INCERTEZZA NELLE MISURE ED ERRORI SPERIMENTALI 1. NON E POSSIBILE FARE MISURE INFINITAMENTE PRECISE : PRECISIONE ERRORE 0!

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "INCERTEZZA NELLE MISURE ED ERRORI SPERIMENTALI 1. NON E POSSIBILE FARE MISURE INFINITAMENTE PRECISE : PRECISIONE ERRORE 0!"

Transcript

1 Llab.1 INCERTEZZA NELLE MISURE ED ERRORI SPERIMENTALI 1. NON E POSSIBILE FARE MISURE INFINITAMENTE PRECISE : PRECISIONE ERRORE 0! FATTORI LIMITANTI LA PRECISIONE QUALITA DELLO STRUMENTO SENSIBILITA PORTATA METODO DI MISURA QUANTITA DA MISURARE

2 Llab. PRECISIONE E SENSIBILITA SONO CARATTERISTICHE DIERSE DI UNO STESSO STRUMENTO. ESEMPIO: MISURA DI UNA LUNGHEZZA CON DUE RIGHELLI DI UGUALE PRECISIONE HANNO LA STESSA SENSIBILITA? NO INFATTI UN RIGHELLO PUO AERE LE SOLE DIISIONI DEI CM E L ALTRO ANCHE QUELLE DEI MILLIMETRI. TUTTAIA CONFRONTANDO I DUE RIGHELLI POSSIAMO ERIFICARE CHE LA DISTANZA TRA LE DIISIONI DEI CENTIMETRI DEL PRIMO E UGUALE A 10 DIISIONI DEL SECONDO RIGHELLO. CONCLUSIONE I DUE STRUMENTI SONO UGUALMENTE PRECISI MA HANNO DIFFERENTI SENSIBILITA CERCHIAMO ORA DI CAPIRE BENE IL SIGNIFICATO DI SENSIBILITA DI UNO STRUMENTO CON UN ALTRO ESEMPIO.

3 Llab.3 CONSIDERIAMO UNA MISURA DI MASSA SE PESIAMO UN FINOCCHIO CON UNA BILANCIA DA CUCINA O CON QUELLA DI UN NEGOZIO TROEREMMO CHE LA SUA MASSA E DI CIRCA 150 g. SE PROIAMO AD ESEGUIRE LA MISURA SU UNA BILANCIA PESA-PERSONE ERIFICHIAMO CHE L INDICE DELLA BILANCIA NEPPURE SI SPOSTA: LA BILANCIA PESA-PERSONE NON E DUNQUE SUFFICIENTEMENTE SENSIBILE PER MISURARE UNA MASSA DI 150 g. OSSERIAMO PERO CHE TALE BILANCIA PUO MISURARE MASSE DI DECINE DI CHILOGRAMMI MENTRE LA BILANCIA DA CUCINA NON E IN GRADO DI FARLO. CONCLUSIONE LA BILANCIA PESA-PERSONE E MENO SENSIBILE E PRECISA DI QUELLA DA CUCINA MA HA UNA PORTATA MAGGIORE STRUMENTI BEN COSTRUITI HANNO PRECISIONE E SENSIBILITA SIMILI

4 Llab.4 ESEGUIAMO UNA MISURA DI LUNGHEZZA CON UN RIGHELLO CHE HA LA PRECISIONE AL. SUPPONIAMO DI AER TROATO CHE L1.5 c 15. L OGGETTO IN QUESTIONE E ESATTAMENTE LUNGO 15? NO PERCHE SE RIPETIAMO LA MISURA UN CERTO NUMERO n DI OLTE TROEREMMO CHE LA LUNGHEZZA L MISURATA NON SARA SEMPRE UGUALE A 15 MA FLUTTUERA AD ESEMPIO COME E MOSTRATO NELLA TABELLA

5 Llab.5 PER n 8 MISURAZIONI DI LUNGHEZZA DELLO STESSO OGGETTO n L() SI POTRA DIRE CHE LA LUNGHEZZA L HA UN INCERTEZZA DI 1 O AL MEGLIO DI 0.5. MA QUAL E IL ERO ALORE DI L? DOBBIAMO STABILIRE DELLE REGOLE CHE CI PERMETTONO DI ESEGUIRE STIME DEL ERO ALORE DELLE MISURE CHE EFFETTUIAMO: ALTRIMENTI DETTO PER OGNI SERIE DI MISURAZIONI ESEGUITE SI EFFETTUA LA ESTRAZIONE DI UN CAMPIONE DALLA POPOLAZIONE DI INFINITE MISURE POSSIBILI DELLA STESSA GRANDEZZA E DOBBIAMO TROARE I CRITERI PER STIMARE IL

