Costruzione di macchine. Modulo di: Progettazione probabilistica e affidabilità. Marco Beghini e Leonardo Bertini. Lezione 9:

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Costruzione di macchine. Modulo di: Progettazione probabilistica e affidabilità. Marco Beghini e Leonardo Bertini. Lezione 9:"

Transcript

1 osruzione di macchine Modulo di: Progeazione probabilisica e affidabilià Marco Beghini e Leonardo Berini Lezione 9: Affidabilià per sisemi e sruure

2 Sisemi complessi Finora abbiamo raao l affidabilià di singoli elemeni o componeni: cosa cambia se si considera una macchina complea o una sruura? asi elemenari: Sisemi serie Sisemi parallelo Esempio di sisema serie: il P Alimenaore Scheda madre HD Video Il compuer funziona se ui gli elemeni sono funzionani

3 Sisemi serie 3... n Ipoesi semplificaiva, il guaso di un elemeno non influenza il guaso degli alri: R... S RR Rn Ri S Nel caso di componeni con disribuzione di affidabilià esponenziale: i i i i i i R e R e e s i

4 onsiderazioni generali: Il sisema serie ha ancora affidabilià esponenziale L affidabilià è minore di quella del componene meno affidabile Il asso di guaso del sisema è la somma dei assi dei componeni Il MTTF è: MTTFS s i Nel caso di componeni ui uguali: R R ; i i i R S R n S n MTTF S MTTF n

5 Effeo dell affidabilià dei componeni R S R.95 R R n

6 Effeo del numero dei componeni R S.8.6 n.4. n 5 n R

7 Aumenare l affidabilià: sisemi parallelo S... n Parallelo puro. Il sisema funziona se almeno un elemeno funziona: massima ridondanza alcolo dell affidabilià si effeua facilmene con il ragionameno complemenare: la roura del sisema impone la roura di ui i componeni. In ipoesi di indipendenza: R R R... R R S n i i R S i R i

8 onsiderazioni generali: Il sisema parallelo ha affidabilià maggiore del componene più affidabile Anche se i componeni hanno affidabilià esponenziale il sisema no Il parallelo puro è raro (sisemi informaici bancari, sisemi d arma) Esempio 9. Deerminare le caraerisiche di affidabilià di un sisema parallelo puro con due elemeni uguali aveni affidabilià esponenziale e asso di guaso MTTF del componene R S i R R R R R R i R e e S

9 Affidabilià R.5 R R S 3 4 MTTF 3 MTTF R d MTTF S S

10 Densià di probabilià di guaso f f S f MTTF S S S e e e e e e d d d dr d R d f ) (

11 Tasso di guaso h S ( ) h R S S dr d S R S d d ln R S ( ) e e h S MTTF

12 I sisemi in perfeo parallelo sono difficili da realizzare e cososi. Sisemi paralleli passivi o sand-by 3 S L affidabilià del sisema al empo si può oenere col ragionameno: Il sisema funziona se: A) il componene funziona per uo il empo oppure B) il componene si rompe a (< ) ma, funziona l inerruore 3, e il componene non si rompe per il reso del empo -

13 In ipoesi di indipendenza: Indicao con il empo in cui si ha l evenuale guaso del primo componene, la probabilià che il sisema funzioni al empo se il guaso del primo avviene nell inervallo: A, d guaso in, inerruore OK funziona in, P d P P B P R dp f d R R B 3 P R R f d 3 R P P R R R f d S A B 3

14 Esempio 9. Deerminare le caraerisiche di affidabilià di un sisema parallelo sand-by con due elemeni uguali aveni affidabilià esponenziale e asso di guaso con l inerruore ideale: R 3 = Sby Sby e e e d e e d e e d e e d e e e R e f e R R d f R R R R 3

15 Esempio 9. Deerminare le caraerisiche di affidabilià di un sisema parallelo sand-by con due elemeni uguali aveni affidabilià esponenziale e asso di guaso con l inerruore ideale: R 3 = Sby R e MTTF Sby MTTF R.5 Parallelo Sand-by 3 4 MTTF

16 Tasso di guaso per sand-by h Sby h.5 Parallelo Sand-by 3 4 MTTF

17 Sisemi complessi Sisemi riconducibili a serie o paralleli... A 4 5 R R R R A 3 RS RAR R R R R R R

18 Esercizio 9. onfronare l affidabilià dei sisemi: Parallelo di due serie A 3 4 Serie di due paralleli B 3 4

19 R R R R R A 3 4 R R R R R B 3 Per componeni ui uguali: R S R R R A.5 R R R B.5 R

20 Esercizio 9. Definire lo schema affidabilisico e calcolare l affidabilià di un sisema di valvole pose su un parallelo di due ubazioni nei casi che il circuio sia: a) normalmene apero: il sisema funziona se le valvole chiudono il flusso b) normalmene chiuso: il sisema funziona se le valvole aivano il flusso. R R

21 Esercizio 9. Definire lo schema affidabilisico e calcolare l affidabilià di un sisema di valvole pose su un parallelo di due ubazioni nei casi che il circuio sia: a) normalmene apero: il sisema funziona se le valvole chiudono il flusso b) normalmene chiuso: il sisema funziona se le valvole aivano il flusso. R R a) normalmene apero: il sisema funziona se funzionano enrambe le valvole = SISTEMA SERIE R S R R

22 Esercizio 9. Definire lo schema affidabilisico e calcolare l affidabilià di un sisema di valvole pose su un parallelo di due ubazioni nei casi che il circuio sia: a) normalmene apero: il sisema funziona se le valvole chiudono il flusso b) normalmene chiuso: il sisema funziona se le valvole aivano il flusso. R R b) normalmene chiuso: il sisema funziona se funziona almeno una valvola = SISTEMA PARALLELO R R R S

23 Sisemi più complessi Sisemi non riconducibili: meodo combinaorio El. El. El.3 El.4 El.5 Sisema Probabilià R R R 3 R 4 R 5 (-R )R R 3 R 4 R R R R 3 (-R 4 )(-R 5 ) Aenzione: le righe della abella sono: n Nel semplice caso esaminao: 3 righe

24 Sisemi più complessi: upper bound range di affidabilià Tie se minimi: percorsi minimali disini che garaniscono il, funzionameno: 4,5, 3, 5 4,3,

25 Il parallelo ra i ie se minimi è un upper bound dell affidabilià del sisema (non si considera che gli sessi elemeni possono sare su più rami) UB 4 3 R R RR RR RRR RRR S UB

26 Sisemi più complessi: lower bound range di affidabilià u se minimi: insiemi minimali disini di componeni i cui guasi impediscono il funzionameno del sisema:, 4,5, 3, 5 4,3,

27 La serie ra i cu se minimi è un lower bound dell affidabilià del sisema (non si considera che gli sessi elemeni possono sare su più rami) 3 3 LB R R R R R R S LB 4 5 R R R R R R

