CINEMATICA del corpo rigido

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "CINEMATICA del corpo rigido"

Transcript

1 SEZINE CINEMAICA del corpo rgdo Le segent note sono na sntes estrema de concett alla base della dnamca de corp rgd. Lo stdente pò consderare d aer appreso realmente tal concett solo se è n grado d rsolere ageolmente problem presentat nella seone 3 ed n segto 5 d qeste dspense. Nel captolo precedente abbamo sto che l anals cnematca d n elemento materale E s slppa slla sola base del ettore d posone che è n descrttore a tre parametr. Antcpamo che nel caso del corpo rgdo l anals rchede l ntrodone d n descrttore pù complesso che ntrodce se parametr, qant sono grad d lbertà del corpo rgdo. D qest se parametr, tre sono content n n ettore assocato alla posone d n pnto assegnato del corpo rgdo, mentre gl altr sono content all nterno d na matrce d rotaone 33 che ede 9 coeffcent legat tra d loro da se condon d ncolo. estano ì lber tre lteror parametr per la descrone della confgraone spaale del corpo rgdo.. MAICE DI AZINE Un corpo s dce rgdo qando le mte dstane tra so pnt sono narabl nel tempo. Consderamo na terna d rfermento o rspetto alla qale l corpo rgdo s sposta ossa rspetto alla qale le coordnate de pnt del corpo rgdo arano con l tempo ed na terna o soldale al corpo rgdo ossa rspetto alla qale le coordnate de pnt del corpo sono narabl nel tempo. Lmtamo per l momento l attenone a sol spostament del corpo rgdo che lascano nalterata la posone d n so pnto. Sceglamo allora rferment o e o con le orgn ed concdent tra loro e concdent con l pnto che nello spostamento resta fsso. Chamamo lo spostamento che lasca narata la posone d n pnto del corpo spostamento sferco. E charo che n pnto qalnqe del corpo rgdo soggetto ad no spostamento sferco descre na traettora che gace s na sfera l c raggo è par alla dstana del pnto consderato dall orgne del sstema d rfermento sa esso o o o essendo tale dstana, per defnone d corpo rgdo, narable nel tempo. -

2 Nel caso dell elemento materale, la descrone del moto dell elemento E consste nel fornre le component del ettore d posone n n certo sstema d rfermento ad ogn stante t. Nel caso d n corpo l obetto è dentco: fornre ad ogn stante t le coordnate del ettore d posone d n so qalnqe pnto rspetto al sstema d rfermento o. oché n corpo è ttto d nfnt element materal, tale descrone rchede n generale nfnt ettor d posone, coè nfnto a tre fnon scalar del tempo. Se però l corpo è rgdo, s ha na semplfcaone noteole del problema poché l ncolo d rgdtà lmta grad d lbertà del corpo consderato a 6 soltanto: sono coè necessare solo se fnon scalar del tempo per determnare la posone n fnone del tempo d n qalnqe pnto del corpo rgdo. Se po, come n qesto caso, stdamo spostament sferc ncolando n pnto a non spostars, l corpo rgdo presenta sol tre grad d lbertà. Qnd sono sffcent tre fnon scalar del tempo per esprmere lo spostamento d n qalnqe pnto del corpo. Al fne d stdare la legge che permette d esprmere lo spostamento d n pnto qalnqe del corpo rgdo n fnone d qeste tre fnon scalar, s consder n generco pnto d coordnate,, nel sstema d rfermento o e coordnate,, nel sstema o. Se sono ersor rspett de de sstem d rfermento, l ettore s pò esprmere nelle de forme eqalent:, La relaone tra le coordnate ne de sstem d rfermento s determna come sege: ssa, n forma matrcale, s ha: essendo la matrce d rotaone. ale matrce contene 9 element, ma qest deono dpendere da 3 sol parametr ndpendent. Infatt ersor degl ass sono ncolat a rspettare le 6 condon d ortogonaltà:,,,, C occperemo n segto d far fgrare esplctamente tre termn ndpendent della matrce d rotaone ed.5.

3 . IEA DELLA MAICE DI AZINE In n corpo rgdo la dstana mta tra coppe d pnt del sstema resta nalterata. ale ncolo ha n rflesso slle propretà della matrce d rotaone. La condone d rgdtà mplca che esste n narante nella trasformaone delle coordnate espressa dalla. Infatt l modlo del ettore, ossa la dstana tra l pnto e l orgne de sstem d rfermento, altato da n osseratore soldale al corpo, concde con l modlo del ettore altato nel sstema d rfermento fsso. Cò comporta: Esprmendo l prmo membro d qesta gaglana sando la relaone abbamo: dnqe: I I Coè la matrce d rotaone è na matrce ortogonale, la c nersa s calcola per semplce trasposone de so element..3 AZINE AN AD UN ASSE FISS Descramo l moto d n corpo rgdo nel qale pnt d na retta restno fss. Spponamo che sa l asse a restare fsso cché l asse concde con. ale moto è descrtto n modo completo dall so d na sola fnone scalare del tempo che è l angolo d rotaone t attorno all asse. Vsto dall asse al tempo t l pano s presenta nel modo: t La matrce d trasformaone n qesto caso s rcaa dalla posto condon d ortogonaltà, prodce: che, rcordando le

4 sn sn E facle erfcare n qesto caso come la matrce troata rspett la condone. Con la stessa tecnca è facle renders conto che s determnano analoghe matrce per rotaon attorno agl ass e. ù precsamente posto s ha: sn sn Infne posto s ha: sn sn.4 CMSIZINE DI AZINI La relaon troate precedentemente permettono d calcolare la matrce d rotaone relata ad na rotaone rspetto ad n asse fsso. E facle determnare slla base d qest element l espressone della matrce d rotaone per no spostamento sferco pù generale. Spponamo che l corpo rgdo sbsca de spostament sferc n sccessone descrtt dalle matrc ed. Lo spostamento fnale è certamente ancora no spostamento sferco e qnd descrble attraerso na matrce d rotaone. Dnqe s pone l segente problema: assegnate le matrc d rotaone ed, come s determna la matrce che descre lo spostamento rsltante? Bsogna stablre dnqe la relaone ntercorrente tra, ed. A tal fne s consderno tre sstem d rfermento o, o, o. Il prmo sstema è l sstema fsso; al termne del prmo spostamento sferco l sstema soldale con l corpo rgdo o arà sbto n cambamento d orentaone; la relaone tra le coordnate n

