Generalità: materiali
|
|
|
- Ornella Fiora Crippa
- 9 anni fa
- Visualizzazioni
Transcript
1 Generalità: materiali Materiali per la costruzione delle molle: - acciai ad alto tenore di carbonio - acciai al silicio - acciai legati (Cromo-Silicio, Cromo-Vanadio, Silicio-Cromo-Nichel) - per impieghi particolari si usano anche: acciai ino, leghe Rame-Berillio, ecc. σ imite elastico Acciaio per molle imite elastico Acciaio comune ε
2 Generalità: tipologie ed equazioni ondamentali Molle di trazione: A N Relazione caratteristica carico-reccia: EA N rigidezza k Relazione di resistenza: σ N A Molle di lessione: I, W Molle di torsione: J, W t θ E I GJ θ rigidezza k rigidezza k σ W M t W t Generalità: coeiciente di utilizzo Si deinisce coeiciente di utilizzo C u il rapporto: se immagazzinata nella molla Energia teoricamente immagazzinabile tutto il Energia materiale eettivamente C u osse alla σ massima σ V E Molle di trazione: C u Molle di lessione: C u 9 (lamina rettangolare) Molle di torsione: C u (barra cilindrica)
3 rogetto di una molla Variabili in gioco: resistenza statica e/o a atica rigidezza richiesta (relazione carico-reccia) ingombro e peso requenza propria del sistema instabilità a compressione comportamento non lineare (molle dure e soici ) smorzamento Molle di torsione ad asse rettilineo: barre di torsione Relazioni ondamentali: kθ M t 6 M t Wt π d π d G π d E θ + ( ν ) θ Una volta scelta la classe del materiale con cui realizzare la barra, che ci vincola il valore di G, le dimensioni d ed sono issate sulla base degli ingombri e della rigidezza richiesti utilizzando la relazione carico-reccia. Segue la veriica a resistenza (statica o a atica) che viene atta impiegando gli usuali criteri adottati per il dimensionamento dei componenti meccanici. Alle molle si applicano, in genere, coeicienti di sicurezza X di poco superiori a.
4 Molle di torsione ad asse non rettilineo: molle elicoidali Relazioni ondamentali: Dalle relazioni valide per le barre di torsione, sapendo che: D D, θ si ottiene: π d G π d G d E cosα k D D 8 D 6( + ν ) n D in cui: n numero spire attive è stata posta uguale an π D cos α D diametro della spirale E α angolo della spirale G è stato sostituito con ( +ν ) Si noti che gli eetti dovuti alla curvatura del tondino con cui è costruita la spirale sono stati qui trascurati. Inatti, una molla che abbia il rapporto D/d (detto indice della molla) piccolo risulta avere una rigidezza maggiore di quella espressa dalla ormula riportata. Molle di torsione ad asse non rettilineo: molle elicoidali Relazioni ondamentali: D 8 D 6cosα + + Wt A cosα π d π d 8 D cosα d + π d D Il coeiciente cosα è spesso approssimato a,5; in questo modo si tiene conto della ridistribuzione delle tensioni che si ottiene plasticizzando localmente il materiale. Anche in questo caso sono stati trascurati gli eetti dovuti alla curvatura della spirale. Inatti, quando una trave curva è sollecitata a torsione il suo lembo interno risulta più sollecitato di quello esterno. a concentrazione delle tensioni dovuta alla curvatura dell elica non può essere trascurata nella progettazione delle molle che lavorano a atica, per cui la ormula precedente deve essere così corretta: 8 D d D π d cosα d + ( d D) D