28 Esercizio 9.3 Nel sisema precedene in cui ui gli elemeni hanno R =.9, verificare che: R.9973; R.978 UB Il valore esao, con il meodo combinaorio fornisce: RS.9785 In queso caso molo prossimo al margine inferiore LB

29 UB 4 3 R R RR RR RRR RRR S UB R S

30 3 3 LB R R R R R R S LB 4 5 R R R R R R R S

31 Analisi affidabilisica di sruure P n 6; i...6 Li Ni ip Dai: Il carico ha una sua disribuzione: È anche daa la disribuzione della resisenza di ogni elemeno: fp N f N S i P FS N i fs L dl i Il problema è isosaico, ui gli elemeni sruurali sono necessari per l inegrià sruurale, sisema affidabilisicamene in serie

32 Sruura RSruura f P P FS i ip dp i lassico inegrale di convoluzione: ra graffe è indicaa l affidabilià della sruura al valore generico del carico P RS P FS i ip RS P i aenzione al ipo di disribuzione i i

33 Esempio 9.3 Deerminare l affidabilià saica della sruura in figura in cui il cavo ha resisenza S x N x,.5kn,.6kn e il ubolare ha sezione di 5mm e maeriale con resisenza: r y N y,8mpa,5mpa soo l azione di un singolo carico con le segueni caraerisiche: P x N x,5kn,.kn P

34 Ricaviamo: S x N x,9kn,.5kn ; Da cui: R P S x dx Si P i i R P R P R P S S S R S P

35 f P fs P.5 f P P 5 5 P R f P R P dp Sr. P S.965

36 Aenzione: non si raa di una condizione di complea indipendenza nella quale cioè la roura un elemeno avviene indipendenemene dalla roura dell alro, infai: f P R P dp f P R P dp P S P S.96 Perché? Limii noevoli per eviare il calcolo: i f P R P dp R min( f P R P dp) P Si Sr. P Si i

37 Problemi ipersaici, sisemi fail-safe La sruura può sopporare il carico anche con qualche elemeno roo 3 n Il sisema però non è parallelo in quano non è in genere sufficiene un solo elemeno per sopporare il carico P La capacià di sopporare il carico si riduce se qualche elemeno si rompe Non si può oenere un modello affidabilisico soddisfacene senza considerare il meccanismo fisico di roura dei componeni

38 Sisemi fail-safe con meccanismo di cedimeno del componene perfeamene duile. Il componene può solo collassare plasicamene e ha una duilià infinia carico sposameno

39 Esempio 9.4 Le barre di figura, nominalmene uguali con area A=3mm, sono realizzae con un acciaio dolce che ha ensione di collasso daa da r y N y,5mpa,5mpa deerminare l affidabilià con il seguene carico saico: P x N x,8.5kn,.4kn 3 P

40 Aumenando il carico ci sarà un asa che per prima raggiungerà la condizione di snervameno, uavia quesa condizione non è necessariamene di cedimeno perché rimangono le alre (olreuo ancora in campo elasico). Il carico può quindi aumenare uleriormene, con la prima che coninuerà a rasmeere il suo carico di collasso, si avrà il cedimeno della sruura solo nel momeno in cui ue sono allo snervameno La resisenza della sruura equivale quindi alla somma delle resisenze dei re elemeni: SSr. SS S3 Supponendo che la resisenza del singolo elemeno sia indipendene dagli alri (ipoesi non sempre ragionevole perché dipende dall origine della variabilià):,,,4.5kn,.75kn S x N x N x i S S i i

41 La resisenza della sruura è quindi la somma di re V.A. gaussiane indipendeni:,3, 3,3.5kN,.3kN S x N x N x S S S L affidabilià è quindi: i RSr..966 i Noa Se le resisenze sono correlae, la precedene sima non è cauelaiva, possiamo però avere una sovrasima della dispersione della resisenza assumendo che siano perfeamene correlae, da cui:,3,3,3.5kn,.5kn S x N x N x S S S i i RSr..936

42 Sisemi fail-safe con meccanismo di cedimeno del componene fragile Appena il componene arriva al carico massimo sopporabile si rompe La sua capacià di rasmeere carico si annulla Il carico si disribuisce sugli elemeni inegri che quindi risulano immediaamene sovrasolleciai Modalià di ridisribuzione del carico? Ipoesi ulrasemplificaiva (e non cauelaiva) di ridisribuzione saica

43 Esempio 9.5 La barre di figura, nominalmene uguali con area A=5mm, sono realizzare con un acciaio ad ala resisenza che ha ensione di roura daa da r y N y,65mpa,mpa deerminare l affidabilià in funzione del carico F. F

44 onsideriamo preliminarmene la seguene sequenza di eveni: F A)Si rompe l quando sono enrambe inegre L L B)Tuo il carico finisce sulla F ) on il nuovo livello di carico si rompe la F L P A f L dl Dove f L è la disribuzione di densià della probabilià di roura della singola barra: f L NL,9.75kN,.8kN F P A B f L dl L La probabilià della sequenza vale perano: F F f L f L dl dl L

45 Ma può avvenire alernaivamene anche la sequenza inversa che definisce un eveno incompaibile e, per simmeria, ha la sessa probabilià, quindi la probabilià di roura è daa da: F F P f L f L dl dl R L R.5 3 F

46 Modelli approssimai Maeriale duile R.8.6 Singola con F/ Serie: Weakes link F

47 Generalizzazione: n F F F F n n R! L L n n P n f L f L f L dl dl dl n

48 Esercizio 9.4 onsiderare la sruura a re barre parallele definia nell esempio 9.4, confronare le curve di affidabilià in funzione del carico per un comporameno duile e per un comporameno fragile del maeriale.

Costruzione di macchine. Modulo di: Progettazione probabilistica e affidabilità. Marco Beghini. Lezione 9: Affidabilità per sistemi e strutture

Costruzione di macchine. Modulo di: Progettazione probabilistica e affidabilità. Marco Beghini. Lezione 9: Affidabilità per sistemi e strutture Costruzione di macchine Modulo di: Progettazione probabilistica e affidabilità Marco Beghini Lezione 9: Affidabilità per sistemi e strutture Sistemi complessi Finora abbiamo trattato l affidabilità di

Dettagli

Affidabilità dei sistemi

Affidabilità dei sistemi dei sisemi Un sisema (o uno qualsiasi dei suoi componeni) può essere soggeo a sress casuali. Es: un fusibile in un circuio; una rave di acciaio soo carico; l ala di un aereo soo l influenza di forze Collasso

Dettagli

Processi stocastici e affidabilità

Processi stocastici e affidabilità Processi socasici e affidabilià ω Dao un esperimeno casuale, si assuma di associare ad ogni ( ω ) esio ω una funzione x, di. Risula così definio un insieme di funzioni del empo, deo processo socasico,