5 o e qelle n o è fornta dalla ed eqaone. er l anals della seconda rotaone s renda soldale al corpo rgdo la tera terna o mentre la terna o rmane fssa. In tal caso la relaone che lega le coordnate n o a qelle n o è fornta dalla. Combnando le de relaon troate s ha: 3 Dnqe la relaone tra le coordnate nel sstema soldale al corpo dopo aer sbto de spostament sferc e qelle nel sstema d rfermento fsso s ottene dalla 3. Ne sege che la matrce d rotaone relata allo spostamento prodotto da de spostament sferc s ottene effettando l prodotto delle assocate matrc d rotaone ed : La relaone è generalable al caso d N spostament sferc. Dnqe: N 4.5 MAICE DI AZINE MEDIANE GLI ANGLI DI CADAN La relaone 4 permette d derare n modo semplce na matrce d rotaone generale capace d descrere n qalnqe spostamento sferco attraerso tre fnon scalar ndpendent. A tal fne s consderno de sstem d rfermento o e o Il prmo sstema è, come sempre, l sstema fsso, mentre l secondo o è soldale al corpo rgdo. E facle mostrare come s possa far concdere l sstema o con l sstema o effettando tre rotaon elementar. La prma rotaone, caratterata dall angolo, è effettata attorno al solo asse d o; l sstema d ass o s porta allora nella confgraone o con gl ass e concdent. La seconda rotaone, caratterata dall angolo, è effettata attorno all asse d o ; l sstema d ass o s porta nella confgraone o con gl ass e concdent. La tera ed ltma rotaone, caratterata dall angolo s effetta attorno all asse d o ; l sstema d ass o s porta nella confgraone o con gl ass e concdent. La rotaone rsltante dalle tre rotaon attorno a tre ass sopra consderat, s ottene semplcemente dal paragrafo.3 e dalla 4: sn sn sn sn sn sn sn sn sn sn sn sn sn sn

6 e dnqe la matrce d rotaone : sn sn sn sn sn sn sn sn sn sn sn sn sn sn sn Gl angol q sat per rappresentare la matrce d rotaone sono gl angol d Cardano..6 ASLAZINI Consderamo ora de terne o e o con le orgn ed che non sano pù concdent, ossa la terna soldale al corpo s dsponga nello spao n modo completamente arbtraro. Dall anals de mot sferc con n pnto fsso abbamo sto che l orentaone della terna o s descre medante tre fnon scalar ndpendent, ad esempo tre angol d Cardano e l assocata matrce d rotaone. ra le coordnate del generco pnto soldale al corpo rgdo rspetto al sstema o sono raccolte nel ettore. Qnd l ettore ha coordnate nel sstema d rfermento o espresse da. Se samo nteressat però a determnare le coordnate d n o s dorà semplcemente consderare che. Dette le coordnate d e d nel sstema d rfermento o aremo mmedatamente: e 5 che esprme le coordnate, ossa la posone, d n generco pnto, soldale al corpo, nel sstema d rfermento o, note le coordnate dell orgne d o nel sstema d rfermento o, nota la matrce d rotaone,, e note le coordnate d stesso, narabl nel tempo, rspetto al sstema o soldale con l corpo..7 DISIBUZINE DI VELCIA ED ACCELEAZINE appresentando la 5 la posone d n generco pnto soldale al corpo rgdo n fnone de,,,,,, passamo ora a determnare eloctà ed se parametr content n acceleraone d, rspettamente e a. Banalmente tale operaone rchede solo la deraone rspetto a t della 5. Abbamo dnqe: a 6 al relaon chdono, almeno concettalmente, l anals cnematca del corpo rgdo. E però comodo fornre delle relaon eqalent alle 6 ottente slla base d semplc consderaon.

7 S not nfatt che nelle 6 compaono ettor le c coordnate sono ttte espresse nel sstema d rfermento fsso o ecceone fatta per l ettore. Esprmamo allora qest ltmo attraerso la 5: aendo tlato la propretà della matrce d rotaone. Sosttendo nell espressone d s ottene: ponendo matrce eloctà angolare, s ha: 7 che è la formla fondamentale della cnematca scrtta n forma matrcale o tensorale. Ad essa s pò dare anche forma ettorale. A tal fne s osser che la matrce eloctà angolare è antsmmetrca ossa. Infatt consderata la relaone s ha: I dt d E noto che l prodotto d na matrce antsmmetrca per n ettore pò essere rcondotto ad n prodotto ettorale tra de ettor. Infatt na matrce antsmmetrca dee aere la forma: M Effettando l prodotto per n ettore s ottene: M Consderamo ora l prodotto ettorale tra n ettore ed : e chedamoc qal deono essere le component d affnché. Egaglando le component de de ettor rsltant: M

8 ,, Dnqe, ad na matrce antsmmetrca, che dpende da sol tre parametr ndpendent, s pò assocare n ettore tale che M M. Allora alla matrce eloctà angolare che è antsmmetrca s pò assocare n ettore tale che: per c ale l denttà: Dalla 7 allora, posto,, s ottene: 8 che è la formla fondamentale della cnematca scrtta n forma ettorale. assamo alle acceleraon. ornando alla 7, deramo rspetto al tempo: a Utlando la 7 per esprmere la dfferena d eloctà contenta nell ltma parentes a secondo membro, s ha: a 9 Qesta fornsce l acceleraone d n generco pnto soldale al corpo rgdo. Anche qesta formla per l acceleraone pò essere espressa n forma ettorale: a Concldamo con alcne osseraon. Consderamo n moto sferco n c n pnto C, centro del moto, è fsso con eloctà consegentemente nlla. La 8, oe s ponga C, denta: C

9 ra per ttt pnt tal che l loro ettore d posone C è parallelo al ettore, rslta. Se ne conclde che n n moto sferco ttt pnt della retta passante per C e dreone gale a qella d hanno eloctà nlla. ale asse retta prende nome d asse d stantanea rotaone..8 MI IANI Il moto è pano qando le eloctà de pnt del corpo rgdo sono parallele ad n pano assegnato Π soldale al sstema d rfermento o. Da cò sege anche che le traettore de pnt del corpo s slppano s pan parallel a Π. Consderamo l eqaone 8, nella forma, applcata ad n moto pano: per ogn stante t l pnto s moe s n pano parallelo a Π, per c l ettore è parallelo a Π ; l ettore è anch esso parallelo a Π. Se ne conclde che l ettore moltplcato ettoralmente per l ettore parallelo a Π dee prodrre n ettore ancora parallelo a Π : cò mplca che dee esse ortogonale a Π n ogn stante t. Qesto sgnfca che per mot pan l ettore eloctà angolare ha dreone narable ed ortogonale al pano del moto Π oamente sa l modlo che l erso possono nece arare. Dnqe per n moto pano:, Π Se sceglamo l sstema d rfermento o con gl ass s Π, rslta ortogonale al pano. In tale sstema d rfermento la eloctà angolare ha le segent rappresentaon:, ma d dt sn sn sn sn sn sn sn sn e dnqe. Consderamo ora l acceleraone per l moto pano. Il termne s semplfca n. S osser nfatt la fgra sottostante che mostra l orentamento de ettor,, consderando che Π.

10 Π Dnqe: a a.9 CAMBIAMEN DI IFEIMEN E GLI EAI Abbaamo sto che le coordnate d n pnto dello spao dpendono dal sstema d rfermento rspetto al qale qeste sono altate. La relaone rsole l problema d correlare de nsem d coordnate assocate allo stesso pnto n de sstem d rfermento ders. Consderamo ora na generca matrce A ed n ettore. Il prodotto A prodce n ettore. In defnta, la matrce A, attraerso l operaone d moltplcaone matrcale, stablsce na corrspondena tra l ettore ed l ettore, ossa na legge d assocaone tra ettor nel rfermento o. Consderamo ora le rappresentaon de ettor e nel sstema d rfermento o, sano esse e. S pone allora l problema che sege: la legge d assocaone tra ettor d o rappresentata da A, come s rappresenta nel sstema o? La rsposta è mmedata consderando che: Sosttendo le prme de nella tera abbamo:,, A A A D q rslta edente che nel sstema o la legge corrspondente a qella rappresentata da A n o, è data dalla matrce A A.

