Verifica reti con più serbatoi (II)

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Verifica reti con più serbatoi (II)"

Transcript

1 Verfca ret con pù serbato (I) Condzon al contorno per gl N nod della rete e corrspondent ncognte: Condzone mposta Incognta A) carco pezometrco portata concentrata B) portata concentrata carco pezometrco Ne nod serbatoo s mpone la condzone A carco pezometrco H s mentre sono ncognte le portate d almentazone R s. In tutt gl altr nod s mpone la condzone B portata concentrata Qj c (che è nulla n assenza d erogazone): sono ncognt carch pezometrc h j. Nel caso d rete con 1 serbatoo la portata d almentazone R al nodo serbatoo è faclmente determnable a pror. Rentroducendo R come ncognta: Equazon Incognte L moto N 1 carch a nod h j N 1 cont. a nod L portate Q, Q 1, L d cont. dstrb. L d portate Q 2, 1 cont. nod 1 portata R Acquedott e Fognature - A.A R. Dedda B.4 - Verfca delle ret con pù serbato ( 1 / 10 ) Verfca ret con pù serbato (II) Consderamo una rete con S serbato oltre l prmo (n totale S + 1 serbato): Equazon Incognte L moto N 1 S carch a nod h j N cont. a nod L portate Q, Q 1, L d cont. dstrb. L d portate Q 2, S + 1 portate R s d almentazone a nod serbatoo L + N + L d equazon = L + N + L d ncognte = sstema determnato N 1 S CAR. hj NODI L EQ. DEL MOTO S PORT. Rs S M = L (N 1) L N 1 PORTATE Q o Q1, EQ. CONT. NODI +1 Ro 1 Ld EQ. CONT. DIST. Ld PORTATE Q2, EQUAZIONI INCOGNITE NUOVE EQUAZ. INC. R INC. Q NUOVE INCOGNITE Acquedott e Fognature - A.A R. Dedda B.4 - Verfca delle ret con pù serbato ( 2 / 10 )

2 Verfca ret con pù serbato (III): Cross Vale con lev modfche quanto vsto con un serbatoo (M eq. magle). S ndvduano S percors ndpendent ed orentat (verso arbtraro) fra serbato (es. dal serbatoo s = 0 al serbatoo s). Un osservatore che percorre un percorso s vede la lnea de carch pezometrc partre con carco H 0 nel serbatoo s = 0 ed arrvare con carco H s nel serbatoo s. Sommando le varazon d carco ottenamo: H 0 H s = δ s D n Q α + C d (s) D n P (α + 1) (Qα +1 1, Q α +1 2, ) s = 1,, S (1) C t (s) = nseme d condotte con funzone d solo trasporto attraversate nel percorso s C d (s) = nseme condotte con funz. dstrbuzone unforme attraversate nel percorso s { +1 se la portata Q è concorde al verso del percorso s δ s = 1 se la portata Q è dscorde rspetto al verso del percorso s Non rmangono carch ncognt a nod = Il sstema è ancora determnato: M + S + N + L d equazon = L + L d + S + 1 portate ncognte Acquedott e Fognature - A.A R. Dedda B.4 - Verfca delle ret con pù serbato ( 3 / 10 ) Verfca ret con pù serbato (IV): Cross S ndvduano L + L d + (S + 1) portate d tentatvo Q,Q 1, e Q 2,, e R s che soddsfno tutte le N + L d eq. d contnutà a nod e sulle condotte con dstrbuzone. In generale queste portate d tentatvo non soddsfano carch delle equazon sulle magle e le nuove equazon su percors (1). Questa soluzone d tentatvo è una scelta arbtrara fra (M+S) possbl soluzon: M + S grad d lbertà (dff. ncognte - equazon = L + L d + (S + 1) N L d = M + S). Le (M+S) soluzon del sstema d equazon d contnutà s descrvono aggungendo M + S portate correttve Q k (postve nel verso d percorrenza della magla k) e R r (postve nel verso del percorso r): R s = R s + S r=1 δ sr R r s = 0,, S Q = Q + M k=1 δ k Q k + S r=1 δ r R r Q 1, = Q 1, + M k=1 ɛ 1,k Q k + S Q 2, = Q 2, + M k=1 ɛ 2,k Q k + S r=1 ɛ 2,r R r r=1 ɛ 1,r R r = 1,, L Acquedott e Fognature - A.A R. Dedda B.4 - Verfca delle ret con pù serbato ( 4 / 10 )

3 Verfca ret con pù serbato (V): Cross +1 se la portata Q è concorde al verso del percorso r δ r = 1 se la portata Q è dscorde rspetto al verso del percorso r 0 se la condotta non è attraversata dal percorso r +1 se la portata Q 1, è concorde al verso del percorso r ɛ 1,r = 1 se la portata Q 1, è dscorde rspetto al verso del percorso r ɛ 2,r = 0 se la condotta non è attraversata dal percorso r +1 se la portata Q 2, è concorde al verso del percorso r 1 se la portata Q 2, è dscorde rspetto al verso del percorso r 0 se la condotta non è attraversata dal percorso r = Le portate corrette Q,Q 1, e Q 2,, R s soddsfano anch esse tutte le equazon d contnutà che possono percò essere elmnate dal sstema. Resta un sstema d M equazon nelle magle ed S ne percors n: M ncognte Q portate correttve nelle magle S ncognte R portate correttve ne percors Acquedott e Fognature - A.A R. Dedda B.4 - Verfca delle ret con pù serbato ( 5 / 10 ) Verfca ret con pù serbato (VI): Cross... la s-esma equazone del sstema (1) lnearzzato s rscrve (s = 1,, S): R s = δ s K (Q ) α + C d (s) K α (Q ) α 1 + W [ (Q 1, ) α +1 (Q 2,) α +1 ] (H 0 H s ) C d (s) W (α + 1) (Q 1,) α ± (Q 2,) α Nella prma al denomnatore non c è l segno d δ Nella seconda al denomnatore vale l segno + solo se la condotta contene l punto neutro, dversamente vale l segno S rcorda che K = k l D n e W = D n P (α + 1) Se la rete con pù serbato è aperta s utlzzano solo le equazon (2), se è chusa occorre utlzzare anche le equazon che fornscono le correzon alle magle Q m (2) Acquedott e Fognature - A.A R. Dedda B.4 - Verfca delle ret con pù serbato ( 6 / 10 )