5 rogetto di molle elicoidali Nel progetto di una molla elicoidale le variabili in gioco sono: per il materiale: E, ν in genere sono sempre le costanti elastiche dell acciaio σ vale σ s /X nella progettazione statica (X può essere molto prossimo a specialmente per le molle compresse) nel dimensionamento a atica, σ a eq e σ m eq vanno conrontate con la retta di Goodman (nella maggior parte dei casi applicativi b e b possono essere posti uguali ad ) per la geometria: d, D il rapporto D/d dovrebbe essere maggiore di h h p l altezza libera è vincolata dai problemi di instabilità a compressione l altezza a pacchetto è data da n tot d, dove il numero totale di spire n tot è dato da n (spire attive) più o a seconda del tipo di terminazioni α l angolo dell elica è in genere scelto < 5 per i carichi: min, valori del carico agli estremi del campo di lavoro Molle di lessione: balestre Relazioni ondamentali: E I σ W oiché le molle di lessione a sezione costante risultano avere un coeiciente di utilizzo molto basso, queste sono in genere realizzate cercando di portare la tensione massima su ciascuna sezione al valore massimo ammissibile. Quindi, introducendo la coordinata, potremo ricavare la legge di variazione del modulo di resistenza W che porta la σ di ciascuna sezione al valore massimo ammissibile σ. I(), W () σ ( ) σ W ( ) cost 5
6 Molle di lessione: balestre Nel caso tecnicamente più signiicativo di lamine a sezione rettangolare, avremo: σ b( ) h ( ) 6 Indicando con b e h le dimensioni della sezione di incastro: b( ) h ( ) 6 da cui segue: b σ b h 6 ( ) h ( ) b h Quindi ipotizzando di voler variare solo b o solo h, la sezione della lamina dovrà seguire una delle seguenti leggi di variazione: b( ) b, h( ) h Molle di lessione: balestre b( ) b, h( ) h a prima delle due leggi di variazione porta allo schema di molla di lessione a lamina triangolare: b per la quale valgono le seguenti relazioni ondamentali: E b h 6 σ C u 6 b h 6
7 Molle di lessione: balestre Nella pratica costruttiva si passa dalla orma triangolare a quella trapezoidale per rendere possibile l applicazione del carico all estremità libera: b b Il valore della rigidezza k potrà essere ottenuto (in prima approssimazione) come quello ricavabile dal parallelo di una molla triangolare con una rettangolare: k k tri + k rett E b E bh ( b b ) 6 h + E bh + b b Molle di lessione: balestre Inoltre le molle di lessione a lamina trapezoidale non vengono realizzate in questa orma, ma sovrapponendo più lamine rettangolari di lunghezza decrescente. Queste si possono pensare ricavate dalla lamina originaria attraverso una serie di tagli longitudinali. Si arriva così alla molla a balestra. 7
8 Esercizio: la molla della penna a sera a molla elicoidale del meccanismo di estrazione/ritrazione della punta di una penna a sera deve soddisare le seguenti speciiche: carico di azionamento:.5 N ± % corsa massima: 7 mm diametro interno: >.5 mm lunghezza totale: < mm Si completi il progetto della molla scegliendo il materiale e deinendo le altre dimensioni in gioco. 8
Immagazzinare energia di deformazione in campo elastico (lineare o non lineare)
Generalità Funzione delle molle: Immagazzinare energia di deormazione in campo elastico (lineare o non lineare) immagazzinare energia da restituire in condizioni prestabilite; attenuare urti; esercitare
ECM/Applicazioni Numeriche e Teoriche per la Costruzione di Macchine. La lunghezza della molla compattata (lunghezza solida) è:
ESERCIZIO 1 Una molla ad elica a compressione ha le estremità quadrate (L s = (N t + 1) d) ed è fatta con un filo in acciaio al carbonio (G=80 GPa). Il diametro medio della molla è 20 mm mentre il diametro
L Unità didattica in breve
L Unità didattica in breve Generalità La molla è un organo meccanico (solido o fluido) adatto alla realizzazione di collegamenti elastici, capace di accumulare e restituire energia mediante la sua deformazione
QUADERNI DI PROGETTAZIONE Franco Concli
QUADERNI DI PROGETTAZIONE ranco Concli 50 Le molle LE MOLLE SONO ELEMENTI ELASTICI CAPACI DI GRANDI DEORMAZIONI CHE ACCUMULANO ENERGIA PER POI RILASCIARLA. SONO SOLITAMENTE REALIZZATE IN ACCIAIO ANCHE
