Elaborazione di dati e segnali biomedici Esercitazione n 3

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Elaborazione di dati e segnali biomedici Esercitazione n 3"

Transcript

1 %%%%%%%%%%%%%%%%%%% %% Esercitazione n 3 %% %% %% %% Filtri numerici: - progetto di risuonatore due poli due zeri %% %% Rilevazione del QRS %% %% 7 novembre 2006 %% %%%%%%%%%%%%%%%%%%% clear all close all %%%%% %% Progetto di un risuonatore a due poli e due zeri %% %%%%% fc=250; f0=17; % Per realizzare un risuonatore (vedi appunti del corso) occorre % scegliere la frequenza di centro banda (w0) % e il fattore di risonanza % Per rivelare i QRS scegliamo un passa-banda con f0=17 Hz e Q=4 w0=2*pi*f0/fc; Q=4; % fattore di risonanza DW=w0/Q; % ampiezza di banda R=(1-DW/2); % Ricordando le formule di progetto, e ricordando che, per Matlab, % i valori di b sono i coefficienti dell'ingresso, si ha: b1=0; b2=-1; bris=[1;b1;b2]; a1=-2*r*cos(w0); a2=r^2; aris=[1;a1;a2]; %%%%%%%%%%%%%%% %% Carica segnale ECG in memoria e creazione dell'asse t in s %% %%%%%%%%%%%%%%% load ecg.asc d1=ecg(:,2); % derivazione d1 t=ecg(:,1)/1000; % tempo in secondi %% Filtriamo d1 tramite il filtro implementato %% der1=filter(bris,aris,d1); % Vediamo il segnale ECG e il segnale filtrato 1

2 % per un assegnato intervallo plot(t(1:100),d1(1:100),'r*-',t(1:100),der1(1:100),'b*-') axis([t(1) t(100) min(der1(1:100)) max(der1(1:100))]) title('ecg (rosso) + segnale filtrato (blu)'); ; ylabel('mv - mv/sec') ; %%%%%%%% %% Vediamo dove il segnale filtrato supera una soglia. %% %% La soglia è scelta "ad occhio" pari a 500 %% %%%%%%%% soglia=500; up=find(der1>soglia); % up=indici dei campioni del vettore der1 % per cui è verificata la condizione richiesta % per visualizzare una soglia della stessa lunghezza del segnale: soglia=ones(length(der1),1)*soglia; plot(t,der1,'b',t(up),der1(up),'k*',t,soglia,'r') axis([t(1) t(end) min(der1) max(der1)]) title('ecg filtrato (blu) + valori sopra soglia (nero) + soglia (rosso)') % Visualizzazione degli stessi segnali in un intervallo di 1 s % (fc=250hz) upparz=find(der1(1:250)>soglia(1)); %! Attenzione: quella seguente è un'unica istruzione plot(t(1:250),der1(1:250),'bo- ',t(upparz),der1(upparz),'k*',t(1:250),soglia(1:250),'r') title('ecg filtrato (blu) + valori sopra soglia (nero) + soglia (rosso)[1 secondo]') axis([t(1) t(250) min(der1(1:250)) max(der1(1:250))]) %%%%%%%%%%%%%%%%%% %% Il nostro scopo è trovare la posizione del max di ciascun QRS %% %%%%%%%%%%%%%%%%%% % Si può procedere per passi successivi: % - ricerca dei primi campioni sopra soglia di ciascun complesso QRS % - confronto di questo campione con i successivi % - memorizzazione del massimo trovato % I passo 2

3 % up punta a tutti i valori sopra soglia del vettore der1. dup=diff(up); % il primo elemento di dup indica la distanza, in campioni, tra il % secondo ed il primo valore sopra soglia di der1ef; % il secondo valore di dup indica la distanza, in campioni, tra il % terzo ed il secondo valore sopra soglia di der1; etc... % La risposta del filtro tende a risuonare per cui può capitare che % i campioni sopra-soglia appartengano a lobi diversi % della stessa risposta. % E' necessario allora prevedere discontinuità negli indici trovati. % Per essere sicuri di aver individuato campioni che si riferiscono a % differenti complessi QRS, ci si deve accertare che si sia smorzata % ogni risposta ad un singolo QRS. % In definitiva la distanza tra due campioni % deve essere almeno di 40 campioni. % Dimostriamolo!!! % Nel dominio del tempo, la risposta transitoria del filtro % è data dalla somma di termini del tipo p^n % (dove p è il polo ed n il tempo), per cui, assumendo che il filtro % sia strettamente stabile (poli interni alla circonferenza unitaria % come nel nostro caso), si esaurirà in modo esponenziale. % In particolare, la costante di tempo con cui si raggiunge lo stato % stazionario dipende dal polo più vicino al circolo unitario. % La cost. di tempo "effettiva" (ne) può essere definita % come il tempo al quale il termine transitorio % è caduto al di sotto di un valore fissato (s). % In termini quantitativi si ha: % ne=ln(s)/ln p % Nel nostro caso abbiamo due poli complessi coniugati % il cui modulo è: R= % Imponendo che il transitorio sia arrivato al 10%, % cioè ponendo s=0.1 % si ottiene: ne = numero di campioni = 42 % ("Introduction to signal processing", S.J. Orfanidis. % Prentice Hall International Edition, 1996) c=find(dup>40); % Dato l'allineamento tra i segnali, i campioni sopra-soglia della % derivata corrispondono a campioni delle onde R dell'ecg; quindi % quando la differenza calcolata è >40, siamo in corrispondenza di % onde R diverse! k=[up(1);up(c+1)]; %! Attenzione: che cosa rappresenta il vettore [up(1);up(c+1)]? % Il vettore [up(1);up(c+1)] rappresenta gli indici, in der1, % dei valori che superano la soglia per la prima volta (in 3

