Condensatori e resistenze
|
|
|
- Carolina Murgia
- 10 anni fa
- Visualizzazioni
Transcript
1 Condensator e resstenze Lucano attaa Versone del 22 febbrao 2007 Indce In questa nota presento uno schema replogatvo relatvo a condensator e alle resstenze, con partcolare rguardo a collegament n sere e parallelo. Il target prncpale è costtuto dagl student Lceal che s accngono ad affrontare l esame d stato. È trattato solo l caso delle corrent contnue. 1 Condensator Resstenze attere Collegament n sere e n parallelo Crcut RC Condensator I condensator sono de dspostv, costtut da due conduttor appaat, dett armature, n grado d accumulare carca. ss sono caratterzzat da una costante, detta capactà, data da C = Q V, dove Q è la carca accumulata e V è la dfferenza d potenzale tra le due armature. nche se le analoge draulche non sono sempre correttamente applcabl all elettromagnetsmo, n prma approssmazone un condensatore può essere paragonato a una coppa d serbato per lqud, per esempo a forma d paralleleppedo, dentc. Se ess contengono la stessa quanttà d lqudo, la dfferenza tra lvell raggunt ne due serbato è nulla. Se, medante un opportuno dspostvo, l lqudo vene trasferto da un serbatoo all altro, allora s produce una dfferenza d lvello, tanto pù grande quanto pù pccola è la sezone de parallelepped. Questo processo corrsponde alla carca del 1
2 Condensator e resstenze 2 condensatore: la quanttà d acqua n eccesso n un serbatoo rspetto all altro corrsponde alla carca Q, la dfferenza d lvello alla dfferenza d potenzale V. La mnore o maggore sezone orzzontale corrsponde alla mnore o maggore capactà. Se, dopo aver prodotto un certo dslvello, s collegano due serbato, s ha un flusso d lqudo che però dura solo fn quando s è rstablto l equlbro, per po cessare completamente. I condensator s rappresentano ne crcut elettrc con l smbolo seguente: C Fgura 1: Smbolo per condensator 2 Resstenze Le resstenze sono conduttor che collegano tra d loro var dspostv elettrc. C nteressamo esclusvamente alle resstenze ohmche, caratterzzate da una costante, detta resstenza, data dalla legge (d Ohm) R = V, dove è la corrente e V la dfferenza d potenzale. Ne crcut elettrc le resstenze s ndcano con l smbolo seguente: R Fgura 2: Smbolo per le resstenze Se l potenzale n è maggore che n, la corrente flusce da verso : s usa dre che l passaggo d corrente n una resstenza provoca una caduta d potenzale nel verso della corrente. Qualunque componente d un crcuto metallco dove crcol corrente ha una resstenza, ma, nella pratca, alcune part del crcuto hanno resstenze enormemente pù elevate che altre: per questo s usano schematzzare crcut con le resstenze concentrate solo n determnate zone, rappresentate col smbolo sopra ndcato, mentre le restant part sono consderate prve d resstenza e rappresentate con tratt d flo rettlneo. S deve notare che, su un tratto d flo rettlneo, l passaggo d corrente non provoca caduta d potenzale, ovvero che su quest tratt l potenzale è costante, esattamente come avvene per conduttor n equlbro elettrostatco. Proseguendo con l analoga draulca, e sempre tenendo conto de suo lmt, una resstenza può essere pensata come un tubo d collegamento fra due serbato che hanno lqudo a dverso lvello, e con la caratterstca d frenare l lqudo stesso nel passaggo Lucano attaa