Esame di Stato di Istituto Tecnico Industriale Seconda prova scritta
Esame di Stato di Istituto Tecnico Industriale Seconda prova scritta Si a l ipotesi che durante un adeguato periodo di prova di una autovettura, vengano segnalate rotture al usto delle bielle veloci in
Corso di Laurea Ingegneria Meccanica Costruzione di Macchine 2. Dimensionamento di una sospensione
Corso di Laurea Ingegneria Meccanica Dimensionamento di una sospensione Un esempio storico Ford Model T Altri esempi 3 Sospensione a quadrilatero basso MacPherson Sospensione a quadrilatero alto Molle:
LE MOLLE a.a Elementi Costruttivi delle Macchine
LE MOLLE a.a. 016-017 1 Generalità Il procedimento generale di progettazione degli elementi delle macchine utilizza due categorie di relazioni fondamentali: relazioni strutturali, che consentono di imporre,
Calcolo delle aste composte
L acciaio. Strutture in acciaio 1 Calcolo delle aste composte Calcolo della snellezza equivalente La snellezza equivalente viene calcolata con le seguenti relazioni: aste calastrellate: λ eq λ y + λ 1
β,, (31.1,2) 31. LE MOLLE F = F E I n L F = δ T = β ; (31.3,4) = U U. (31.5) 2 V = dx (31.10,11) δ-β
G. Petrucci ezioni di Costruzione di Macchine 1. E MOE e molle sono elementi meccanici in grado di assorbire grandi quantità di energia elastica senza raggiungere sollecitazioni critiche. A questo scopo
Le Molle Meccaniche. Molle. Molle
Molle Le Molle Meccaniche 1 Molle Le molle sono elementi meccanici in grado di assorbire grandi quantità di energia elastica senza raggiungere sollecitazioni critiche. ESEMPI DI APPLICAZIONI attenuazione
Esercizio su sforzi tangenziali indotti da taglio T in trave inflessa
Esercizio su sforzi tangenziali indotti da taglio T in trave inflessa t = 15 h = 175 Si consideri la sezione rappresentata in figura (sezione di trave inflessa) sulla quale agisca un taglio verticale T
Uno di questi casi è rappresentato dal cedimento in elementi di strutture soggetti a carichi di compressione che danno luogo ad instabilità elastica
In alcuni casi una struttura soggetta a carichi statici può collassare con un meccanismo diverso da quello del superamento dei limiti di resistenza del materiale. Uno di questi casi è rappresentato dal
AZIONE SISMICA secondo NTC2008. DIMENSIONAMENTO E VERIFICA degli elementi strutturali
Corso di progetto di strutture in zona sismica Prof. Calvi A. A. 2008-2009 - Corso di progetto di strutture in zona sismica -1 AZIONE SISMICA secondo NTC2008 DIMENSIONAMENTO E VERIFICA degli elementi strutturali
Sollecitazioni delle strutture
Sollecitazioni delle strutture I pilastri e i muri portanti sono tipicamente sollecitati a compressione Le travi e i solai sono sollecitati a flessione L indeformabilità di questi elementi costruttivi
PIASTRE DI BASE. Caratteristiche geometriche e meccaniche. Sollecitazioni in esercizio. (revisione 8-12-2003)
PIASTRE DI BASE (revisione 8-1-00) Caratteristiche geometriche e meccaniche base b = 400 mm altezza H = 700 mm spessore t = 0 mm distanza erro da bordo h' = 100 bulloni tesi Μ 0 A s = 116 mm spessore malta
Collegamenti filettati
Collegamenti filettati Carmine Napoli Si possono dividere i collegamenti filettati in due tipologie: 1. di serraggio (collegamento forzato tra due elementi) 2. viti di manovra ( tornio movimento torretta)
Esempio n Progetto e verifica della seguente trave a torsione, taglio e flessione, allo stato limite ultimo
SLU PER TORSIONE SEMPLICE O COMPOSTA 151 Esempio n. 38 - Progetto e verifica della seguente trave a torsione taglio e flessione allo stato limite ultimo SVOLGIMENTO Si consideri una trave in c.a. dallo
