Integrazione numerica dell equazione del moto per un sistema non lineare a un grado di libertà. Prof. Adolfo Santini - Dinamica delle Strutture 1

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Integrazione numerica dell equazione del moto per un sistema non lineare a un grado di libertà. Prof. Adolfo Santini - Dinamica delle Strutture 1"

Transcript

1 Integrazone nmerca dell eqazone del moto per n sstema non lneare a n grado d lbertà Prof. Adolfo Santn - Dnamca delle Strttre

2 Rgdezza secante e rgdezza tangente /2 Per n sstema non lneare, l eqazone del moto n forma ncrementale s scrve mδ + cδ + ( Δ ) = Δp La forza d rchamo ncrementale s potrebbe esprmere n fnzone della rgdezza secante come sege ( Δ ) = ( k ) sec Δ Tttava, la rgdezza secante non pò essere determnata perché + non è noto all nzo del passo d ntegrazone. (k ) T (k ) sec ( ) + ( ) (! )! 0 + Prof. Adolfo Santn - Dnamca delle Strttre 2

3 Rgdezza secante e rgdezza tangente 2/2 Se s assme che all nterno del passo d ntegrazone Δt la rgdezza secante pò essere sosttta dalla rgdezza tangente, la relazone precedente s scrve ( Δ ) ( k ) T Δ Omettendo l pedce T, l eqazone del moto n forma ncrementale assme la forma mδ + cδ + k Δ = Δp (k ) T (k ) sec ( ) + ( ) (! )! 0 + Prof. Adolfo Santn - Dnamca delle Strttre 3

4 Il metodo d Newmark per sstem non lnear mδ + cδ + k Δ = Δp La somglanza d qesta eqazone con qella d n sstema lneare sggersce che l metodo d Newmark, svlppato per sstem lnear, pò anche essere tlzzato per la valtazone della rsposta d sstem non lnear: basta sosttre la rgdezza k con la rgdezza tangente k, che deve essere calcolata all nzo d ogn passo d ntegrazone. Qesto cambamento mplca che la qanttà ˆk = βδt m + γ 2 βδt c + k = ˆk non pò essere calcolata nzalmente, ma deve essere valtata a ogn passo d ntegrazone. Inoltre le relazon + = + Δ + = ( m p c k + + +) fornscono rsltat dvers, con la seconda da preferre perché soddsfa l eqlbro all stante d tempo t +. Prof. Adolfo Santn - Dnamca delle Strttre 4

5 Case d errore /2 Tttava, qesto modo d procedere condce a error sgnfcatv per de ragon: ) consderare n ntervallo d ntegrazone Δt costante non permette d ndvdare con la dovta precsone pnt d transzone della crva forza-spostamento; 2) la rgdezza tangente è tlzzata al posto d qella secante. La prma casa d errore è llstrata nella fgra segente. S assma che all nzo del passo d ntegrazone (pnto a) la veloctà sa postva, coè che lo spostamento sa crescente. L applcazone del procedmento prma descrtto condce allo spostamento +, (pnto b). Se la veloctà nel pnto b è negatva, allora deve esstere n pnto b all nterno del passo d ntegrazone n c la veloctà s è precedentemente annllata per po dventare negatva e lo spostamento ha nzato a dmnre. Comncare l sccessvo passo d ntegrazone f da b condce al pnto c. Se, nvece, s determna l stante S b d tempo assocato con b, n c s annlla la veloctà, e b' s nza l sccessvo passo d ntegrazone da b, s per- a c vene al pnto c. Non ndvdare b ha l effetto d non c' crva nmerca segre l esatta crva forza-spostamento. Qesto errore pò essere evtato determnando accratamente b ogn crva esatta volta che la veloctà camba segno. A tale scopo s pò tlzzare n procedmento teratvo, aggstando progressvamente l ampezza dell ntervallo d ntegrazone n modo che la veloctà all stante fnale sa prossma a zero. 0 + Prof. Adolfo Santn - Dnamca delle Strttre 5

6 Case d errore 2/2 La seconda casa d errore è dovta all tlzzo della rgdezza tangente nvece d qella secante ed è llstrata nella fgra segente. L nzo del passo d ntegrazone all stante d tempo t è ndcato con l pnto a. Consderando la rgdezza tangente n a, l ntegrazone nmerca tra t e t + condce allo spostamento +, ndcato con l pnto b. Se, nvece, fosse possble consderare la varazone della rgdezza all nterno del passo d ntegrazone s otterrebbe n valore dverso d +, per esempo qello ndcato con l pnto b. Qesta dfferenza s accmla a ogn passo d ntegrazone e pò condrre a error sgnfcatv. Qest error s possono mnmzzare attraverso l segente procedmento teratvo, che prende l nome d terazone d Newton-Raphson. a b crva nmerca b' crva esatta 0 + Prof. Adolfo Santn - Dnamca delle Strttre 6

7 Iterazone d Newton-Raphson /4 Nel caso de sstem non lnear, l eqazone rsoltva del metodo d Newmark s scrve n c Δˆp = Δp + ˆk Δ = Δˆp βδt m + γ β c + 2β m + Δt γ 2β c ˆk = βδt 2 m + γ βδt c + k Come s nota, l eqazone rsoltva è non lneare perché la rgdezza tangente k dpende dalla varazone dello spostamento all nterno del passo d ntegrazone e qnd la pendenza d ˆk non è costante. Al contraro, l termne Δˆp è costante all nterno del passo d ntegrazone. Il prmo passo del processo teratvo consste nel calcolare crva nmerca Δ () = Δˆp ˆk a b b' crva esatta che rappresenta la prma approssmazone del valore esatto Δ fgra. 0 + e che corrsponde al pnto b della Prof. Adolfo Santn - Dnamca delle Strttre 7

8 Iterazone d Newton-Raphson 2/4 Osservazone Le crve forza-spostamento d n sstema lneare e d no non lneare s presentano come sege k k ( ) + ( ) + (! ) k! (! ) k! ( ) ( )!! Per n sstema lneare, l eqazone rsoltva del metodo d Newmark s pò scrvere Δˆp = ˆkΔ = kδ + ( ˆk k)δ = Δ ( ) + ( ˆk k)δ Per n sstema non lneare, non vale n analoga relazone perché ( Δ ) k Δ. Rslta qnd Δˆp ( Δ ) + ( ˆk k )Δ = ΔF Prof. Adolfo Santn - Dnamca delle Strttre 8

