizio n1 Un tordo si posa su un filo telefonico Un cacciatore puó colpire il tordo con probabilitá 5, mentre la probabilitá

Dettagli

Elementi di analisi matematica e complementi di calcolo delle probabilita T

Elementi di analisi matematica e complementi di calcolo delle probabilita T Elementi di analisi matematica e complementi di calcolo delle probabilita T Presentiamo una raccolta di quesiti per la preparazione alla prova orale di Elementi di analisi matematica e complementi di calcolo

Dettagli

1 Esercizi tutorato 1/4

1 Esercizi tutorato 1/4 Esercizi tutorato 1/ 1 1 Esercizi tutorato 1/ Esercizio 11 Siano X e Y due va discrete indipendenti di distribuzione geometrica con parametro p [0, 1] (i) Si calcoli la legge di X + Y, è una legge nota?

Dettagli

COMPLEMENTI DI ANALISI MATEMATICA DI BASE. Prova scritta del 26 gennaio 2005

COMPLEMENTI DI ANALISI MATEMATICA DI BASE. Prova scritta del 26 gennaio 2005 Prova scritta del 26 gennaio 2005 Esercizio 1. Posto B = x R 2 : x 2 2}, sia f n } una successione di funzioni (misurabili e) integrabili in B tali che f n f q.o. in B e, per ogni n N, f n (x) 2 x 3 per

Dettagli

Esercitazione del 19/02/2013 Istituzioni di Calcolo delle Probabilità

Esercitazione del 19/02/2013 Istituzioni di Calcolo delle Probabilità Esercitazione del 19/0/013 Istituzioni di Calcolo delle Probabilità David Barbato Variabili aleatorie esponenziali. Minimo di v.a. esponenziali indipendenti. Ricordiamo innanzitutto che due variabili aleatorie

Dettagli

Es.: una moneta viene lanciata 3 volte. X = n. di T nei primi 2 lanci Y = n. di T negli ultimi 2 lanci

Es.: una moneta viene lanciata 3 volte. X = n. di T nei primi 2 lanci Y = n. di T negli ultimi 2 lanci Es.: una moneta viene lanciata 3 volte. X = n. di T nei primi 2 lanci Y = n. di T negli ultimi 2 lanci X\Y 0 1 2 0 1/8 1/8 0 1/4 1 1/8 1/4 1/8 1/2 2 0 1/8 1/8 1/4 1/4 1/2 1/4 1 X e Y non sono indip. Se

Dettagli

I appello di calcolo delle probabilità e statistica

I appello di calcolo delle probabilità e statistica I appello di calcolo delle probabilità e statistica A.Barchielli, L. Ladelli, G. Posta 8 Febbraio 13 Nome: Cognome: Matricola: Docente: I diritti d autore sono riservati. Ogni sfruttamento commerciale

Dettagli

! X (92) X n. P ( X n X ) =0 (94)

! X (92) X n. P ( X n X ) =0 (94) Convergenza in robabilità Definizione 2 Data una successione X 1,X 2,...,X n,... di numeri aleatori e un numero aleatorio X diremo che X n tende in probabilità a X escriveremo X n! X (92) se fissati comunque

Dettagli

Analisi Stocastica Programma del corso 2008/09

Analisi Stocastica Programma del corso 2008/09 Analisi Stocastica Programma del corso 2008/09 [13/01] Introduzione. 0. Preludio (1 ora) [1] Descrizione del corso: obiettivi, prerequisiti, propedeuticità. Un esempio euristico: lavoro di una forza, valore

Dettagli

1. Descrivere gli spazi campionari dei seguenti esperimenti casuali: 1. lancio di un dado 2. lancio di due dadi 3.

1. Descrivere gli spazi campionari dei seguenti esperimenti casuali: 1. lancio di un dado 2. lancio di due dadi 3. Corso di Laurea INTERFACOLTÀ - Esercitazione di Statistica n 6 ESERCIZIO 1: 1. Descrivere gli spazi campionari dei seguenti esperimenti casuali: 1. lancio di un dado 2. lancio di due dadi 3. lancio di

Dettagli

Corso di Laurea Magistrale in Ingegneria Informatica A.A. 2016/17 Processi stocastici e analisi di serie temporali