4 Smulazone de lvell ne serbato (I) Nelle ret con pù serbato non è suffcente esegure la verfca per la sola portata nell ora d massmo consumo. Occorre smulare l comportamento della rete ed lvell ne serbato nell arco delle 24 ore del gorno d massmo consumo. Q(t) Rs(t) Rs(t)=? Hs(t) H s max Hs(t)=? q g q sg H s mn Consum d tutta la rete erogazone serbatoo s lvell serbatoo s (not o scelta d progetto) Acquedott e Fognature - A.A R. Dedda B.4 - Verfca delle ret con pù serbato ( 7 / 10 ) Smulazone de lvell ne serbato (II) 1. S scegle un passo temporale t (es. 1 ora) 2. Inzo smulazone al tempo t 0 3. S assegna l lvello nzale H s (t 0 ) ad ogn serbatoo (s = 0,, S). Se non s conosce l lvello nzale, s può porre par al lvello massmo per ogn serbatoo, sceglendo per t 0 un ora della notte (mnmo consumo) 4. S dstrbusce su tutta la rete l consumo totale Q(t 0 ) (noto, perchè s assume un dagramma de consum d progetto) relatvo al tempo t 0 5. La verfca della rete al tempo t 0 fornsce, oltre alle portate Q (t 0 ), Q 1, (t 0 ), Q 2, (t 0 ) su tutt lat, anche le erogazon R s (t 0 ) d tutt serbato Acquedott e Fognature - A.A R. Dedda B.4 - Verfca delle ret con pù serbato ( 8 / 10 )

5 Smulazone de lvell ne serbato (III) 6. Per ogn serbatoo s (s = 0,, S) s scrve l equazone d contnutà (regolazone): dv s dh s = σ s dt dt = Qs R s (t 0 ) t0 t0 dove l pedce s s rfersce al serbatoo s, assunto clndrco, V s è l volume nvasato,σ s è l area della sezone orzzontale, H s l carco pezometrco, R s è l erogazone del serbatoo, Q s è la portata n ngresso (assunta costante, la somma delle portate n ngresso d tutt serbato dovrebbe essere par alla portata nel gorno d massmo consumo). 7. S ntegra l equazone dfferenzale (con uno schema alle dfferenze fnte n avant): σ s H s (t 0 + t) H(t 0 ) t = Q s R s (t 0 ) H s (t 0 + t) = H(t 0 ) + t σ s [ Q s R s (t 0 ) ] Acquedott e Fognature - A.A R. Dedda B.4 - Verfca delle ret con pù serbato ( 9 / 10 ) Smulazone de lvell ne serbato (IV) 8. S aggornano (anche su grafc) lvell H s d tutt serbato al tempo t 0 + t. 9. S rpete l calcolo relatvo al passo temporale t successvo, rpartendo dal punto 3 e ponendo ovvamente come lvell nzal H s valor aggornat al termne dell ultmo passo temporale t. Quando dovesse rsultare H s (t 0 + t) > Hs max s pone H s (t 0 + t) = Hs max, n quanto ntervene l galleggante che chude l almentazone Qs provenente dall adduzone. Termnato l transtoro non dovrebbe pù accadere. Se la rete è ben dmensonata, la condzone H s (t 0 + t) < Hs mn non dovrebbe MAI verfcars, perchè sgnfcherebbe che uno o pù serbato s sono vuotat completamente. Dal punto d vsta draulco, questa condzone camba la condzone al contorno al nodo da carco mposto (ncognta R s ) a portata nulla (ncognta H s ) Se la rete è ben dmensonata al termne della smulazone d 24 ore l lvell de serbato dovrebbero essere par a lvell nzal. Acquedott e Fognature - A.A R. Dedda B.4 - Verfca delle ret con pù serbato ( 10 / 10 )

Predimensionamento reti chiuse

Predimensionamento reti chiuse Predmensonamento ret chuse Rspetto ad una rete aperta, ogn magla aggunge un grado d lbertà (una nfntà d soluzon) nella determnazone delle portate Q,Q 1, e Q 2, utlzzando le sole equazon d contnutà. La

Dettagli

Predimensionamento reti chiuse

Predimensionamento reti chiuse Predmensonamento ret chuse Rspetto ad una rete aperta, ogn magla aggunge un grado d lbertà (una nfntà d soluzon) nella determnazone delle portate Q,Q 1, e Q 2, utlzzando le sole equazon d contnutà. a dfferenza

Dettagli

Le reti di distribuzione

Le reti di distribuzione Le ret d dstrbuzone Dstrbuscono l acqua a tutte le utenze e per lo spegnmento degl ncend. Classfcazone delle condotte avvcnamento: doppa condotta (q h /2) almentatrc prncpal o condotte maestre: ossatura

Dettagli

Corso di Infrastrutture Idrauliche II

Corso di Infrastrutture Idrauliche II Corso d Infrastrutture Idraulche II a.a. 2006-2007 Laurea n Ingegnera Cvle Facoltà d Ingegnera Prof.ssa Elena Volp Rcevmento: Materale ddattco: evolp@unroma3.t martedì 15:30-16:30, Dpartmento d Scenze

Dettagli

Le condizioni di funzionamento delle condotte di adduzione

Le condizioni di funzionamento delle condotte di adduzione Le condzon d funzonamento delle condotte d adduzone Ret a dramazon aperte): tutte le portate ncognte possono essere unvocamente determnate dalle equazon d contnutà. Moto assolutamento turbolento α = 2

Dettagli

Le condizioni di funzionamento delle condotte di adduzione

Le condizioni di funzionamento delle condotte di adduzione Le condzon d funzonamento delle condotte d adduzone Ret a dramazon (aperte): tutte le portate ncognte possono essere unvocamente determnate dalle equazon d contnutà. Moto assolutamento turbolento (α =

Dettagli

Integrazione numerica dell equazione del moto per un sistema lineare viscoso a un grado di libertà. Prof. Adolfo Santini - Dinamica delle Strutture 1

Integrazione numerica dell equazione del moto per un sistema lineare viscoso a un grado di libertà. Prof. Adolfo Santini - Dinamica delle Strutture 1 Integrazone numerca dell equazone del moto per un sstema lneare vscoso a un grado d lbertà Prof. Adolfo Santn - Dnamca delle Strutture 1 Introduzone 1/2 L equazone del moto d un sstema vscoso a un grado

Dettagli

Circuiti elettrici in regime stazionario

Circuiti elettrici in regime stazionario rcut elettrc n regme stazonaro Metod d anals www.de.ng.unbo.t/pers/mastr/ddattca.htm ersone del -0-00 Premessa Nel caso pù generale è possble ottenere la soluzone d un crcuto rsolendo un sstema formato