4 % corrispondenza di un'onda R; dove up(1) si considera perché molto % probabilmente la prima volta che si supera la soglia % nel segnale ECG c'è un complesso QRS (che viene "perso" % dall'operazione di diff che non agisce sul primo elemento % di un vettore) mentre si fa riferimento % ad up(c+1), anziché ad up(c), per problemi di allineamento % (dup, lavorando per differenze ha, ovviamente, un campione in meno % rispetto ad up). % In definitiva, le posizioni in der1 del primo valore corrispondente % ad un'onda R corrispondono ai valori di k plot(t,der1,'b', t(k), der1(k),'k*') title('punti in cui il segnale filtrato supera la soglia per la prima volta in corrispondenza di un QRS') axis([t(1) t(end) min(der1) max(der1)]) indici=find((k>3500)&(k<3999)); %! essendo k un vettore di indici! plot(t(3500:3999),d1(3500:3999),'r',t(k(indici)),d1(k(indici)),'k*',t (3500:3999),d1(3500:3999),'bo') % (l'intervallo di visualizzazione è scelto empiricamente) title('punti di inizio stimato (I camp. sopra-soglia) dei diversi complessi QRS') % Notiamo che quello stimato non sempre è il I campione! % La sua posizione dipende dalla scelta della soglia. axis([t(3500) t(3999) min(d1(3500:3999)) max(d1(3500:3999))]) ylabel('mv') %%%%%%%%%%%% %% Troviamo ora la posizione del max di ogni complesso QRS %% %%%%%%%%%%%% % Per trovare il massino, consideriamo che, % essendo la durata dell'onda R circa 30 ms e la frequenza di % campionamento 250 Hz, in un'onda R ci sono mediamente 7 campioni. % Consideriamo quindi il primo valore dell'onda R, e, a partire % da questo, confrontiamo 7 valori consecutivi dell'ecg, % e memorizziamo la posizione del massimo tra questi. nn=7; % II e III passo for i=1:length(k)-1, % se considero l'ultimo campione, facendo + 7 posso superare % la lunghezza del segnale. 4

5 % In questo modo però rischio di "perdere" l'ultima onda R [y,jj]=max(d1(k(i):k(i)+nn-1)); % ricerca del massimo in ogni sottovettore m(i)=jj+k(i)-1; % aggiornamento dell'indice effettivo nell'intero vettore % (jj è sempre compreso tra 1 e 7) end; % ora m contiene le posizioni dei massimi dei QRS (speriamo!!!) plot(t,d1,'r',t(m),d1(m),'k*') axis([t(1) t(length(t)) min(d1) max(d1)]) title('massimi dei QRS: intero ECG') ylabel('mv') %% Calcolo della serie ritmo cardiaco espresso %% %% in battiti per minuto (bpm) %% rrc=diff(m); % in questo modo abbiamo ottenuto le differenze R-R in campioni. % Convertiamole in secondi rrs=rrc/250; % Determiniamo ora il ritmo cardiaco ricordando che % rappresenta il numero di battiti nell'unità di tempo % (è quindi dato dall'inverso della serie degli R-R) e % che il tempo è ora espresso in minuti e non in secondi fhr=60./rrs; % il. serve per eseguire l'operazione elemento per elemento % Stampiamo ora (a video) i primi 10 valori della serie ottenuta disp('primi campioni della serie HR') fhr(1:10) 5

% plottiamo insieme le due risposte per vedere la differenza plot(f(1:n/2),[hid(1:n/2) abs(h(1:n/2))]); 1

% plottiamo insieme le due risposte per vedere la differenza plot(f(1:n/2),[hid(1:n/2) abs(h(1:n/2))]); 1 %% Esercitazione n 2 %% %% %% %% Elaborazione dati e segnali biomedici %% %% %% %% Derivatore per filtraggio ECG: y(n)=x(n+1)-x(n-1) %% %% Riconoscitore di QRS basato su soglia applicata %% %% alla derivata

Dettagli

Elaborazione di dati e segnali biomedici Esercitazione n 4

Elaborazione di dati e segnali biomedici Esercitazione n 4 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %% Esercitazione n 4 %% %% %% %% %% %% %% %% Filtri numerici: %% %% - derivatori (ideale e differenze centrali) %% %% - filtro a coefficienti interi

Dettagli

( e j2π ft 0.9 j) ( e j2π ft j)

( e j2π ft 0.9 j) ( e j2π ft j) Esercitazione Filtri IIR Es. 1. Si consideri il filtro dato dalla seguente equazione alle differenze y[n]+0.81y[n-2]=x[n]-x[n-2] - Determinare la funzione di trasferimento del filtro Eseguendo la Trasformata

Dettagli

pointer=find(segnale>1.9); for k=1:length(pointer) matrice(k,:)=segnale(pointer(k)+1:(pointer(k)+1)+191); end

pointer=find(segnale>1.9); for k=1:length(pointer) matrice(k,:)=segnale(pointer(k)+1:(pointer(k)+1)+191); end %%%%%%%%%%% %% Esercitazione n 5 %% %% %% %% %% %% %% %% Potenziali evocati: - media correlata %% %% - plus-minus method %% %% - cumsum e precum %% %% - filtro di Woody %% %% %% %% 12 dicembre 2006 %%

Dettagli

Circuiti a Tempo Discreto Esercitazione 2 - Sequenze e Convoluzione in Matlab R

Circuiti a Tempo Discreto Esercitazione 2 - Sequenze e Convoluzione in Matlab R Circuiti a Tempo Discreto Esercitazione 2 - Sequenze e Convoluzione in Matlab R Prof. Michele Scarpiniti Dipartimento di Ingegneria dell Informazione, Elettronica e Telecomunicazioni Sapienza Università

Dettagli

( e j2! ft! 0.9 j) ( e j2! ft j)

( e j2! ft! 0.9 j) ( e j2! ft j) Esercitazione Filtri IIR Si consideri il filtro dato dalla seguente equazione alle differenze y[n]+0.81y[n-2]=x[n]-x[n-2] - Determinare la funzione di trasferimento del filtro Eseguendo la Trasformata

Dettagli

Seconda esercitazione per il corso di Sistemi di Telecom. 1 AA 07 08

Seconda esercitazione per il corso di Sistemi di Telecom. 1 AA 07 08 Seconda esercitazione per il corso di Sistemi di Telecom. AA 7 8 3th October 27 Abstract Scopo dell esercitazione Scopo dell esercitazione è la scrittura di una funzione Matlab per la decodifica di un

Dettagli

Acquisizione ed elaborazione di segnali

Acquisizione ed elaborazione di segnali UNIVERSITÀ DI PISA Corso di Laurea in Scienze Motorie Tecnologie e strumentazione biomedica Elaborazione di segnali Alberto Macerata Dipartimento di Ingegneria dell Informazione Acquisizione ed elaborazione

Dettagli

) $ ' con T0=5s e T=2s. La funzione deve essere

) $ ' con T0=5s e T=2s. La funzione deve essere Metodi per l Analisi dei Segnali Biomedici. Esercitazioni AA 2010/2011 Esercitazione 11/03/2011 " t!t es_1.1. Disegnare la funzione rect 0 % $ ' con T0=5s e T=2s. La funzione deve essere calcolata # T

Dettagli

Correzione dell Esercitazione 3

Correzione dell Esercitazione 3 Correzione dell Esercitazione Stefano Angioni novembre 005 Esercizio Il testo dell esercizio fornisce il modello di un sistema lineare e stazionario in termini di relazione ingresso uscita d y(t) dt +

Dettagli

Corso di Elaborazione Numerica dei Segnali Esame del 7 Luglio 2004

Corso di Elaborazione Numerica dei Segnali Esame del 7 Luglio 2004 Corso di Elaborazione Numerica dei Segnali Esame del 7 Luglio TOTALE PUNTI: L allievo é invitato a dare una ragionata e succinta risposta a tutti gli argomenti proposti, per dimostrare il livello di preparazione

Dettagli

Le radici della D(s) forniscono i poli della funzione di trasferimento T(s).