CALCOLO DELLE UNIONI BULLONATE: VERIFICHE AL TAGLIO
UNIVERSITÁ DEGLI STUDI DI BERGAMO Facoltà di Ingegneria PROGETTAZIONE DEI SISTEMI MECCANICI Prof. Sergio Baragetti CALCOLO DELLE UNIONI BULLONATE: VERIFICHE AL TAGLIO RIFERIMENTI NORMATIVI E BIBLIOGRAFIA:
Sollecitazioni semplici La flessione
Sollecitazioni semplici La flessione Considerazioni introduttive Un altro tipo di sollecitazione semplice particolarmente importante è la flessione, ossia lo stato di sforzo conseguente all applicazione
Progettazione Assistita da Calcolatore Soluzione Molla a Spirale Appello 4 luglio 2013
Progettazione Assistita da Calcolatore Molla a Spirale Appello 4 luglio 2013 Sulla base di quanto indicato dal testo, il modello geometrico da adottare è quello di una geometria di sole superfici ottenute
Esercitazione 11: Stato di tensione nella sezione di trave
Meccanica e Tecnica delle Costruzioni Meccaniche Esercitazioni del corso. Periodo I Prof. Leonardo BERTINI Ing. Ciro SNTUS Esercitazione 11: Stato di tensione nella sezione di trave Indice 1 Forza normale
Dimensionare l'albero del pignone dell'ingranaggio disegnato in figura. Esercitazione - Costruzione di macchine I C. Napoli pag 1 di 22
Dimensionare l'albero del pignone dell'ingranaggio disegnato in figura. LA LA o δ Rm A Mm Dati Potenza trasmessa Numero di giri Angolo di pressione α = 20 Angolo semiapertura δ = 25 Distanza cuscinetti
Ministero dell Istruzione dell Università e della Ricerca M552 ESAME DI STATO DI ISTITUTO TECNICO INDUSTRIALE
Pag. 1/1 Sessione ordinaria 2010 Seconda prova scritta Ministero dell Istruzione dell Università e della Ricerca M552 ESAME DI STATO DI ISTITUTO TECNICO INDUSTRIALE CORSO DI ORDINAMENTO Indirizzo: MECCANICA
ESEMPIO 1: giunto a cerniera con squadrette d anima
ESEMPIO 1: giunto a cerniera con squadrette d anima Si determini la massima reazione che il giunto a cerniera mostrato in igura è in grado di sopportare. Si illustrano tre soluzioni equilibrate poiché
Legno. Corso di Costruzioni Edili. Sforzo normale, Flessione e taglio. Progetto e verifica di strutture in. Metodo agli stati limite.
Corso di Costruzioni Edili Prof. Giacomo Sacco Progetto e verifica di strutture in Legno etodo agli stati limite. Sforzo normale, Flessione e taglio Aggiornato al 24/02/2011 1 IL LEGNO COE ATERIALE DA
Lezione. Tecnica delle Costruzioni
Lezione Tecnica delle Costruzioni 1 Flessione Comportamento ultimo M 1 r M E I M ε σ E ε M σ da E I /r M 1 r M EI 1/r 1/r Comportamento ultimo -ε -f M el M 1 el r el E I M ε ε σ E ε f M el M σ da el W
Meccanica Applicata alle Macchine
Meccanica Applicata alle Macchine 06-11-013 TEMA A 1. Un cilindro ed una sfera omogenei di uguale massa m ed uguale raggio r sono collegati tra loro da un telaio di massa trascurabile mediante coppie rotoidali
Esercizi sulle Macchine Operatrici Idrauliche
Esercizi sulle Macchine Operatrici Idrauliche 17 CAVITAZIONE POMPE (Appello del 06.12.02, esercizio N 1) Testo Una pompa invia una portata Q = 16 dm 3 /s di acqua ad un serbatoio sopraelevato di 8 m. In
PRESSO-FLESSIONE RETTA
PRESSO-FLESSIONE RETTA Consideriamo un elemento strutturale verticale (Pilastro) soggetto ad uno carico P eccentrico, cioè applicato nella sezione in un punto c (centro di pressione) che non corrisponde
Capitolo 3 La torsione Sollecitazioni semplici: la torsione
Capitolo 3 La torsione Sollecitazioni semplici: la torsione Definizione Un elemento strutturale è soggetto a sollecitazione di torsione quando su di esso agiscono due momenti uguali ed opposti giacenti
3) DIMENSIONAMENTO DI UNA SEZIONE INFLESSA