Dettagli

IMPIANTI DI DISTRIBUZIONE

IMPIANTI DI DISTRIBUZIONE IMPIANTI DI DISTRIBUZIONE Schem caratterstc (serbato e rete d dstrbuzone) Con serbatoo d testata Con torrno pezometrco e serbatoo d estremtà Rete d tpo aperto Rete d tpo chuso Rete d tpo msto (ad albero)

Dettagli

Metodi di analisi per circuiti resistivi

Metodi di analisi per circuiti resistivi Metod d anals per crcut resst www.de.ng.unbo.t/pers/mastr/ddattca.htm ersone del 7-0-07 Premessa Nel caso pù generale è possble ottenere la soluzone d un crcuto rsolendo un sstema formato dalle equazon

Dettagli

LE RETI DI ADDUZIONE/DISTRIBUZIONE IDRICA

LE RETI DI ADDUZIONE/DISTRIBUZIONE IDRICA LE RETI DI ADDUZIONE/DISTRIBUZIONE IDRICA Una rete d adduzone/dstrbuzone drca è un complesso sstema d condotte, serbato, mpant d sollevamento, valvole ed altre appareccature preposte a soddsfare affdablmente

Dettagli

Una semplice applicazione del metodo delle caratteristiche: la propagazione di un onda di marea all interno di un canale a sezione rettangolare.

Una semplice applicazione del metodo delle caratteristiche: la propagazione di un onda di marea all interno di un canale a sezione rettangolare. Una semplce applcazone del metodo delle caratterstche: la propagazone d un onda d marea all nterno d un canale a sezone rettangolare. In generale la propagazone d un onda monodmensonale n una corrente

Dettagli

Calcolo Scientifico e Matematica Applicata Secondo Parziale, Ingegneria Ambientale

Calcolo Scientifico e Matematica Applicata Secondo Parziale, Ingegneria Ambientale Calcolo Scentfco e Matematca Applcata Secondo Parzale, 7.2.28 Ingegnera Ambentale Rsolvere gl esercz, 2, 4 oppure, n alternatva, gl esercz, 3, 4. Valutazone degl esercz: 4, 2 8, 3 8, 4 8.. Illustrare,

Dettagli

Metodi di analisi R 1 =15Ω R 2 =40Ω R 3 =16Ω

Metodi di analisi R 1 =15Ω R 2 =40Ω R 3 =16Ω Metod d anals Eserczo Anals alle magle n presenza d sol generator ndpendent d tensone R s J R Determnare le tenson sulle resstenze sapendo che: s s 0 R R 5.Ω s J R J R R 5Ω R 0Ω R 6Ω R 5 Dsegnamo l grafo,

Dettagli

Intorduzione alla teoria delle Catene di Markov

Intorduzione alla teoria delle Catene di Markov Intorduzone alla teora delle Catene d Markov Mchele Ganfelce a.a. 2014/2015 Defnzone 1 Sa ( Ω, F, {F n } n 0, P uno spazo d probabltà fltrato. Una successone d v.a. {ξ n } n 0 defnta su ( Ω, F, {F n }

Dettagli

Circuiti elettrici in regime stazionario

Circuiti elettrici in regime stazionario rcut elettrc n regme stazonaro omponent www.de.ng.unbo.t/pers/mastr/ddattca.htm (ersone del 3-9-0) Bpol resst Equazon caratterstca d un bpolo ressto f, 0 L equazone d un bpolo ressto defnsce una cura nel

Dettagli

Componenti resistivi

Componenti resistivi omponent resst www.de.ng.unbo.t/pers/mastr/ddattca.htm (ersone del 3-9-03) Bpol resst Bpolo ressto: componente a due termnal aente equazone caratterstca del tpo f (t), (t), t0 (f funzone generca) L equazone

Dettagli

Corso di Elettrotecnica

Corso di Elettrotecnica Unerstà degl Stud d Paa Facoltà d Ingegnera orso d orso d Elettrotecnca Teora de rcut rcut elettrc n funzonamento perturbato rcut elettrc n funzonamento perturbato I IRUITI OMPRENONO: Sorgent nterne d

Dettagli

LA CORRENTE ELETTRICA CONTINUA

LA CORRENTE ELETTRICA CONTINUA CAPITOLO 33 LA CORRENTE ELETTRICA CONTINUA 1 L INTENSITÀ DELLA CORRENTE ELETTRICA 1! v! a t! F m e! E m t v! e t m! E Fssato l ntervallo d tempo t, s può scrvere! v! E 2 Q t 4,0 10 2 A 5,0 s 0,20 C 3 t

Dettagli

Esercizi sulle reti elettriche in corrente continua (parte 2)

Esercizi sulle reti elettriche in corrente continua (parte 2) Esercz sulle ret elettrche n corrente contnua (parte ) Eserczo 3: etermnare gl equvalent d Thevenn e d Norton del bpolo complementare al resstore R 5 nel crcuto n fgura e calcolare la corrente che crcola

Dettagli

Componenti resistivi

Componenti resistivi omponent resst www.de.ng.unbo.t/pers/mastr/ddattca.htm (ersone del 4--08) Bpol resst Bpolo ressto: componente a due termnal aente equazone caratterstca del tpo f (t), (t), t0 (f funzone generca) L equazone

Dettagli

Equilibrio e stabilità di sistemi dinamici. Stabilità dell equilibrio di sistemi dinamici non lineari per linearizzazione

Equilibrio e stabilità di sistemi dinamici. Stabilità dell equilibrio di sistemi dinamici non lineari per linearizzazione Equlbro e stabltà d sstem dnamc Stabltà dell equlbro d sstem dnamc non lnear per lnearzzazone Stabltà dell equlbro d sstem dnamc non lnear per lnearzzazone Stabltà dell equlbro d sstem NL TC Crter d stabltà

Dettagli

Luciano Battaia. Versione del 22 febbraio L.Battaia. Condensatori e resistenze

Luciano Battaia. Versione del 22 febbraio L.Battaia. Condensatori e resistenze Lucano attaa Versone del 22 febbrao 2007 In questa nota presento uno schema replogatvo relatvo a condensator e alle, con partcolare rguardo a collegament n sere e parallelo. Il target prncpale è costtuto

Dettagli

Introduzione e modellistica dei sistemi

Introduzione e modellistica dei sistemi Introduzone e modellstca de sstem Element fondamental Rappresentazone n arabl d stato Esemp d rappresentazone n arabl d stato 007 Poltecnco d Torno Resstore deale Resstore deale d resstenza R R R equazone

Dettagli

1 Le equazioni per le variabili macroscopiche: i momenti dell equazione di Boltzmann

1 Le equazioni per le variabili macroscopiche: i momenti dell equazione di Boltzmann FISICA DEI FLUIDI Lezone 5-5 Maggo 202 Le equazon per le varabl macroscopche: moment dell equazone d Boltzmann Teorema H a parte, non è facle estrarre altre consderazon general sulla funzone denstà d probabltà

Dettagli

UNIVERSITÀ DEGLI STUDI DI NAPOLI FEDERICO II FACOLTÀ DI INGEGNERIA

UNIVERSITÀ DEGLI STUDI DI NAPOLI FEDERICO II FACOLTÀ DI INGEGNERIA UNIVERSITÀ DEGLI STUDI DI NAPOLI FEDERICO II FACOLTÀ DI INGEGNERIA CORSO DI LAUREA IN INGEGNERIA PER L AMBIENTE E IL TERRITORIO METODI DI LOCALIZZAZIONE DEL RISALTO IDRAULICO RELATORE Ch.mo Prof. Ing.