Le radici della D(s) forniscono i poli della funzione di trasferimento T(s). F I L T R I A T T I V I D E L 2 O R D I N E I filtri del 2 ordine hanno la caratteristica di avere al denominatore della funzione di trasferimento una funzione di 2 grado nella variabile s: oppure nella

Dettagli

Circuiti a tempo discreto Raffaele Parisi

Circuiti a tempo discreto Raffaele Parisi Università di Roma La Sapienza Laurea Specialistica in Ingegneria Elettronica Circuiti a tempo discreto Raffaele Parisi : Cenni alla sintesi di Circuiti TD Generalità sulle tecniche di progetto. Filtri

Dettagli

Trasformata discreta di Fourier diunasequenzafinita: algoritmifft

Trasformata discreta di Fourier diunasequenzafinita: algoritmifft diunasequenzafinita: algoritmifft La TDF di una sequenza finita può essere calcolata utilizzando algoritmi, computazionalmente efficienti, quali gli algoritmi Fast Fourier Transform (FFT). L efficienza

Dettagli

Metodi di progetto per filtri IIR: soluzione dei problemi proposti

Metodi di progetto per filtri IIR: soluzione dei problemi proposti 7 Metodi di progetto per filtri IIR: soluzione dei problemi proposti P-7.: Usando il metodo dell invarianza all impulso, la funzione di trasferimento del filtro analogico viene trasformata in una funzione

Dettagli

Capitolo 5.3 Frequency response for rational system functions

Capitolo 5.3 Frequency response for rational system functions Appunti di Teoria dei Circuiti prof. Aurelio Uncini facoltà di Ingegneria Informatica - Università La Sapienza (ROMA) Traduzione dal testo Discrete Time Signal Processing di Oppenheim-Schafer (ed. Prentice

Dettagli

FONDAMENTI DI SEGNALI E TRASMISSIONE 5 Laboratorio

FONDAMENTI DI SEGNALI E TRASMISSIONE 5 Laboratorio FONDAMENTI DI SEGNALI E TRASMISSIONE 5 Laboratorio Paolo Mazzucchelli mazzucch@elet.polimi.it MATLAB: generazione di numeri casuali Il comando che permette di generare una matrice (n r,n c ) composta da

Dettagli

Complementi di Matematica e Calcolo Numerico A.A Laboratorio 11 - Metodi numerici per equazioni differenziali ordinarie

Complementi di Matematica e Calcolo Numerico A.A Laboratorio 11 - Metodi numerici per equazioni differenziali ordinarie Complementi di Matematica e Calcolo Numerico A.A. 2010-2011 Laboratorio 11 - Metodi numerici per equazioni differenziali ordinarie Cosideriamo il seguente Problema di Cauchy: Trovare una funzione y : I

Dettagli

Corso di Calcolo Numerico

Corso di Calcolo Numerico Corso di Calcolo Numerico Dott.ssa M.C. De Bonis Università degli Studi della Basilicata, Potenza Facoltà di Ingegneria Corso di Laurea in Ingegneria Meccanica Risoluzione di Equazioni Algebriche Le equazioni

Dettagli

Esercitazione N.1 per il corso di SISTEMI DI TELECOMUNICAZIONI 1 Filtro notch e canna d organo

Esercitazione N.1 per il corso di SISTEMI DI TELECOMUNICAZIONI 1 Filtro notch e canna d organo Esercitazione N.1 per il corso di SISTEMI DI TELECOMUNICAZIONI 1 Filtro notch e canna d organo 5 ottobre 2006 1 Scopo dell esercitazione Quest esercitazione è divisa in due parti: simulazione di un tubo

Dettagli

L ANALISI ARMONICA DI UN SEGNALE PERIODICO

L ANALISI ARMONICA DI UN SEGNALE PERIODICO L ANALISI ARMONICA DI UN SEGNALE PERIODICO Il segnale elettrico è una grandezza fisica (in genere una tensione) che varia in funzione del tempo e che trasmette un'informazione. Quasi tutti i segnali che

Dettagli

IMAGE PROCESSING & DOMINIO DELLE. Pagano Luca 18/12/2013

IMAGE PROCESSING & DOMINIO DELLE. Pagano Luca 18/12/2013 IMAGE PROCESSING & DOMINIO DELLE FREQUENZE Pagano Luca 18/12/2013 IN GENERALE Trasformata: Antitrasformata: In cui le funzioni r ed s vengono chiamate funzioni o immaginibase. Invece i termini T(u,v) vengono

Dettagli

SEGNALI A TEMPO DISCRETO. Impulso e altri segnali canonici discreti. Trasformata Zeta. Sviluppo di Fourier discreto. Trasformata di Fourier discreta

SEGNALI A TEMPO DISCRETO. Impulso e altri segnali canonici discreti. Trasformata Zeta. Sviluppo di Fourier discreto. Trasformata di Fourier discreta SEGNALI A TEMPO DISCRETO Impulso e altri segnali canonici discreti Trasformata Zeta Sviluppo di Fourier discreto Trasformata di Fourier discreta Illustrazioni dal Testo di Riferimento per gentile concessione

Dettagli

Esercizio 1 (12 punti) Si consideri il segnale s(t) in figura e se ne calcoli la Trasformata Continua di Fourier. A vale 2 V e T è paria a 1 s.