9 Iterazone d Newton-Raphson 3/4 () () Pertanto, alla qanttà Δ è assocata la forza ΔF, che è dversa da Δˆp. S pò qnd defnre na forza resda al prmo passo del processo teratvo ΔR (2) = Δˆp ΔF () come è ndcato nella fgra segente. Lo spostamento addzonale dovto a qesta forza resda è par a p Δ (2) = ΔR (2) ˆk k Consderando qesto spostamento aggntvo, s pò determnare n novo valore della forza resda da c s rcava l novo ncremento d spostamento (3) Δ. Il procedmento teratvo s arresta dopo n terazon qando l rapporto tra l n-smo ncremento e l valore totale d Δ è mnore d na tolleranza ε accettata, coè (n) Δ < ε j=,n Δ ( j ) ΔR (3) () (2) (3)!!! 0 + () Lo spostamento così trovato è molto pù accrato d qello calcolato senza terazon, par a Δ. Avendo determnato Δ, l procedmento contna come nel caso de sstem lnear. Prof. Adolfo Santn - Dnamca delle Strttre 9!p!R (2)!F ()!R (3)!F (2)!R (4)

10 Iterazone d Newton-Raphson 4/4 Algortmo d calcolo - Inzalzzazone de dat: - Iterazon (j =, 2, 3, ) (0) + = f (0) S = ( ) ΔR () = Δˆp ( j Δ ) = ΔR ( j ) ˆk ( j ) ( + = j ) ( j ) + + Δ ΔF ( j ) = ( j ) ( j ) ( ) ( ) + ˆk ( j ) ( k )Δ ΔR ( j+) = ΔR ( j ) ΔF ( j ) - Conclsone j=,n Δ (n) Δ ( j ) = Δ (n) (n) + < ε Prof. Adolfo Santn - Dnamca delle Strttre 0

11 Il metodo d Newmark per sstem non lnear: sommaro - Note le condzon nzal n termn d spostamento e d veloctà, s determna l accelerazone nzale attraverso la relazone 0 = ( m p c k ) - Scelt valor da assegnare a β e γ, e assegnata l ampezza Δt dell ntervallo d ntegrazone, s calcolano le costant a = βδt m + γ β c b = 2β m + Δt γ 2β c - Per ogn ntervallo d ntegrazone s calcolano le qanttà Δˆp = Δp + a + b gl ncrement d veloctà e accelerazone Δ = γ βδt Δ γ β Δt γ 2β ˆk = βδt 2 m + γ βδt c + k s determna l valore d Δ con l procedmento teratvo d Newton-Raphson e s valtano da c s ottene Δ = βδt Δ 2 βδt 2β + = + Δ + = + Δ + = + Δ - Sosttendo con +, s rpete l procedmento per l sccessvo ntervallo d ntegrazone, e così va. Prof. Adolfo Santn - Dnamca delle Strttre

Integrazione numerica dell equazione del moto per un sistema lineare viscoso a un grado di libertà. Prof. Adolfo Santini - Dinamica delle Strutture 1

Integrazione numerica dell equazione del moto per un sistema lineare viscoso a un grado di libertà. Prof. Adolfo Santini - Dinamica delle Strutture 1 Integrazone numerca dell equazone del moto per un sstema lneare vscoso a un grado d lbertà Prof. Adolfo Santn - Dnamca delle Strutture 1 Introduzone 1/2 L equazone del moto d un sstema vscoso a un grado

Dettagli

Considerate un economia descritta dalle seguenti equazioni di comportamento: C=c 0 +c 1 (Y-T) per c 0 >0, 0<c 1 <1 I=d 1 Y-d 2 i per d 1 >0, d 2 >0

Considerate un economia descritta dalle seguenti equazioni di comportamento: C=c 0 +c 1 (Y-T) per c 0 >0, 0<c 1 <1 I=d 1 Y-d 2 i per d 1 >0, d 2 >0 Eserczo 9 Consderate la segente versone nmerca del modello -LM: C 400 + 0,5 d I 700-4.000 + 0, G 00 T 00 M d / 0,5-7.500 M s / 500 I valor d eqlbro del reddto e del tasso d nteresse sono: * 00 e * 8%.

Dettagli

Lezione 14 I PRINCIPI DELLA MECCANICA DEI FLUIDI

Lezione 14 I PRINCIPI DELLA MECCANICA DEI FLUIDI Appnt de cors d Idralca 1 e Idrodnamca 1 Lezone 14 I PRINCIPI DELLA ECCANICA DEI FLUIDI Il moto de fld è controllato da alcn prncp fondamental della fsca. Ennceremo nel segto: - l prncpo d conservazone

Dettagli

Intorduzione alla teoria delle Catene di Markov

Intorduzione alla teoria delle Catene di Markov Intorduzone alla teora delle Catene d Markov Mchele Ganfelce a.a. 2014/2015 Defnzone 1 Sa ( Ω, F, {F n } n 0, P uno spazo d probabltà fltrato. Una successone d v.a. {ξ n } n 0 defnta su ( Ω, F, {F n }

Dettagli

Predimensionamento reti chiuse

Predimensionamento reti chiuse Predmensonamento ret chuse Rspetto ad una rete aperta, ogn magla aggunge un grado d lbertà (una nfntà d soluzon) nella determnazone delle portate Q,Q 1, e Q 2, utlzzando le sole equazon d contnutà. a dfferenza

Dettagli

Lezione 7. Numeri primi. Teorema Fondamentale dell'aritmetica.

Lezione 7. Numeri primi. Teorema Fondamentale dell'aritmetica. Lezone 7 Prereqst: L'nseme de nmer nter Lezone 6 Nmer prm Teorema Fondamentale dell'artmetca Defnzone 7 Un nmero ntero p dverso da 0 e s dce prmo se per ogn a b Z Altrment p s dce composto p ab p a oppre

Dettagli

Politecnico di Torino Laurea a Distanza in Ingegneria Meccanica Corso di Macchine

Politecnico di Torino Laurea a Distanza in Ingegneria Meccanica Corso di Macchine 5 TURBOMACCHINE 5 INTRODUZIONE 5 A TURBOMACCHINA EEMENTARE Una trbomacchna è costtta da almeno na palettatra rotante (grante) dsposta s d n dsco, nteressata dal flsso d n fldo (compressble o ncompressble)

Dettagli

La soluzione delle equazioni differenziali con il metodo di Galerkin

La soluzione delle equazioni differenziali con il metodo di Galerkin Il metodo de resdu pesat per gl element fnt a soluzone delle equazon dfferenzal con l metodo d Galerkn Tra le procedure generalmente adottate per formulare e rsolvere le equazon dfferenzal con un metodo

Dettagli

Una semplice applicazione del metodo delle caratteristiche: la propagazione di un onda di marea all interno di un canale a sezione rettangolare.