Lezione 14 I PRINCIPI DELLA MECCANICA DEI FLUIDI

Lezione 14 I PRINCIPI DELLA MECCANICA DEI FLUIDI Appnt de cors d Idralca 1 e Idrodnamca 1 Lezone 14 I PRINCIPI DELLA ECCANICA DEI FLUIDI Il moto de fld è controllato da alcn prncp fondamental della fsca. Ennceremo nel segto: - l prncpo d conservazone

Dettagli

Complementi 4 - Materiali non isotropi

Complementi 4 - Materiali non isotropi Complement 4 - Materal non sotrop [Ultmarevsone revsone9gennao gennao2009] In questo noteboo s parte dalla legge d Hooe per sold ansotrop, e s deducono le opportune restron sulle 21 costant elastche, potando

Dettagli

Grafi ed equazioni topologiche

Grafi ed equazioni topologiche Graf ed equazon topologche www.de.ng.unbo.t/pers/mastr/ddattca.htm (ersone del --) Premessa Se s ndca con l l numero d corrent e l numero d tenson de component d un crcuto, la rsoluzone del crcuto rchede

Dettagli

Intorduzione alla teoria delle Catene di Markov

Intorduzione alla teoria delle Catene di Markov Intorduzone alla teora delle Catene d Markov Mchele Ganfelce a.a. 2014/2015 Defnzone 1 Sa ( Ω, F, {F n } n 0, P uno spazo d probabltà fltrato. Una successone d v.a. {ξ n } n 0 defnta su ( Ω, F, {F n }

Dettagli

NATURA ATOMICA DELLA MATERIA

NATURA ATOMICA DELLA MATERIA NATURA ATOMICA DLLA MATRIA Un qualunque fludo è costtuto da un gran numero d partcelle (sa sngol atom che molecole) n un contnuo moto dsordnato defnto agtaone termca. Questo fenomeno sta alla base de cosddett

Dettagli

Circuiti elettrici in regime stazionario

Circuiti elettrici in regime stazionario rcut elettrc n regme stazonaro Metod d anals www.de.ng.unbo.t/pers/mastr/ddattca.htm ersone del -0-00 Premessa Nel caso pù generale è possble ottenere la soluzone d un crcuto rsolendo un sstema formato

Dettagli

F E risultante t delle forze esterne agenti su P i. F forza esercitata t sul generico punto P ij del sistema da P : forza interna al sistema

F E risultante t delle forze esterne agenti su P i. F forza esercitata t sul generico punto P ij del sistema da P : forza interna al sistema DINAMICA DEI SISTEMI Sstema costtuto da N punt materal P 1, P 2,, P N F E rsultante t delle forze esterne agent su P F E F forza eserctata t sul generco punto P j del sstema da P : forza nterna al sstema

Dettagli

links utili:

links utili: dspensa d Govann Bachelet Meccanca de Sstem, maggo 2003 lnks utl: http://scenceworld.wolfram.com/physcs/angularmomentum.html http://hyperphyscs.phy-astr.gsu.edu/hbase/necon.html Momento della quanttà d

Dettagli

Dai circuiti ai grafi

Dai circuiti ai grafi Da crcut a graf Il grafo è una schematzzazone grafca semplfcata che rappresenta le propretà d nterconnessone del crcuto ad esso assocato Il grafo è costtuto da un nseme d nod e d lat Se lat sono orentat

Dettagli

Lezione 7. Numeri primi. Teorema Fondamentale dell'aritmetica.

Lezione 7. Numeri primi. Teorema Fondamentale dell'aritmetica. Lezone 7 Prereqst: L'nseme de nmer nter Lezone 6 Nmer prm Teorema Fondamentale dell'artmetca Defnzone 7 Un nmero ntero p dverso da 0 e s dce prmo se per ogn a b Z Altrment p s dce composto p ab p a oppre

Dettagli

Esercitazione sulle Basi di di Definizione

Esercitazione sulle Basi di di Definizione Eserctazone sulle as d d Defnzone ESERIZIO Un bpolo ressto (dodo) ha la seguente equazone: = k [ 0 + 00] con k 0 nella quale ed sono descrtt dalla conenzone degl utlzzator come n fgura. Stablre se l bpolo

Dettagli

Integrazione numerica dell equazione del moto per un sistema lineare viscoso a un grado di libertà. Prof. Adolfo Santini - Dinamica delle Strutture 1

Integrazione numerica dell equazione del moto per un sistema lineare viscoso a un grado di libertà. Prof. Adolfo Santini - Dinamica delle Strutture 1 Integrazone numerca dell equazone del moto per un sstema lneare vscoso a un grado d lbertà Prof. Adolfo Santn - Dnamca delle Strutture 1 Introduzone 1/2 L equazone del moto d un sstema vscoso a un grado

Dettagli

L = L E k 2 ENERGIA CINETICA DI ROTAZIONE. Espressione generica dell energia cinetica di rotazione: 1 ω

L = L E k 2 ENERGIA CINETICA DI ROTAZIONE. Espressione generica dell energia cinetica di rotazione: 1 ω NRGIA CINTICA DI ROTAZION k m R ) ( k R m R m spressone generca dell energa cnetca d rotazone: I k Se la rotazone aene ntorno ad un asse prncpale d nerza, allora: I L da cu: I L k NRGIA CINTICA DI ROTOTRASLAZION

Dettagli

Lezione mecc n.14 pag 1

Lezione mecc n.14 pag 1 Lezone mecc n.4 pag Argoment d questa lezone: Urt ra due corp Legg d conserazone negl urt ra due corp Urt stantane e orze mpulse Urt elastc ed anelastc Prm cenn a sstem d pù partcelle (energa d rotazone

Dettagli

urto v 2f v 2i e forza impulsiva F r F dt = i t

urto v 2f v 2i e forza impulsiva F r F dt = i t 7. Urt Sstem a due partcelle Defnzone d urto elastco, urto anelastco e mpulso L urto è un nterazone fra corp che avvene n un ntervallo d tempo normalmente molto breve, al termne del quale le quanttà d

Dettagli

INTRODUZIONE ALL ESPERIENZA 4: STUDIO DELLA POLARIZZAZIONE MEDIANTE LAMINE DI RITARDO

INTRODUZIONE ALL ESPERIENZA 4: STUDIO DELLA POLARIZZAZIONE MEDIANTE LAMINE DI RITARDO INTODUZION ALL SPINZA 4: STUDIO DLLA POLAIZZAZION DIANT LAIN DI ITADO Un utle rappresentazone su come agscono le lamne su fasc coerent è ottenuta utlzzando vettor e le matrc d Jones. Vettore d Jones e

Dettagli

Principi di ingegneria elettrica. Lezione 6 a. Analisi delle reti resistive

Principi di ingegneria elettrica. Lezione 6 a. Analisi delle reti resistive Prncp d ngegnera elettrca Lezone 6 a Anals delle ret resste Anals delle ret resste L anals d una rete elettrca (rsoluzone della rete) consste nel determnare tutte le corrent ncognte ne ram e tutt potenzal

Dettagli

Teorema di Thévenin-Norton

Teorema di Thévenin-Norton 87 Teorema d Téenn-Norton E detto ance teorema d rappresentazone del bpolo, consente nfatt d rappresentare una rete lneare a due morsett (A, B) con: un generatore d tensone ed un resstore sere (Téenn)