Esercizio 1 (12 punti) Si consideri il segnale s(t) in figura e se ne calcoli la Trasformata Continua di Fourier. A vale 2 V e T è paria a 1 s. ASB 17/01/12 (270) Esercizio 1 (12 punti) Si consideri il segnale s(t) in figura e se ne calcoli la Trasformata Continua di Fourier. A vale 2 V e T è paria a 1 s. A 0 T 2T 3T t - A Si consideri il segnale

Dettagli

SOLUZIONE della Prova TIPO E per:

SOLUZIONE della Prova TIPO E per: SOLUZIONE della Prova TIPO E per: Esame di FONDAMENTI DI AUTOMATICA (9 crediti): 6 dei 10 esercizi numerici (nell effettiva prova d esame verranno selezionati a priori dal docente) + domande a risposta

Dettagli

ANALISI DI SEGNALI TEMPO VARIANTI

ANALISI DI SEGNALI TEMPO VARIANTI ANALISI DI SEGNALI TEMPO VARIANTI Nel corso di questa esercitazione verrà illustrato come utilizzare Excel per eseguire la FFT di un segnale. Algebra complessa Excel consente di eseguire calcoli anche

Dettagli

Parte I Identificazione di modelli dinamici. 5: Analisi di sistemi dinamici alimentati da processi stazionari. Parte I 5, 1

Parte I Identificazione di modelli dinamici. 5: Analisi di sistemi dinamici alimentati da processi stazionari. Parte I 5, 1 Parte I 5, 1 Parte I Identificazione di modelli dinamici 5: Analisi di sistemi dinamici alimentati da processi stazionari Parte I 5, 2 Consideriamo un sistema dinamico lineare tempo-invariante con funzione

Dettagli

SISTEMI ELEMENTARI DEL 1 o E 2 o ORDINE

SISTEMI ELEMENTARI DEL 1 o E 2 o ORDINE CONTROLLI AUTOMATICI Ingegneria Gestionale http://www.automazione.ingre.unimore.it/pages/corsi/controlliautomaticigestionale.htm SISTEMI ELEMENTARI DEL o E 2 o ORDINE Ing. Federica Grossi Tel. 59 256333

Dettagli

Campionamento. * il valore del campione corrisponde all ampiezza del segnale nell istante di campionamento. Oscilloscopio p.16/31

Campionamento. * il valore del campione corrisponde all ampiezza del segnale nell istante di campionamento. Oscilloscopio p.16/31 Campionamento * Processo di conversione di una porzione (record) di segnale in un numero di valori discreti con lo scopo di memorizzarli, elaborarli, visualizzarli, ecc. * il valore del campione corrisponde

Dettagli

FENS- ENS esame del 24 febbraio 2006

FENS- ENS esame del 24 febbraio 2006 FENS- ENS esame del 24 febbraio 26 L allievo é invitato a dare una ragionata e succinta risposta a tutti gli argomenti proposti, per dimostrare il livello di preparazione globale. I calcoli devono essere

Dettagli

Risposta a segnali dotati di serie o trasformata di Fourier. Identificazione della risposta in frequenza

Risposta a segnali dotati di serie o trasformata di Fourier. Identificazione della risposta in frequenza RISPOSTA IN FREQUENZA Risposta esponenziale Risposta sinusoidale Risposta a segnali dotati di serie o trasformata di Fourier Identificazione della risposta in frequenza Diagrammi di Bode Diagrammi polari

Dettagli

ESAME DI ELAB. NUM. DEL SEGNALE (0/0) (21/07/2015) Cognome e Nome: Matricola: Lab: Convoluzione veloce tramite overlap-and-save

ESAME DI ELAB. NUM. DEL SEGNALE (0/0) (21/07/2015) Cognome e Nome: Matricola: Lab: Convoluzione veloce tramite overlap-and-save Convoluzione veloce tramite overlap-and-save Si consideri il filtro IIR stabile avente funzione di trasferimento H(z) = 1 1 1.2z 1 0.45z 2 e sia h : Z C la sua risposta impulsiva. Sia h N : Z C la versione

Dettagli

Fondamenti di Data Processing

Fondamenti di Data Processing Fondamenti di Data Processing Vincenzo Suraci Automazione INTRODUZIONE AL DATA PROCESSING ACQUISIZIONE DATI SCHEMA COSTRUTTIVO SCHEDA INPUT OSCILLATORE A FREQUENZA COSTANTE BANDA PASSANTE ACCORDATA AL

Dettagli

CAMPIONAMENTO CATENA ELETTROACUSTICA DIGITALE, CAMPIONAMENTO, QUANTIZZAZIONE

CAMPIONAMENTO CATENA ELETTROACUSTICA DIGITALE, CAMPIONAMENTO, QUANTIZZAZIONE CAMPIONAMENTO CATENA ELETTROACUSTICA DIGITALE, CAMPIONAMENTO, QUANTIZZAZIONE Catena elettroacustica DIGITALE 2 Compressione/ Rarefazione dell aria Compressione/ Rarefazione dell aria ADC DAC Segnale elettrico

Dettagli

Esempi di soluzione di equazioni differenziali mediante serie di potenze

Esempi di soluzione di equazioni differenziali mediante serie di potenze Esempi di soluzione di equazioni differenziali mediante serie di potenze Cerchiamo una soluzione dell equazione differenziale nella forma 3y () + y () + y() 0 + y() σ n con σ,. Una serie di potenze generalizzata

Dettagli

che coinciderà con la (2) se g[n] = g (n ), condizione verificata dal teorema di Poisson.

che coinciderà con la (2) se g[n] = g (n ), condizione verificata dal teorema di Poisson. La simulazione di sistemi analogici LTI per via digitale si è resa necessaria in quanto permette non solo la perfetta riproducibilità del fenomeno da studiare in situazioni ambientali anche molto diverse,

Dettagli

Sistemi Elementari. Prof. Laura Giarré https://giarre.wordpress.com/ca/

Sistemi Elementari. Prof. Laura Giarré https://giarre.wordpress.com/ca/ Sistemi Elementari Prof. Laura Giarré Laura.Giarre@UNIMORE.IT https://giarre.wordpress.com/ca/ Rappresentazioni di una funzione di trasferimento Una funzione di trasferimento espressa in forma polinomiale

Dettagli

Seconda esperienza - Verifica di alcune proprietà delle trasformate di Laplace -

Seconda esperienza - Verifica di alcune proprietà delle trasformate di Laplace - Seconda esperienza - Verifica di alcune proprietà delle trasformate di Laplace - Alpigiani Cristiano 17 novembre 2005 Introduzione Scopo di questa esperienza è quello di familiarizzare con alcune proprietà

Dettagli

Università Carlo Cattaneo Ingegneria gestionale Analisi matematica a.a. 2016/2017 EQUAZIONI DIFFERENZIALI 2