Una semplice applicazione del metodo delle caratteristiche: la propagazione di un onda di marea all interno di un canale a sezione rettangolare. Una semplce applcazone del metodo delle caratterstche: la propagazone d un onda d marea all nterno d un canale a sezone rettangolare. In generale la propagazone d un onda monodmensonale n una corrente

Dettagli

Rappresentazione dei numeri PH. 3.1, 3.2, 3.3

Rappresentazione dei numeri PH. 3.1, 3.2, 3.3 Rappresentazone de numer PH. 3.1, 3.2, 3.3 1 Tp d numer Numer nter, senza segno calcolo degl ndrzz numer che possono essere solo non negatv Numer con segno postv negatv Numer n vrgola moble calcol numerc

Dettagli

PROBLEMA 1. Soluzione. β = 64

PROBLEMA 1. Soluzione. β = 64 PROBLEMA alcolare l nclnazone β, rspetto al pano stradale, che deve avere un motocclsta per percorrere, alla veloctà v = 50 km/h, una curva pana d raggo r = 4 m ( Fg. ). Fg. Schema delle condzon d equlbro

Dettagli

urto v 2f v 2i e forza impulsiva F r F dt = i t

urto v 2f v 2i e forza impulsiva F r F dt = i t 7. Urt Sstem a due partcelle Defnzone d urto elastco, urto anelastco e mpulso L urto è un nterazone fra corp che avvene n un ntervallo d tempo normalmente molto breve, al termne del quale le quanttà d

Dettagli

Rappresentazione dei numeri

Rappresentazione dei numeri Rappresentazone de numer PH. 3.1, 3.2, 3.3 1 Tp d numer Numer nter, senza segno calcolo degl ndrzz numer che possono essere solo non negatv Numer con segno postv negatv Numer n vrgola moble calcol numerc

Dettagli

Generalità. Problema: soluzione di una equazione differenziale alle derivate ordinarie di ordine n: ( )

Generalità. Problema: soluzione di una equazione differenziale alle derivate ordinarie di ordine n: ( ) Generaltà Problema: soluzone d una equazone derenzale alle dervate ordnare d ordne n: n n K soggetta alle n condzon nzal: K n Ovvero rcercare la soluzone d un sstema d n equazon derenzal ordnare del prmo

Dettagli

RICHIAMI SULLA RAPPRESENTAZIONE IN COMPLEMENTO A 2

RICHIAMI SULLA RAPPRESENTAZIONE IN COMPLEMENTO A 2 RICHIAMI SULLA RAPPRESENTAZIONE IN COMPLEMENTO A La rappresentazone n Complemento a Due d un numero ntero relatvo (.-3,-,-1,0,+1,+,.) una volta stablta la precsone che s vuole ottenere (coè l numero d

Dettagli

Unità Didattica N 5. Impulso e quantità di moto

Unità Didattica N 5. Impulso e quantità di moto Imnpulso e quanttà d moto - - Impulso e quanttà d moto ) Sstema solato : orze nterne ed esterne...pag. 2 2) Impulso e quanttà d moto...pag. 3 3) Teorema d conservazone della quanttà d moto...pag. 6 4)

Dettagli

Lez. 10 Forze d attrito e lavoro

Lez. 10 Forze d attrito e lavoro 4/03/015 Lez. 10 Forze d attrto e lavoro Pro. 1 Dott., PhD Dpartmento Scenze Fsche Unverstà d Napol Federco II Compl. Unv. Monte S.Angelo Va Cnta, I-8016, Napol mettver@na.nn.t +39-081-676137 1 4/03/015

Dettagli

Politica Economica Istituzioni e Efficienza

Politica Economica Istituzioni e Efficienza oltca Economca Isttzon e Ecenza 8 Condvsone delle rendte e modca delle sttzon La condvsone delle rendte da parte de lavorator, certa nella contrattazone ma possble anche n assenza, solleva alcne domande..

Dettagli

La ripartizione trasversale dei carichi

La ripartizione trasversale dei carichi La rpartzone trasversale de carch La dsposzone de carch da consderare ne calcol della struttura deve essere quella pù gravosa, ossa quella che determna massm valor delle sollectazon. Tale aspetto nveste

Dettagli

COMPORTAMENTO DINAMICO DI ASSI E ALBERI

COMPORTAMENTO DINAMICO DI ASSI E ALBERI COMPORTAMENTO DNAMCO D ASS E ALBER VBRAZON TORSONAL Costruzone d Macchne Generaltà l problema del progetto d un asse o d un albero non è solo statco Gl ass e gl alber, come sstem elastc, sotto l azone

Dettagli

Antonio Boezio Alessandro Lanave Meep. Teoria, sintassi ed esercizi progettuali

Antonio Boezio Alessandro Lanave Meep. Teoria, sintassi ed esercizi progettuali A09 Antono Boezo Alessandro Lanave Meep Teora, sntass ed esercz progettal Copyrght MMXIV ARACNE edtrce nt.le S.r.l. www.aracneedtrce.t nfo@aracneedtrce.t va Qarto Negron, 15 00040 Arcca RM 06 9781065

Dettagli

Molla e legge di Hooke

Molla e legge di Hooke Molla e legge d Hooke Consderamo un corpo d massa m poggato su una superce prva d attrto ed attaccato all estremtà lbera d una molla e consderamo che la poszone d equlbro (F0) sa n 0 Ø Se la molla vene

Dettagli

LA CALIBRAZIONE NELL ANALISI STRUMENTALE

LA CALIBRAZIONE NELL ANALISI STRUMENTALE LA CALIBRAZIONE NELL ANALISI STRUMENTALE La maggor parte delle anals chmche sono ogg condotte medante metod strumental (spettrometra d assorbmento ed emssone a dverse λ, metod elettrochmc, spettrometra

Dettagli

Capitolo 6 - Caratterizzazione dell azione sismica sulle costruzioni

Capitolo 6 - Caratterizzazione dell azione sismica sulle costruzioni Captolo 6 - Caratterzzazone dell azone ssmca sulle costruzon Lo studo della percolostà ssmca d un terrtoro consente d ottenere nformazon sulla ssmctà del sto n esame, sulle caratterstche de terremot che

Dettagli

Amplificatori operazionali

Amplificatori operazionali Amplfcator operazonal Parte 3 www.de.ng.unbo.t/pers/mastr/ddattca.htm (versone del 9-5-) Confgurazone nvertente generalzzata Se nella confgurazone nvertente s sosttuscono le resstenze R e R con due mpedenze

Dettagli

FLUIDODINAMICA. (Giovanni Paolo Romano)

FLUIDODINAMICA. (Giovanni Paolo Romano) FLUIDODINAMICA (Govann Paolo Romano) Anno Accademco 9- Bblografa: G. Qerzol, Dspense d Idralca, Unversta d Caglar, 999 P.H. Knd, I.M. Cohen, Fld Mechancs, Academc Press, B.R. Mnson, D.F. Yong, T.H.Oksh,