3) DIMENSIONAMENTO DI UNA SEZIONE INFLESSA Quanto segue ci consente di dimensionare l altezza di una trave inflessa con un criterio di imporre che la tensione massima agente sulla sezione della trave sia
2 Classificazione delle sezioni trasversali
2 Classificazione delle sezioni trasversali 2.1 Influenza dei fenomeni di instabilità L acciaio è un materiale con legame costitutivo simmetrico a trazione e compressione (par. 1.1), ma un elemento strutturale
Regione Campania - Genio Civile
Regione Campania - Genio Civile Controllo di progetti relativi ad edifici in muratura Le prescrizioni generali dell Ordinanza 3274 e succ. modif. La verifica degli edifici in muratura ordinaria per i carichi
STATICA FORZE NEL PIANO
MECCANICA E MACCHINE I MODULO - Capitolo Statica Forze nel piano Capitolo STATICA FORZE NEL PIANO Esercizio : Due forze, F = 330 N e F 2 = 250 N, sono applicate nel punto A e formano tra loro l'angolo
ITIS OTHOCA ORISTANO GLI ALBERI DI TRASMISSIONE E LORO PERNI
ITIS OTHOCA ORISTANO GLI ALBERI DI TRASMISSIONE E LORO PERNI L'albero di trasmissione è l'organo rotante di una macchina che ha la funzione di trasmettere o ricevere coppie motrici (o resistenti) tra gli
1.6. Momenti di forze parallele rispetto a un asse. Ricerca grafica e analitica 16
Prefazione Avvertenze 1 Elementi di teoria dei vettori...i I.1. Generalità...I 1.2. Composizione delle forze...2 Risultante di forze aventi la stessa retta d'applicazione 3 Risultante di forze concorrenti
Esempio di calcolo 1 Verifiche ai carichi verticali
Collegio dei Geometri e dei Geometri Laureati Reggio Emilia 6 novembre 010 Esempio di calcolo 1 Verifiche ai carichi verticali Dott. Ing. icola GAMBETTI, Libero Professionista Si considera un edificio
Pilastri con avvolgimento a spirale
metodo alle tensioni ammissibili Unità Sforzo normale di compressione semplice Pilastri con avvolgimento a spirale Calcolo di progetto L area ideale resistente A i,c del pilastro con avvolgimento a spirale
Il cono d affilatura nelle punte elicoidali. Riprendendo la figura N 1 della descrizione generale, si possono dare le seguenti definizioni:
Il cono d affilatura nelle punte elicoidali Riprendendo la figura N 1 della descrizione generale, si possono dare le seguenti definizioni: Fig.N 1- Alcuni angoli caratteristici della punta elicoidale ε
17/03/2014. Le prove meccaniche distruttive. Tipologie di deformazione. Sistemi di Produzione D. Antonelli, G. Murari C.L.U.T.
Le prove meccaniche distruttive Le prove meccaniche distruttive Sistemi di Produzione D. Antonelli, G. Murari C.L.U.T. Editrice, 2008 capitolo 3 Tecnologia meccanica S. Kalpakjian, S. R. Schmid Pearson
Horae. Horae Software per la Progettazione Architettonica e Strutturale VERIFICHE SEZIONI IN ACCIAIO
VERIFICHE SEZIONI IN ACCIAIO - Classiicazione e veriica sezioni - Modelli sismo-resistenti dissipativi per le strutture in acciaio - Veriiche per gli elementi dissipativi - Applicazione della Gerarchia
Instabilità elastica
. Intro La progettazione degli elementi meccanici soggetti a compressione differisce significativamente da torsione e flessione. A B P Quando una struttura come quella rappresentata in figura è soggetta
Teoria dei Sistemi Dinamici
Teoria dei Sistemi Dinamici 01GTG - 0GTG Soluzione dell Esame del 03/11/009 1 Esercizio 1 Sistema meccanico 1.1 Testo Si consideri il sistema meccanico planare schematizzato nella Fig. 1, descritto come
ESERCIZIO 1. Fig. 1. Si ricava a = m = 14.6 mm. Ricalcolando per a/w= 14.6/50= 0.29, si ottiene Procedendo, si ricava:
ESERCIZIO 1 Una piastra di larghezza totale 100 mm e spessore 5 mm, con cricca centrale passante (ig. 1), è soggetta ad una orza di trazione P=50 kn. 1) Determinare le condizioni di cedimento della piastra.