Università Carlo Cattaneo Ingegneria gestionale Analisi matematica a.a. 2016/2017 EQUAZIONI DIFFERENZIALI 2 Università Carlo Cattaneo Ingegneria gestionale Analisi matematica a.a. 2016/2017 EQUAZIONI DIFFERENZIALI 2 ESERCIZI CON SOLUZIONE 1. Risolvere il seguente problema di Cauchy: 1 2 1 2 L equazione differenziale

Dettagli

s + 6 s 3, b) i valori di K per i quali il sistema a ciclo chiuso risulta asintoticamente stabile;

s + 6 s 3, b) i valori di K per i quali il sistema a ciclo chiuso risulta asintoticamente stabile; 1 Esercizi svolti Esercizio 1. Con riferimento al sistema di figura, calcolare: ut) + K s s + 6 s 3 yt) a) la funzione di trasferimento a ciclo chiuso tra ut) e yt); b) i valori di K per i quali il sistema

Dettagli

PROVA SCRITTA DI FONDAMENTI DI AUTOMATICA A.A. 2003/ luglio Soluzione

PROVA SCRITTA DI FONDAMENTI DI AUTOMATICA A.A. 2003/ luglio Soluzione PROVA SCRITTA DI FONDAMENTI DI AUTOMATICA A.A. 23/24 2 luglio 24 Esercizio In riferimento allo schema a blocchi in figura. s r y 2 s y K s2 Domanda.. Determinare una realizzazione in equazioni di stato

Dettagli

ANALISI DI FOURIER. Segnali a Tempo Discreto:

ANALISI DI FOURIER. Segnali a Tempo Discreto: ANALISI DI FOURIER Segnali a Tempo Discreto: - - Sequenza periodica - Taratura degli assi frequenziali - TDF di una sequenza finita - Campionamento in Frequenza Serie discreta di Fourier Consideriamo una

Dettagli

SISTEMI ELEMENTARI DEL 1 o E 2 o ORDINE

SISTEMI ELEMENTARI DEL 1 o E 2 o ORDINE CONTROLLI AUTOMATICI Ingegneria della Gestione Industriale SISTEMI ELEMENTARI DEL o E 2 o ORDINE Ing. Luigi Biagiotti Tel. 5 29334 / 5 29368 e-mail: lbiagiotti@deis.unibo.it http://www-lar.deis.unibo.it/~lbiagiotti

Dettagli

IDENTIFICAZIONE DEI MODELLI E ANALISI DEI DATI 1 (Prof. S. Bittanti) Ingegneria Informatica 5 CFU. Appello 23 Luglio 2014 Cognome Nome Matricola

IDENTIFICAZIONE DEI MODELLI E ANALISI DEI DATI 1 (Prof. S. Bittanti) Ingegneria Informatica 5 CFU. Appello 23 Luglio 2014 Cognome Nome Matricola IDENTIFICAZIONE DEI MODELLI E ANALISI DEI DATI 1 (Prof. S. Bittanti) Ingegneria Informatica 5 CFU. Appello 23 Luglio 201 Cognome Nome Matricola............ Verificare che il fascicolo sia costituito da

Dettagli

Studio dei sistemi dinamici tramite FdT. Risposta allo scalino. Risposta allo scalino di sistemi LTI a tempo continuo.

Studio dei sistemi dinamici tramite FdT. Risposta allo scalino. Risposta allo scalino di sistemi LTI a tempo continuo. Parte 7, 1 Parte 7, 2 Introduzione Studio dei sistemi dinamici tramite FdT Risposta allo scalino Assegnato un sistema dinamico LTI descritto tramite una Funzione di Trasferimento (a tempo continuo oppure

Dettagli

Studio dei sistemi dinamici tramite FdT. Risposta allo scalino

Studio dei sistemi dinamici tramite FdT. Risposta allo scalino Parte 7, 1 Studio dei sistemi dinamici tramite FdT Risposta allo scalino Parte 7, 2 Introduzione Assegnato un sistema dinamico LTI descritto tramite una Funzione di Trasferimento (a tempo continuo oppure

Dettagli

Il tema proposto può essere risolto seguendo due ipotesi:

Il tema proposto può essere risolto seguendo due ipotesi: Per la trattazione delle tecniche TDM, PM e Trasmissione dati si rimanda alle schede 41, 42, 43, 44, 45, 46, 47 e 48 del libro Le Telecomunicazioni del Prof. F. Dell Aquila. Il tema proposto può essere

Dettagli

SISTEMI ELEMENTARI DEL 1 o E 2 o ORDINE

SISTEMI ELEMENTARI DEL 1 o E 2 o ORDINE CONTROLLI AUTOMATICI Ingegneria della Gestione Industriale e della Integrazione di Impresa http://www.automazione.ingre.unimore.it/pages/corsi/controlliautomaticigestionale.htm SISTEMI ELEMENTARI DEL o

Dettagli

RELAZIONE DI ELETTRONICA: INTRODUZIONE SUI FILTRI

RELAZIONE DI ELETTRONICA: INTRODUZIONE SUI FILTRI In elettronica possiamo definire un filtro come un dispositivo in grado di filtrare un determinato intervallo di frequenze alla propria uscita, attenuandole fino ad annullarle. A seconda delle frequenze

Dettagli

Matematica e Statistica

Matematica e Statistica Matematica e Statistica Prova d Esame (26/07/2010) Università di Verona - Laurea in Biotecnologie - A.A. 2009/10 1 Matematica e Statistica Prova d Esame di MATEMATICA (26/07/2010) Università di Verona

Dettagli

Quick calculus Capitolo 1 Il problema della tangente

Quick calculus Capitolo 1 Il problema della tangente Quick calculus Capitolo 1 Il problema della tangente Introduzione Ricavare una retta tangente ad una curva di secondo grado come un circonferenza o una parabola, è un problema che si risolve facilmente.