3 Condensator e resstenze 3 da un serbatoo al altro. Se per esempo collego con una resstenza le due armature d un condensatore carco, avrò un passaggo d corrente molto forte all nzo, e po va va pù debole, man mano che la dfferenza d potenzale fra le due armature dmnusce fno ad annullars. È sostanzalmente quanto avverrebbe se collegass due serbato d acqua n cu l acqua s trov a dvers lvell. 3 attere Una battera (o pla, o generatore) è un dspostvo n grado d mantenere a suo cap una dfferenza d potenzale costante. Rprendendo l analoga draulca, n prma approssmazone una battera può essere pensata come una coppa d serbato per lqud, d cu uno contenente acqua fno ad una certa quota h e l altro vuoto. Se due serbato vengono collegat, s ha un flusso d acqua dal serbatoo peno verso quello vuoto. Il meccansmo nterno d funzonamento, a dfferenza d quello che succede ne condensator, è però n grado d rportare l acqua dal basso verso l alto, mantenendo costante la dfferenza d quota e l flusso nel tubo d collegamento. L analoga draulca c può anche far capre bene l fatto che, dopo che due serbato sono stat collegat, c è scuramente un po d rtardo nel rportare l acqua dal basso verso l alto: la dfferenza d lvello durante l funzonamento è un po pù pccola d quanto non sa a serbato scollegat. S usa schematzzare questo fatto dcendo che la battera è un dspostvo n grado d mantenere una dfferenza d potenzale fssa, connesso con una resstenza, detta resstenza nterna, che, durante l funzonamento, rende la dfferenza d potenzale effettva un po pù pccola d quella nomnale. Un generatore s dce deale se questa resstenza nterna è nulla (o meglo trascurable). La caratterstca dstntva d un generatore è la sua forza elettromotrce, ovvero la dfferenza d potenzale che esso è n grado d mantenere; essa s ndca generalmente con f o con e s rappresenta con l smbolo seguente: Fgura 3: Smbolo per le battere, o ple dove l segmento pù lungo ndca l punto a potenzale pù alto. S deve tenere conto che, per generator deal, è la dfferenza d potenzale sa a crcuto aperto (assenza d corrente) che a crcuto chuso (crcolazone d corrente); per generator real, coè con resstenza nterna non nulla, la dfferenza d potenzale a crcuto chuso è leggermente nferore rspetto a quella a crcuto aperto. Una battera collegata ad un condensatore provocherà la carca del condensatore stesso; una battera collegata ad una resstenza farà crcolare corrente nella resstenza stessa: s tratta de due crcut elettrc pù semplc possble. Lucano attaa
4 Condensator e resstenze 4 C +Q Q R Q = C = R Fgura 4: Condensatore e resstenza n un crcuto semplce 4 Collegament n sere e n parallelo Una stuazone molto comune nelle applcazon prevede collegament d due o pù condensator o resstenze, collegament che possono avvenre n sere o n parallelo. V 1 V 2 V 1 V 2 C 1 C2 R 1 R2 +Q Q +Q Q Fgura 5: Collegament n sere C 2 +Q 2 Q 2 2 R 2 +Q Q C 1 +Q 1 Q 1 1 R 1 Fgura 6: Collegament n parallelo La domanda che c possamo porre è la seguente: è possble sostture a due conden- Lucano attaa