Dettagli

Teoremi dei circuiti

Teoremi dei circuiti Teorem de crcut www.de.ng.unbo.t/pers/mastr/ddattca.htm (ersone del --04) Teorema d Tellegen potes: Crcuto con n nod e l lat ers d rfermento scelt per tutt lat secondo la conenzone dell utlzzatore {,...,

Dettagli

Teoremi dei circuiti

Teoremi dei circuiti Teorem de crcut www.de.ng.unbo.t/pers/mastr/ddattca.htm (ersone del 0-0-03) Teorema d Tellegen Ipotes: Crcuto con n nod e l lat ers d rfermento scelt per tutt lat secondo la conenzone dell utlzzatore {,...,

Dettagli

La soluzione delle equazioni differenziali con il metodo di Galerkin

La soluzione delle equazioni differenziali con il metodo di Galerkin Il metodo de resdu pesat per gl element fnt a soluzone delle equazon dfferenzal con l metodo d Galerkn Tra le procedure generalmente adottate per formulare e rsolvere le equazon dfferenzal con un metodo

Dettagli

Grafi ed equazioni topologiche

Grafi ed equazioni topologiche Graf ed equazon topologche www.de.ng.unbo.t/pers/mastr/ddattca.htm (ersone del --) Premessa Se s ndca con l l numero d corrent e l numero d tenson de component d un crcuto, la rsoluzone del crcuto rchede

Dettagli

PROCEDURA INFORMATIZZATA PER LA COMPENSAZIONE DELLE RETI DI LIVELLAZIONE. (Metodo delle Osservazioni Indirette) - 1 -

PROCEDURA INFORMATIZZATA PER LA COMPENSAZIONE DELLE RETI DI LIVELLAZIONE. (Metodo delle Osservazioni Indirette) - 1 - PROCEDURA INFORMATIZZATA PER LA COMPENSAZIONE DELLE RETI DI LIVELLAZIONE (Metodo delle Osservazon Indrette) - - SPECIFICHE DI CALCOLO Procedura software per la compensazone d una rete d lvellazone collegata

Dettagli

Statistica di Bose-Einstein

Statistica di Bose-Einstein Statstca d Bose-Ensten Esstono sstem compost d partcelle dentche e ndstngubl che non sono soggette al prncpo d esclusone. In quest sstem non esste un lmte al numero d partcelle che possono essere osptate

Dettagli

V n. =, e se esiste, il lim An

V n. =, e se esiste, il lim An Parttore resstvo con nfnte squadre n cascata. ITIS Archmede CT La Fg. rappresenta un parttore resstvo, formato da squadre d restor tutt ugual ad, conness n cascata, e l cu numero n s fa tendere ad nfnto.

Dettagli

Laboratorio 2B A.A. 2012/2013. Elaborazione Dati. Lab 2B CdL Fisica

Laboratorio 2B A.A. 2012/2013. Elaborazione Dati. Lab 2B CdL Fisica Laboratoro B A.A. 01/013 Elaborazone Dat Lab B CdL Fsca Lab B CdL Fsca Elaborazone dat spermental Prncpo della massma verosmglanza Quando eseguamo una sere d msure relatve ad una data grandezza fsca, quanto

Dettagli

Grafi ed equazioni topologiche

Grafi ed equazioni topologiche Graf ed equazon topologche www.de.ng.unbo.t/pers/mastr/ddattca.htm (ersone del 9--) Premessa Se s ndca con l l numero d corrent e l numero d tenson de component d un crcuto, la rsoluzone del crcuto rchede

Dettagli

* PROBABILITÀ - SCHEDA N. 2 LE VARIABILI ALEATORIE *

* PROBABILITÀ - SCHEDA N. 2 LE VARIABILI ALEATORIE * * PROBABILITÀ - SCHEDA N. LE VARIABILI ALEATORIE *. Le varabl aleatore Nella scheda precedente abbamo defnto lo spazo camponaro come la totaltà degl est possbl d un espermento casuale; abbamo vsto che

Dettagli

Bipoli resistivi. (versione del ) Bipoli resistivi

Bipoli resistivi.  (versione del ) Bipoli resistivi Bpol resst www.de.ng.unbo.t/pers/mastr/ddattca.htm (ersone del 6--0) Bpol resst Bpolo ressto: componente a due termnal aente equazone caratterstca del tpo f (t), (t), t0 (f funzone generca) L equazone

Dettagli

Maurizio Giugni Titolo della lezione Reti di distribuzione idrica

Maurizio Giugni Titolo della lezione Reti di distribuzione idrica Maurzo Gugn Ttolo della lezone # Lezone n. Parole chave: Sstem acquedottstc. Ret d dstrbuzone. Corso d Laurea: Ingegnera per l Ambente e l Terrtoro Insegnamento: Infrastrutture Idraulche Emal Docente:

Dettagli

Esercizio 1. Esercitazione 14 Dicembre 2012 Sistemi trifase e potenze R 3 R 1 R 2. simmetrico L 1 L 3

Esercizio 1. Esercitazione 14 Dicembre 2012 Sistemi trifase e potenze R 3 R 1 R 2. simmetrico L 1 L 3 serctazone 4 Dcembre 0 Sstem trfase e potenze serczo L L L 00 f 50 Hz smmetrco Fg : Sstema trfase a stella S consder l crcuto d Fg e s calcolno le tre corrent d fase e le potenze attve, reattve ed apparent

Dettagli

03/03/2012. Campus di Arcavacata Università della Calabria

03/03/2012. Campus di Arcavacata Università della Calabria Campus d Arcavacata Unverstà della Calabra Corso d statstca RENDE a.a 0-00 3 4 5 6 7 8 9 0 3 4 5 6 7 8 9 Concentrazone Un altro aspetto d un nseme d dat che s aggunge alla meda e alla varabltà è costtuto