Dettagli

Prof. Carlo Rossi DEIS - Università di Bologna Tel:

Prof. Carlo Rossi DEIS - Università di Bologna Tel: Prof. Carlo Rossi DEIS - Università di Bologna Tel: 051 2093020 email: carlo.rossi@unibo.it Introduzione Due tipi di filtri digitali Filtri IIR simili ai filtri analogici Filtri FIR non esiste il corrispondente

Dettagli

Equazioni e sistemi non lineari

Equazioni e sistemi non lineari Equazioni e sistemi non lineari Lucia Gastaldi DICATAM - Sezione di Matematica, http://lucia-gastaldi.unibs.it Indice 1 Ricerca degli zeri di una funzione Problema e definizioni Metodo di Newton-Raphson

Dettagli

FONDAMENTI DI SEGNALI E TRASMISSIONE 4 Laboratorio

FONDAMENTI DI SEGNALI E TRASMISSIONE 4 Laboratorio FONDAMENTI DI SEGNALI E TRASMISSIONE 4 Laboratorio Paolo Mazzucchelli mazzucch@elet.polimi.it Campionamento di segnali In MATLAB, qualunque segnale continuo è approssimato da una sequenza campionata. Si

Dettagli

Sensori Segnali Rumore - Prof. S. Cova - appello 28/09/ P2 pag.1

Sensori Segnali Rumore - Prof. S. Cova - appello 28/09/ P2 pag.1 ensori egnali Rumore - Prof.. Cova - appello 8/09/0 - P pag. PROBLEMA Quadro dei dati Termoresistenza PT00 alore di riferimento a 0 C (73 K) Coefficiente di temperatura R T0 =00 Ω α = 3,9 0-3 / C Potenza

Dettagli

Equazioni differenziali Problema di Cauchy

Equazioni differenziali Problema di Cauchy Equazioni differenziali Problema di Cauch Primo esempio - Risolvere l equazione '( ) = g( ) con g( ) :[ a, b] R continua Teor. fondamentale del calcolo integrale ( ) = + g ( t )dt Primo esempio - Osserviamo

Dettagli

Campionamento. Campionamento: problema

Campionamento. Campionamento: problema Posizione del problema uniforme Ricostruzione Teorema del campionamento Significato della formula di ricostruzione Sistema di conversione A/D sample & hold quantizzazione Sistema di conversione D/A : problema

Dettagli

Metodi numerici per ODE. Metodi numerici per ODE

Metodi numerici per ODE. Metodi numerici per ODE Problema di Cauchy Consideriamo un equazione differenziale (sistema di equazioni) del primo ordine in forma normale con condizioni iniziali assegnate. { y (x) = f (x, y(x)) x [x 0, x F ] y(x 0 ) = y 0

Dettagli

La funzione di risposta armonica

La funzione di risposta armonica Funzione di risposta armonica - Corso di Laurea in Ingegneria Meccanica Controlli Automatici L La funzione di risposta armonica DEIS-Università di Bologna Tel. 5 2932 Email: crossi@deis.unibo.it URL: www-lar.deis.unibo.it/~crossi

Dettagli

SOLUZIONE della Prova TIPO E per:

SOLUZIONE della Prova TIPO E per: SOLUZIONE della Prova TIPO E per: Esame di FONDAMENTI DI AUTOMATICA (9 CFU): 6 degli 8 esercizi numerici + 4 delle 5 domande a risposta multipla (v. ultime due pagine) NOTA: nell effettiva prova d esame

Dettagli

PRBS. Pseudo Random Binary Sequence

PRBS. Pseudo Random Binary Sequence PRBS Pseudo Random Binary Sequence MARTINA FAVARO Dipartimento di Ingegneria dell Informazione, Università di Padova Lezione n.2 Che cosa é una PRBS? É noto che il segnale di input in un processo di identificazione

Dettagli

Daniela Lera A.A

Daniela Lera A.A Daniela Lera Università degli Studi di Cagliari Dipartimento di Matematica e Informatica A.A. 2014-2015 Metodi per similitudine Matrici simili hanno gli stessi autovalori. Consideriamo trasformazioni per

Dettagli

Tecnologie Multimediali a.a. 2016/2017. Docente: DOTT.SSA VALERIA FIONDA

Tecnologie Multimediali a.a. 2016/2017. Docente: DOTT.SSA VALERIA FIONDA Tecnologie Multimediali a.a. 2016/2017 Docente: DOTT.SSA VALERIA FIONDA Il suono IL SUONO Il suono è quello stimolo prodotto sul nostro orecchio dalla vibrazione di un corpo in oscillazione che si propaga

Dettagli

1. Calcolo dell indice di condizionamento di una matrice

1. Calcolo dell indice di condizionamento di una matrice 1 Esercizi sul condizionamento con matlab laboratorio di Calcolo Scientifico per Geofisici Prof. A. Murli a.a. 2006/07 1. Calcolo dell indice di condizionamento di una matrice Determinare una function

Dettagli

ENS - Prima prova in itinere del 07 Maggio 2009 Tema A

ENS - Prima prova in itinere del 07 Maggio 2009 Tema A ENS - Prima prova in itinere del 7 Maggio 9 Tema A L allievo é invitato a dare una ragionata e succinta risposta a tutti gli argomenti proposti, per dimostrare il livello di preparazione globale. I calcoli

Dettagli

CORSO DI LAUREA IN INGEGNERIA EDILE/ARCHITETTURA

CORSO DI LAUREA IN INGEGNERIA EDILE/ARCHITETTURA CORSO DI LAUREA IN INGEGNERIA EDILE/ARCHITETTURA FOGLIO DI ESERCIZI 1 GEOMETRIA 2009/10 Esercizio 1.1 (2.2). Determinare l equazione parametrica e Cartesiana della retta dello spazio (a) Passante per i

Dettagli

Calcolo Numerico - A.A Laboratorio 6

Calcolo Numerico - A.A Laboratorio 6 Calcolo Numerico - A.A. 2011-2012 Laboratorio 6 Approssimazione ai minimi quadrati Siano (x i, y i ), per i = 0,..., n, n + 1 coppie di dati di origine sperimentale o originati dal campionamento y i =

Dettagli

Batteria Non Ricaricabile Caratteristiche. Auto-Test Automatico: Attivazione: In Esecuzione: Analisi:

Batteria Non Ricaricabile Caratteristiche. Auto-Test Automatico: Attivazione: In Esecuzione: Analisi: Saver One D AED con display LCD indicato per paramedici ma utilizzabile anche da laici. Intuivo ed efficace contro gli arresti cardiaci. Batteria Non Ricaricabile Caratteristiche Tecnologia: Capacità:

Dettagli

Statistica a lungo termine: calcolo dell onda di progetto

Statistica a lungo termine: calcolo dell onda di progetto Esercitazione Statistica a lungo termine: calcolo dell onda di progetto Sulla base delle misure ondametriche effettuate dalla boa di Ponza si calcoli, utilizzando la distribuzione di probabilità di Gumbel,