6 Llab.6 PARAMETRO DELLA POPOLAZIONE A PARTIRE DAL CAMPIONE. QUINDI SE EFFETTUIAMO UNA SOLA MISURAZIONE DI LUNGHEZZA, NEL NOSTRO ESEMPIO L15 IN BASE A QUANTO SI E DETTO NON POSSIAMO AFFERMARE CHE L E ESATTAMENTE LUNGA 15 E QUESTO PERCHE LA AFFERMAZIONE SIGNIFICHEREBBE CHE L NON E PIU LUNGA NE PIU CORTA DEL ALORE MISURATO a esepio NEMMENO DI UN MILIARDESIMO DI! QUESTA AFFERMAZIONE SAREBBE ASSURDA PERCHE LA SENSIBILITA DELLO STRUMENTO ADOPERATO PERMETTE DI STIMARE LA LUNGHEZZA ENTRO 0.5 : L INTERALLO ENTRO CUI PUO STARE LA ERA LUNGHEZZA E LA INCERTEZZA DELLA MISURA O ERRORE SPERIMENTALE DELLA MISURA ATTENZIONE: ERRORE E SBAGLIO NON SONO LA STESSA COSA! ERRORE SPERIMENTALE ED INCERTEZZA SPERIMENTALE SONO SINONIMI.

7 Llab.7 CONSIDERAZIONE GENERALE SU ERRORI MASSIMI E SEMIDISPERSIONE MASSIMA SI POSSONO PRESENTARE DUE CASI: a) ESEGUENDO UNA MISURA PIU OLTE CON UNO STRUMENTO DI ASSEGNATA SENSIBILITA SI OTTIENE SEMPRE LA STESSA MISURA. AD ESEMPIO RIPETENDO PIU OLTE CON UN DOPPIO DECIMETRO LA MISURA DI UNA LUNGHEZZA SI OTTIENE SEMPRE L13.4 c ESSENDO LA SENSIBILITA DEL REGOLO PARI AD 1 L INCERTEZZA SULLA MISURA SARA PROPRIO DI 1. QUESTA INCERTEZZA PUO ESSERE CONSIDERATA COME L ERRORE MASSIMO DA ATTRIBUIRE ALLA NOSTRA MISURA. IN ALTRE PAROLE 1 RAPPRESENTA L INTERALLO DI INCERTEZZA DELLA NOSTRA MISURA : IL ALORE CHE OTTENIAMO LO POSSIAMO ESPRIMERE COME: ( ) c E

8 Llab.8 SIGNIFICA CHE LA NOSTRA MISURA PUO ESSERE COMPRESA TRA E c IN QESTO MODO INDICHIAMO COME INTERALLO DI INCERTEZZA 1 E L ERRORE MASSIMO E LA META DI QUESTO INTERALLO CIOE 0.5 REGOLA INCERTEZZA SENSIBILITA ERRORE MASSIMO SENSIBILITA / b) ESEGUENDO PIU OLTE UNA MISURA CON UNO STRUMENTO DI ASSEGNATA SENSIBILITA SI OTTIENE UNA SERIE DI MISURE TRA LORO PIU O MENO DIFFERENTI. ESEMPIO: MISURA CON UN DOPPIO DECIMETRO DEL DIAMETRO DI UN CILINDRO. DATA LA TIPOLOGIA DELLA MISURA E DEL MODO IN CUI PUO EFFETTUARSI SI POTREBBERO OTTENERE I SEGUENTI RISULTATI ESPRESSI IN c: 13.1;13.4;13.5;13.1;13.0;13.6;13.;13.;13.4;13.5; 13.3 ETC. SI PUO EDERE CHE I RISULTATI SI DISCOSTANO QUESTA OLTA L UNO

9 Llab.9 DALL ALTRO PIU DI QUANTO SIA LA SENSIBILITA DELLO STRUMENTO E CIOE 0.1c 1. C E QUINDI IL PROBLEMA DI COME ESPRIMERE LA MISURA CON UN UNICO ALORE E CON LA INCERTEZZA CHE IN QUESTO CASO RISULTA MAGGIORE DELLA SENSIBILITA DELLO STRUMENTO USATO. IL PROBLEMA SI RISOLE COSI : INDICHIAMO CON Dax E Din I ALORI MASSIMO E MINIMO TROATI PER LE MISURE. IL ALORE INTERMEDIO SARA DATO DA : Dint(DaxDin)/ E LA INCERTEZZA SARA DATA DA : D(Dax-Din)/ CHE SI DEFINISCE ANCHE COME SEMIDISPERSIONE MASSIMA IN QUESTO CASO LA SEMIDISPERSIONE MASSIMA RAPPRESENTA L ERRORE MASSIMO DELLA MISURA. NEL CASO ANALIZZATO SI HA DUNQUE CHE :