Dettagli

UNIVERSITÀ di ROMA TOR VERGATA

UNIVERSITÀ di ROMA TOR VERGATA UNIVERSITÀ di ROMA TOR VERGATA Corso di Probabilià e Saisica 26-7 PBaldi, GTerenzi Tuorao 5, 2 aprile 27 Corso di Laurea in Maemaica Esercizio Dire se esisono delle cosani c ali che le funzioni a) f (x)

Dettagli

Equazioni Differenziali (5)

Equazioni Differenziali (5) Equazioni Differenziali (5) Daa un equazione differenziale lineare omogenea y n + a n 1 ()y n 1 + a 0 ()y = 0, (1) se i coefficieni a i non dipendono da, abbiamo viso che le soluzioni si possono deerminare

Dettagli

Circuiti dinamici. Circuiti del primo ordine. (versione del ) Circuiti del primo ordine

Circuiti dinamici. Circuiti del primo ordine.  (versione del ) Circuiti del primo ordine ircuii dinamici ircuii del primo ordine www.die.ing.unibo.i/pers/masri/didaica.hm (versione del 4-5- ircuii del primo ordine ircuii del primo ordine: circuii il cui sao è definio da una sola variabile

Dettagli

Processo di Arrivi di Poisson

Processo di Arrivi di Poisson CALCOLO DELLE PROBABILITA Processo di Arrivi di Poisson Per arrivo riferimeno. si inende un qualsiasi eveno casuale che si realizza in un deerminao sisema di Un processo di arrivi è un flusso di eveni

Dettagli

Fondamenti di Automatica Test di autovalutazione. può anche essere rappresentato come

Fondamenti di Automatica Test di autovalutazione. può anche essere rappresentato come Fondameni di Auomaica Tes di auovaluazione PARTE A A. Il numero complesso [a] 2 j2 3 [b] 2 3 j2 [c] 8 3 j [d] 2 + j2 3 /6 4e jπ può anche essere rappresenao come A2. L argomeno, espresso in radiani, del

Dettagli

EFFETTI DELLA RICOTTURA

EFFETTI DELLA RICOTTURA EFFETTI DELLA RICOTTURA Derivazione della legge di ingrossameno del grano: v R R gb g M F R R gb g, n g, gb 1 1 F gb γ gb + γ gb r1 r Rg dr g dr g v gb km gbγ d d n g gb R K più in generale : K n g inegrando

Dettagli

UNITA 3. LE EQUAZIONI GONIOMETRICHE.

UNITA 3. LE EQUAZIONI GONIOMETRICHE. UNITA. LE EQUAZIONI GONIOMETRICHE.. Generalià sulle equazioni goniomeriche.. Equazioni goniomeriche elemenari con seno, eno, angene e coangene.. Alri ipi di equazioni goniomeriche elemenari.. Le funzioni

Dettagli

Fondamenti di Automatica Test di autovalutazione n.1 (test di ingresso) può anche essere rappresentato come

Fondamenti di Automatica Test di autovalutazione n.1 (test di ingresso) può anche essere rappresentato come Fondameni di Auomaica Tes di auovaluazione n. (es di ingresso). Il numero complesso [a] 2 j2 3 [b] 2 3 j2 [c] 8 3 j [d] 2 + j2 3 /6 4e jπ può anche essere rappresenao come 2. L argomeno, espresso in radiani,

Dettagli

UNITA 3. LE EQUAZIONI GONIOMETRICHE.

UNITA 3. LE EQUAZIONI GONIOMETRICHE. UNITA. LE EQUAZIONI GONIOMETRICHE.. Generalià sulle equazioni goniomeriche.. Equazioni goniomeriche elemenari con seno, coseno, angene e coangene.. Alri ipi di equazioni goniomeriche elemenari.. Le funzioni

Dettagli

Università degli Studi di Bergamo Corso di Geometria e Algebra Lineare (vecchio programma) 17 giugno 2015 Tema A

Università degli Studi di Bergamo Corso di Geometria e Algebra Lineare (vecchio programma) 17 giugno 2015 Tema A Universià degli Sudi di Bergamo orso di Geomeria e Algebra Lineare (vecchio programma) 7 giugno Tema A Tempo a disposizione: ore. alcolarici, libri e appuni non sono ammessi. Ogni esercizio va iniziao

Dettagli

Il Value at Risk secondo l approccio parametrico: un esempio semplificato

Il Value at Risk secondo l approccio parametrico: un esempio semplificato Universià degli Sudi di Napoli Federico II Caedra di Economia delle Aziende di Assicurazione Il Value a Risk secondo l approccio paramerico: un esempio semplificao Domenico Curcio, Ph. D. Value a Risk

Dettagli

Fisica Generale Modulo di Fisica II A.A Ingegneria Meccanica Edile - Informatica Esercitazione 4 CIRCUITI ELETTRICI

Fisica Generale Modulo di Fisica II A.A Ingegneria Meccanica Edile - Informatica Esercitazione 4 CIRCUITI ELETTRICI Fisica Generale Modulo di Fisica II A.A. 6-7 Ingegneria Meccanica Edile - Informaica Eserciazione IUITI ELETTII b. Nel circuio della figura si ha 5, e 3 3 e nella resisenza passa una correne di A.Il volaggio

Dettagli

Acquisizione ed elaborazione di segnali

Acquisizione ed elaborazione di segnali UNIRSITÀ DI PISA Corso di Laurea in Scienze Moorie Tecnologie e srumenazione biomedica Filri Albero Maceraa Diparimeno di Ingegneria dell Informazione Acquisizione ed elaborazione di segnali Blocchi funzionali

Dettagli

1. ESEMPIO DI CINEMATICA DI UN SISTEMA A DUE CORPI RIGIDI

1. ESEMPIO DI CINEMATICA DI UN SISTEMA A DUE CORPI RIGIDI . ESEMPIO DI CINEMATICA DI UN SISTEMA A DUE CORPI RIGIDI Dao il sisema illusrao in Figura, consisene in due barre rigide connesse da un giuno di roazione orizzonale ; la prima barra è vincolaa a ruoare

Dettagli

Teoria dei Segnali. La Convoluzione (esercizi) parte prima

Teoria dei Segnali. La Convoluzione (esercizi) parte prima Teoria dei Segnali La Convoluzione (esercizi) pare prima 1 Si ricorda che la convoluzione ra due segnali x() e y(), reali o complessi, indicaa simbolicamene come: C xy () = x() * y() è daa indifferenemene

Dettagli

A K CARICHE MOBILI POSITIVE

A K CARICHE MOBILI POSITIVE L DODO SEMCONDUTTOE Polarizzando una giunzione P-N si oiene un paricolare componene doao di una sraordinaria capacià: quella di condurre correne se polarizzao direamene e di non condurla se polarizzao

Dettagli

SISTEMI DINAMICI DEL PRIMO ORDINE

SISTEMI DINAMICI DEL PRIMO ORDINE SISTEMI DINAMICI DEL PRIMO ORDINE I sisemi dinamici del primo ordine sono sisemi dinamici SISO rappresenai da equazioni differenziali lineari e a coefficieni cosani del primo ordine (n=): dy() dx() a +