GIUNTO SALDATO: ESEMPIO [EC3 Appendice J]
GIUNTO SALDATO: ESEPIO [EC3 Appenice J] (revisione..3) HE A h (mm) b (mm) tw (mm) 7 tf (mm) r (mm) 8 A (cm) 64,34 Iy (cm4) 54 Wy (cm3) 55, Wpl,y (cm3) 568,5 IPE 3 h (mm) 3 b (mm) 5 tw (mm) 7, tf (mm),7
La Meccanica dei Materiali si occupa del comportamento di corpi solidi sottoposti all azione di forze e momenti.
Stato di sforzo La Meccanica dei Materiali si occupa del comportamento di corpi solidi sottoposti all azione di forze e momenti. Questo comportamento include deformazioni, fratture e separazione di parti,
Rinforzo a flessione Esempi numerici
Rinorzo a lessione Esempi numerici 1 Rinorzo a lessione Il rinorzo a lessione è necessario per elementi strutturali soggetti a momento lettente di calcolo maggiore della corrispondente resistenza Il rinorzo
NUOVE NORME TECNICHE PER LE COSTRUZIONI
NUOVE NORME TECNICHE PER LE COSTRUZIONI PILASTRI IN CEMENTO ARMATO (D.M. 14 Gennaio 2008) MATERIALI Conglomerato Non è ammesso l uso di conglomerati di classe inferiore a C20/25. Acciaio Si deve utilizzare
RELAZIONE DI CALCOLO
RELAZIONE DI CALCOLO Verifica di una trave in cemento armato a 3 campate (Edificio residenziale - Via Garibaldi 253 - Desio MB ) Ing. Sattamino Andrea via Garibaldi 253 Desio MB 1 Geometria Nome Trave:
ELEMENTI DI ANALISI SPETTRALE 1 I DUE DOMINI
Lezioni di Fisica della Terra Solida, Università di Chieti, a.a. 999/. Docente A. De Santis ELEMENTI DI ANALISI SPETTRALE I DUE DOMINI È spesso utile pensare alle unzioni ed alle loro trasormate di Fourier
MURI DI SOSTEGNO. a cura del professore. Francesco Occhicone
MURI DI SOSTEGNO a cura del professore Francesco Occhicone anno 2014 MURI DI SOSTEGNO Per muro di sostegno si intende un opera d arte con la funzione principale di sostenere o contenere fronti di terreno
ESERCIZI NUMERICI. Esercizio 1
Politecnico di Milano Facoltà di Ingegneria Industriale Corso di Laurea in Ingegneria Meccanica Progettazione di Sistemi Meccanici (Prof.ssa C. Colombo, Prof. C. Gorla) Appello esame 07.09.2015 ATTENZIONE:
RELAZIONE DI CALCOLO Verifica di sezione in CALCESTRUZZO ARMATO
RELAZIONE DI CALCOLO Verifica di sezione in CALCESTRUZZO ARMATO Ing.Sattamino Andrea via Garibaldi 253 Desio MB 1 Geometria della sezione Caratteristiche della sezione Nome della sezione: T Area: 2.900,00
ECM/Applicazioni Numeriche e Teoriche per la Costruzione di Macchine
ESERCIZIO 1 Si consideri una lastra del ponte di una nave, in acciaio di 30 mm, larga 12 m e caricata in trazione uniassiale a 50 MPa. Le temperatura di esercizio è inferiore alla temperatura di transizione
MANUALE DI UTILIZZO FRCMwall