5 Condensator e resstenze 5 sator [alle due resstenze] un unco condensatore [un unca resstenza], n modo che tutta le restante parte del crcuto rmanga nalterata, ovvero che non cambno le dfferenze d potenzale e la carca [la corrente] che l generatore spedsce su condensator [sulle resstenze]? In sostanza s tratta d sostture crcut d fgure 5 e 6 con crcut semplc come quell d fgura 4. La rsposta a questa domanda è affermatva e anz è facle calcolare la capactà [resstenza] del condensatore [della resstenza] da sostture: la chameremo capactà equvalente [resstenza equvalente]. Usamo le seguent nomenclature: V è la dfferenza d potenzale tra punt e; Q è la carca totale spedta dalla battera su condensator [ è la corrente totale fatta crcolare dalla battera nel crcuto]; C eq è la capactà equvalente [R eq è la resstenza equvalente]; Tenamo noltre conto che, per le propretà de condensator [delle resstenze], s deve avere: V = Q [ ; V = Req ]. C eq Possamo allora costrure la seguente tabella. Condensator In sere Resstenze V = V 1 + V 2 V = V 1 + V 2 Q = Q + Q C eq C 1 C 2 R = R 1 + R 2 1 = C eq C 1 C 2 R = R 1 + R 2 In parallelo Q = Q 1 + Q 2 = V C eq V = C 1 V + C 2 V = V + Q R eq R 1 R 2 1 C eq = C 1 + C 2 = R eq R 1 R 2 Lo schema proposto rende evdent le analoge e le dfferenze tra l caso de condensator e quello delle resstenze e, tra l altro, l fatto che la capactà è una caratterstca statca de conduttor, mentre la resstenza è una caratterstca dnamca. Lucano attaa
6 Condensator e resstenze 6 5 Crcut RC Un crcuto che preveda la presenza sa d un condensatore che d una resstenza s chama un crcuto RC: n esso la corrente contnua può crcolare solo durante la fase d carca o d scarca del condensatore, n quanto l condensatore può essere consderato equvalente a una nterruzone del crcuto. Consderamo l crcuto nella fase d carca. R K Fgura 7: Crcuto RC nella fase d carca lla chusura dell nterruttore K, la pla comnca a carcare l condensatore: fn tanto che l processo non è completato, e la carca sul condensatore non ha raggunto l suo valore massmo Q = C, nel crcuto flusce una corrente, avente ntestà massma subto dopo la chusura del crcuto (quando l condensatore è ancora scarco) e po ntenstà va va decrescente man mano che l condensatore s carca. Se ndchamo con q e V la carca e l potenzale sul condensatore n una fase ntermeda, possamo notare che sa q che V varano nel tempo: q = q(t) e V = V (t); la corrente che flusce nel crcuto è allora = q (t) = dq /dt. vremo qund: n t = 0 + (subto dopo la chusura del crcuto) la carca e l potenzale del condensatore saranno 0; n un stante ntermedo t, la carca e l potenzale del condensatore avranno raggunto valor q e V rspettvamente; alla fne del processo, la carca e l potenzale del condensatore avranno raggunto valor massm Q e rspettvamente, con Q = C. In tutte le fas la somma d tutte le dfferenze d potenzale nel crcuto deve essere 0. Dunque q C R = 0, ovvero q(t) C Rq (t) = 0. S tratta d un equazone che ha come ncognta la funzone q = q(t) e che stablsce un legame tra l ncognta e la sua dervata prma: un equazone d questo tpo s chama un equazone dfferenzale. Non è faclssmo (ma nemmeno troppo dffcle) trovarne le soluzon. Qu però c nteressa solo segnalare che la funzone ( ) q = q(t) = C 1 e t RC è l unca soluzone che soddsfa anche la condzone che, per t = 0, s abba q = 0. Lucano attaa