Dettagli

Unità 7: Il caso delle travi

Unità 7: Il caso delle travi Eserciio 1 Daa una seione circolare piena di diamero 70 mm soggea a un momeno orcene 5000 Nm calcolare: a) il valore della ensione angeniale massima; b) il valore della ensione angeniale sulla circonferena

Dettagli

RISPOSTA IN FREQUENZA DEI SISTEMI LINEARI TEMPO INVARIANTI

RISPOSTA IN FREQUENZA DEI SISTEMI LINEARI TEMPO INVARIANTI RISPOSTA IN FREQUENZA DEI SISTEMI LINEARI TEMPO INVARIANTI RISPOSTA IN FREQUENZA SISTEMI LTI Inroduzione Se il segnale d ingresso di un sisema Lineare Tempo-Invariane LTI e un esponenziale complesso, l

Dettagli

COMPITO TEST- RELATIVITA GALILEANA SIMULAZIONE

COMPITO TEST- RELATIVITA GALILEANA SIMULAZIONE COMPITO TEST- RELATIVITA GALILEANA SIMULAZIONE 1 2 3 4 5 6 7 In un sisema di riferimeno inerziale: A se la somma delle forze che agiscono su un puno maeriale è nulla, la sua velocià non è cosane e, se

Dettagli

SISTEMI LINEARI TEMPO INVARIANTI

SISTEMI LINEARI TEMPO INVARIANTI SISTEMI LINEARI TEMPO INVARIANTI 1 Fondameni di segnali Fondameni e rasmissione TLC Definizione di sisema Sisema: Da un puno di visa fisico e un disposiivo ce modifica un segnale x(, deo ingresso, generando

Dettagli

SISTEMI LINEARI TEMPO INVARIANTI

SISTEMI LINEARI TEMPO INVARIANTI SISTEMI LINEARI TEMPO INVARIANTI SISTEMI LINEARI TEMPO INVARIANTI Sisema: Definizione di Sisema Da un puno di visa fisico e un disposiivo ce modifica un segnale x(), deo ingresso, generando il segnale

Dettagli

P8 CIRCUITI SEQUENZIALI ELEMENTARI

P8 CIRCUITI SEQUENZIALI ELEMENTARI P8 CICUITI EUENZIALI ELEMENTAI P8. - Tracciare lo schema a blocchi di un sisema sequenziale secondo il modello di Moore. Nel modello di Moore di un sisema sequenziale, si suppone che lo sao successivo

Dettagli

Scuola di Architettura Corso di Laurea Magistrale quinquennale c.u.

Scuola di Architettura Corso di Laurea Magistrale quinquennale c.u. Scuola i Archieura Corso i Laurea agisrale quinquennale c.u. Scuola i Archieura Corso i Laurea: agisrale Archieura c.u. Alri ipi i seione rasversale Seione rasversale reangolare L b b/ 1. 1.25 1.5 2..

Dettagli

RISPOSTA IN FREQUENZA DEI SISTEMI LINEARI TEMPO INVARIANTI

RISPOSTA IN FREQUENZA DEI SISTEMI LINEARI TEMPO INVARIANTI RISPOSTA IN FREQUENZA DEI SISTEMI LINEARI TEMPO INVARIANTI 1 Fondameni di segnali Fondameni e rasmissione TLC Inroduzione Se il segnale d ingresso di un sisema Lineare Tempo-Invariane LTI e un esponenziale

Dettagli

MOTO RETTILINEO UNIFORMEMENTE ACCELERATO (M.R.U.A.) Giuseppe Frangiamore con la collaborazione di Francesco Garofalo

MOTO RETTILINEO UNIFORMEMENTE ACCELERATO (M.R.U.A.) Giuseppe Frangiamore con la collaborazione di Francesco Garofalo MOTO RETTILINEO UNIFORMEMENTE ACCELERATO (M.R.U.A.) Giuseppe Frangiamore con la collaborazione di Francesco Garofalo Accelerazione Il moo reilineo uniformemene accelerao è il moo di un puno sooposo ad

Dettagli

1 Catene di Markov a stati continui

1 Catene di Markov a stati continui Caene di Markov a sai coninui In queso caso abbiamo ancora una successione di variabili casuali X 0, X, X,... ma lo spazio degli sai è un insieme più che numerabile. Nel seguio supporremo che lo spazio

Dettagli

Geometria analitica del piano pag 7 Adolfo Scimone. Rette in posizioni particolari rispetto al sistema di riferimento

Geometria analitica del piano pag 7 Adolfo Scimone. Rette in posizioni particolari rispetto al sistema di riferimento Geomeria analiica del piano pag 7 Adolfo Scimone Ree in posizioni paricolari rispeo al sisema di riferimeno L'equazione affine di una rea a + + c = 0 può assumere forme paricolari in relazione alla posizione

Dettagli

Generatore di clock mediante NE 555

Generatore di clock mediante NE 555 Generaore di clock mediane NE 555 onsideriamo la seguene figura inegrao NE555 è quello racchiuso dalla linea raeggiaa. i noa, all inerno dell inegrao, un lach di ipo R. Un lach di ipo R è un circuio sequenziale

Dettagli

Facoltà di Economia - Università di Sassari Anno Accademico Dispense Corso di Econometria Docente: Luciano Gutierrez

Facoltà di Economia - Università di Sassari Anno Accademico Dispense Corso di Econometria Docente: Luciano Gutierrez Facolà di Economia - Universià di Sassari Anno Accademico 2004-2005 Dispense Corso di Economeria Docene: Luciano Guierrez Uilizzo dei modelli di regressione per l analisi della serie soriche Programma:

Dettagli

Grandezze scalari e vettoriali

Grandezze scalari e vettoriali Grandezze scalari e veoriali Esempio veore sposameno: Esisono due ipi di grandezze fisiche. a)grandezze scalari specificae da un valore numerico (posiivo negaivo o nullo) e (nel caso di grandezze dimensionae)

Dettagli

SISTEMI LINEARI TEMPO INVARIANTI

SISTEMI LINEARI TEMPO INVARIANTI SISTEMI LINEARI TEMPO INVARIANTI Fondameni di Segnali e Trasmissione Sisema: Definizione di Sisema Da un puno di visa fisico e un disposiivo ce modifica un segnale, deo ingresso, generando il segnale,

Dettagli

Il modello di crescita deriva dalla logica del tasso di interesse semplice

Il modello di crescita deriva dalla logica del tasso di interesse semplice Eserciazione 7: Approfondimeni sui modelli di crescia. Crescia arimeica, geomerica, esponenziale. Calcolo del asso di crescia e del empo di raddoppio. Viviana Amai 03/06/2009 Modelli di crescia Nella prima