Dettagli

Statistica a breve termine: metodo delle onde apparenti

Statistica a breve termine: metodo delle onde apparenti Esercitazione 1 Statistica a breve termine: metodo delle onde apparenti Si calcolino, applicando il metodo delle onde apparenti, le seguenti proprietà della registrazione ondametrica fornita nelle figure

Dettagli

METODI NUMERICI PER IL CONTROLLO

METODI NUMERICI PER IL CONTROLLO METODI NUMERICI PER IL CONTROLLO Relazione 4: Equazioni differenziali ESERCIZIO 1 Risolvere il problema ai valori iniziali 3 x& = 1x + t x(0) = 0 1t + 6t 3 1 nell intervallo [0 1] con passo h=0.1 usando

Dettagli

SPECIFICHE TECNICHE. La seguente tabella riassume le specifiche tecniche del dispositivo CardioDial. Specifica Unità di misura Valore

SPECIFICHE TECNICHE. La seguente tabella riassume le specifiche tecniche del dispositivo CardioDial. Specifica Unità di misura Valore SPECIFICHE TECNICHE DISPOSITIVO La seguente tabella riassume le specifiche tecniche del dispositivo CardioDial. Dimensioni L x H x P [mm] 107 x 66 x 17 Peso g 87 Certificazione Normative Conformi Classificazione

Dettagli

arctan( ) arctan( ) arctan( )

arctan( ) arctan( ) arctan( ) La funzione di trasferimento d anello assegnata (senza rete di compensazione) è L GH 1000 L(s) = ---------------------------------------------------- => sostituendo s con jω ω = 2πf (1+s/2π100) (1+s/2π1000)

Dettagli

Prof. Carlo Rossi DEIS - Università di Bologna Tel:

Prof. Carlo Rossi DEIS - Università di Bologna Tel: Prof. Carlo Rossi DEIS - Università di Bologna Tel: 051 2093020 email: carlo.rossi@unibo.it Sistemi Tempo-Discreti In questi sistemi i segnali hanno come base l insieme dei numeri interi: sono sequenze

Dettagli

FONDAMENTI DI SEGNALI E TRASMISSIONE 4 Laboratorio

FONDAMENTI DI SEGNALI E TRASMISSIONE 4 Laboratorio FONDAMENTI DI SEGNALI E TRASMISSIONE 4 Laboratorio Paolo Mazzucchelli mazzucch@elet.polimi.it MATLAB: generazione di numeri casuali Il comando che permette di generare una matrice (n r,n c ) composta da

Dettagli

Corso di Laurea in Ingegneria Meccatronica SISTEMI ELEMENTARI DEL 1 o E 2. ORDINE CA 05 Sistemi Elementari

Corso di Laurea in Ingegneria Meccatronica SISTEMI ELEMENTARI DEL 1 o E 2. ORDINE CA 05 Sistemi Elementari Automation Robotics and System CONTROL Università degli Studi di Modena e Reggio Emilia Corso di Laurea in Ingegneria Meccatronica SISTEMI ELEMENTARI DEL o E 2 o ORDINE CA 5 Sistemi Elementari Cesare Fantuzzi

Dettagli

FONDAMENTI DI SEGNALI E TRASMISSIONE 2 Laboratorio

FONDAMENTI DI SEGNALI E TRASMISSIONE 2 Laboratorio FONDAMENTI DI SEGNALI E TRASMISSIONE 2 Laboratorio Paolo Mazzucchelli mazzucch@elet.polimi.it MATLAB: linguaggio di programmazione L ambiente MATLAB possiede un completo linguaggio di programmazione. Vediamo

Dettagli

APPUNTI DI ELETTRONICA V D FILTRI ATTIVI. Campi di applicazione. I filtri nel settore dell elettronica sono utilizzati per:

APPUNTI DI ELETTRONICA V D FILTRI ATTIVI. Campi di applicazione. I filtri nel settore dell elettronica sono utilizzati per: APPUNTI DI ELETTRONICA V D FILTRI ATTIVI Campi di applicazione I filtri nel settore dell elettronica sono utilizzati per: attenuare i disturbi, il rumore e le distorsioni applicati al segnale utile; separare

Dettagli

Secondo parziale di Matematica per l Economia lettere E-Z, a.a , compito A prof. Gianluca Amato

Secondo parziale di Matematica per l Economia lettere E-Z, a.a , compito A prof. Gianluca Amato Corso di Laurea in Economia e Management Secondo parziale di Matematica per l Economia lettere E-Z, a.a. 216 217, compito A prof. Gianluca Amato Regole generali Si svolga il primo esercizio e, a scelta

Dettagli

SIMULAZIONE DELLA PROVA DI MATEMATICA DELL ESAME DI STATO

SIMULAZIONE DELLA PROVA DI MATEMATICA DELL ESAME DI STATO ANNO SCOLASTICO 2012-13 SIMULAZIONE DELLA PROVA DI MATEMATICA DELL ESAME DI STATO INDIRIZZO: SCIENTIFICO CORSO DI ORDINAMENTO Risoluzione Problema 1 a) Poiché per ogni valore di a l espressione analitica

Dettagli

Prova Scritta di Fondamenti di Automatica del 13 Settembre Studente: Matricola: calcolare l'espressione analitica della risposta indiciale.

Prova Scritta di Fondamenti di Automatica del 13 Settembre Studente: Matricola: calcolare l'espressione analitica della risposta indiciale. Prova Scritta di Fondamenti di Automatica del 3 Settembre 006 Studente: Matricola: ) Una persona del peso di 75 Kg decide di provare il salto con l'elastico (bungee jumping) da una piattaforma posta a

Dettagli

SISTEMI ELEMENTARI DEL 1 o E 2 o ORDINE

SISTEMI ELEMENTARI DEL 1 o E 2 o ORDINE CONTROLLI AUTOMATICI Ingegneria Meccanica e Ingegneria del Veicolo http://www.dii.unimore.it/~lbiagiotti/controlliautomatici.html SISTEMI ELEMENTARI DEL 1 o E 2 o ORDINE Ing. e-mail: luigi.biagiotti@unimore.it

Dettagli

Anno accademico Presentazione del corso di Elaborazione di Segnali Multimediali

Anno accademico Presentazione del corso di Elaborazione di Segnali Multimediali Anno accademico 2009-2010 Presentazione del corso di Elaborazione di Segnali Multimediali Informazioni sul docente E-mail: verdoliv@unina.it Sito web: www.die.unina.it/gruppotlc/didattica/corsi.shtml Orario

Dettagli

Filtri lineari non ricorsivi (FIR)