Dettagli

Componenti resistivi

Componenti resistivi omponent resst www.de.ng.unbo.t/pers/mastr/ddattca.htm (ersone del 3-9-03) Bpol resst Bpolo ressto: componente a due termnal aente equazone caratterstca del tpo f (t), (t), t0 (f funzone generca) L equazone

Dettagli

MATERIALI COMPOSITI: RIGIDEZZA E RESISTENZA DEI LAMINATI

MATERIALI COMPOSITI: RIGIDEZZA E RESISTENZA DEI LAMINATI EOLOGIE E MERILI EROSPILI P. MERILI OMPOSII: LEGGE OSIUIV OROROP PIOLO MERILI OMPOSII: RIGIE E RESISE EI LMII. Introdone Le strttre aerospaal mpegano materal compost aanat n forme molteplc applcando ders

Dettagli

Macchine. 5 Esercitazione 5

Macchine. 5 Esercitazione 5 ESERCITAZIONE 5 Lavoro nterno d una turbomacchna. Il lavoro nterno massco d una turbomacchna può essere determnato not trangol d veloctà che s realzzano all'ngresso e all'uscta della macchna stessa. Infatt

Dettagli

Antonio Boezio Alessandro Lanave Meep. Teoria, sintassi ed esercizi progettuali

Antonio Boezio Alessandro Lanave Meep. Teoria, sintassi ed esercizi progettuali A09 Antono Boezo Alessandro Lanave Meep Teora, sntass ed esercz progettal Copyrght MMXIV ARACNE edtrce nt.le S.r.l. www.aracneedtrce.t nfo@aracneedtrce.t va Qarto Negron, 15 00040 Arcca RM 06 9781065

Dettagli

MATEMATICA FINANZIARIA 1 PROVA SCRITTA DEL 21 LUGLIO 2009 ECONOMIA AZIENDALE

MATEMATICA FINANZIARIA 1 PROVA SCRITTA DEL 21 LUGLIO 2009 ECONOMIA AZIENDALE MATEMATICA FINANZIARIA PROVA SCRITTA DEL LUGLIO 009 ECONOMIA AZIENDALE ESERCIZIO Un ndduo ntende acqustare un motorno che ha un prezzo d 300. Volendo accedere ad un fnanzamento, gl engono proposte le seguent

Dettagli

Algebra 2. 6 4. Sia A un anello commutativo. Si ricorda che in un anello commutativo vale il teorema binomiale, cioè. (a + b) n = a i b n i i.

Algebra 2. 6 4. Sia A un anello commutativo. Si ricorda che in un anello commutativo vale il teorema binomiale, cioè. (a + b) n = a i b n i i. Testo Fac-smle 2 Durata prova: 2 ore 8 1. Un gruppo G s dce semplce se suo unc sottogrupp normal sono 1 e G stesso. Sa G un gruppo d ordne pq con p e q numer prm tal che p < q. (a) Il gruppo G può essere

Dettagli

Relazione funzionale e statistica tra due variabili Modello di regressione lineare semplice Stima puntuale dei coefficienti di regressione

Relazione funzionale e statistica tra due variabili Modello di regressione lineare semplice Stima puntuale dei coefficienti di regressione 1 La Regressone Lneare (Semplce) Relazone funzonale e statstca tra due varabl Modello d regressone lneare semplce Stma puntuale de coeffcent d regressone Decomposzone della varanza Coeffcente d determnazone

Dettagli

Relazioni costitutive e proprietà dei componenti. Reti algebriche

Relazioni costitutive e proprietà dei componenti. Reti algebriche 43 Relazon costtute e propretà de component Ret algebrce Un componente elettrco (a 2 o pù morsett) s dce pro d memora (o senza memora, o adnamco) se la sua relazone costtuta esprme un legame tra tenson

Dettagli

La soluzione delle equazioni differenziali con il metodo di Galerkin

La soluzione delle equazioni differenziali con il metodo di Galerkin Il metodo de resdu pesat per gl element fnt a soluzone delle equazon dfferenzal con l metodo d Galerkn Tra le procedure generalmente adottate per formulare e rsolvere le equazon dfferenzal con un metodo

Dettagli

Dispense di IDRAULICA (2007)

Dispense di IDRAULICA (2007) Gorgo Qerzol Dspense d IDRAULICA (7) Unverstà degl Std d Caglar Facoltà d Ingegnera Dpartmento d Ingegnera del Terrtoro ... Infne c'è n problema fsco comne a molt camp, molto antco e non ancora rsolto.

Dettagli

Il modello markoviano per la rappresentazione del Sistema Bonus Malus. Prof. Cerchiara Rocco Roberto. Materiale e Riferimenti

Il modello markoviano per la rappresentazione del Sistema Bonus Malus. Prof. Cerchiara Rocco Roberto. Materiale e Riferimenti Il modello marovano per la rappresentazone del Sstema Bonus Malus rof. Cercara Rocco Roberto Materale e Rferment. Lucd dstrbut n aula. Lemare 995 (pag.6- e pag. 74-78 3. Galatoto G. 4 (tt del VI Congresso

Dettagli

La ripartizione trasversale dei carichi

La ripartizione trasversale dei carichi La rpartzone trasversale de carch La dsposzone de carch da consderare ne calcol della struttura deve essere quella pù gravosa, ossa quella che determna massm valor delle sollectazon. Tale aspetto nveste

Dettagli

I vettori. Grandezze scalari: Grandezze vettoriali

I vettori. Grandezze scalari: Grandezze vettoriali Grndee sclr: I ettor engono defnte dl loro lore numerco esemp: lunghe d un segmento, re d un fgur pn, tempertur d un corpo, ecc. Grndee ettorl engono defnte, oltre che dl loro lore numerco, d un dreone

Dettagli

Bipoli resistivi. (versione del ) Bipoli resistivi

Bipoli resistivi.  (versione del ) Bipoli resistivi Bpol resst www.de.ng.unbo.t/pers/mastr/ddattca.htm (ersone del 6--0) Bpol resst Bpolo ressto: componente a due termnal aente equazone caratterstca del tpo f (t), (t), t0 (f funzone generca) L equazone

Dettagli

FLUIDODINAMICA. (Giovanni Paolo Romano)

FLUIDODINAMICA. (Giovanni Paolo Romano) FLUIDODINAMICA (Govann Paolo Romano) Anno Accademco 9- Bblografa: G. Qerzol, Dspense d Idralca, Unversta d Caglar, 999 P.H. Knd, I.M. Cohen, Fld Mechancs, Academc Press, B.R. Mnson, D.F. Yong, T.H.Oksh,

Dettagli

Soluzioni 3.1. n(n 1) (n k + 1) z n k! k + 1 n k. lim k

Soluzioni 3.1. n(n 1) (n k + 1) z n k! k + 1 n k. lim k (1) La sere bnomale è B n (z) = k=0 Con l metodo del rapporto s ottene R = lm k Soluzon 3.1 n(n 1) (n k + 1) z n k! c k c k+1 = lm k k + 1 n k lm k c k z k. k=0 1 + 1 k 1 n k = 1 (2) La multfunzone f(z)