Corso di Laurea Magistrale in Ingegneria Informatica A.A. 2016/17 Processi stocastici e analisi di serie temporali Corso di Laurea Magistrale in Ingegneria Informatica A.A. 206/7 Processi stocastici e analisi di serie temporali PROVA DI ESONERO SUI PROCESSI DI MARKOV DEL 6 DICEMBRE 206 Punteggi: : + + 4 2; 2: 2 5;

Dettagli

ANNO ACCADEMICO 2015/2016 CORSO di LAUREA in BIOTECNOLOGIE MATEMATICA IV appello 1/6/2017 1

ANNO ACCADEMICO 2015/2016 CORSO di LAUREA in BIOTECNOLOGIE MATEMATICA IV appello 1/6/2017 1 ANNO ACCADEMICO 205/206 CORSO di LAUREA in BIOTECNOLOGIE MATEMATICA IV appello /6/207 Esercizio. Ho tre monete, A, B e C, apparentemente identiche ma tali che: A dà testa in media 4 volte in 0 lanci B

Dettagli

P ( X n X > ɛ) = 0. ovvero (se come distanza consideriamo quella euclidea)

P ( X n X > ɛ) = 0. ovvero (se come distanza consideriamo quella euclidea) 10.4 Convergenze 166 10.4.3. Convergenza in Probabilità. Definizione 10.2. Data una successione X 1, X 2,...,,... di vettori aleatori e un vettore aleatorio X aventi tutti la stessa dimensione k diremo

Dettagli

Esami di Calcolo delle Probabilitá del 9 Giugno 2010

Esami di Calcolo delle Probabilitá del 9 Giugno 2010 Candidato/a................................................ Corso di Laurea.......................................... Esami di Calcolo delle Probabilitá del Giugno 00 É fatto assoluto divieto di usare

Dettagli

5.3 Alcune classi di funzioni integrabili

5.3 Alcune classi di funzioni integrabili 3. Si verifichi che per ogni f, g : [a, b] R si ha f g = g + (f g) 0, f g = f + g f g; dedurne che se f, g R(a, b) allora f g, f g R(a, b). [Traccia: si osservi che basta verificare che f 0 R(a, b), e

Dettagli

Probabilità 1, laurea triennale in Matematica I prova scritta sessione estiva a.a. 2008/09

Probabilità 1, laurea triennale in Matematica I prova scritta sessione estiva a.a. 2008/09 Probabilità, laurea triennale in Matematica I prova scritta sessione estiva a.a. 2008/09. Due roulette regolari vengono azionate più volte; sia T il numero di volte che occorre azionare la prima roulette

Dettagli

Raccolta degli Scritti d Esame di ANALISI MATEMATICA U.D. 2 assegnati nei Corsi di Laurea di Fisica, Fisica Applicata, Matematica

Raccolta degli Scritti d Esame di ANALISI MATEMATICA U.D. 2 assegnati nei Corsi di Laurea di Fisica, Fisica Applicata, Matematica DIPARTIMENTO DI MATEMATICA Università degli Studi di Trento Via Sommarive - Povo (TRENTO) Raccolta degli Scritti d Esame di ANALISI MATEMATICA U.D. 2 assegnati nei Corsi di Laurea di Fisica, Fisica Applicata,

Dettagli

14. Siano x k = k con k = i possibili esiti del lancio di un dado Calcolare σ 2 = var(x). (A) 33 25

14. Siano x k = k con k = i possibili esiti del lancio di un dado Calcolare σ 2 = var(x). (A) 33 25 gennaio 0 VARIANTE: 0 risposte: C A C B A D D B C B A C D C D B A C D A Ricordiamo che se Z ha distribuzione normale standard, si ha P (Z >.00) = %, P (Z >.) = 0%, P (Z >.) = %, P (Z >.00) =.%, P (Z >.)

Dettagli

CP110 Probabilità: Esonero 2. Testo e soluzione

CP110 Probabilità: Esonero 2. Testo e soluzione Dipartimento di Matematica, Roma Tre Pietro Caputo 2011-12, II semestre 29 maggio, 2012 CP110 Probabilità: Esonero 2 Testo e soluzione 1. (8 punti) La freccia lanciata da un arco è distribuita uniformemente

Dettagli

Esercizi. 2. [Conteggio diretto] Due dadi vengono lanciati in successione. a) Qual è la probabilità che la somma dei due risultati faccia 7?