Dettagli

Rappresentazione dei numeri PH. 3.1, 3.2, 3.3

Rappresentazione dei numeri PH. 3.1, 3.2, 3.3 Rappresentazone de numer PH. 3.1, 3.2, 3.3 1 Tp d numer Numer nter, senza segno calcolo degl ndrzz numer che possono essere solo non negatv Numer con segno postv negatv Numer n vrgola moble calcol numerc

Dettagli

Dipartimento di Statistica Università di Bologna. Matematica Finanziaria aa lezione 17: 8 maggio 2012

Dipartimento di Statistica Università di Bologna. Matematica Finanziaria aa lezione 17: 8 maggio 2012 Dpartmento d Statstca Unverstà d Bologna Matematca Fnanzara aa 2011-2012 lezone 17: 8 maggo 2012 professor Danele Rtell www.unbo.t/docent/danele.rtell 1/20? Costture n regme semplce al tasso = 0, 025 l

Dettagli

Ingegneria Elettrica Politecnico di Torino. Luca Carlone. ControlliAutomaticiI LEZIONE III

Ingegneria Elettrica Politecnico di Torino. Luca Carlone. ControlliAutomaticiI LEZIONE III Ingegnera Elettrca Poltecnco d Torno Luca Carlone ControllAutomatcI LEZIONE III Sommaro LEZIONE III Trasformata d Laplace Propretà e trasformate notevol Funzon d trasfermento Scomposzone n fratt semplc

Dettagli

Dipartimento di Scienze Statistiche Università di Bologna. Matematica finanziaria aa lezione 16: 13 marzo 2014

Dipartimento di Scienze Statistiche Università di Bologna. Matematica finanziaria aa lezione 16: 13 marzo 2014 Dpartmento d Scenze Statstche Unverstà d Bologna Matematca fnanzara aa 2013-2014 lezone 16: 13 marzo 2014 professor Danele Rtell www.unbo.t/docent/danele.rtell 1/20? Eserczo Nell ammortamento d un prestto

Dettagli

Dipartimento di Statistica Università di Bologna. Matematica Finanziaria aa lezione 21: 29 maggio 2013

Dipartimento di Statistica Università di Bologna. Matematica Finanziaria aa lezione 21: 29 maggio 2013 Dpartmento d Statstca Unverstà d Bologna Matematca Fnanzara aa 2011-2012 lezone 21: 29 maggo 2013 professor Danele Rtell www.unbo.t/docent/danele.rtell 1/35? Eserczo Dmostrare che l portafoglo d mnmo rscho

Dettagli

ω 0 =, abbiamo L = 1 H. LC 8.1 Per t il condensatore si comporta come un circuito aperto pertanto la corrente tende a zero: la R

ω 0 =, abbiamo L = 1 H. LC 8.1 Per t il condensatore si comporta come un circuito aperto pertanto la corrente tende a zero: la R 8. Per t l condensatore s comporta come un crcuto aperto pertanto la corrente tende a zero: la funzone non può essere la (c). caando α e ω 0 s ottengono seguent alor: α 5 0 e ω 0 0. Essendo α > ω 0 l crcuto

Dettagli

Riccardo Sabatino 463/1 Progetto di un telaio in c.a. A.A. 2003/04

Riccardo Sabatino 463/1 Progetto di un telaio in c.a. A.A. 2003/04 Rccardo Sabatno 463/1 Progetto d un telao n c.a. A.A. 003/04 3.3 Il metodo degl spostament per la rsoluzone del telao Il metodo degl spostament è basato sulla valutazone de moment flettent ce agscono sugl

Dettagli

Condensatori e resistenze

Condensatori e resistenze Condensator e resstenze Lucano attaa Versone del 22 febbrao 2007 Indce In questa nota presento uno schema replogatvo relatvo a condensator e alle resstenze, con partcolare rguardo a collegament n sere

Dettagli

La corrente vale metà del valore finale quando 0,2(1 e ) = 0, 1; risolvendo l equazione si

La corrente vale metà del valore finale quando 0,2(1 e ) = 0, 1; risolvendo l equazione si 7.6 La corrente nzale è edentemente nulla. on l nterruttore chuso la costante d tempo è τ = L/ = 1/200 s. Il alore fnale è ( ) = 20/100 = 0,2 A. on l espressone (7.13b) a pag. 235 del lbro s ottene 200t

Dettagli

4.6 Dualità in Programmazione Lineare

4.6 Dualità in Programmazione Lineare 4.6 Dualtà n Programmazone Lneare Ad ogn PL n forma d mn (max) s assoca un PL n forma d max (mn) Spaz e funzon obettvo dvers ma n genere stesso valore ottmo! Esempo: l valore massmo d un flusso ammssble

Dettagli

Dipartimento di Statistica Università di Bologna. Matematica finanziaria aa 2012-2013 lezione 13: 24 aprile 2013

Dipartimento di Statistica Università di Bologna. Matematica finanziaria aa 2012-2013 lezione 13: 24 aprile 2013 Dpartmento d Statstca Unverstà d Bologna Matematca fnanzara aa 2012-2013 lezone 13: 24 aprle 2013 professor Danele Rtell www.unbo.t/docent/danele.rtell 1/23? reammortamento uò accadere che, dopo l erogazone

Dettagli

Dipartimento di Matematica per le scienze economiche e sociali Università di Bologna. Matematica aa lezione marzo 2009

Dipartimento di Matematica per le scienze economiche e sociali Università di Bologna. Matematica aa lezione marzo 2009 Dpartmento d Matematca per le scenze economche e socal Unverstà d Bologna Matematca aa 2008-2009 lezone 25 17 marzo 2009 professor Danele Rtell www.unbo.t/docent/danele.rtell 1/26? Convesstà Sa I un ntervallo

Dettagli

Rappresentazione dei numeri

Rappresentazione dei numeri Rappresentazone de numer PH. 3.1, 3.2, 3.3 1 Tp d numer Numer nter, senza segno calcolo degl ndrzz numer che possono essere solo non negatv Numer con segno postv negatv Numer n vrgola moble calcol numerc

Dettagli

Compito di SISTEMI E MODELLI 25 Gennaio 2016

Compito di SISTEMI E MODELLI 25 Gennaio 2016 Compto d SISTEMI E MODELLI 5 Gennao 06 È vetato l uso d lbr o quadern. Le rsposte vanno gustfcate. Saranno rlevant per la valutazone anche l ordne e la charezza espostva. Consegnare SOLO la bella copa,