Dettagli

UNIVERSITÀ DEGLI STUDI DI BERGAMO. Facoltà di Ingegneria. Corso di Sistemi di Controllo di Gestione SCG-E04

UNIVERSITÀ DEGLI STUDI DI BERGAMO. Facoltà di Ingegneria. Corso di Sistemi di Controllo di Gestione SCG-E04 UNIVERSITÀ DEGLI STUDI DI BERGAMO Corso d Allocazone de centr d servzo SCG-E04 Le fas del processo d msurazone de cost Fase 1 Rlevazone de cost Fase 2 Assegnazone de cost Cost drett (Drect cost) Attrbuzone

Dettagli

Centro di massa. Coppia di forze. Condizioni di equilibrio. Statica Fisica Sc.Tecn. Natura. P.Montagna Aprile pag.1

Centro di massa. Coppia di forze. Condizioni di equilibrio. Statica Fisica Sc.Tecn. Natura. P.Montagna Aprile pag.1 L EQUILIBRIO LEQU L Corpo rgdo Centro d massa Equlbro Coppa d forze Momento d una forza Condzon d equlbro Leve pag.1 Corpo esteso so e corpo rgdo Punto materale: corpo senza dmenson (approx.deale) Corpo

Dettagli

Lezione 2 Teoria dei vettori Sistemi di forze

Lezione 2 Teoria dei vettori Sistemi di forze 1 Facoltà di Ingegneria di Messina Corso di Scienza delle Costrzioni 1 Lezione 2 Teoria dei ettori Sistemi di forze Prof. Ing.. Giseppe Ricciardi A.A. 2010-2011 2011 2 Teoria dei ettori 3 Teoria dei ettori

Dettagli

LE FREQUENZE CUMULATE

LE FREQUENZE CUMULATE LE FREQUENZE CUMULATE Dott.ssa P. Vcard Introducamo questo argomento con l seguente Esempo: consderamo la seguente dstrbuzone d un campone d 70 sttut d credto numero flal present nel terrtoro del comune

Dettagli

CAPITOLO 3 CIRCUITI DI RESISTORI

CAPITOLO 3 CIRCUITI DI RESISTORI CAPITOLO 3 CIRCUITI DI RESISTORI Pagna 3. Introduzone 70 3. Connessone n sere e connessone n parallelo 70 3.. Bpol resstv n sere 7 3.. Bpol resstv n parallel 77 3.3 Crcut resstv lnear e sovrapposzone degl

Dettagli

RIPARTIZIONE DELLE FORZE SISMICHE ORIZZONTALI

RIPARTIZIONE DELLE FORZE SISMICHE ORIZZONTALI RIPARTIZIONE DELLE FORZE SISMICHE ORIZZONTALI (Modellazone approssmata alla rnter) Le strutture degl edfc sottopost alle forze ssmche sono organsm spazal pù o meno compless, l cu comportamento va analzzato

Dettagli

* PROBABILITÀ - SCHEDA N. 2 LE VARIABILI ALEATORIE *

* PROBABILITÀ - SCHEDA N. 2 LE VARIABILI ALEATORIE * * PROBABILITÀ - SCHEDA N. LE VARIABILI ALEATORIE *. Le varabl aleatore Nella scheda precedente abbamo defnto lo spazo camponaro come la totaltà degl est possbl d un espermento casuale; abbamo vsto che

Dettagli

METODO DEGLI ELEMENTI FINITI

METODO DEGLI ELEMENTI FINITI METODO DEGLI ELEMENTI FINITI Introduzone al metodo degl element fnt Il concetto base nella nterpretazone fsca del metodo degl element fnt è la decomposzone d un sstema meccanco complesso n pù semplc component

Dettagli

V n. =, e se esiste, il lim An

V n. =, e se esiste, il lim An Parttore resstvo con nfnte squadre n cascata. ITIS Archmede CT La Fg. rappresenta un parttore resstvo, formato da squadre d restor tutt ugual ad, conness n cascata, e l cu numero n s fa tendere ad nfnto.

Dettagli

Le forze conservative e l energia potenziale

Le forze conservative e l energia potenziale S dcono conservatve quelle orze che s comportano n accordo alla seguente denzone: La orza F s dce conservatva se l lavoro eseguto da tale orza sul punto materale P mentre s sposta dalla poszone P 1 alla

Dettagli

Circuiti dinamici. Circuiti del secondo ordine. (versione del ) Circuiti del secondo ordine

Circuiti dinamici. Circuiti del secondo ordine.  (versione del ) Circuiti del secondo ordine rcut dnamc rcut del secondo ordne www.de.ng.unbo.t/pers/mastr/ddattca.htm (versone del 9-6- rcut del secondo ordne rcut del secondo ordne: crcut l cu stato è defnto da due varabl x ( e x ( Per un crcuto

Dettagli

Meccanica dei sistemi

Meccanica dei sistemi Meccanca de sstem 7 Nel captolo precedente abbamo studato la cnematca e la dnamca d un punto materale. Questo captolo fornsce le bas per lo studo d sstem fsc pù complcat, o meglo, d sstem fsc per qual

Dettagli

Corso di laurea in Ingegneria Meccatronica. DINAMICI CA - 04 ModiStabilita

Corso di laurea in Ingegneria Meccatronica. DINAMICI CA - 04 ModiStabilita Automaton Robotcs and System CONTROL Unverstà degl Stud d Modena e Reggo Emla Corso d laurea n Ingegnera Meccatronca MODI E STABILITA DEI SISTEMI DINAMICI CA - 04 ModStablta Cesare Fantuzz (cesare.fantuzz@unmore.t)

Dettagli

DINAMICA DEGLI INQUINANTI A.A FENOMENI LOCALI CAMPO DI MOTO TRASPORTO INQUINANTI PROF. RENATO BACIOCCHI

DINAMICA DEGLI INQUINANTI A.A FENOMENI LOCALI CAMPO DI MOTO TRASPORTO INQUINANTI PROF. RENATO BACIOCCHI DINAMICA DEGLI INQUINANTI A.A. 01-013 FENOMENI LOCALI CAMPO DI MOTO TRASPORTO INQUINANTI PROF. RENATO BACIOCCHI 1 FENOMENI LOCALI Fenomen local L esstena d comlesstà e dsomogenetà del terreno ò ndrre lo

Dettagli

PROBLEMA 1. Soluzione. β = 64

PROBLEMA 1. Soluzione. β = 64 PROBLEMA alcolare l nclnazone β, rspetto al pano stradale, che deve avere un motocclsta per percorrere, alla veloctà v = 50 km/h, una curva pana d raggo r = 4 m ( Fg. ). Fg. Schema delle condzon d equlbro

Dettagli

DAI CIRCUITI AI GRAFI

DAI CIRCUITI AI GRAFI MTODI P 'NISI DI IUITI Nel seguto engono llustrat, medante esemp, alcun tra metod pù utlzzat per l'anals de crcut elettrc. Il problema che s uole rsolere è l seguente: assegnato l crcuto elettrco e le

Dettagli

{ 1, 2,..., n} Elementi di teoria dei giochi. Giovanni Di Bartolomeo Università degli Studi di Teramo