7 Condensator e resstenze 7 q C R 0.63 C O RC t O t Fgura 8: Grafco della carca e della corrente nella fase d carca d un crcuto RC S not, nella fgura 8, che dopo un tempo t = RC, la carca ha raggunto crca due terz del suo valore fnale. Per la fase d scarca del crcuto basta mmagnare, una volta carcato l condensatore, d elmnare la pla, collegando suo cap. R K Fgura 9: Crcuto RC nella fase d scarca L equazone del crcuto dfferrà dalla precedente solo per la mancanza del termne : q(t) C + Rq (t) = 0. C sarà la seguente modfca delle condzon: n t = 0 + (subto dopo la chusura del crcuto) la carca e l potenzale del condensatore avranno l valore massmo Q e, con Q = C; n un stante ntermedo t, la carca e l potenzale del condensatore saranno calat fno a raggungere valor q e V rspettvamente; alla fne del processo, la carca e l potenzale del condensatore saranno null. nche questa volta l equazone che fornsce la carca è un equazone dfferenzale, e l unca soluzone che verfca le condzon nzal date è: q = q(t) = Ce t RC. Questa volta grafc della carca e della corrente (anz del modulo della corrente, perchè, come dervata della carca, essa sarebbe negatva) sono: Lucano attaa
8 Condensator e resstenze 8 q C R 0.37 C O RC t O t Fgura 10: Grafco della carca e della corrente nella fase d scarca d un crcuto RC S not, nella fgura 10, che dopo un tempo t = RC, la carca è calata a crca un terzo del suo valore nzale. Lucano attaa
Progetto Lauree Scientifiche. La corrente elettrica
Progetto Lauree Scentfche La corrente elettrca Conoscenze d base Forza elettromotrce Corrente Elettrca esstenza e resstvtà Legge d Ohm Crcut 2 Una spra d rame n equlbro elettrostatco In un crcuto semplce
La retroazione negli amplificatori
La retroazone negl amplfcator P etroazonare un amplfcatore () sgnfca sottrarre (o sommare) al segnale d ngresso (S ) l segnale d retroazone (S r ) ottenuto dal segnale d uscta (S u ) medante un quadrpolo
Calcolo della caduta di tensione con il metodo vettoriale
Calcolo della caduta d tensone con l metodo vettorale Esempo d rete squlbrata ed effett del neutro nel calcolo. In Ampère le cadute d tensone sono calcolate vettoralmente. Per ogn utenza s calcola la caduta
Prova di verifica n.0 Elettronica I (26/2/2015)
Proa d erfca n.0 lettronca I (26/2/2015) OUT he hfe + L OUT - Fgura 1 Con rfermento alla rete elettrca d Fg.1, determnare: OUT / OUT / la resstenza sta dal generatore ( V ) la resstenza sta dall uscta
LA COMPATIBILITA tra due misure:
LA COMPATIBILITA tra due msure: 0.4 Due msure, supposte affette da error casual, s dcono tra loro compatbl quando la loro dfferenza può essere rcondotta ad una pura fluttuazone statstca attorno al valore
A. AUMENTO DELLA SPESA PUBBLICA FINANZIATO ESCLUSIVAMENTE TRAMITE INDEBITAMENTO
4. SCHMI ALTRNATIVI DI FINANZIAMNTO DLLA SPSA PUBBLICA. Se l Governo decde d aumentare la Spesa Pubblca G (o Trasferment TR), allora deve anche reperre fond necessar per fnanzare questa sua maggore spesa.
Lezione 10. L equilibrio del mercato finanziario: la struttura dei tassi d interesse
Lezone 1. L equlbro del mercato fnanzaro: la struttura de tass d nteresse Ttol con scadenza dversa hanno prezz (e tass d nteresse) dfferent. Due ttol d durata dversa emess dallo stesso soggetto (stesso
Macchine. 5 Esercitazione 5
ESERCITAZIONE 5 Lavoro nterno d una turbomacchna. Il lavoro nterno massco d una turbomacchna può essere determnato not trangol d veloctà che s realzzano all'ngresso e all'uscta della macchna stessa. Infatt