Dettagli

COMPORTAMENTO DINAMICO DI ASSI E ALBERI

COMPORTAMENTO DINAMICO DI ASSI E ALBERI COMPORTAMENTO DNAMCO D ASS E ALBER VBRAZON TORSONAL Costruzone d Macchne Generaltà l problema del progetto d un asse o d un albero non è solo statco Gl ass e gl alber, come sstem elastc, sotto l azone

Dettagli

ELETTROTECNICA Ingegneria Industriale

ELETTROTECNICA Ingegneria Industriale ELETTROTECNICA Ingegnera Industrale INTRODUZIONE a CIRCUITI LEGGI d KIRCHHOFF Stefano Pastore Dpartmento d Ingegnera e Archtettura Corso d Elettrotecnca (043IN) a.a. 2013-14 Bblografa V. Danele, A. Lberatore,

Dettagli

3) Entropie condizionate, entropie congiunte ed informazione mutua

3) Entropie condizionate, entropie congiunte ed informazione mutua Argoment della Lezone ) Coppe d varabl aleatore 2) Canale dscreto senza memora 3) Entrope condzonate, entrope congunte ed nformazone mutua 4) Esemp d canal Coppe d varabl aleatore Fno ad ora è stata consderata

Dettagli

Principi di ingegneria elettrica. Lezione 2 a

Principi di ingegneria elettrica. Lezione 2 a Prncp d ngegnera elettrca Lezone 2 a Defnzone d crcuto elettrco Un crcuto elettrco (rete) è l nterconnessone d un numero arbtraro d element collegat per mezzo d fl. Gl element sono accessbl tramte termnal

Dettagli

Considerazioni teoriche su nuove osservazioni ottiche 1 della teoria della relatività. M. v. Laue (Berlin)

Considerazioni teoriche su nuove osservazioni ottiche 1 della teoria della relatività. M. v. Laue (Berlin) Consderazon teorche su nuove osservazon ottche 1 della teora della relatvtà. M. v. Laue (Berln) 1. Il calcolo della deflessone della luce da parte del sole s fonda sulla legge che la propagazone della

Dettagli

STATISTICA DESCRITTIVA - SCHEDA N. 5 REGRESSIONE LINEARE

STATISTICA DESCRITTIVA - SCHEDA N. 5 REGRESSIONE LINEARE Matematca e statstca: da dat a modell alle scelte www.dma.unge/pls_statstca Responsabl scentfc M.P. Rogantn e E. Sasso (Dpartmento d Matematca Unverstà d Genova) STATISTICA DESCRITTIVA - SCHEDA N. REGRESSIONE

Dettagli

Metodi variazionali. ed agiscono sulla FORMA DEBOLE DEL PROBLEMA

Metodi variazionali. ed agiscono sulla FORMA DEBOLE DEL PROBLEMA Metod varazonal OBIETTIVO: determnare funzon ncognte, chamate varabl dpendent, che soddsfano un certo nseme d equazon dfferenzal n un determnato domno e condzon al contorno STRUMETO: Metod varazonal: servono

Dettagli

il diodo a giunzione transistori ad effetto di campo (FETs) il transistore bipolare (BJT)

il diodo a giunzione transistori ad effetto di campo (FETs) il transistore bipolare (BJT) Contenut del corso Parte I: Introduzone e concett ondamental rcham d teora de crcut la smulazone crcutale con PICE element d Elettronca dello stato soldo Parte II: Dspost Elettronc l dodo a gunzone transstor

Dettagli

IMPIANTI E PROCESSI CHIMICI. Tema A 13 Settembre 2011 Flash con Colonne binarie

IMPIANTI E PROCESSI CHIMICI. Tema A 13 Settembre 2011 Flash con Colonne binarie IMPINTI E PROCESSI CHIMICI Tema 3 Settembre 0 lash con Colonne bnare Soluzone Inzalmente s svolge un calcolo d lash al fne d caratterzzare la composzone delle corrent almentate alle due colonne. La corrente

Dettagli

Dipartimento di Statistica Università di Bologna. Matematica finanziaria aa lezione 16: 9 maggio 2013

Dipartimento di Statistica Università di Bologna. Matematica finanziaria aa lezione 16: 9 maggio 2013 Dpartmento d Statstca Unverstà d Bologna Matematca fnanzara aa 2012-2013 lezone 16: 9 maggo 2013 professor Danele Rtell www.unbo.t/docent/danele.rtell 1/25? 2/25? Caso partcolare, ma molto mportante α

Dettagli

Trigger di Schmitt. e +V t

Trigger di Schmitt. e +V t CORSO DI LABORATORIO DI OTTICA ED ELETTRONICA Scopo dell esperenza è valutare l ampezza dell steres d un trgger d Schmtt al varare della frequenza e dell ampezza del segnale d ngresso e confrontarla con

Dettagli

ESERCIZI DI MATEMATICA FINANZIARIA DIPARTIMENTO DI ECONOMIA E MANAGEMENT UNIFE A.A. 2016/2017. Esercizi 3

ESERCIZI DI MATEMATICA FINANZIARIA DIPARTIMENTO DI ECONOMIA E MANAGEMENT UNIFE A.A. 2016/2017. Esercizi 3 ESERCIZI DI MATEMATICA FINANZIARIA DIPARTIMENTO DI ECONOMIA E MANAGEMENT UNIFE A.A. 2016/2017 Esercz 3 Pan d ammortamento Eserczo 1. Un prestto d 12000e vene rmborsato n 10 ann con rate mensl e pano all

Dettagli

Metodi variazionali. ed agiscono sulla FORMA DEBOLE DEL PROBLEMA

Metodi variazionali. ed agiscono sulla FORMA DEBOLE DEL PROBLEMA Metod varazonal OBIETTIVO: determnare funzon ncognte, chamate varabl dpendent, che soddsfano un certo nseme d equazon dfferenzal n un determnato domno e condzon al contorno STRUMETO: Metod varazonal: servono

Dettagli

C 2. Quesiti: 1) Calcolare tutte le correnti in figura. 2) Verificare la conservazione delle potenze complesse.