{ 1, 2,..., n} Elementi di teoria dei giochi. Giovanni Di Bartolomeo Università degli Studi di Teramo Element d teora de goch Govann D Bartolomeo Unverstà degl Stud d Teramo 1. Descrzone d un goco Un generco goco, Γ, che s svolge n un unco perodo, può essere descrtto da una Γ= NSP,,. Ess sono: trpla d

Dettagli

Potenzialità degli impianti

Potenzialità degli impianti Unverstà degl Stud d Treste a.a. 2009-2010 Impant ndustral Potenzaltà degl mpant Impant ndustral Potenzaltà degl mpant 1 Unverstà degl Stud d Treste a.a. 2009-2010 Impant ndustral Defnzone della potenzaltà

Dettagli

COMPORTAMENTO DINAMICO DI ASSI E ALBERI

COMPORTAMENTO DINAMICO DI ASSI E ALBERI COMPORTAMENTO DNAMCO D ASS E ALBER VBRAZON TORSONAL Costruzone d Macchne Generaltà l problema del progetto d un asse o d un albero non è solo statco Gl ass e gl alber, come sstem elastc, sotto l azone

Dettagli

Soluzione del compito di Fisica febbraio 2012 (Udine)

Soluzione del compito di Fisica febbraio 2012 (Udine) del compto d Fsca febbrao (Udne) Elettrodnamca È data una spra quadrata d lato L e resstenza R, ed un flo percorso da corrente lungo z (ved fgura). Dcamo a e b le dstanze del lato parallelo pù vcno e pù

Dettagli

ESERCIZI DI MATEMATICA FINANZIARIA DIPARTIMENTO DI ECONOMIA E MANAGEMENT UNIFE A.A. 2016/ Esercizi 2

ESERCIZI DI MATEMATICA FINANZIARIA DIPARTIMENTO DI ECONOMIA E MANAGEMENT UNIFE A.A. 2016/ Esercizi 2 ESERCIZI DI MATEMATICA FINANZIARIA DIPARTIMENTO DI ECONOMIA E MANAGEMENT UNIFE AA 2016/2017 1 Esercz 2 Regme d sconto commercale Eserczo 1 Per quale durata una somma a scadenza S garantsce lo stesso valore

Dettagli

i 2 R 2 i (v -v ) i O v S RID + -

i 2 R 2 i (v -v ) i O v S RID + - NLII DEL GUDGN, DELL EITENZ DI INGE E DELL EITENZ DI UCIT DI UN MPLIFICTE PEZINLE, NELL IPTEI DI GUDGN FINIT, DI EITENZ DI INGE FINIT E DI EITENZ DI UCIT NN NULL consdereranno separatamente cas d resstenza

Dettagli

1. DIODO. 1.1 Caratteristica v-i di un diodo a semiconduttore

1. DIODO. 1.1 Caratteristica v-i di un diodo a semiconduttore 1 1. DIODO Il dodo è un bpolo ressto non lneare, che troa largo mpego n molte applcazon d grande nteresse, qual relator d segnal rado, conerttor d potenza (raddrzzator, moltplcator d tensone), lmtator

Dettagli

Circuiti di ingresso differenziali

Circuiti di ingresso differenziali rcut d ngresso dfferenzal - rcut d ngresso dfferenzal - Il rfermento per potenzal Gl stad sngle-ended e dfferenzal I segnal elettrc prodott da trasduttor, oppure preleat da un crcuto o da un apparato elettrco,

Dettagli

Soluzione: Il campo generato da un elemento di filo dl è. db r = (1)

Soluzione: Il campo generato da un elemento di filo dl è. db r = (1) 1 Eserco 1 - Un flo conduttore percorso da corrente ha la forma mostrata n fgura dove tratt rettlne sono molto lungh. S calcol l campo d nduone magnetca ( dreone, verso e modulo) nel punto P al centro

Dettagli

Le forze conservative e l energia potenziale.

Le forze conservative e l energia potenziale. Ver.0 del /0/08 Le orze conservatve e l energa potenzale. Le orze conservatve La denzone generale d lavoro d (r ) ra un punto nzale ed un punto nale W d sembrerebbe mplcare che n generale l lavoro debba

Dettagli

Elemento Finito (FE) per travi 2D

Elemento Finito (FE) per travi 2D Eemento Fnto (FE) per trav D Govann Formca corso d Cacoo Automatco dee Strutture AA. 9/1 Premesse a modeo modeo fsco prncp d banco e dsspazone { Pest P nt = { q u S u = P nt φ modeo smuato (dscretzzazone)

Dettagli

Dipartimento di Statistica Università di Bologna. Matematica Finanziaria aa lezione 3:

Dipartimento di Statistica Università di Bologna. Matematica Finanziaria aa lezione 3: Dpartmento d Statstca Unverstà d Bologna Matematca Fnanzara aa 2011-2012 lezone 3: 21022012 professor Danele Rtell www.unbo.t/docdent/danele.rtell 1/31? Captalzzazone msta S usa l regme composto per l

Dettagli

6. Catene di Markov a tempo continuo (CMTC)

6. Catene di Markov a tempo continuo (CMTC) 6. Catene d Markov a tempo contnuo (CMTC) Defnzone Una CMTC è un processo stocastco defnto come segue: lo spazo d stato è dscreto: X{x,x 2, }. L nseme X può essere sa fnto sa nfnto numerable. L nseme de

Dettagli

Introduzione... 2 Connessione serie-parallelo... 3 Esempio: stadio inseguitore di tensione a BJT... 8 Osservazione: calcolo diretto degli effetti di

Introduzione... 2 Connessione serie-parallelo... 3 Esempio: stadio inseguitore di tensione a BJT... 8 Osservazione: calcolo diretto degli effetti di Appunt d lettronca Captolo 3 parte Amplfcator reazonat ntroduzone... Connessone sereparallelo... 3 sempo: stado nsegutore d tensone a BJT... 8 sserazone: calcolo dretto degl effett d carco... Concetto

Dettagli

Esercizi sulle reti elettriche in corrente continua (parte 2)

Esercizi sulle reti elettriche in corrente continua (parte 2) Esercz sulle ret elettrche n corrente contnua (parte ) Eserczo 3: etermnare gl equvalent d Thevenn e d Norton del bpolo complementare al resstore R 5 nel crcuto n fgura e calcolare la corrente che crcola

Dettagli

Significato delle EQUAZIONI COSTITUTIVE dei tessuti viventi

Significato delle EQUAZIONI COSTITUTIVE dei tessuti viventi Per flud n movmento occorre consderare l campo delle veloctà. Inun sstema cartesano Oxyz l campo è descrtto dal vettore v(x,y,z) che defnsce le component della veloctà del fludo n ogn punto x,y,z : v (x,y,z)

Dettagli

1. Fissato un conveniente sistema di riferimento cartesiano Oxy si studino le funzioni f e g e se ne disegnino i rispettivi grafici G, G.