Dettagli

SISTEMI LINEARI TEMPO INVARIANTI. Fondamenti Segnali e Trasmissione

SISTEMI LINEARI TEMPO INVARIANTI. Fondamenti Segnali e Trasmissione SISTEMI LINEARI TEMPO INVARIANTI Fondameni Segnali e Trasmissione Definizione di sisema Sisema: Da un puno di visa fisico e un disposiivo ce modifica un segnale (), deo ingresso, generando il segnale y(),

Dettagli

La risposta di un sistema lineare viscoso a un grado di libertà sollecitato da carichi impulsivi. Prof. Adolfo Santini - Dinamica delle Strutture 1

La risposta di un sistema lineare viscoso a un grado di libertà sollecitato da carichi impulsivi. Prof. Adolfo Santini - Dinamica delle Strutture 1 La risposa di un sisema lineare viscoso a un grado di liberà solleciao da carichi impulsivi Prof. Adolfo Sanini - Dinamica delle Sruure 1 Inroduzione 1/2 Un carico p() si definisce impulsivo quando agisce

Dettagli

ESERCIZI di TEORIA dei SEGNALI. La Correlazione

ESERCIZI di TEORIA dei SEGNALI. La Correlazione ESERCIZI di TEORI dei SEGNLI La Correlazione Correlazione Si definisce correlazione (o correlazione incrociaa o cross-correlazione) ra i due segnali di energia, in generale complessi, x() e y() la quanià:

Dettagli

Geometria BAER A.A Foglio esercizi 1

Geometria BAER A.A Foglio esercizi 1 Geomeria BAER A.A. 16-17 Foglio esercii 1 Eserciio 1. Risolvere le segueni equaioni lineari nelle variabili indicae rovando una parameriaione dell insieme delle soluioni. a) + 5y = 3 nelle incognie, y.

Dettagli

GENERALITA SULLE MACCHINE ELETTRICHE

GENERALITA SULLE MACCHINE ELETTRICHE GENERALITA SULLE MACCHINE ELETTRICHE Una macchina è un organo che assorbe energia di un deerminao ipo e la rasforma in energia di un alro ipo. Energia in Energia in MACCHINA ingresso uscia Energia dispersa

Dettagli

sedimentazione Approfondimenti matematici

sedimentazione Approfondimenti matematici sedimenazione Approfondimeni maemaici considerazioni sulla velocià L espressione p A F = R (1) che fornisce la relazione sulle forze ageni nel processo della sedimenazine, indica che all inizio il moo

Dettagli

Soluzione degli esercizi del Capitolo 1

Soluzione degli esercizi del Capitolo 1 Soluzione degli esercizi del Capiolo Soluzione dell Esercizio. Il valore più opporuno ū di u è quello per cui, in condizioni nominali, la variabile conrollaa assume il valore desiderao; perciò si rova

Dettagli

Affidabilità e Sicurezza delle Costruzioni Meccaniche 3 Calcolo strutturale statico

Affidabilità e Sicurezza delle Costruzioni Meccaniche 3 Calcolo strutturale statico Poliecico di Torio Aabilià e Sicurezza delle Cosruzioi Calcolo sruurale saico Esercizio - Ua rave i acciaio ( m 60, eh 5 ) a sezioe reagolare di base b 5 mm e alezza h 5 mm è soggea a u momeo leee massimo

Dettagli

Analisi Matematica 3/Analisi 4 - SOLUZIONI (19/01/2015)

Analisi Matematica 3/Analisi 4 - SOLUZIONI (19/01/2015) Corso di Laurea in Maemaica Docene: Claudia Anedda Analisi Maemaica 3/Analisi 4 - SOLUZIONI (19/1/215) 1) Daa la serie x b e nx [(n + 1) 2 e x n 2 ], n1 b N +, b pari: i) dimosrare che essa è una serie

Dettagli

Interruttore ideale. + v(t) i(t) t = t 0. i(t) = 0 v(t) = 0. i(t) v(t) v(t) = 0 i(t) = 0. Per t > t 0. interruttore di chiusura

Interruttore ideale. + v(t) i(t) t = t 0. i(t) = 0 v(t) = 0. i(t) v(t) v(t) = 0 i(t) = 0. Per t > t 0. interruttore di chiusura Inerruore ideale inerruore di chiusura { i() = 0 v() = 0 inerruore di aperura { v() = 0 i() = 0 per < 0 per > 0 per < 0 per > 0 v() i() = 0 v() i() = 0 Esempio: inerruore ideale di aperura Per < 0, i()

Dettagli

Calcolo delle sollecitazioni tangenziali massime e dell angolo di torsione tra estremità e radice dell ala

Calcolo delle sollecitazioni tangenziali massime e dell angolo di torsione tra estremità e radice dell ala Scopo del progeo Deerminare le solleciazioni angenziali massime ageni su di una semiala a piana reangolare sooposa ad un dao momeno orcene, l angolo di orsione ra l esremià e la radice dell ala; e verificare

Dettagli

PROBLEMA 1. Soluzione. ε = = =

PROBLEMA 1. Soluzione. ε = = = MOULO PROBLEMA 1 Una barra d acciaio di lunghezza l = m e sezione rasversale di area A = 50, è sooposa a una solleciazione di razione F = 900 da. Sapendo che l allungameno assoluo della barra è l = 1,5,

Dettagli

Ingressi Uscite I S I S T E M A U

Ingressi Uscite I S I S T E M A U PREMESSA n quesa lezione analizziamo l archieura dei sisemi di conrollo auomaico che permeono di enere soo conrollo le condizioni di un processo produivo al fine di oimizzare la qualià del prodoo. CONCETT

Dettagli

LEZIONE N 55 LO SCORRIMENTO VISCOSO DEL CALCESTRUZZO

LEZIONE N 55 LO SCORRIMENTO VISCOSO DEL CALCESTRUZZO LEZIONE N 55 LO SCORRIMENTO VISCOSO DEL CALCESTRUZZO Lo sorrimeno visoso (deo anhe reep o fluage) è quel fenomeno he produe l aumeno nel empo delle deformazioni del alesruzzo, anhe se il ario appliao rimane

Dettagli

Segnali e Sistemi. Proprietà dei sistemi ed operatori

Segnali e Sistemi. Proprietà dei sistemi ed operatori Segnali e Sisemi Un segnale è una qualsiasi grandezza che evolve nel empo. Sono funzioni che hanno come dominio il empo e codominio l insieme di ui i valori che può assumere la grandezza I sisemi rasformano

Dettagli

Regime di capitalizzazione: una famiglia di funzioni fattore di montante che dipende da uno o più parametri.