C 2. Quesiti: 1) Calcolare tutte le correnti in figura. 2) Verificare la conservazione delle potenze complesse. UNIESITÀ DEGI STUDI DI NPOI FEDEICO II FCOTÀ DI INGEGNEI COSO DI UE IN INGEGNEI BIOMEDIC COSO DI UE IN INGEGNEI MECCNIC I COSO DI UE IN INGEGNEI PE GESTIONE DEI SISTEMI DI TSPOTO Prof. ug erolno Prova

Dettagli

IL LEGAME TRA DUE VARIABILI I METODI DELLA CORRELAZIONE

IL LEGAME TRA DUE VARIABILI I METODI DELLA CORRELAZIONE IL LEGAME TRA DUE VARIABILI I METODI DELLA CORRELAZIONE CORRELAZIONE Legame - Assocazone - Accordo Relazone tra varabl valutare l grado d recproca nfluenza tra due varabl; valutare l grado d assocazone

Dettagli

Sistemi di Acquisizione Dati Prof. Alessandro Pesatori

Sistemi di Acquisizione Dati Prof. Alessandro Pesatori Rappresentazone grafca Vsone d nseme d una grandezza n funzone del tempo o d un altro parametro Tpcamente s utlzzano ass coordnat che devono rportare la descrzone della grandezza rappresentata e all occorrenza

Dettagli

( ) d R L. w D R L. L 1 = -a -3 b + c + d T -2 = -a - c Risolvendo il sistema M 0 = a + b. In generale possiamo dire che

( ) d R L. w D R L. L 1 = -a -3 b + c + d T -2 = -a - c Risolvendo il sistema M 0 = a + b. In generale possiamo dire che In generale possamo dre che R L f ( µ,,, D Dal punto d vsta matematco possamo approssmare la funzone con una sere d potenze e qund: R L ( a b c d µ B D ma per l'omogenetà delle relazon avremo [ ] ([ ]

Dettagli

6. Catene di Markov a tempo continuo (CMTC)

6. Catene di Markov a tempo continuo (CMTC) 6. Catene d Markov a tempo contnuo (CMTC) Carla Seatzu, 8 Marzo 28 Defnzone Una CMTC è un processo stocastco defnto come segue: lo spazo d stato è dscreto: X{x,x 2, }. L nseme X può essere sa fnto sa nfnto

Dettagli

Gestione della produzione e della supply chain Logistica distributiva. Paolo Detti Dipartimento di Ingegneria dell Informazione Università di Siena

Gestione della produzione e della supply chain Logistica distributiva. Paolo Detti Dipartimento di Ingegneria dell Informazione Università di Siena Gestone della produzone e della supply chan Logstca dstrbutva Paolo Dett Dpartmento d Ingegnera dell Informazone Unverstà d Sena Un algortmo per l flusso su ret a costo mnmo: l smplesso su ret Convergenza

Dettagli

Stabilità dei Sistemi Dinamici. Stabilità Semplice. Stabilità Asintotica. Stabilità: concetto intuitivo che può essere formalizzato in molti modi

Stabilità dei Sistemi Dinamici. Stabilità Semplice. Stabilità Asintotica. Stabilità: concetto intuitivo che può essere formalizzato in molti modi Gustavo Belforte Stabltà de Sstem Dnamc Gustavo Belforte Stabltà de Sstem Dnamc Stabltà de Sstem Dnamc Il Pendolo Stabltà: concetto ntutvo che può essere formalzzato n molt mod Intutvamente: Un oggetto

Dettagli

LA VARIABILITA. IV lezione di Statistica Medica

LA VARIABILITA. IV lezione di Statistica Medica LA VARIABILITA IV lezone d Statstca Medca Sntes della lezone Il concetto d varabltà Campo d varazone Dfferenza nterquartle La varanza La devazone standard Scostament med Il concetto d varabltà S defnsce

Dettagli

Circuiti elettrici in regime stazionario

Circuiti elettrici in regime stazionario Crcut elettrc n regme stazonaro Component www.de.ng.unbo.t/pers/mastr/ddattca.htm (ersone del 0-0-00) Bpol resst Equazon caratterstca d un bpolo ressto f, 0 L equazone d un bpolo ressto defnsce una cura

Dettagli

Lezione 20 Maggio 29

Lezione 20 Maggio 29 PSC: Progettazone d sstem d controllo III Trm 2007 Lezone 20 Maggo 29 Docente: Luca Schenato Stesor: Maran F, Marcon R, Marcassa A, Zanella F Fnora s sono sempre consderat sstem tempo-nvarant, ovvero descrtt

Dettagli

Statistica Descrittiva

Statistica Descrittiva Statstca Descrttva Corso d Davd Vettur Dat osservat Sano note le seguent msure dello spessore d una lastra d materale polmerco espresse n mllmetr 3.71 3.83 3.85 3.96 3.84 3.8 3.94 3.55 3.76 3.63 3.88 3.86

Dettagli

La ripartizione trasversale dei carichi

La ripartizione trasversale dei carichi La rpartzone trasversale de carch La dsposzone de carch da consderare ne calcol della struttura deve essere quella pù gravosa, ossa quella che determna massm valor delle sollectazon. Tale aspetto nveste

Dettagli

Risposta in frequenza

Risposta in frequenza Rsposta n frequenza www.de.ng.unbo.t/pers/mastr/ddattca.htm (versone del 6--6 Dagramm d Bode Le funzon d trasfermento (f.d.t de crcut lnear tempo nvarant sono funzon razonal (coè rapport tra due polnom

Dettagli

Teoria dell informazione e Meccanica Statistica

Teoria dell informazione e Meccanica Statistica Teora dell nformazone e Meccanca Statstca L. P. Gugno 2007 Rporto qu una breve rassegna dell approcco alla Meccanca Statstca medante la teora dell nformazone. Partamo dalla consderazone che la probabltà

Dettagli

Calcolo della temperatura di uscita dal primo stadio del reattore di conversione del CO per abbattere il tenore di CO fino ad un valore fissato.

Calcolo della temperatura di uscita dal primo stadio del reattore di conversione del CO per abbattere il tenore di CO fino ad un valore fissato. Dpartmento d Energa Poltecnco d Mlano Pazza Leonardo da Vnc - MILAN Eserctazon del corso FNDAMENI DI PCESSI CHIMICI Prof. Ganpero Gropp ESECIAZINE Calcolo della temperatura d uscta dal prmo stado del reattore

Dettagli

Prova scritta del corso di Fisica

Prova scritta del corso di Fisica Prova scrtta d corso d Fsca Prof F Rcc-Tersengh 30/01/014 Quest 1 S supponga d applcare una forza F n orzzontale su d un corpo d massa m = 10 kg che è appoggato su un pano scabro (µ s = 08) nclnato d un

Dettagli

5.1 Controllo di un sistema non lineare

5.1 Controllo di un sistema non lineare 5.1 Controllo d un sstema non lneare Sa dato l sstema non lneare rappresentato n fgura 5.1, con h g θ Θ,m,r Fgura 5.1: Sstema non lneare F m (,d) = k m la forza che esercta l elettromagnete percorso da

Dettagli

Metodi ad un passo espliciti con passo adattivo Metodi Runge - Kutta

Metodi ad un passo espliciti con passo adattivo Metodi Runge - Kutta Metod ad un passo esplct con passo adattvo Metod Runge - Kutta Scrvere un programma che approssm l problema d Cauchy: u (t) = f(t, u), t 0 t T, u R d, u(t 0 ) = v per un sstema d equazon dfferenzal ordnare

Dettagli

Esercitazione sulle Basi di di Definizione

Esercitazione sulle Basi di di Definizione Eserctazone sulle as d d Defnzone ESERIZIO Un bpolo ressto (dodo) ha la seguente equazone: = k [ 0 + 00] con k 0 nella quale ed sono descrtt dalla conenzone degl utlzzator come n fgura. Stablre se l bpolo

Dettagli

Elettrotecnica - Modulo 1 - Ing. Biomedica, Ing. Elettronica per l Energia e l Informazione A.A. 2017/18 - Prova n luglio 2018.