1. Fissato un conveniente sistema di riferimento cartesiano Oxy si studino le funzioni f e g e se ne disegnino i rispettivi grafici G, G. Problema 1 S consderno le funzon f e g defnte, per tutt gl x real, da: f ( x) = x 3 4 x, g( x) = sn( π x) 1. Fssato un convenente sstema d rfermento cartesano Oxy s studno le funzon f e g e se ne dsegnno

Dettagli

lim Flusso Elettrico lim E ΔA

lim Flusso Elettrico lim E ΔA Flusso lettrco Nel caso pù generale l campo elettrco può varare sa n ntenstà che drezone e verso. La defnzone d flusso data n precedenza vale solo se l elemento d superfce A è suffcentemente pccolo da

Dettagli

Fondamenti di meccanica classica: simmetrie e leggi di conservazione

Fondamenti di meccanica classica: simmetrie e leggi di conservazione Fondament d meccanca classca: smmetre e legg d conservazone d Marco Tulu A. A. 2005/2006 1 Introduzone Un corpo s dce omogeneo se ha n ogn suo punto ugual propretà fsche e chmche, ed è sotropo se n ogn

Dettagli

Fondamenti di Visione Artificiale (Seconda Parte) Corso di Robotica Prof.ssa Giuseppina Gini Anno Acc.. 2006/2007

Fondamenti di Visione Artificiale (Seconda Parte) Corso di Robotica Prof.ssa Giuseppina Gini Anno Acc.. 2006/2007 Fondament d Vsone Artfcale (Seconda Parte PhD. Ing. Mchele Folgherater Corso d Robotca Prof.ssa Guseppna Gn Anno Acc.. 006/007 Caso Bdmensonale el caso bdmensonale, per ndvduare punt d contorno degl oggett

Dettagli

$%&'$%()($ * +,* -. )) )/

$%&'$%()($ * +,* -. )) )/ !"# $%&'$%()($ * +,* -. )) )/ 1 0 *",13.4 5. '. 1.'$$$ 0 0 *,6 7. 4! 5.! 8 1.)&&9 0 ) ' " / : ; %! 6 " > @ # 5 &' ;" >. ;" >. >.. ; >. # 6 C "! #!#! )!*#!!#!+@

Dettagli

Dispense di Meccanica dei Fluidi (2006)

Dispense di Meccanica dei Fluidi (2006) Gorgo Qerzol Dspense d Meccanca de Fld (6) Unverstà degl Std d Caglar Facoltà d Ingegnera Dpartmento d Ingegnera del Terrtoro G. Qerzol Dspense d Meccanca de Fld G. Qerzol Dspense d Meccanca de Fld...

Dettagli

Unità Didattica N 5. Impulso e quantità di moto

Unità Didattica N 5. Impulso e quantità di moto Imnpulso e quanttà d moto - - Impulso e quanttà d moto ) Sstema solato : orze nterne ed esterne...pag. 2 2) Impulso e quanttà d moto...pag. 3 3) Teorema d conservazone della quanttà d moto...pag. 6 4)

Dettagli

Università degli Studi di Torino D.E.I.A.F.A. Forze conservative. Forze conservative (1)

Università degli Studi di Torino D.E.I.A.F.A. Forze conservative. Forze conservative (1) Unverstà degl Stud d Torno D.E.I.A..A. orze conservatve Unverstà degl Stud d Torno D.E.I.A..A. orze conservatve () Una orza s dce conservatva se l lavoro da essa computo su un corpo che s muove tra due

Dettagli

3 (solo esame 6 cfu) Elementi di Analisi Numerica, Probabilità e Statistica, modulo 2: Elementi di Probabilità e Statistica (3 cfu)

3 (solo esame 6 cfu) Elementi di Analisi Numerica, Probabilità e Statistica, modulo 2: Elementi di Probabilità e Statistica (3 cfu) lement d Anals Numerca, Probabltà e Statstca, modulo 2: lement d Probabltà e Statstca ( cfu) Probabltà e Statstca (6 cfu) Scrtto del 06 febbrao 205. Secondo Appello Id: A Nome e Cognome: same da 6 cfu

Dettagli

Il logaritmo discreto in Z p Il gruppo moltiplicativo Z p delle classi resto modulo un primo p è un gruppo ciclico.

Il logaritmo discreto in Z p Il gruppo moltiplicativo Z p delle classi resto modulo un primo p è un gruppo ciclico. Il logartmo dscreto n Z p Il gruppo moltplcatvo Z p delle class resto modulo un prmo p è un gruppo cclco. Defnzone (Logartmo dscreto). Sa p un numero prmo e sa ā una radce prmtva n Z p. Sa ȳ Z p. Il logartmo

Dettagli

Introduzione... 2 Equazioni dei telegrafisti... 3 Parametri per unità di lunghezza... 7 Soluzione nel dominio della frequenza... 7 Risoluzione delle

Introduzione... 2 Equazioni dei telegrafisti... 3 Parametri per unità di lunghezza... 7 Soluzione nel dominio della frequenza... 7 Risoluzione delle Appunt d amp Elettromagnetc aptolo 8 parte I nee d trasmssone Introduone... Equaon de telegrafst... 3 Parametr per untà d lunghea... 7 Soluone nel domno della frequena... 7 soluone delle equaon de telegrafst...

Dettagli

Misure Topografiche Tradizionali

Misure Topografiche Tradizionali Msure Topografche Tradzonal Grandezze da levare ngol Dstanze Gonometr Dstanzometro Stazone Totale Prsma Dslvell Lvello Stada Msure Strettamente Necessare Soluzone geometrca Msure Sovrabbondant Compensazone

Dettagli

Politecnico di Torino Laurea a Distanza in Ingegneria Meccanica Corso di Macchine

Politecnico di Torino Laurea a Distanza in Ingegneria Meccanica Corso di Macchine 5 TURBOMACCHINE 5 INTRODUZIONE 5 A TURBOMACCHINA EEMENTARE Una trbomacchna è costtta da almeno na palettatra rotante (grante) dsposta s d n dsco, nteressata dal flsso d n fldo (compressble o ncompressble)

Dettagli

A3 - Coordinate curvilinee, cilindriche, sferiche

A3 - Coordinate curvilinee, cilindriche, sferiche A - Coonate clnee clnce sfece A. Sstem coonate clnee Un sstema coonate clnee nello spao R è efnto con femento a n sstema catesano a fnon scala el tpo: Le fnon scala sopa sctte o n altenata la fnone ettoale:

Dettagli

Prova di verifica n.0 Elettronica I (26/2/2015)

Prova di verifica n.0 Elettronica I (26/2/2015) Proa d erfca n.0 lettronca I (26/2/2015) OUT he hfe + L OUT - Fgura 1 Con rfermento alla rete elettrca d Fg.1, determnare: OUT / OUT / la resstenza sta dal generatore ( V ) la resstenza sta dall uscta

Dettagli

Allenamenti di matematica: Teoria dei numeri e algebra modulare Soluzioni esercizi

Allenamenti di matematica: Teoria dei numeri e algebra modulare Soluzioni esercizi Allenament d matematca: Teora de numer e algebra modulare Soluzon esercz 29 novembre 2013 1. Canguro salterno. Un canguro salterno s trova a ped d una scala nfnta che ntende salre nel seguente modo: Salta

Dettagli

Lez. 10 Forze d attrito e lavoro

Lez. 10 Forze d attrito e lavoro 4/03/015 Lez. 10 Forze d attrto e lavoro Pro. 1 Dott., PhD Dpartmento Scenze Fsche Unverstà d Napol Federco II Compl. Unv. Monte S.Angelo Va Cnta, I-8016, Napol mettver@na.nn.t +39-081-676137 1 4/03/015