Esercizi. 2. [Conteggio diretto] Due dadi vengono lanciati in successione. a) Qual è la probabilità che la somma dei due risultati faccia 7? 1 E. Vitali Matematica (Scienze Naturali) Esercizi 1. [Conteggio diretto] Quattro ragazzi, A, B, C e D, dispongono di due biglietti per il teatro e decidono di tirare a sorte chi ne usufruirà. a) Qual

Dettagli

Probabilità. Fulvio Bisi-Anna Torre

Probabilità. Fulvio Bisi-Anna Torre Probabilità Fulvio Bisi-Anna Torre FRATELLI E SORELLE Per la ricorrenza della festa della mamma, la sig.ra Luisa organizza una cena a casa sua, con le sue amiche che hanno almeno una figlia femmina. La

Dettagli

Analisi Matematica A e B Soluzioni Prova scritta n. 3

Analisi Matematica A e B Soluzioni Prova scritta n. 3 Analisi Matematica A e B Soluzioni Prova scritta n. Corso di laurea in Fisica, 207-208 9 luglio 208. Si consideri per α =, 2, 5, 8 la seguente funzione funzione F α : R\{0} R F α () = sin t dt. t α 6 Dire

Dettagli

CP110 Probabilità: Esonero 2. Testo e soluzione

CP110 Probabilità: Esonero 2. Testo e soluzione Dipartimento di Matematica, Roma Tre Pietro Caputo 212-13, II semestre 23 maggio, 213 CP11 Probabilità: Esonero 2 Testo e soluzione 1. (7 punti) Una scatola contiene 1 palline, 5 bianche e 5 nere. Ne vengono

Dettagli

ANNO ACCADEMICO 2017/2018 CORSO di LAUREA in BIOTECNOLOGIE MATEMATICA III appello 7/9/2018 1

ANNO ACCADEMICO 2017/2018 CORSO di LAUREA in BIOTECNOLOGIE MATEMATICA III appello 7/9/2018 1 ANNO ACCADEMICO 7/8 CORSO di LAUREA in BIOTECNOLOGIE MATEMATICA III appello 7/9/8 Esercizio. I giocatori A e B giocano con un mazzo di 4 carte, senza le figure, con le seguenti regole: - ad ogni turno

Dettagli

Scrivere su ogni foglio NOME e COGNOME. Le risposte devono essere giustificate sui fogli protocollo e riportate nel foglio RISPOSTE.

Scrivere su ogni foglio NOME e COGNOME. Le risposte devono essere giustificate sui fogli protocollo e riportate nel foglio RISPOSTE. Corso di Laurea Triennale in Matematica Calcolo delle Probabilità I (docenti G. Nappo, F. Spizzichino) Prova di giovedi febbraio 2005 (tempo a disposizione: 3 ore). consegna compiti e inizio orale Lunedì

Dettagli

Variabili aleatorie discrete. Giovanni M. Marchetti Statistica Capitolo 5 Corso di Laurea in Economia

Variabili aleatorie discrete. Giovanni M. Marchetti Statistica Capitolo 5 Corso di Laurea in Economia Variabili aleatorie discrete Giovanni M. Marchetti Statistica Capitolo 5 Corso di Laurea in Economia 2015-16 1 / 45 Variabili aleatorie Una variabile aleatoria è simile a una variabile statistica Una variabile

Dettagli

CP410: Esame 2, 30 gennaio Testo e soluzione

CP410: Esame 2, 30 gennaio Testo e soluzione Dipartimento di Matematica, Roma Tre Pietro Caputo 23-4, I semestre 3 gennaio, 24 CP4: Esame 2, 3 gennaio 24 Testo e soluzione Cognome Nome Matricola Firma . Per ogni n N, sia X n la variabile aleatoria

Dettagli

Statistica Inferenziale

Statistica Inferenziale Statistica Inferenziale Prof. Raffaella Folgieri Email: folgieri@mtcube.com aa 2009/2010 Riepilogo lezione 1 Abbiamo visto: Definizioni di statistica, statistica inferenziale, probabilità (interpretazione