MACROECONOMIA A.A. 2014/2015
MACROECONOMIA A.A. 2014/2015 ESERCITAZIONE 2 MERCATO MONETARIO E MODELLO /LM ESERCIZIO 1 A) Un economa sta attraversando un perodo d profonda crs economca. Le banche decdono d aumentare la quota d depost
Corrente elettrica e circuiti
Corrente elettrca e crcut Generator d forza elettromotrce Intenstà d corrente Legg d Ohm esstenza e resstvtà esstenze n sere e n parallelo Effetto termco della corrente Legg d Krchhoff Corrente elettrca
TITOLO: L INCERTEZZA DI TARATURA DELLE MACCHINE PROVA MATERIALI (MPM)
Identfcazone: SIT/Tec-012/05 Revsone: 0 Data 2005-06-06 Pagna 1 d 7 Annotazon: Il presente documento fornsce comment e lnee guda sull applcazone della ISO 7500-1 COPIA CONTROLLATA N CONSEGNATA A: COPIA
Trigger di Schmitt. e +V t
CORSO DI LABORATORIO DI OTTICA ED ELETTRONICA Scopo dell esperenza è valutare l ampezza dell steres d un trgger d Schmtt al varare della frequenza e dell ampezza del segnale d ngresso e confrontarla con
Economie di scala, concorrenza imperfetta e commercio internazionale
Sanna-Randacco Lezone n. 14 Econome d scala, concorrenza mperfetta e commerco nternazonale Non v è vantaggo comparato (e qund non v è commerco nter-ndustrale). S vuole dmostrare che la struttura d mercato
Ministero della Salute D.G. della programmazione sanitaria --- GLI ACC - L ANALISI DELLA VARIABILITÀ METODOLOGIA
Mnstero della Salute D.G. della programmazone santara --- GLI ACC - L ANALISI DELLA VARIABILITÀ METODOLOGIA La valutazone del coeffcente d varabltà dell mpatto economco consente d ndvduare gl ACC e DRG
Capitolo 7. La «sintesi neoclassica» e il modello IS-LM. 2. La curva IS
Captolo 7 1. Il modello IS-LM La «sntes neoclassca» e l modello IS-LM Defnzone: ndvdua tutte le combnazon d reddto e saggo d nteresse per le qual l mercato de ben (curva IS) e l mercato della moneta (curva
Distributore di comando della motrice. Istruzione di controllo. Informazioni sulla sicurezza 1/5. con pedale / 3 Interruttori 1/2
Dstrbutore d comando della motrce con pedale / 3 Interruttor Istruzone d controllo Prma d nzare l controllo s raccomanda d leggere attentamente le nformazon d scurezza. Informazon sulla scurezza Il controllo
PROCEDURA INFORMATIZZATA PER LA COMPENSAZIONE DELLE RETI DI LIVELLAZIONE. (Metodo delle Osservazioni Indirette) - 1 -
PROCEDURA INFORMATIZZATA PER LA COMPENSAZIONE DELLE RETI DI LIVELLAZIONE (Metodo delle Osservazon Indrette) - - SPECIFICHE DI CALCOLO Procedura software per la compensazone d una rete d lvellazone collegata
Principi di ingegneria elettrica. Lezione 6 a. Analisi delle reti resistive
Prncp d ngegnera elettrca Lezone 6 a Anals delle ret resste Anals delle ret resste L anals d una rete elettrca (rsoluzone della rete) consste nel determnare tutte le corrent ncognte ne ram e tutt potenzal
Studio grafico-analitico di una funzioni reale in una variabile reale
Studo grafco-analtco d una funzon reale n una varable reale f : R R a = f ( ) n Sequenza de pass In pratca 1 Stablre l tpo d funzone da studare es. f ( ) Determnare l domno D (o campo d esstenza) della
Il diagramma PSICROMETRICO