MANUALE DI UTILIZZO FRCMwall Versione 1.1 Novembre 2018 Foglio di calcolo per la progettazione di interventi di consolidamento statico mediante l utilizzo di sistemi di rinorzo FRCM Il presente manuale
ESAME DI STATO 2008/09 INDIRIZZO MECCANICA TEMA DI : DISEGNO, PROGETTAZIONE, ORGANIZZAZIONE INDUSTRIALE
ESAME DI STATO 2008/09 INDIRIZZO MECCANICA TEMA DI : DISEGNO, PROGETTAZIONE, ORGANIZZAZIONE INDUSTRIALE Verifica di stabilità dell albero L albero rappresentato nell allegato può essere assimilato ad una
Resistenza dei materiali
Scheda riassuntiva capitoli 8-1 Resistenza dei materiali a resistenza dei materiali mette in relazione tra loro i seguenti elementi: Trazione/ Carichi compressione Taglio Flessione Torsione Deformazioni
CENTRO DI TAGLIO E TORSIONE SPURIA IN TRAVI A PARETE SOTTILE ESERCIZIO 1
CENTR DI TAGLI E TRSINE SPURIA IN TRAVI A PARETE STTILE ESERCIZI 1 La sezione di figura, sietrica rispetto ad un asse orizzontale passante per, è soggetta all azione di taglio T agente in direzione verticale
modulo D L acciaio Gruppo III
1 Calcolo dei pilastri composti Pilastri (o aste) composti Calcolo della snellezza equivalente La snellezza equivalente viene calcolata con le seguenti relazioni: aste calastrellate: λ eq = λ y2 + λ 1
UNIVERSITA DEGLI STUDI DI BERGAMO Facoltà di Ingegneria
UNIVERSITA DEGLI STUDI DI BERGAMO Facoltà di Ingegneria &26758=,21(',0$&&+,1( prof. Sergio Baragetti Allievi del corso di Laurea in Ingegneria Meccanica Testi delle esercitazioni per l Anno Accademico
PRINCIPI E METODOLOGIE DELLE COSTRUZIONI DI MACCHINE A.A
PRINCIPI E METODOLOGIE DELLE COSTRUZIONI DI MACCHINE A.A. 2015-2016 Docente: Domenico Gentile Tel. 07762994336 Mail: [email protected] Ulteriori informazioni sul sito del docente. 1 Altre informazioni
Costruzioni di acciaio: materiale e verifiche di resistenza e stabilità
Costruzioni di acciaio: materiale e veriiche di resistenza e stabilità Maurizio Orlando Dipartimento di Ingegneria Civile e Ambientale Università degli Studi di Firenze www.dicea.unii.it Costruzioni di
Flessione semplice. , il corrispondente raggio di curvatura R del tubo vale:
Esercizio N.1 Il tubo rettangolare mostrato è estruso da una lega di alluminio per la quale σ sn = 280 MPa e σ U = 420 Mpa e E = 74 GPa. Trascurando l effetto dei raccordi, determinare (a) il momento flettente
UNIVERSITA DEGLI STUDI DI BERGAMO Facoltà di Ingegneria
UNIVERSITA DEGLI STUDI DI BERGAMO Facoltà di Ingegneria COSTRUZIONE DI MACCHINE prof. Sergio Baragetti Allievi del corso di Laurea in Ingegneria Meccanica Testi delle esercitazioni per l Anno Accademico
Diversamente dal caso precedente, che si concentrava sullo schema della trave appoggiata, affrontiamo ora il dimensionamento di una trave a sbalzo.