Elettrotecnica - Modulo 1 - Ing. Biomedica, Ing. Elettronica per l Energia e l Informazione A.A. 2017/18 - Prova n luglio 2018. ognome Nome Matrcola Frma 1 Part svolte: E1 E E3 D Eserczo 1 A G7 6 B V G6 T V 1 D V 5 g11 0 G g1 g Supponendo not parametr de component e della matrce d conduttanza del trpolo T, llustrare l procedmento

Dettagli

Approssimazione minimax

Approssimazione minimax Approssmazone mnmax 1 Il problema dell approssmazone lneare Data una f(x) appartenente allo spazo vettorale F delle funzon real d varable reale, s scegle n F un modello, coè un nseme d funzon φ (x), =

Dettagli

Distribuzione di Boltzmann. Nota

Distribuzione di Boltzmann. Nota Dstrbuzone d Boltzmann ota Tutto l soggetto trattato deve n realta essere nserto nel quadro concettuale della meccanca statstca, che non e trattato n questo corso. Quest cenn sono solo un breve rchamo

Dettagli

CIRCUITI ELETTRICI 1) Calcolare la resistenza equivalente del seguente circuito:

CIRCUITI ELETTRICI 1) Calcolare la resistenza equivalente del seguente circuito: CICUITI LTTICI ) Calcolare la resstenza equvalente del seguente crcuto: Dall esame del crcuto s deduce che la resstenza equvalente del crcuto è: 6 6 6 ( ) Ω ) Determna l ntenstà della corrente nel crcuto,

Dettagli

6. Catene di Markov a tempo continuo (CMTC)

6. Catene di Markov a tempo continuo (CMTC) 6. Catene d Markov a tempo contnuo (CMTC) Defnzone Una CMTC è un processo stocastco defnto come segue: lo spazo d stato è dscreto: X{x,x 2, }. L nseme X può essere sa fnto sa nfnto numerable. L nseme de

Dettagli

Per calcolare le probabilità di Testa e Croce è possibile risolvere il seguente sistema di due equazioni in due incognite:

Per calcolare le probabilità di Testa e Croce è possibile risolvere il seguente sistema di due equazioni in due incognite: ESERCIZIO.1 Sa X la varable casuale che descrve l numero d teste ottenute nella prova lanco d tre monete truccate dove P(Croce)= x P(Testa). 1) Defnrne la dstrbuzone d probabltà ) Rappresentarla grafcamente

Dettagli

Integrazione numerica dell equazione del moto per un sistema non lineare a un grado di libertà. Prof. Adolfo Santini - Dinamica delle Strutture 1

Integrazione numerica dell equazione del moto per un sistema non lineare a un grado di libertà. Prof. Adolfo Santini - Dinamica delle Strutture 1 Integrazone nmerca dell eqazone del moto per n sstema non lneare a n grado d lbertà Prof. Adolfo Santn - Dnamca delle Strttre Rgdezza secante e rgdezza tangente /2 Per n sstema non lneare, l eqazone del

Dettagli

3 CAMPIONAMENTO DI BERNOULLI E DI POISSON

3 CAMPIONAMENTO DI BERNOULLI E DI POISSON 3 CAMPIOAMETO DI ROULLI E DI POISSO 3. ITRODUZIOE In questo captolo esamneremo due schem d camponamento che dversamente dal camponamento casuale semplce non producono campon d dmensone fssa ma varable.

Dettagli

RICERCA OPERATIVA GRUPPO B prova scritta del 22 gennaio 2009

RICERCA OPERATIVA GRUPPO B prova scritta del 22 gennaio 2009 RICERCA OPERATIVA GRUPPO B prova scrtta del gennao 009. Dte se l vettore (5/4,, ) è combnazone affne, conca o convessa de vettor (/, 0, ), (,, ) e (/, /, ). Il vettore (5/4,, ) è combnazone affne de vettor

Dettagli

Corso di. Gasdinamica II Tommaso Astarita

Corso di. Gasdinamica II Tommaso Astarita Corso d Gasdnamca II Tommaso Astarta astarta@unna.t www.docent.unna.t Gasdnamca II Tommaso Astarta 5.0.008 Metodo d Eulero S supponga d avere una equazone dfferenzale del prmo ordne: f ( x, ) x xo o Defnendo

Dettagli

UNIVERSITA DEGLI STUDI DI CASSINO FACOLTA DI INGEGNERIA

UNIVERSITA DEGLI STUDI DI CASSINO FACOLTA DI INGEGNERIA UNIVERSITA DEGI STUDI DI CASSINO FACOTA DI INGEGNERIA ANTONIO RUSSO, ANGEO EOPARDI ANAISI DE ERRORE CONNESSO A APPROSSIMAZIONE DEE UNGHEZZE E DEE CEERITA NE METODO DI INTEGRAZIONE DEE CARATTERISTICHE (MOC)

Dettagli

METODO DEGLI ELEMENTI FINITI

METODO DEGLI ELEMENTI FINITI METODO DEGLI ELEMENTI FINITI Introduzone al metodo degl element fnt Il concetto base nella nterpretazone fsca del metodo degl element fnt è la decomposzone d un sstema meccanco complesso n pù semplc component

Dettagli

FISICA per SCIENZE BIOLOGICHE, A.A. 2014/2015 Prova scritta del 24 Febbraio 2015

FISICA per SCIENZE BIOLOGICHE, A.A. 2014/2015 Prova scritta del 24 Febbraio 2015 FISICA per SCIENZE BIOLOGICHE, A.A. 04/05 Prova scrtta del 4 Febbrao 05 ) Un corpo d massa m = 300 g scvola lungo un pano nclnato lsco d altezza h = 3m e nclnazone θ=30 0 rspetto all orzzontale. Il corpo

Dettagli