Regime di capitalizzazione: una famiglia di funzioni fattore di montante che dipende da uno o più parametri. 5. Teoria generale Regimi finanziari Nel capiolo precedene abbiamo inrodoo alcuni parameri in grado di descrivere ualsiasi ipo di regime. Ciò ci permee di definire in generale i regimi finanziari. Regime

Dettagli

Lezione 1. Introduzione alle proprietà strutturali. F. Previdi - Controlli Automatici - Lez. 1 1

Lezione 1. Introduzione alle proprietà strutturali. F. Previdi - Controlli Automatici - Lez. 1 1 ezione. Inroduzione alle proprieà sruurali F. Previdi - Conrolli Auomaici - ez. F. Previdi - Conrolli Auomaici - ez. k x k y k u k x k x z G z z z z z z Qual è il «significao» di quesa cancellazione? Esempio:

Dettagli

TRASFORMATE DI LAPLACE

TRASFORMATE DI LAPLACE CONTROLLI AUTOMATICI Ingegneria della Gesione Indusriale e della Inegrazione di Impresa hp://www.auomazione.ingre.unimore.i/pages/corsi/conrolliauomaicigesionale.hm Trasformae di Laplace Gli esempi visi

Dettagli

Corso di Misure Geodeiche Esercizio posizionameno relaivo Versione:. Jun. 00 Creao da Marco Scurai. remessa. La presene eserciazione risolve in modo compleo e deagliao un problema di sima della posizione

Dettagli

Circuiti del I ordine

Circuiti del I ordine ircuii del I ordine 9 Un circuio è deo del I ordine se coniene un solo elemeno dinamico, condensaore o induore, e per il reso è cosiuio da componeni elerici di ipo algebrico privi di memoria, ovvero generaori

Dettagli

SOLUZIONI SCRITTO DI ANALISI MATEMATICA II - 24/06/08. C.L. in Matematica e Matematica per le Applicazioni

SOLUZIONI SCRITTO DI ANALISI MATEMATICA II - 24/06/08. C.L. in Matematica e Matematica per le Applicazioni SOLUZIONI SCRITTO DI ANALISI MATEMATICA II - 4/06/08 C.L. in Maemaica e Maemaica per le Applicazioni Prof. K. R. Payne e Do. M. Calanchi, C. Tarsi, L. Vesely Soluzione esercizio. (a) Sia f definia da f(x)

Dettagli

Analisi Matematica II Corso di Ingegneria Gestionale Compito del log 1 + x2 y 2

Analisi Matematica II Corso di Ingegneria Gestionale Compito del log 1 + x2 y 2 Analisi Maemaica II Corso di Ingegneria Gesionale Compio del 5-7-7 - È obbligaorio consegnare ui i fogli, anche la brua e il eso. - Le rispose senza giusificazione sono considerae nulle. Esercizio. puni

Dettagli

Corso di laurea in Ingegneria Meccatronica CONTROLLI AUTOMATICI E CA - 03 FUNZIONE DI TRASFERIMENTO

Corso di laurea in Ingegneria Meccatronica CONTROLLI AUTOMATICI E CA - 03 FUNZIONE DI TRASFERIMENTO Auomaion Roboics and Sysem CONTROL Corso di laurea in Ingegneria Meccaronica CONTROLLI AUTOMATICI E AZIONAMENTI ELETTRICI CA - 03 FUNZIONE DI TRASFERIMENTO Universià degli Sudi di Modena e Reggio Emilia

Dettagli

Corso di Fondamenti di Telecomunicazioni

Corso di Fondamenti di Telecomunicazioni Corso di Fondameni di elecomunicazioni - SEGNALI E SPERI Prof. Mario Barbera [pare ] Sruura della lezione Proprieà dei segnali Valore medio, valore efficace, poenza, energia rasformaa di Fourier e speri

Dettagli

Soluzione. Le componenti del gradiente sono le derivate parziali della funzione: cos y 0 (x 0, y 0 ) domf =R 2. sin y 0 (x x 0 ) + e x 0

Soluzione. Le componenti del gradiente sono le derivate parziali della funzione: cos y 0 (x 0, y 0 ) domf =R 2. sin y 0 (x x 0 ) + e x 0 Gradiene e piano angene Definizione 1 Sia f : A R 2 R, f derivabile in (x 0, y 0 ) A). Definiamo il veore gradiene di f in (x 0, y 0 ): f(x 0, y 0 ) = (f x (x 0, y 0 ), f y (x 0, y 0 )). Definiamo il piano

Dettagli

LA TRASFORMATA DI FOURIER: PROPRIETA ED ESEMPI. 1 Fondamenti TLC

LA TRASFORMATA DI FOURIER: PROPRIETA ED ESEMPI. 1 Fondamenti TLC LA TRASFORMATA DI FOURIER: PROPRIETA ED ESEMPI Fondameni TLC Propriea della () LINEARITA : la della combinazione lineare (somma pesaa) di due segnali e uguale alla combinazione lineare delle dei due segnali.

Dettagli

RISPOSTA IN FREQUENZA DEI SISTEMI LTI. 1 Fondamenti Segnali e Trasmissione

RISPOSTA IN FREQUENZA DEI SISTEMI LTI. 1 Fondamenti Segnali e Trasmissione RISPOSTA IN FREQUENZA DEI SISTEMI LTI Fondameni Segnali e Trasmissione Risposa in requenza dei sisemi LTI Se il segnale d ingresso di un sisema Lineare Tempo-Invariane LTI e un esponenziale complesso l

Dettagli

intervalli di tempo. Esempio di sistema oscillante: Fig. 1 Massa m che può traslare in una sola direzione x, legata ad una molla di rigidezza k.

intervalli di tempo. Esempio di sistema oscillante: Fig. 1 Massa m che può traslare in una sola direzione x, legata ad una molla di rigidezza k. Sudio delle vibrazioni raa ogni oscillazione di una grandezza inorno ad una posizione di equilibrio. La forma piu semplice di oscillazione e il moo armonico che puo i essere descrio da un veore roane Ae

Dettagli

Caratterizzazione degli autovalori (cfr. Lez. VII, punto 2). Gli autovalori di A sono le radici del polinomio caratteristico det(a λi) di A.