Dettagli

V.a. continue. Statistica e biometria. D. Bertacchi. Le v.a. continue. Uniforme. Normale. Indipendenza di v.a. continue

V.a. continue. Statistica e biometria. D. Bertacchi. Le v.a. continue. Uniforme. Normale. Indipendenza di v.a. continue gge una v.a. V.a. continue Ricoramo: DEFINIZIONE DI VARIABILE ALEATORIA Una variabile aleatoria (in breve v.a.) X è una funzione che ha come dominio Ω e come codominio R. In formule: X : Ω R. DEFINIZIONE

Dettagli

φ X (t) = mentre nel caso continuo, indicando con f(x) la densità di X, si ha e itx f(x) dx + e itx e itx f(x)dx. f(x)dx = e itx +

φ X (t) = mentre nel caso continuo, indicando con f(x) la densità di X, si ha e itx f(x) dx + e itx e itx f(x)dx. f(x)dx = e itx + 10.1 Funzione caratteristica 11 10.1. Funzione caratteristica La funzione caratteristica è uno strumento teorico utile sotto diversi aspetti per studiare la distribuzione di probabilità di numeri aleatori

Dettagli

Esame di Calcolo delle Probabilità del 11 gennaio 2006 (Corso di Laurea Triennale in Matematica, Università degli Studi di Padova).

Esame di Calcolo delle Probabilità del 11 gennaio 2006 (Corso di Laurea Triennale in Matematica, Università degli Studi di Padova). Esame di Calcolo delle Probabilità del gennaio 006 Corso di Laurea Triennale in Matematica, Università degli Studi di Padova). Cognome Nome Matricola Es. Es. Es. 3 Es. 4 Somma Voto finale Attenzione: si

Dettagli

Cognome e Nome:... Matricola... CdS...

Cognome e Nome:... Matricola... CdS... Cognome e me: Matricola CdS CALCOLO DELLE PROBABILITA - 7 Giugno CdS in STAD, SIGAD - docente: G Sanfilippo Motivare dettagliatamente le risposte su fogli allegati e scrivere le risposte negli appositi

Dettagli

Analisi Matematica 2. Michele Campiti. Prove scritte di. Ingegneria Industriale a.a

Analisi Matematica 2. Michele Campiti. Prove scritte di. Ingegneria Industriale a.a Michele Campiti Prove scritte di Analisi Matematica 2 Ingegneria Industriale a.a. 20 202 Grafico della funzione f(x, y) := sin(2x 2 y) cos(x 2y 2 ) in [ π/2, π/2] 2 Raccolta delle tracce di Analisi Matematica

Dettagli

Eventi numerici e variabili aleatorie

Eventi numerici e variabili aleatorie Capitolo Eventi numerici e variabili aleatorie. Probabilità di eventi numerici Nel capitolo precedente si sono considerate le nozioni di esperimento, risultato, evento. Un evento è individuato dai risultati

Dettagli

Corso di Laurea in Ingegneria Informatica Prova di Analisi Matematica 1

Corso di Laurea in Ingegneria Informatica Prova di Analisi Matematica 1 Corso di Laurea in Ingegneria Informatica Prova di Analisi Matematica 1 6 giugno 2017 Scrivere subito nome e cognome e matricola sul foglio risposte e preparare il libretto sul banco per il controllo.

Dettagli

A Analisi Matematica 1 (Corso di Laurea in Informatica e Bioinformatica) Simulazione compito d esame

A Analisi Matematica 1 (Corso di Laurea in Informatica e Bioinformatica) Simulazione compito d esame COGNOME NOME Matr. A Analisi Matematica (Corso di Laurea in Informatica e Bioinformatica) Firma dello studente Tempo: 3 ore. Prima parte: test a risposta multipla. Una ed una sola delle 4 affermazioni

Dettagli

Modelli descrittivi, statistica e simulazione

Modelli descrittivi, statistica e simulazione Modelli descrittivi, statistica e simulazione Master per Smart Logistics specialist Roberto Cordone (roberto.cordone@unimi.it) Statistica inferenziale Cernusco S.N., giovedì 18 febbraio 2016 (9.00/13.00)

Dettagli