Dettagli

ESERCIZI DI MATEMATICA FINANZIARIA DIPARTIMENTO DI ECONOMIA E MANAGEMENT UNIFE A.A. 2016/2017. Esercizi 3

ESERCIZI DI MATEMATICA FINANZIARIA DIPARTIMENTO DI ECONOMIA E MANAGEMENT UNIFE A.A. 2016/2017. Esercizi 3 ESERCIZI DI MATEMATICA FINANZIARIA DIPARTIMENTO DI ECONOMIA E MANAGEMENT UNIFE A.A. 2016/2017 Esercz 3 Pan d ammortamento Eserczo 1. Un prestto d 12000e vene rmborsato n 10 ann con rate mensl e pano all

Dettagli

FORMULE PRELIMINARI RIGUARDANTI LA TRAVE APPOGGIATA

FORMULE PRELIMINARI RIGUARDANTI LA TRAVE APPOGGIATA Captolo TRV CONTINU. TRV CONTINU FORU PRIINRI RIGURDNTI TRV PPOGGIT Trave appoggata soggetta a: carco () moment, cedment Determnaon delle rotaon,. a) Carco - - d d - d ( ) d 77 Captolo TRV CONTINU b) oment,

Dettagli

Capitolo 3 Covarianza, correlazione, bestfit lineari e non lineari

Capitolo 3 Covarianza, correlazione, bestfit lineari e non lineari Captolo 3 Covaranza, correlazone, bestft lnear e non lnear ) Covaranza e correlazone Ad un problema s assoca spesso pù d una varable quanttatva (es.: d una persona possamo determnare peso e altezza, oppure

Dettagli

REAZIONE NEGLI AMPLIFICATORI

REAZIONE NEGLI AMPLIFICATORI REAZIONE NEGLI AMPLIFICATORI 1 Generaltà S dce che n n amplfcatore esste reazone qando na parte del segnale d scta, voltamente o nostro malgrado, s compone col segnale d ngresso. Un amplfcatore a reazone

Dettagli

5. Baricentro di sezioni composte

5. Baricentro di sezioni composte 5. Barcentro d sezon composte Barcentro del trapezo Il barcentro del trapezo ( FIURA ) s trova sull asse d smmetra oblqua (medana) della fgura; è suffcente, qund, determnare la sola ordnata. A tal fne,

Dettagli

Programmazione e Controllo della Produzione. Analisi dei flussi

Programmazione e Controllo della Produzione. Analisi dei flussi Programmazone e Controllo della Produzone Anals de fluss Clent SERVIZIO Uscta Quanto al massmo produce l mo sstema produttvo? Quanto al massmo produce la ma macchna? Lo rsolvo con la smulazone? Sarebbe

Dettagli

Campo di validità: al crescere della velocità del fluido, la relazione fra portata defluente e perdita di carico diviene non più lineare.

Campo di validità: al crescere della velocità del fluido, la relazione fra portata defluente e perdita di carico diviene non più lineare. La Legge d DARCY Campo d valdtà: al crescere della veloctà del fludo, la relaone fra portata defluente e perdta d carco dvene non pù lneare. d ν umero d Reynolds de granul: Re dove d è l dametro medo del

Dettagli

2. ANALISI DELLA DEFORMAZIONE

2. ANALISI DELLA DEFORMAZIONE . ANALISI DELLA DEFORMAZIONE Un elemento monodimensionale soggetto ad na forza di trazione o compressione sbisce na variazione di lnghezza Δl (rispettivamente n allngamento o n accorciamento) rispetto

Dettagli

VERIFICHE DI S.L.U. SECONDO LE NTC 2008 TRAVE IN C.A. PROGETTO E VERIFICA ARMATURA A TAGLIO

VERIFICHE DI S.L.U. SECONDO LE NTC 2008 TRAVE IN C.A. PROGETTO E VERIFICA ARMATURA A TAGLIO VERIFICHE DI S.L.U. SECONDO LE NTC 2008 TRAVE IN C.A. PROGETTO E VERIFICA ARMATURA A TAGLIO In questo esempo eseguremo l progetto e la verfca delle armature trasversal d una trave contnua necessare per

Dettagli

Università degli Studi di Urbino Facoltà di Economia

Università degli Studi di Urbino Facoltà di Economia Unverstà degl Stud d Urbno Facoltà d Economa Lezon d Statstca Descrttva svolte durante la prma parte del corso d corso d Statstca / Statstca I A.A. 004/05 a cura d: F. Bartolucc Lez. 8/0/04 Statstca descrttva

Dettagli

PROBLEMA DI SCELTA FRA DUE REGIMI DI

PROBLEMA DI SCELTA FRA DUE REGIMI DI PROBLEMA DI SCELTA FRA DUE REGIMI DI CAPITALIZZAZIONE Prerequst: legge d captalzzazone semplce legge d captalzzazone composta logartm e loro propretà dervate d una funzone pendenza d una curva n un punto

Dettagli

LA CAPACITÀ ELETTRICA DEI CORPI

LA CAPACITÀ ELETTRICA DEI CORPI Pagna 1 d 6 LA CAPACIÀ ELERICA DEI CORPI La capactà elettrca de corp rappresenta l atttudne de corp ad osptare sulla loro superfce una certa quanttà d carca elettrca. L U.I. d msura è l FARAD segue pertanto

Dettagli

Costruzioni in c.a. Metodi di analisi

Costruzioni in c.a. Metodi di analisi Corso d formazone n INGEGNERIA SISICA Verres, 11 Novembre 16 Dcembre, 2011 Costruzon n c.a. etod d anals Alessandro P. Fantll alessandro.fantll@polto.t Verres, 18 Novembre, 2011 Gl argoment trattat 1.

Dettagli

5: Strato fisico: limitazione di banda, formula di Nyquist; caratterizzazione del canale in frequenza

5: Strato fisico: limitazione di banda, formula di Nyquist; caratterizzazione del canale in frequenza 5: Strato fsco: lmtazone d banda, formula d Nyqust; caratterzzazone del canale n frequenza Larghezza d banda d un segnale La larghezza d banda d un segnale è data dall ntervallo delle frequenze d cu è

Dettagli

Rotazione di un corpo rigido intorno ad un asse fisso

Rotazione di un corpo rigido intorno ad un asse fisso INGEGNERIA GESTIONALE corso d Fsca Generale Prof. E. Puddu LEZIONE DEL 14 15 OTTOBRE 2008 Rotazone d un corpo rgdo ntorno ad un asse fsso 1 Cnematca rotazonale y Supponamo d osservare un corpo rgdo sul

Dettagli

WORKING PAPER SERIES

WORKING PAPER SERIES DEPARTMENT OF ECONOMICS UNIVERSITY OF MILAN - BICOCCA WORKING PAPER SERIES Prce Cap e recpero d prodttvtà: sggerment dalla regolazone del settore Gas Massmo Beccarello No. 11 - March 1998 Dpartmento d

Dettagli

ENERGIA CINETICA. T := 1 2 mv2. (1) T := N 1 2 m ivi 2. (2) i=1

ENERGIA CINETICA. T := 1 2 mv2. (1) T := N 1 2 m ivi 2. (2) i=1 ENERGIA CINETICA Teorema de energa cnetca Defnzone Per un punto P dotato d massa m e veoctà v, s defnsce energa cnetca a seguente quanttà scaare non negatva T := mv. () Defnzone Per un sstema dscreto d

Dettagli