Dettagli

Capitolo 7. La «sintesi neoclassica» e il modello IS-LM. 2. La curva IS

Capitolo 7. La «sintesi neoclassica» e il modello IS-LM. 2. La curva IS Captolo 7 1. Il modello IS-LM La «sntes neoclassca» e l modello IS-LM Defnzone: ndvdua tutte le combnazon d reddto e saggo d nteresse per le qual l mercato de ben (curva IS) e l mercato della moneta (curva

Dettagli

Teoria degli errori. La misura implica un giudizio sull uguaglianza tra la grandezza incognita e la grandezza campione. Misure indirette: velocita

Teoria degli errori. La misura implica un giudizio sull uguaglianza tra la grandezza incognita e la grandezza campione. Misure indirette: velocita Teora degl error Processo d msura defnsce una grandezza fsca. Sstema oggetto. Apparato d msura 3. Sstema d confronto La msura mplca un gudzo sull uguaglanza tra la grandezza ncognta e la grandezza campone

Dettagli

UNIVERSITÀ DEGLI STUDI DI NAPOLI FEDERICO II FACOLTÀ DI INGEGNERIA

UNIVERSITÀ DEGLI STUDI DI NAPOLI FEDERICO II FACOLTÀ DI INGEGNERIA UNIVERSITÀ DEGLI STUDI DI NAPOLI FEDERICO II FACOLTÀ DI INGEGNERIA CORSO DI LAUREA IN INGEGNERIA PER L AMBIENTE E IL TERRITORIO METODI DI LOCALIZZAZIONE DEL RISALTO IDRAULICO RELATORE Ch.mo Prof. Ing.

Dettagli

Esercizi sulle reti elettriche in corrente continua (parte 2)

Esercizi sulle reti elettriche in corrente continua (parte 2) Esercz sulle ret elettrche n corrente contnua (parte ) Eserczo 3: etermnare gl equvalent d Thevenn e d Norton del bpolo complementare al resstore R 5 nel crcuto n fgura e calcolare la corrente che crcola

Dettagli

Laboratorio 2B A.A. 2012/2013. Elaborazione Dati. Lab 2B CdL Fisica

Laboratorio 2B A.A. 2012/2013. Elaborazione Dati. Lab 2B CdL Fisica Laboratoro B A.A. 01/013 Elaborazone Dat Lab B CdL Fsca Lab B CdL Fsca Elaborazone dat spermental Prncpo della massma verosmglanza Quando eseguamo una sere d msure relatve ad una data grandezza fsca, quanto

Dettagli

Il logaritmo discreto in Z p Il gruppo moltiplicativo Z p delle classi resto modulo un primo p è un gruppo ciclico.

Il logaritmo discreto in Z p Il gruppo moltiplicativo Z p delle classi resto modulo un primo p è un gruppo ciclico. Il logartmo dscreto n Z p Il gruppo moltplcatvo Z p delle class resto modulo un prmo p è un gruppo cclco. Defnzone (Logartmo dscreto). Sa p un numero prmo e sa ā una radce prmtva n Z p. Sa ȳ Z p. Il logartmo

Dettagli

Lezione 10. L equilibrio del mercato finanziario: la struttura dei tassi d interesse

Lezione 10. L equilibrio del mercato finanziario: la struttura dei tassi d interesse Lezone 1. L equlbro del mercato fnanzaro: la struttura de tass d nteresse Ttol con scadenza dversa hanno prezz (e tass d nteresse) dfferent. Due ttol d durata dversa emess dallo stesso soggetto (stesso

Dettagli

Statistica descrittiva

Statistica descrittiva Statstca descrttva. Indc d poszone. Per ndc d poszone d un nseme d dat, ordnat secondo la loro randezza, s ntendono alcun valor che cadono all nterno dell nseme. Gl ndc pù usat sono: I. eda. II. edana.

Dettagli

CINEMATICA del corpo rigido

CINEMATICA del corpo rigido SEZINE CINEMAICA del corpo rgdo Le segent note sono na sntes estrema de concett alla base della dnamca de corp rgd. Lo stdente pò consderare d aer appreso realmente tal concett solo se è n grado d rsolere

Dettagli

METODO DELLA CADUTA DI POTENZIALE

METODO DELLA CADUTA DI POTENZIALE METODO DELLA ADUTA DI POTENZIALE Fg.. Shea elettro del etodo della adta d potenzale. Prnpo Il etodo della adta d potenzale, vene tlzzato per la sra d resstenze d polo valore, n qanto onsente d elnare gl

Dettagli

Capitolo 3 Covarianza, correlazione, bestfit lineari e non lineari

Capitolo 3 Covarianza, correlazione, bestfit lineari e non lineari Captolo 3 Covaranza, correlazone, bestft lnear e non lnear ) Covaranza e correlazone Ad un problema s assoca spesso pù d una varable quanttatva (es.: d una persona possamo determnare peso e altezza, oppure

Dettagli

1 La domanda di moneta

1 La domanda di moneta La domanda d moneta Eserczo.4 (a) Keynes elenca tre motv per detenere moneta: Scopo transattvo Scopo precauzonale Scopo speculatvo Il modello d domanda d moneta a scopo speculatvo d Keynes consdera la

Dettagli

Circuiti dinamici. Circuiti del secondo ordine. (versione del ) Circuiti del secondo ordine

Circuiti dinamici. Circuiti del secondo ordine.  (versione del ) Circuiti del secondo ordine rcut dnamc rcut del secondo ordne www.de.ng.unbo.t/pers/mastr/ddattca.htm (versone del 9-6- rcut del secondo ordne rcut del secondo ordne: crcut l cu stato è defnto da due varabl x ( e x ( Per un crcuto

Dettagli

Architetture aritmetiche. Corso di Organizzazione dei Calcolatori Mariagiovanna Sami

Architetture aritmetiche. Corso di Organizzazione dei Calcolatori Mariagiovanna Sami Archtetture artmetche Corso d Organzzazone de Calcolator Maragovanna Sam 27-8 8 Sommator: : Full Adder s = x y c + x y c + x y c + x y c Full Adder x y c s x y c = x y + x c + + y c c + Full Adder c x

Dettagli

6. Catene di Markov a tempo continuo (CMTC)

6. Catene di Markov a tempo continuo (CMTC) 6. Catene d Markov a tempo contnuo (CMTC) Defnzone Una CMTC è un processo stocastco defnto come segue: lo spazo d stato è dscreto: X{x,x 2, }. L nseme X può essere sa fnto sa nfnto numerable. L nseme de