Filtri lineari non ricorsivi (FIR) Filtri lineari non ricorsivi (FIR) I filtri FIR (Finite Impulse Response) sono circuiti ad anello aperto, cioè senza reazione tra ingresso ed uscita. Le sue caratteristiche principali sono: uscita è sempre

Dettagli

Equazioni e sistemi non lineari

Equazioni e sistemi non lineari Equazioni e sistemi non lineari Lucia Gastaldi DICATAM - Sezione di Matematica, http://lucia-gastaldi.unibs.it Indice 1 Ricerca degli zeri di una funzione Problema e definizioni Metodo di Newton-Raphson

Dettagli

Laboratorio 4 G. Bernasconi,

Laboratorio 4 G. Bernasconi, Laboratorio 4 G. Bernasconi, bernasco@elet.polimi.it Crosscorrelazione e Autocorrelazione (filtro adattato) La funzione crosscorrelazione tra due segnali continui x(t) ed y(t) è definita come: + R xy (

Dettagli

ESAME DI STATO DI ISTRUZIONE SECONDARIA SUPERIORE Tema di Matematica e Fisica

ESAME DI STATO DI ISTRUZIONE SECONDARIA SUPERIORE Tema di Matematica e Fisica ESAME DI STATO DI ISTRUZIONE SECONDARIA SUPERIORE Tema di Matematica e Fisica Sessione ordinaria 2019 - Seconda prova scritta Quesiti Quesito 1 Una data funzione è esprimibile nella forma, dove e è un

Dettagli

Progetto Matlab N 2. Calcolo Numerico 6 CFU. Corso di Laurea in Ingegneria delle Comunicazioni 31/05/2014

Progetto Matlab N 2. Calcolo Numerico 6 CFU. Corso di Laurea in Ingegneria delle Comunicazioni 31/05/2014 Progetto Matlab N 2 Calcolo Numerico 6 CFU Corso di Laurea in Ingegneria delle Comunicazioni 31/05/2014 Procedimento 1. Scrivere una function che implementi il prodotto matrice-vettore AX con A matrice

Dettagli

Introduzione ai filtri digitali

Introduzione ai filtri digitali ARSLAB - Autonomous and Robotic Systems Laboratory Dipartimento di Matematica e Informatica - Università di Catania, Italy santoro@dmi.unict.it Programmazione Sistemi Robotici Sistemi, misura e predizione

Dettagli

Funzioni di trasferimento: esercizi sulla rappresentazione della risposta in frequenza

Funzioni di trasferimento: esercizi sulla rappresentazione della risposta in frequenza Funzioni di trasferimento: esercizi sulla rappresentazione della risposta in frequenza Si considerino le seguenti funzioni di trasferimento: ( s + s ( s + s ( s) = ( s) = (s + )( s 9s + ) (s + )( s +.9s

Dettagli

Elementi di informatica musicale Conservatorio G. Tartini a.a Sintesi del suono. Sintesi del suono

Elementi di informatica musicale Conservatorio G. Tartini a.a Sintesi del suono. Sintesi del suono Elementi di informatica musicale Conservatorio G. Tartini a.a. 2001-2002 Sintesi del suono Ing. Antonio Rodà Sintesi del suono E neccessaria una tecnica di sintesi, ossia un particolare procedimento per

Dettagli

Corso di Controllo DigitaleAntitrasformate Zeta e calcolo della risposta p.1/32

Corso di Controllo DigitaleAntitrasformate Zeta e calcolo della risposta p.1/32 Corso di Controllo Digitale Antitrasformate Zeta e calcolo della risposta Università degli Studi della Calabria Corso di Laurea in Ingegneria Elettronica. Ing. Domenico Famularo Istituto per la Sistemistica

Dettagli

TRASFORMATE DI LAPLACE

TRASFORMATE DI LAPLACE FONDAMENTI DI CONTROLLI AUTOMATICI Ingegneria Meccanica http://web.ing.unimo.it/~lbiagiotti/fondamenticontrolli1415.html TRASFORMATE DI LAPLACE Ing. e-mail: luigi.biagiotti@unimore.it http://www.dii.unimore.it/~lbiagiotti

Dettagli

Edoardo Milotti - Metodi di trattamento del segnale 1

Edoardo Milotti - Metodi di trattamento del segnale 1 Edoardo Milotti - Metodi di trattamento del segnale 1 Consideriamo un certo processo di campionamento in cui si prendono N campioni con intervallo di campionamento Δt: in questo caso il tempo di campionamento

Dettagli

F I L T R I. filtri PASSIVI passa alto passa basso passa banda. filtri ATTIVI passa alto passa basso passa banda

F I L T R I. filtri PASSIVI passa alto passa basso passa banda. filtri ATTIVI passa alto passa basso passa banda F I L T R I Un filtro è un dispositivo che elabora il segnale posto al suo ingresso; tipicamente elimina (o attenua) determinate (bande di) frequenze mentre lascia passare tutte le altre (eventualmente

Dettagli

Complementi di Matematica e Calcolo Numerico A.A

Complementi di Matematica e Calcolo Numerico A.A Complementi di Matematica e Calcolo Numerico A.A. 015-01 Laboratorio 5 - Function files, Minimi quadrati e spline FUNCTION-FILES MATLAB Le funzioni matlab sono porzioni di codici scritte in un file indipendente

Dettagli

Ascoltare Fourier. Segnali audio. ω o. θ è l angolo di fase

Ascoltare Fourier. Segnali audio. ω o. θ è l angolo di fase Ascoltare Fourier Jean Baptiste Joseph Fourier 1768 Auxerre 1830 Parigi Matematico francese, partecipò alla rivoluzione francese e seguì Napoleone in Egitto come membro della spedizione scientifica. Studiò

Dettagli

Equazioni e sistemi non lineari

Equazioni e sistemi non lineari Equazioni e sistemi non lineari Lucia Gastaldi Dipartimento di Matematica, http://dm.ing.unibs.it/gastaldi/ 4 novembre 2007 Outline 1 Ricerca degli zeri di una funzione Problema e definizioni Metodo di

Dettagli

Esercitazione su Filtraggio Adattativo (17 Giugno 2008)

Esercitazione su Filtraggio Adattativo (17 Giugno 2008) Esercitazione su Filtraggio Adattativo 17 Giugno 008) D. Donno Esercizio 1: Stima adattativa in rumore colorato Una sequenza disturbante x n è ottenuta filtrando un processo bianco u n con un filtro FIR

Dettagli