Il dagramma PSICROMETRICO I dagramm pscrometrc vengono molto utlzzat nel dmensonamento degl mpant d condzonamento dell ara, n quanto consentono d determnare n modo facle e rapdo le grandezze d stato dell
Strutture deformabili torsionalmente: analisi in FaTA-E
Strutture deformabl torsonalmente: anals n FaTA-E Il comportamento dsspatvo deale è negatvamente nfluenzato nel caso d strutture deformabl torsonalmente. Nelle Norme Tecnche cò vene consderato rducendo
Unità Didattica N 25. La corrente elettrica
Untà Ddattca N 5 : La corrente elettrca 1 Untà Ddattca N 5 La corrente elettrca 01) Il problema dell elettrocnetca 0) La corrente elettrca ne conduttor metallc 03) Crcuto elettrco elementare 04) La prma
RETI TELEMATICHE Lucidi delle Lezioni Capitolo VII
Prof. Guseppe F. Ross E-mal: [email protected] Homepage: http://www.unpv.t/retcal/home.html UNIVERSITA' DEGLI STUDI DI PAVIA Facoltà d Ingegnera A.A. 2011/12 - I Semestre - Sede PV RETI TELEMATICHE Lucd
3. Esercitazioni di Teoria delle code
3. Eserctazon d Teora delle code Poltecnco d Torno Pagna d 33 Prevsone degl effett d una decsone S ndvduano due tpologe d problem: statc: l problema non vara nel breve perodo dnamc: l problema vara Come
Valore attuale di una rendita. Valore attuale in Excel: funzione VA
Valore attuale d una rendta Nella scorsa lezone c samo concentrat sul problema del calcolo del alore attuale d una rendta S che è dato n generale da V ( S) { R ; t, 0,,,..., n,... } n 0 R ( t ), doe (t
POLITECNICO DI BARI - DICATECh Corso di Laurea in Ingegneria Ambientale e del Territorio IDRAULICA AMBIENTALE - A.A. 2015/2016 ESONERO 15/01/2016
POLITECNICO DI BARI - DICATECh Corso d Laurea n Ingegnera Ambentale e del Terrtoro IDRAULICA AMBIENTALE - A.A. 015/016 ESONERO 15/01/016 ESERCIZIO 1 S consder la rete aperta n fgura, nella quale le portate
IL TRANSISTOR BIPOLARE (BJT)
IL TRANSISTOR BIPOLARE (BJT) 1 - Introduzone La parola transstor è la contrazone d transfer resstor (resstenza d trasfermento), e tende a sottolneare come questo dspostvo s dmostr n grado d trasferre una
Induzione elettromagnetica
Induzone elettromagnetca L esperenza d Faraday L'effetto d produzone d corrente elettrca n un crcuto prvo d generatore d tensone fu scoperto dal fsco nglese Mchael Faraday nel 83. Egl studò la relazone
Verifica termoigrometrica delle pareti
Unverstà Medterranea d Reggo Calabra Facoltà d Archtettura Corso d Tecnca del Controllo Ambentale A.A. 2009-200 Verfca termogrometrca delle paret Prof. Marna Mstretta ANALISI IGROTERMICA DEGLI ELEMENTI
STATISTICA DESCRITTIVA - SCHEDA N. 5 REGRESSIONE LINEARE
Matematca e statstca: da dat a modell alle scelte www.dma.unge/pls_statstca Responsabl scentfc M.P. Rogantn e E. Sasso (Dpartmento d Matematca Unverstà d Genova) STATISTICA DESCRITTIVA - SCHEDA N. REGRESSIONE
MODELLISTICA DI SISTEMI DINAMICI
CONTROLLI AUTOMATICI Ingegnera Gestonale http://www.automazone.ngre.unmore.t/pages/cors/controllautomatcgestonale.htm MODELLISTICA DI SISTEMI DINAMICI Ing. Federca Gross Tel. 059 2056333 e-mal: [email protected]
Il modello markoviano per la rappresentazione del Sistema Bonus Malus. Prof. Cerchiara Rocco Roberto. Materiale e Riferimenti
Il modello marovano per la rappresentazone del Sstema Bonus Malus rof. Cercara Rocco Roberto Materale e Rferment. Lucd dstrbut n aula. Lemare 995 (pag.6- e pag. 74-78 3. Galatoto G. 4 (tt del VI Congresso