Dettagli

GUGLIOTTA CALOGERO. Liceo Scientifico E.Fermi Menfi (Ag.) ENTROPIA

GUGLIOTTA CALOGERO. Liceo Scientifico E.Fermi Menfi (Ag.) ENTROPIA GUGLIOTTA CALOGERO Lceo Scentco E.Ferm Men (Ag.) ENTROIA Il concetto d processo termodnamco reversble d un dato sstema è collegato all dea che s possa passare dallo stato allo stato attraverso una successone

Dettagli

FISICA per SCIENZE BIOLOGICHE, A.A. 2014/2015 Prova scritta del 24 Febbraio 2015

FISICA per SCIENZE BIOLOGICHE, A.A. 2014/2015 Prova scritta del 24 Febbraio 2015 FISICA per SCIENZE BIOLOGICHE, A.A. 04/05 Prova scrtta del 4 Febbrao 05 ) Un corpo d massa m = 300 g scvola lungo un pano nclnato lsco d altezza h = 3m e nclnazone θ=30 0 rspetto all orzzontale. Il corpo

Dettagli

CORSO DI FISICA TECNICA 2 AA 2013/14 ACUSTICA. Lezione n 2:

CORSO DI FISICA TECNICA 2 AA 2013/14 ACUSTICA. Lezione n 2: CORSO DI FISICA TECNICA AA 013/14 ACUSTICA Lezone n : Lvell sonor: operazon su decbel e lvello sonoro equvalente. Anals n requenza de segnal sonor, bande d ottava e terz d ottava. Rumore banco e rumore

Dettagli

Il modello markoviano per la rappresentazione del Sistema Bonus Malus. Prof. Cerchiara Rocco Roberto. Materiale e Riferimenti

Il modello markoviano per la rappresentazione del Sistema Bonus Malus. Prof. Cerchiara Rocco Roberto. Materiale e Riferimenti Il modello marovano per la rappresentazone del Sstema Bonus Malus rof. Cercara Rocco Roberto Materale e Rferment. Lucd dstrbut n aula. Lemare 995 (pag.6- e pag. 74-78 3. Galatoto G. 4 (tt del VI Congresso

Dettagli

Metodi e Modelli per l Ottimizzazione Combinatoria Progetto: Metodo di soluzione basato su generazione di colonne

Metodi e Modelli per l Ottimizzazione Combinatoria Progetto: Metodo di soluzione basato su generazione di colonne Metod e Modell per l Ottmzzazone Combnatora Progetto: Metodo d soluzone basato su generazone d colonne Lug De Govann Vene presentato un modello alternatvo per l problema della turnazone delle farmace che

Dettagli

Appendice B Il modello a macroelementi

Appendice B Il modello a macroelementi Appendce B Il modello a macroelement Al fne d una descrzone semplfcata del comportamento delle paret nel propro pano, è stata svluppata una metodologa d anals semplfcata che suddvde la parete murara con

Dettagli

MATEMATICA FINANZIARIA 1 PROVA SCRITTA DEL 21 LUGLIO 2009 ECONOMIA AZIENDALE

MATEMATICA FINANZIARIA 1 PROVA SCRITTA DEL 21 LUGLIO 2009 ECONOMIA AZIENDALE MATEMATICA FINANZIARIA PROVA SCRITTA DEL LUGLIO 009 ECONOMIA AZIENDALE ESERCIZIO Un ndduo ntende acqustare un motorno che ha un prezzo d 300. Volendo accedere ad un fnanzamento, gl engono proposte le seguent

Dettagli

CIRCUITI DI IMPIEGO DEI DIODI

CIRCUITI DI IMPIEGO DEI DIODI UT D MPEGO DE DOD addrzzare ad na seonda. l crcto pù seplce, che pega l dodo coe raddrzzatore d na tensone alternata, è rappresentato n Fg.. n esso n generatore deale d tensone alternata l c valore stantaneo

Dettagli

Università degli Studi di Torino D.E.I.A.F.A. Forze conservative. Forze conservative (1)

Università degli Studi di Torino D.E.I.A.F.A. Forze conservative. Forze conservative (1) Unverstà degl Stud d Torno D.E.I.A..A. orze conservatve Unverstà degl Stud d Torno D.E.I.A..A. orze conservatve () Una orza s dce conservatva se l lavoro da essa computo su un corpo che s muove tra due

Dettagli

METODO DELLA CADUTA DI POTENZIALE

METODO DELLA CADUTA DI POTENZIALE MISUE ELETTONIHE PE LE TL 1 METODO DELLA ADUTA DI POTENZIALE Grppo 6 APOI MASSIMO GEMMITI IADO GALLETTI IADO IANNELLA DAIDE Doente del orso: prof. Govann Betta Metodo della adta d potenzale relazone grppo

Dettagli

CPM: Calcolo del Cammino Critico

CPM: Calcolo del Cammino Critico Supponamo d conoscere per ogn attvtà A = (,j) la sua durata t j t j j Calcolamo l tempo al pù presto n cu può nzare o fnre una attvtà. Supponamo d dover calcolare l tempo al pù presto n cu s possono nzare

Dettagli

5: Strato fisico: limitazione di banda, formula di Nyquist; caratterizzazione del canale in frequenza

5: Strato fisico: limitazione di banda, formula di Nyquist; caratterizzazione del canale in frequenza 5: Strato fsco: lmtazone d banda, formula d Nyqust; caratterzzazone del canale n frequenza Larghezza d banda d un segnale La larghezza d banda d un segnale è data dall ntervallo delle frequenze d cu è

Dettagli

TITOLO: L INCERTEZZA DI TARATURA DELLE MACCHINE PROVA MATERIALI (MPM)

TITOLO: L INCERTEZZA DI TARATURA DELLE MACCHINE PROVA MATERIALI (MPM) Identfcazone: SIT/Tec-012/05 Revsone: 0 Data 2005-06-06 Pagna 1 d 7 Annotazon: Il presente documento fornsce comment e lnee guda sull applcazone della ISO 7500-1 COPIA CONTROLLATA N CONSEGNATA A: COPIA

Dettagli

Strada B. Classe Velocità valore frequenza Frequ. ass Frequ. % hi Freq. Cum

Strada B. Classe Velocità valore frequenza Frequ. ass Frequ. % hi Freq. Cum Eserczo SINTESI S supponga d avere eseguto 70 msure della veloctà stantanea de vecol che transtano nelle sezon d due strade A e B. S supponga che tal msure sano state eseguta n corrspondenza d valor modest

Dettagli

ESERCIZIO 4.1 Si consideri una popolazione consistente delle quattro misurazioni 0, 3, 12 e 20 descritta dalla seguente distribuzione di probabilità:

ESERCIZIO 4.1 Si consideri una popolazione consistente delle quattro misurazioni 0, 3, 12 e 20 descritta dalla seguente distribuzione di probabilità: ESERCIZIO. S consder una popolazone consstente delle quattro msurazon,, e descrtta dalla seguente dstrbuzone d probabltà: X P(X) ¼ ¼ ¼ ¼ S estrae casualmente usando uno schema d camponamento senza rpetzone

Dettagli

Corso di laurea in Ingegneria Meccatronica. DINAMICI CA - 04 ModiStabilita

Corso di laurea in Ingegneria Meccatronica. DINAMICI CA - 04 ModiStabilita Automaton Robotcs and System CONTROL Unverstà degl Stud d Modena e Reggo Emla Corso d laurea n Ingegnera Meccatronca MODI E STABILITA DEI SISTEMI DINAMICI CA - 04 ModStablta Cesare Fantuzz (cesare.fantuzz@unmore.t)

Dettagli

Principi di ingegneria elettrica. Lezione 2 a

Principi di ingegneria elettrica. Lezione 2 a Prncp d ngegnera elettrca Lezone 2 a Defnzone d crcuto elettrco Un crcuto elettrco (rete) è l nterconnessone d un numero arbtraro d element collegat per mezzo d fl. Gl element sono accessbl tramte termnal

Dettagli

{ 1, 2,..., n} Elementi di teoria dei giochi. Giovanni Di Bartolomeo Università degli Studi di Teramo

{ 1, 2,..., n} Elementi di teoria dei giochi. Giovanni Di Bartolomeo Università degli Studi di Teramo Element d teora de goch Govann D Bartolomeo Unverstà degl Stud d Teramo 1. Descrzone d un goco Un generco goco, Γ, che s svolge n un unco perodo, può essere descrtto da una Γ= NSP,,. Ess sono: trpla d

Dettagli

lim Flusso Elettrico lim E ΔA

lim Flusso Elettrico lim E ΔA Flusso lettrco Nel caso pù generale l campo elettrco può varare sa n ntenstà che drezone e verso. La defnzone d flusso data n precedenza vale solo se l elemento d superfce A è suffcentemente pccolo da

Dettagli

Valutazione dei Benefici interni

Valutazione dei Benefici interni Corso d Trasport Terrtoro prof. ng. Agostno Nuzzolo Valutazone de Benefc ntern Valutazone degl ntervent Indvduazone degl effett rlevant La defnzone degl effett rlevant per un ntervento sul sstema d trasporto

Dettagli

Sommatori: Full Adder. Adder. Architetture aritmetiche. Ripple Carry. Sommatori: Ripple Carry [2] Ripple Carry. Ripple Carry

Sommatori: Full Adder. Adder. Architetture aritmetiche. Ripple Carry. Sommatori: Ripple Carry [2] Ripple Carry. Ripple Carry CEFRIEL Consorzo per la Formazone e la Rcerca n Ingegnera dell Informazone Poltecnco d Mlano s Sommator: x y c x y c x y c x y c x y c Archtetture artmetche s x y Sommator:, Rpple Carry Sommator: Carry

Dettagli

CAPITOLO 2: PRIMO PRINCIPIO

CAPITOLO 2: PRIMO PRINCIPIO Introduzone alla ermodnamca Esercz svolt CAIOLO : RIMO RINCIIO Eserczo n 7 Una certa quanttà d Hg a = atm e alla temperatura = 0 C è mantenuta a = costante Quale dventa la se s porta la temperatura a =

Dettagli

Le forze conservative e l energia potenziale

Le forze conservative e l energia potenziale S dcono conservatve quelle orze che s comportano n accordo alla seguente denzone: La orza F s dce conservatva se l lavoro eseguto da tale orza sul punto materale P mentre s sposta dalla poszone P 1 alla

Dettagli

Luciano Battaia. Versione del 22 febbraio L.Battaia. Condensatori e resistenze

Luciano Battaia. Versione del 22 febbraio L.Battaia. Condensatori e resistenze Lucano attaa Versone del 22 febbrao 2007 In questa nota presento uno schema replogatvo relatvo a condensator e alle, con partcolare rguardo a collegament n sere e parallelo. Il target prncpale è costtuto

Dettagli

I.T.I. Modesto PANETTI B A R I

I.T.I. Modesto PANETTI B A R I I..I. Modesto PAEI B A R I Va Re Davd, 86-705 BARI 080-54.54. - Fax 080-54.64. Internet http://www.tspanett.t emal : BAF05000C@strzone.t emperatra d rmore - Fra d rmore Marne d Fadn Rapporto Senale/Rmore

Dettagli

CAPITOLO 3 CIRCUITI DI RESISTORI

CAPITOLO 3 CIRCUITI DI RESISTORI CAPITOLO 3 CIRCUITI DI RESISTORI Pagna 3. Introduzone 70 3. Connessone n sere e connessone n parallelo 70 3.. Bpol resstv n sere 7 3.. Bpol resstv n parallel 77 3.3 Crcut resstv lnear e sovrapposzone degl

Dettagli

Soluzioni 3.1. n(n 1) (n k + 1) z n k! k + 1 n k. lim k

Soluzioni 3.1. n(n 1) (n k + 1) z n k! k + 1 n k. lim k (1) La sere bnomale è B n (z) = k=0 Con l metodo del rapporto s ottene R = lm k Soluzon 3.1 n(n 1) (n k + 1) z n k! c k c k+1 = lm k k + 1 n k lm k c k z k. k=0 1 + 1 k 1 n k = 1 (2) La multfunzone f(z)

Dettagli

STATO LIMITE ULTIMO DI INSTABILITA

STATO LIMITE ULTIMO DI INSTABILITA Corso d Teora e rogetto d ont A/A 013-014 - Dott. Ing. Fabrzo aolacc STATO IMITE UTIMO DI INSTABIITA oszone del problema Il problema della stabltà dell equlbro aste perfe6e: Il carco cr9co eulerano nfluenza

Dettagli

Potenzialità degli impianti

Potenzialità degli impianti Unverstà degl Stud d Treste a.a. 2009-2010 Impant ndustral Potenzaltà degl mpant Impant ndustral Potenzaltà degl mpant 1 Unverstà degl Stud d Treste a.a. 2009-2010 Impant ndustral Defnzone della potenzaltà

Dettagli

CURVE & SUPERFICI. C g. Scopo: fornire una rappresentazione matematica per rappresentare 2D e 3D degli oggetti. Grafica Computerizzata

CURVE & SUPERFICI. C g. Scopo: fornire una rappresentazione matematica per rappresentare 2D e 3D degli oggetti. Grafica Computerizzata Grafca opterzzata URVE & UPERFII copo: fornre na rappresentazone ateatca per rappresentare 2D e 3D del oett Unversty of Ferrara opter slaton rop http://www.d.nfe.t/~cs Grafca opterzzata Bsona scelere na