Come nell esercitazione precedente cerchiamo di dimensionare una trave, per la quale sono state scelte 3 soluzioni tipologiche: legno, acciaio e cemento armato. Diversamente dal caso precedente, che si
-gdl>gdv il sistema è staticamente labile (trave labile, cioè in grado di muoversi);
Meccanica a trave Trave in equilibrio con due vincoli I gradi di libertà per un corpo sul piano sono 3, mentre quelli di un corpo nello spazio sono 6. Consideriamo un sistema di riferimento formato da:
CALCOLO AGLI S.L.U. DI SCALA A SOLETTA RAMPANTE IN C.A. E GRADINI RIPORTATI
H H a b H CALCOLO AGLI S.L.U. DI SCALA A SOLETTA RAMPANTE IN C.A. E GRADINI RIPORTATI La scala sarà realizzata con soletta rampante sagomata a ginocchio e gradini riportati in cls. La rampa è costituita
SOLUZIONE. Calcolo resistenze di progetto materiali: conglomerato: f ck = 200 dan / cm 2 (tab. 9.3_b); f ctk = 15daN / cm 2 f ctm = 22daN / cm 2
(*)ESEMPIO 4. Sia data la trave di sezione rettangolare delle dimensioni di 20 cm x 40 cm, descritta all esempio 1 (vedere particolari in figura 16.22). Supponendo che la struttura sia stata confezionata
VERIFICHE DI STABILITA CNR 10011/85 7
VERIFICHE DI STBILIT CR 00/85 7 Secondo la normativa italiana (CR 00 e D.. 6//996) deve essere: dove: c c / / ν.5 c ν è la tensione corrispondente alla orza c che provoca l inlessione laterale dell asta
1 EQUAZIONI GONIOMETRICHE
1 EQUAZIONI GONIOMETRICHE Esempio 1 Risolvere senx = Soluzione. La misura dei due angoli positivi, minori di un angolo giro, che soddisfano l equazione data sono: 4 Tutte le soluzioni sono quindi date
Una circonferenza e una parabola sono disegnate nel piano cartesiano. La circonferenza ha centro nel punto
La parabola Esercizi Esercizio 368.395 Una circonferenza e una parabola sono disegnate nel piano cartesiano. La circonferenza ha centro nel punto 0 ;5 e raggio, e la parabola ha il suo vertice in 0 ;0.
Indice I vettori Geometria delle masse
Indice 1 I vettori 1 1.1 Vettori: definizioni................................ 1 1.2 Componenti scalare e vettoriale di un vettore secondo una retta orientata. 2 1.3 Operazioni di somma, differenza tra
6. Unioni bullonate. 6.1 Tecnologia delle unioni bullonate Classificazione dei bulloni. Classificazione secondo D.M
6. Unioni bullonate 6.1 Tecnologia delle unioni bullonate 6.1.1 Classificazione dei bulloni Classificazione secondo D.M. 9-1-96 Classificazione secondo EC3 N.B. Il primo numero x 100 = f ub il secondo
Principi e Metodologie delle Costruzioni di Macchine
Principi e Metodologie delle Costruzioni di Macchine Corso di Laurea in Ingegneria Meccanica III anno A.A. 2010-2011 Docente: Domenico Gentile [email protected] 0776.2994336 Presentazione del corso PREREQUISITI
per i tuoi acquisti di libri, banche dati, riviste e software specializzati
1. STRUTTURA DELL'EC2 - Introduzione - Scopo dell'ec2 - "Struttura" dell'ec2 - Presupposti fondamentali 2. BASI DEL PROGETTO - Requisiti fondamentali - Stati limite - definizioni - Valori caratteristici
SOLUZIONE ESERCIZIO 1.1
SOLUZIONE ESERCIZIO 1.1 La temperatura di fusione ed il coefficiente di espansione termica di alcuni metalli sono riportati nella tabella e nel diagramma sottostante: Metallo Temperatura di fusione [ C]
GIUNTI TRAVE COLONNA: GENERALITA
GIUNTI TRAVE COLONNA: GENERALITA (revisione..003) Flangia d'estremità Irrigidimenti trasversali aldature ridotte vantaggi economici per spese di manodopera ridotte Facilità di trasporto i realizza il moncherino
18/06/2009. F =σ S F 1 F 2. Unità di misura della tensione: [N/mm 2 ] 1 [N/mm 2 ] = 1 [MPa]
ES. Sforzo Azioni interne (definizione di tensione o sforzo) Una barra di acciaio AISI 34 a sezione tonda, di diametro pari a 1 mm, deve sorreggere una massa di t. Qual è lo sforzo a cui è soggetta la