FONDAMENTI DI FISICA GENERALE
FONDAMENTI DI FISICA GENERAE Ingegnera Meccanca Roma Tre AA/011-01 APPUNTI PER I CORSO (Rpres ntegralmente e da me assemblat da test d bblografa) Roberto Renzett Bblografa: Paul J. Tpler Physcs Worth Publshers,
Unità Didattica N 29. Campo magnetico variabile
Untà Ddattca N 29 Campo magnetco varable 1) Il flusso del vettore B 2) Esperenze d Faraday sulle corrent ndotte 3) Legge d Faraday-Newmann-Lenz 4) Corrent d Foucoult 5) Il fenomeno dell'autonduzone 6)
Soluzione esercizio Mountbatten
Soluzone eserczo Mountbatten I dat fornt nel testo fanno desumere che la Mountbatten utlzz un sstema d Actvty Based Costng. 1. Calcolo del costo peno ndustrale de tre prodott Per calcolare l costo peno
* * * Nota inerente il calcolo della concentrazione rappresentativa della sorgente. Aprile 2006 RL/SUO-TEC 166/2006 1
APAT Agenza per la Protezone dell Ambente e per Servz Tecnc Dpartmento Dfesa del Suolo / Servzo Geologco D Itala Servzo Tecnologe del sto e St Contamnat * * * Nota nerente l calcolo della concentrazone
Esercizi sulle reti elettriche in corrente continua (parte 2)
Esercz sulle ret elettrche n corrente contnua (parte ) Eserczo 3: etermnare gl equvalent d Thevenn e d Norton del bpolo complementare al resstore R 5 nel crcuto n fgura e calcolare la corrente che crcola
5: Strato fisico: limitazione di banda, formula di Nyquist; caratterizzazione del canale in frequenza
5: Strato fsco: lmtazone d banda, formula d Nyqust; caratterzzazone del canale n frequenza Larghezza d banda d un segnale La larghezza d banda d un segnale è data dall ntervallo delle frequenze d cu è
Analisi del moto pre e post urto del veicolo
Captolo Anals del moto pre e post urto del vecolo 3.1 Moto rettlneo p. xx 3.1.1 Accelerazone unforme p. xx 3.1. Dstanza per l arresto del vecolo ed evtabltà p. xx 3.1.3 Dagramm veloctà-tempo e dstanza
Capitolo 3 Covarianza, correlazione, bestfit lineari e non lineari
Captolo 3 Covaranza, correlazone, bestft lnear e non lnear ) Covaranza e correlazone Ad un problema s assoca spesso pù d una varable quanttatva (es.: d una persona possamo determnare peso e altezza, oppure
Università di Napoli Parthenope Facoltà di Ingegneria
Unverstà d Napol Parthenope acoltà d Ingegnera Corso d Metod Probablstc Statstc e Process Stocastc docente: Pro. Vto Pascazo 20 a Lezone: /2/2003 Sommaro Dstrbuzon condzonate: CD, pd, pm Teorema della
Ricerca Operativa e Logistica Dott. F.Carrabs e Dott.ssa M.Gentili. Modelli per la Logistica: Single Flow One Level Model Multi Flow Two Level Model
Rcerca Operatva e Logstca Dott. F.Carrabs e Dott.ssa M.Gentl Modell per la Logstca: Sngle Flow One Level Model Mult Flow Two Level Model Modell d localzzazone nel dscreto Modell a Prodotto Sngolo e a Un
Indicatori di rendimento per i titoli obbligazionari
Indcator d rendmento per ttol obblgazonar LA VALUTAZIONE DEGLI INVESTIMENTI A TASSO FISSO Per valutare la convenenza d uno strumento fnanzaro è necessaro precsare: /4 Le specfche esgenze d un nvesttore
Newsletter "Lean Production" Autore: Dott. Silvio Marzo
Il concetto d "Produzone Snella" (Lean Producton) s sta rapdamente mponendo come uno degl strument pù modern ed effcac per garantre alle azende la flessbltà e la compettvtà che l moderno mercato rchede.