Dettagli

come si tiene conto della limitazione d ampiezza e di velocità come si tiene conto della limitazione di frequenza come si tiene conto degli offset

come si tiene conto della limitazione d ampiezza e di velocità come si tiene conto della limitazione di frequenza come si tiene conto degli offset 8a resentazone della lezone 8 /6 Obettv come s tene conto della lmtazone d ampezza e d veloctà come s tene conto della lmtazone d reqenza come s tene conto degl oset 8a saper preved. col calcolo l nlenza

Dettagli

LA COMPATIBILITA tra due misure:

LA COMPATIBILITA tra due misure: LA COMPATIBILITA tra due msure: 0.4 Due msure, supposte affette da error casual, s dcono tra loro compatbl quando la loro dfferenza può essere rcondotta ad una pura fluttuazone statstca attorno al valore

Dettagli

UNIVERSITA DEGLI STUDI DI NAPOLI FEDERICO II

UNIVERSITA DEGLI STUDI DI NAPOLI FEDERICO II UNIVERSI DEGLI SUDI DI NPOLI FEDERICO II DIPRIMENO DI INGEGNERI NVLE S. MIRND PPUNI DI RCHIEUR NVLE L elca navale OOBRE L elca navale Cap. : La geometra dell elca navale UORI: S. MIRND, F. SESS. INRODUZIONE.

Dettagli

La t di Student. Per piccoli campioni si definisce la variabile casuale. = s N. detta t di Student.

La t di Student. Per piccoli campioni si definisce la variabile casuale. = s N. detta t di Student. Pccol campon I parametr della dstrbuzone d una popolazone sono n generale ncognt devono essere stmat dal campone de dat spermental per pccol campon (N N < 30) z = (x µ)/ )/σ non ha pù una dstrbuzone gaussana

Dettagli

Circuiti elettrici in regime stazionario

Circuiti elettrici in regime stazionario rcut elettrc n regme stazonaro omponent www.de.ng.unbo.t/pers/mastr/ddattca.htm (ersone del 3-9-0) Bpol resst Equazon caratterstca d un bpolo ressto f, 0 L equazone d un bpolo ressto defnsce una cura nel

Dettagli

Scienze Geologiche. Corso di Probabilità e Statistica. Prove di esame con soluzioni

Scienze Geologiche. Corso di Probabilità e Statistica. Prove di esame con soluzioni Scenze Geologche Corso d Probabltà e Statstca Prove d esame con soluzon 004-005 1 Corso d laurea n Scenze Geologche - Probabltà e Statstca Appello del 1 gugno 005 - Soluzon 1. (Punt 3) In una certa zona,

Dettagli

Soluzione del compito di Fisica febbraio 2012 (Udine)

Soluzione del compito di Fisica febbraio 2012 (Udine) del compto d Fsca febbrao (Udne) Elettrodnamca È data una spra quadrata d lato L e resstenza R, ed un flo percorso da corrente lungo z (ved fgura). Dcamo a e b le dstanze del lato parallelo pù vcno e pù

Dettagli

S O L U Z I O N I. 1. Effettua uno studio qualitativo della funzione. con particolare riferimento ai seguenti aspetti:

S O L U Z I O N I. 1. Effettua uno studio qualitativo della funzione. con particolare riferimento ai seguenti aspetti: S O L U Z I O N I 1 Effettua uno studo qualtatvo della funzone con partcolare rfermento a seguent aspett: f ( ) ln( ) a) trova l domno della funzone b) ndca qual sono gl ntervall n cu f() rsulta postva

Dettagli

La teoria del consumo

La teoria del consumo La teora del consumo L equazone d Slutsky. Problema dell ntegrabltà. Maro Sortell Dartmento d Matematca Unverstà degl Stud d Bar Va E. Orabona, 4 I-70125 Bar (Italy) (Tel.: +39 (0)99 7720 626; fax: +39

Dettagli

RUOLO DELLA MODELLAZIONE GEOMETRICA PARTE 4 CURVE E SUPERFICI ... IN QUESTA LEZIONE E LIVELLI DI MODELLAZIONE

RUOLO DELLA MODELLAZIONE GEOMETRICA PARTE 4 CURVE E SUPERFICI ... IN QUESTA LEZIONE E LIVELLI DI MODELLAZIONE RUOLO DELLA MODELLAZIONE GEOMETRICA E LIVELLI DI MODELLAZIONE PARTE 4 CURVE E SUPERFICI Prof. Danele Regazzon Dpartmento d Ingegnera... IN QUESTA LEZIONE Modell 2D/3D Modell 3D/3D Dmensone delle prmtve

Dettagli

Relazione funzionale e statistica tra due variabili Modello di regressione lineare semplice Stima puntuale dei coefficienti di regressione

Relazione funzionale e statistica tra due variabili Modello di regressione lineare semplice Stima puntuale dei coefficienti di regressione 1 La Regressone Lneare (Semplce) Relazone funzonale e statstca tra due varabl Modello d regressone lneare semplce Stma puntuale de coeffcent d regressone Decomposzone della varanza Coeffcente d determnazone

Dettagli

CORRETTA RAPPRESENTAZIONE DI UN RISULTATO: LE CIFRE SIGNIFICATIVE

CORRETTA RAPPRESENTAZIONE DI UN RISULTATO: LE CIFRE SIGNIFICATIVE CORRETT RPPREETZIOE DI U RIULTTO: LE CIFRE IGIFICTIVE Defnamo cfre sgnfcatve quelle cfre che esprmono realmente l rsultato d una msura, o del suo errore, coè che non sono completamente ncluse nell ntervallo

Dettagli

* PROBABILITÀ - SCHEDA N. 2 LE VARIABILI ALEATORIE *

* PROBABILITÀ - SCHEDA N. 2 LE VARIABILI ALEATORIE * * PROBABILITÀ - SCHEDA N. LE VARIABILI ALEATORIE *. Le varabl aleatore Nella scheda precedente abbamo defnto lo spazo camponaro come la totaltà degl est possbl d un espermento casuale; abbamo vsto che

Dettagli

Telefoni Avaya T3 collegabile a Integral 5 Configurazione e utilizzo sala conferenze Integrazione del manuale utente

Telefoni Avaya T3 collegabile a Integral 5 Configurazione e utilizzo sala conferenze Integrazione del manuale utente Telefon Avaya T3 collegable a Integral 5 Confgurazone e utlzzo sala conferenze Integrazone del manuale utente Issue 1 Integral 5 Software Release 2.6 Settembre 2009 Utlzzo sala conferenze Utlzzo sala conferenze