Caratterizzazione degli autovalori (cfr. Lez. VII, punto 2). Gli autovalori di A sono le radici del polinomio caratteristico det(a λi) di A. Esercizi III Priima di dare la risoluzione dei segueni esercizi su auoveori, auovalori, diagonalizzabilià e diagonalizzazione, ricordiamo alcune definizioni, eoremi e fai su queso argomeno Sia A una marice

Dettagli

Introduzione ai Modelli di Durata: Stime Non-Parametriche. a.a. 2009/ Quarto Periodo Prof. Filippo DOMMA

Introduzione ai Modelli di Durata: Stime Non-Parametriche. a.a. 2009/ Quarto Periodo Prof. Filippo DOMMA Inroduzione ai Modelli di Duraa: ime Non-Parameriche cenni a.a. 2009/2010 - Quaro Periodo Prof. Filippo DOMMA Corso di Laurea pecialisica/magisrale in Economia Applicaa Facolà di Economia UniCal F. DOMMA

Dettagli

Scienza dei Materiali 1 Esercitazioni

Scienza dei Materiali 1 Esercitazioni Scienza dei Maeriali 1 Eserciazioni 15. Maeriali polimerici ver. 1.0 ESERCIZI Ex 15.1 Rilassameno 1 Uno sforzo di 7.6 MPa è applicao ad un maeriale elasomerico manenendo cosane la deformazione. Dopo 40

Dettagli

TRASFORMAZIONE DEI SEGNALI. Lineari (tra cui il Filtraggio) Non Lineari

TRASFORMAZIONE DEI SEGNALI. Lineari (tra cui il Filtraggio) Non Lineari TRASFORMAZIONE DEI SEGNALI SENZA MEMORIA: ZMNL (Zero-Memory Non Lineariy) g x( ) y = CON MEMORIA: Lineari (ra cui il Filraggio) Non Lineari L5/1 TRASFORMAZIONI SENZA MEMORIA (ISTANTANEE) y Limiazione dura

Dettagli

Il segnale sinusoidale (tratto da: Segnali elettrici, a cura del Dott. M.Scalia, Ing. F.Guidi, Dott. M.Sperini)

Il segnale sinusoidale (tratto da: Segnali elettrici, a cura del Dott. M.Scalia, Ing. F.Guidi, Dott. M.Sperini) Il segnale sinusoidale (rao da: Segnali elerici, a cura del Do..Scalia, Ing. F.Guidi, Do..Sperini). Inroduzione Fenomeni oscillaori sono preseni in forma empirica nel mondo della fisica: ra gli esempi

Dettagli

Sessione ordinaria 12_2 1 M. Vincoli

Sessione ordinaria 12_2 1 M. Vincoli Sessione orinaria 1_ 1 M. Vincoli Per capacià si inene un conuore, o un sisema i conuori, in grao i accumulare carica elerica. onsierano a esempio un sisema i ue conuori e sposano una carica a uno all

Dettagli

f v, lim allora x, y x, y e analogamente se 0,1 Osserviamo che la derivata direzionale esiste per ogni punto x y e ogni vettore,2 0,0 cos 2 1

f v, lim allora x, y x, y e analogamente se 0,1 Osserviamo che la derivata direzionale esiste per ogni punto x y e ogni vettore,2 0,0 cos 2 1 DERIVATA DIREZIONALE La definizione di derivaa direzionale è y, lim,, f v y v f y v, v Se v, allora, y, y e analogamene se,, y, y f, y y Calcolare la derivaa direzionale della funzione dove v allora dom

Dettagli

1) Determinare la soluzione massimale del problema di Cauchy. 2) Determinare la soluzione massimale del problema di Cauchy.

1) Determinare la soluzione massimale del problema di Cauchy. 2) Determinare la soluzione massimale del problema di Cauchy. Capiolo 3 Equazioni differenziali Esercizi ) Deerminare la soluzione massimale del problema di Cauchy y ()= y() 4 3 y()= ) Deerminare la soluzione massimale del problema di Cauchy y ()= 4 + 6 y()+ 8 (

Dettagli

CONTROLLI AUTOMATICI Ingegneria Meccatronica

CONTROLLI AUTOMATICI Ingegneria Meccatronica CONTROLLI AUTOMATICI Ingegneria Meccaronica TRASFORMATE DI LAPLACE Prof. Cesare Fanuzzi Ing. Crisian Secchi e-mail: cesare.fanuzzi@unimore.i, crisian.secchi@unimore.i hp://www.auomazione.ingre.unimore.i

Dettagli

V cc. I out. V out I R Q1 Q2

V cc. I out. V out I R Q1 Q2 pecchio di correne cascode con amplificazione della correne di base V cc V Q Q Q Q Q6 Q Figura : pecchio di correne cascode a JT con amplificazione della correne di base. alcolo del conribuo delle correni

Dettagli

( ) ( ) Esempio di Prova di MATEMATICA E FISICA - MIUR PROBLEMA 1 (traccia di soluzione di S. De Stefani)

( ) ( ) Esempio di Prova di MATEMATICA E FISICA - MIUR PROBLEMA 1 (traccia di soluzione di S. De Stefani) Esempio di Prova di MATEMATICA E FISICA - MIUR - 8..9 PROBLEMA (raccia di soluzione di S. De Sefani) Assegnae due cosani reali a e (con >), si consideri la funzione ) così definia: )=. A seconda dei possiili

Dettagli

Terza lezione: Processi stazionari

Terza lezione: Processi stazionari Teoria dei processi casuali a empo coninuo Terza lezione: Concei inroduivi Il conceo di sazionarieà Sazionarieà in senso lao Esempi e modelli 005 Poliecnico di Torino 1 Concei inroduivi Significao di sazionarieà

Dettagli

Gruppo di lezioni Ore Principali argomenti

Gruppo di lezioni Ore Principali argomenti Gruppo di lezioni Ore Principali argomeni 1 Saica dei sisemi meccanici 9 Modellazione del sisema Elemeni sruurali vincoli Equazioni di equilibrio Saica degli elemeni snelli 9 Solleciazioni inerne 3 Elemeni

Dettagli

del materiale sul carico critico

del materiale sul carico critico se compresse: ffei della non linearià RIF: LC III pag 39 del maeriale sul carico criico Il carico criico per unià di superficie corrispondene alla perdia di unicià della risposa in caso di comporameno

Dettagli

0.1 Formula di Gauss e formula di Stokes

0.1 Formula di Gauss e formula di Stokes 1.1 Formula di Gauss e formula di Sokes Siano Ω un apero di R 3, F un campo veoriale definio su Ω, S una superficie la cui chiusura è conenua in Ω. Supponiamo inolre che in S si possano disinguere due

Dettagli

ESPERIENZE INTRODUTTIVE ALL'ELETTRONICA DIGITALE

ESPERIENZE INTRODUTTIVE ALL'ELETTRONICA DIGITALE Generaore di clock ESPERIENZA 1 ESPERIENZE INTRODUTTIVE ALL'ELETTRONICA DIGITALE Dobbiamo cosruire un generaore di onde quadre con una frequenza di circa 100KHz che uilizzeremo come clok in ue le alreesperienze.