V.5. Generatori e circuiti elettrici
Corso d fsca generale a cura d Claudo Cereda rel. 4.2 dcembre 2004 Dfferenze d potenzale da contatto Ple ed accumulator Il collegamento delle resstenze La legge d Ohm per tratt d crcuto con generator La
Metodi e Modelli per l Ottimizzazione Combinatoria Progetto: Metodo di soluzione basato su generazione di colonne
Metod e Modell per l Ottmzzazone Combnatora Progetto: Metodo d soluzone basato su generazone d colonne Lug De Govann Vene presentato un modello alternatvo per l problema della turnazone delle farmace che
Capitolo 33 TRASPORTO IN PRESSIONE
Captolo 33 TRASPORTO IN PRESSIONE 1 INTRODUZIONE I sstem d condotte n pressone destnat all'approvvgonamento drco comprendono: - gl acquedott estern, che adducono l'acqua dalle font d'almentazone alle zone
Soluzione del compito di Fisica febbraio 2012 (Udine)
del compto d Fsca febbrao (Udne) Elettrodnamca È data una spra quadrata d lato L e resstenza R, ed un flo percorso da corrente lungo z (ved fgura). Dcamo a e b le dstanze del lato parallelo pù vcno e pù
Corrente ele)rica. Cariche in movimento e legge di Ohm
Corrente ele)rica Cariche in movimento e legge di Ohm Corrente ele)rica Nei metalli si possono avere elettroni che si muovono anche velocemente fra un estremo e l altro del metallo, ma la risultante istante
LA CORRENTE ELETTRICA CONTINUA
LA CORRENTE ELETTRICA CONTINUA (Fenomeno, indipendente dal tempo, che si osserva nei corpi conduttori quando le cariche elettriche fluiscono in essi.) Un conduttore metallico è in equilibrio elettrostatico
impianti di prima pioggia
SHUNT ITALIANA TECHNOLOGY S.r.l. dvsone depurazone acque mpant d prma pogga un futuro per l acqua... 0867 CAPONAGO (MB) - Va G. Galle, - Tel. 0.95.96.6 - Fax 0.95.74..54 - [email protected] - www.shunt.t
9.6 Struttura quaternaria
9.6 Struttura quaternara L'ultmo lvello strutturale é la struttura quaternara. Non per tutte le protene è defnble una struttura quaternara. Infatt l esstenza d una struttura quaternara é condzonata alla
Ottimizzazione nella gestione dei progetti Capitolo 6 Project Scheduling con vincoli sulle risorse CARLO MANNINO
Ottmzzazone nella gtone de progett Captolo 6 Project Schedulng con vncol sulle rsorse CARLO MANNINO Unverstà d Roma La Sapenza Dpartmento d Informatca e Sstemstca 1 Rsorse Ogn attvtà rchede rsorse per
FUNZIONAMENTO IN REGIME ALTERNATO SINUSOIDALE
FUNZIONAMENTO IN REGIME ALTERNATO SINUSOIDALE In presenza d una almentazone alternata snusodale tutte le grandezze elettrche saranno alternate snusodal. Le equazon d funzonamento n regme comunque varale
Esercitazione 23 maggio 2016
Esercitazione 5 maggio 016 Esercitazione 3 maggio 016 In questa esercitazione, nei primi tre esercizi, analizzeremo il problema del moral hazard nel mercato. In questo caso prenderemo in considerazione
Leggere i dati da file
Esempo %soluzon d una equazone d secondo grado dsp('soluzon d a^+b+c') anput('damm l coeffcente a '); bnput('damm l coeffcente b '); cnput('damm l coeffcente c '); deltab^-4*a*c; f delta0 dsp('soluzon
Hansard OnLine. Unit Fund Centre Guida
Hansard OnLne Unt Fund Centre Guda Sommaro Pagna Introduzone al Unt Fund Centre (UFC) 3 Uso de fltr per la selezone de fond 4-5 Lavorare con rsultat del fltro 6 Lavorare con rsultat del fltro - Prezz 7
TORRI DI RAFFREDDAMENTO PER L ACQUA
TORRI DI RAFFREDDAMENTO PER ACQUA Premessa II funzonamento degl mpant chmc rchede generalmente gross quanttatv d acqua: questa, oltre ad essere utlzzata drettamente n alcune lavorazon, come lavagg, dssoluzon,