Dettagli

SOLUZIONE ESERCIZI: STRUTTURA DI MERCATO. ECONOMIA INDUSTRIALE Università degli Studi di Milano-Bicocca. Christian Garavaglia

SOLUZIONE ESERCIZI: STRUTTURA DI MERCATO. ECONOMIA INDUSTRIALE Università degli Studi di Milano-Bicocca. Christian Garavaglia SOLUZIONE ESERCIZI: STRUTTURA DI MERCATO ECONOMIA INDUSTRIALE Unverstà degl Stud d Mlano-Bcocca Chrstan Garavagla Soluzone 7 a) L ndce d concentrazone C (o CR k ) è la somma delle uote d mercato (o share)

Dettagli

METODO DEGLI ELEMENTI FINITI

METODO DEGLI ELEMENTI FINITI METODO DEGLI ELEMENTI FINITI Introduzone al metodo degl element fnt Il concetto base nella nterpretazone fsca del metodo degl element fnt è la decomposzone d un sstema meccanco complesso n pù semplc component

Dettagli

( ) d R L. = ρ. w D R L. L 1 = -a -3 b + c + d T -2 = -a - c Risolvendo il sistema M 0 = a + b. In generale possiamo dire che

( ) d R L. = ρ. w D R L. L 1 = -a -3 b + c + d T -2 = -a - c Risolvendo il sistema M 0 = a + b. In generale possiamo dire che Fsca Tecnca G. Grazzn Facoltà d Ingegnera In generale possamo dre che R L f ( µ,,, D Dal punto d vsta matematco possamo approssmare la funzone con una sere d potenze e qund: R L ( a b c d µ B D ma per

Dettagli

Lezione 7. Numeri primi. Teorema Fondamentale dell'aritmetica.

Lezione 7. Numeri primi. Teorema Fondamentale dell'aritmetica. Lezone 7 Prereqst: L'nseme de nmer nter Lezone 6 Nmer prm Teorem Fondmentle dell'artmetc Defnzone 7 Un nmero ntero p dverso d 0 e s dce prmo se per ogn b Z Altrment p s dce composto p b p oppre p b Defnzone

Dettagli

Il diagramma cartesiano

Il diagramma cartesiano Il dagramma cartesano Il pano cartesano Il dagramma cartesano è costtuto da due ass: uno orzzontale, l asse delle ascsse o della varable X, e uno vertcale, l asse delle ordnate o della varable Y. I due

Dettagli

Esercitazione sulle Basi di di Definizione

Esercitazione sulle Basi di di Definizione Eserctazone sulle as d d Defnzone ESERIZIO Un bpolo ressto (dodo) ha la seguente equazone: = k [ 0 + 00] con k 0 nella quale ed sono descrtt dalla conenzone degl utlzzator come n fgura. Stablre se l bpolo

Dettagli

Dispense di IDRAULICA (2007)

Dispense di IDRAULICA (2007) Gorgo Qerzol Dspense d IDRAULICA (7) Unverstà degl Std d Caglar Facoltà d Ingegnera Dpartmento d Ingegnera del Terrtoro ... Infne c'è n problema fsco comne a molt camp, molto antco e non ancora rsolto.

Dettagli

TURBINA FRANCIS. L acqua nella voluta possiede l energia per unità di peso derivante dal salto netto H.

TURBINA FRANCIS. L acqua nella voluta possiede l energia per unità di peso derivante dal salto netto H. 5 TURBINA FRANCIS DESCRIZIONE E PRINCIPIO DI FUNZIONAMENTO Le trbne Francs sfrttano salt non molto rand e portate d acqa anche notevol; orentatvamente = 0 400 m Q < 40 m 3 /s Una tpca dsposzone d mpanto

Dettagli

LE FREQUENZE CUMULATE

LE FREQUENZE CUMULATE LE FREQUENZE CUMULATE Dott.ssa P. Vcard Introducamo questo argomento con l seguente Esempo: consderamo la seguente dstrbuzone d un campone d 70 sttut d credto numero flal present nel terrtoro del comune

Dettagli

APPENDICE D FORMULARIO

APPENDICE D FORMULARIO 30 FORMULARIO NAVIGAZIONE LOSSODROMICA Prmo problema Date le coordnate, del punto d partenza, la TC (True Course) e la dstanza percorsa m (espressa n NM), determnare le coordnate, del punto d arro. La

Dettagli

ESERCIZI DI MATEMATICA FINANZIARIA DIPARTIMENTO DI ECONOMIA E MANAGEMENT UNIFE A.A. 2016/2017. Esercizi 3

ESERCIZI DI MATEMATICA FINANZIARIA DIPARTIMENTO DI ECONOMIA E MANAGEMENT UNIFE A.A. 2016/2017. Esercizi 3 ESERCIZI DI MATEMATICA FINANZIARIA DIPARTIMENTO DI ECONOMIA E MANAGEMENT UNIFE A.A. 2016/2017 Esercz 3 Pan d ammortamento Eserczo 1. Un prestto d 12000e vene rmborsato n 10 ann con rate mensl e pano all

Dettagli

Teorema di Thévenin-Norton

Teorema di Thévenin-Norton 87 Teorema d Téenn-Norton E detto ance teorema d rappresentazone del bpolo, consente nfatt d rappresentare una rete lneare a due morsett (A, B) con: un generatore d tensone ed un resstore sere (Téenn)

Dettagli

LEZIONE 11. Argomenti trattati

LEZIONE 11. Argomenti trattati LEZIONE LE ECONOMIE PERTE (2) Il modello IS-LM n regme d camb fss e d camb flessbl rgoment trattat S esamnano gl effett delle poltche macroeconomche n economa aperta consderando tre modell Il modello IS-LM

Dettagli

IL RUMORE NEGLI AMPLIFICATORI

IL RUMORE NEGLI AMPLIFICATORI IL RUMORE EGLI AMPLIICATORI Defnzon S defnsce rumore elettrco (electrcal nose) l'effetto delle fluttuazon d corrente e/o d tensone sempre present a termnal degl element crcutal e de dspostv elettronc.

Dettagli

4. ALGORITMI GREEDY. cambia-monete scheduling a minimo il ritardo. Il problema del cambia-monete. Proprietà di una soluzione ottima

4. ALGORITMI GREEDY. cambia-monete scheduling a minimo il ritardo. Il problema del cambia-monete. Proprietà di una soluzione ottima Il problema del camba-monete. ALGORITMI GREEDY camba-monete schedulng a mnmo l rtardo Scopo. Dat tagl dsponbl: c, c, 5c, 0c, 0c, 50c,, progettare un algortmo che data una certa somma la camb usando l mnmo

Dettagli