Dettagli

] = b [ ] [ ] b [ ] = T 1 [ ] LT 1

] = b [ ] [ ] b [ ] = T 1 [ ] LT 1 Moo smorzao Nel precedene paragrafo abbiamo risolo il caso in cui l'accelerazione del puno maeriale è cosane. In queso paragrafo affroneremo il caso di una accelerazione dipendene dalla elocià. Consideriamo

Dettagli

EQUAZIONI GONIOMETRICHE

EQUAZIONI GONIOMETRICHE EQUAZIONI GONIOMETRICHE ) risolvere: cos + cos 0 Si raa di un caso riconducibile ad un equazione algebrica di grado nell incognia cos, per cui si può scrivere: cos ± + 8 4 cos cos 80 + k60 ± 60 + k60 6)

Dettagli

State Space Model. Corso di: Analisi delle Serie Storiche. Corso di Laurea Triennale in: Scienze Statistiche A.A. 2017/18

State Space Model. Corso di: Analisi delle Serie Storiche. Corso di Laurea Triennale in: Scienze Statistiche A.A. 2017/18 Sae Space Model Corso di: Analisi delle Serie Soriche Corso di Laurea Triennale in: Scienze Saisiche A.A. 07/8 Generalià Gli Sae Space Models (Modelli nello Spazio degli Sai) forniscono una meodologia

Dettagli

Predizione di affidabilità di un sistema elettronico

Predizione di affidabilità di un sistema elettronico Universià degli Sudi di Modena e Reggio Emilia Anno Accademico 2001/2002 Predizione di affidabilià di un sisema eleronico ABANA Suppliers Gruppo 14 Ansaloni M. Bulgarelli A. Neri D. Popovac A. Rocchei

Dettagli

ANALISI VETTORIALE ESERCIZI SU EQUADIFF. y = y(y 1)t. = e C e t2 /2 y 1 y

ANALISI VETTORIALE ESERCIZI SU EQUADIFF. y = y(y 1)t. = e C e t2 /2 y 1 y ANALISI VETTORIALE ESERCIZI SU EQUADIFF Esercizio Calcolare l inegrale generale dell equazione differenziale = ( ) e deerminare quali soluzioni sono definie su uo R. Risposa Fuori dagli equilibri = 0 e

Dettagli

Laboratorio di Fisica I: laurea in Ottica e Optometria

Laboratorio di Fisica I: laurea in Ottica e Optometria Laboraorio di Fisica I: laurea in Oica e Opomeria Misura del empo caraerisico di carica e scarica di un condensaore araverso una resisenza Descrizione Si vuole cosruire un circuio in serie collegando generaore

Dettagli

Elettronica di potenza - I Lezione

Elettronica di potenza - I Lezione Eleronica di poenza - I Lezione Le migliori presazioni, la facilià di conrollo e la riduzione dei cosi dei moderni disposiivi di poenza a semiconduore rispeo a quelli di pochi anni fa, hanno permesso di

Dettagli

1. Domanda La funzione di costo totale di breve periodo (con il costo espresso in euro) di un impresa è la seguente:

1. Domanda La funzione di costo totale di breve periodo (con il costo espresso in euro) di un impresa è la seguente: 1. omanda La funzione di coso oale di breve periodo (con il coso espresso in euro) di un impresa è la seguene: eerminare il coso oale, il coso oale medio, il coso marginale, i cosi oali fissi e i cosi

Dettagli

Ci domandiamo allora se e sempre possibile rappresentare una funzione in questo modo.

Ci domandiamo allora se e sempre possibile rappresentare una funzione in questo modo. 1. Serie di Fourier I problemi al bordo associai ad equazioni differenziali si sanno risolvere con il meodo di separazione delle variabili solano se il dao iniziale si rappresena nella forma fx = a cosx

Dettagli

Corso di ELETTRONICA INDUSTRIALE

Corso di ELETTRONICA INDUSTRIALE Corso di ELETTRONICA INDUSTRIALE Conrollo di correne del converiore Buck Argomeni raai Argomeni raai Conrollo di ensione con limiazione di correne Argomeni raai Conrollo di ensione con limiazione di correne

Dettagli

APPLICAZIONE DI UN RETE CORRETTRICE

APPLICAZIONE DI UN RETE CORRETTRICE ITITUTO TECNICO INDUTRIALE M. PANETTI - BARI Prof. Eore Panella Eserciazione di Laboraorio APPLICAZIONE DI UN RETE CORRETTRICE Assegnaa la risposa armonica daa in figura :. Progeare un circuio che la realizza..

Dettagli

Corso di Laurea in Ingegneria Informatica (Laurea on Line) Prima prova Intermedia

Corso di Laurea in Ingegneria Informatica (Laurea on Line) Prima prova Intermedia Milano, 4//003 Corso di Laurea in Ingegneria Informaica (Laurea on Line) Corso di Fondameni di Segnali e rasmissione Prima prova Inermedia Carissimi sudeni, scopo di quesa prima prova inermedia è quello

Dettagli

Università degli Studi di Firenze Corso di Laurea triennale in Fisica e Astrofisica

Università degli Studi di Firenze Corso di Laurea triennale in Fisica e Astrofisica Universià degli Sudi di Firenze Corso di Laurea riennale in Fisica e Asrofisica Analisi Maemaica I (A.A. 5/6) Proff. F. Bucci & E. Paolini Seconda prova inercorso ( Dicembre 5). Dimosrare che per ogni

Dettagli

Cinematica del punto materiale 1. La definizione di cinematica.

Cinematica del punto materiale 1. La definizione di cinematica. Cinemaica del puno maeriale 1. La definizione di cinemaica. 2. Posizione e Sposameno 3. Equazione oraria del moo 4. Traieoria 5. Moo in una dimensione. 6. Velocià media e velocià isananea. 7. Moo reilineo

Dettagli

Modello di una macchina in corrente continua

Modello di una macchina in corrente continua Modello di una macchina in correne coninua Consideriamo un moore in correne coninua con ecciazione indipendene, in generale per esso poremo scrivere le segueni relazioni: e( ) = K Φ ω( ) v dia ( ) ( )

Dettagli

Esempi di progetto di alimentatori

Esempi di progetto di alimentatori Alimenaori 1 Esempi di progeo di alimenaori Progeo di alimenaore senza circuio di correzione del faore di poenza (PFC) Valore del condensaore Correne di picco Scela diodi Correne RMS Progeo di alimenaore

Dettagli

Lezione 7. Esercizi sui. circuiti dinamici del I ordine

Lezione 7. Esercizi sui. circuiti dinamici del I ordine Lezione 7 Esercizi sui circuii dinamici del I ordine Lezioni di Eleroecnica per sudeni di Ingegneria Gesionale ideae e scrie da Lorenza ori con il conribuo di Vincenzo Paolo Loschiavo Eleroecnica per gesionali

Dettagli

Corso di Componenti e Impianti Termotecnici TERMOSTRISCE

Corso di Componenti e Impianti Termotecnici TERMOSTRISCE TERMOSTRISCE 1 Termo srisce Le ermosrisce sono corpi scaldani che cedono calore per convezione naurale e per irraggiameno. Sono cosiuie essenzialmene da griglie di ubi sulle quali vengono fissae delle

Dettagli

P suolo in P; 2. la distanza d, dall uscita dello

P suolo in P; 2. la distanza d, dall uscita dello acolà di Ingegneria Prova Generale di isica I 1.07.004 Compio A Esercizio n.1 Uno sciaore di massa m = 60 Kg pare da fermo da un alezza h = 8 m rispeo al suolo lungo uno scivolo inclinao di un angolo α

Dettagli