10 Llab.10 DDint D E CIOE Dint( )/13.3 c E D( )/0.3c DDint D( )c Eax0.3c > 0.01c (SENSIBILITA DEL DOPPIO DECIMETRO USATO) N.B. QUESTO METODO SI APPLICA SE D > SENSIBILITA DELLO STRUMENTO USATO. IL PROBLEMA DELLA PROPAGAZIONE DEGLI ERRORI DI MISURA SUPPONIAMO DI OLER MISURARE UN AREA. CONSIDERIAMO UN RETTANGOLO DI LATI a E b E NE OGLIAMO MISURARE L AREA. POSSIAMO PROCEDERE IN DUE MODI: a) MISURA INDIRETTA DEL AREA OTTENUTA ALUTANDO LE LUNGHEZZE DEI LATI a E b E POI CALCOLARE L AREA Aa b

11 Llab.11 b) MISURA DIRETTA DELL AREA MEDIANTE UN CAMPIONE DI AREA USATO COME UNITA DI MISURA E CHE COME STRUMENTO ARA UNA ASSEGNATA PRECISIONE E SENSIBILITA. a) MISURA DIRETTA STRUMENTI ADOPERATI: 1) CARTA QUADRETTATA CON QUADRETTI DI 1 c DI LATO ) CARTA QUADRETTATA CON QUADRETTI DI 1 DI LATO IL SECONDO STRUMENTO HA EIDENTEMENTE UNA SENSIBILITA CHE E 10 OLTE MAGGIORE DI QUELLA DEL PRIMO. b

12 Llab.1 b CASO A: b 9c<b<10 c b( )c 4c<<5 c ( )c CASO B: b( ) ( ) CASO A: AREAb ( ) c AREA4.75 c 475

13 Llab.13 CASO B: AREAb ( ) AREA4459 LE DUE MISURE DELLA STESSA AREA SONO DIFFERENTI GIA DALLA SECONDA CIFRA DECIMALE! NEL CASO A (9 b 10)c; (4 5)c; QUINDI (36 A 50) c DA CUI SI HA : A int (3650)/43 c A (50-36)/ 7 c A A int A (43 7)c CONTROLLANDO SI EDE CHE AA 50 c ; A-A 36 c 7 c RAPPRESENTA SIA L INCERTEZZA CHE L ERRORE MASSIMO DELLA MISURAPER LA MISURA A MAGGIORE SENSIBILITA FACENDO I CONTI ALLO STESSO MODO TROIAMO: A( ) DA QUI LA REGOLA: MISURANDO UNA STESSA GRANDEZZA PIU OLTE, SIA CON LO STESSO STRUMENTO CHE CON STRUMENTI DI DIERSA PRECISIONE E SENSIBILITA I RISULTATI DELLE MISURE DEONO ESSERE UGUALI ENTRO LE INCERTEZZE SPERIMENTALI DATE DAGLI ERRORI MASSIMI

14 Llab.14 EDIAMO ORA CHE ANCHE NEL CASO DI MISURA DIRETTA DI A ERRA RISPETTATA QUESTA REGOLA. NEL PRIMO CASO A PIU BASSA SENSIBILITA SI OTTERRA (36<A<50)c A(43 7)c OIAMENTE E SOLO UN CASO CHE IL ALORE DI A OTTENUTO DIRETTAMENTE RISULTA COINCIDENTE CON QUELLO OTTENUTO PER IA INDIRETTA IN GENERALE CI DOBBIAMO ASPETTARE CHE LE MISURE FATTE CON METODI DIERSI CADANO NELL INTERALLO DI INCERTEZZA DETERMINATO DAL METODO A SENSIBILITA PEGGIORE A in A in A int A ax A ax FORMALIZZEREMO ORA IL DISCORSO SULLA PROPAGAZIONE DEGLI ERRORI DI MISURA APPLICANDOLO AGLI ERRORI MASSIMI NELLE MISURE INDIRETTE. PRENDIAMO IN CONSIDERAZIONE L ESEMPIO DELL AREA MISURATA TRAMITE LE LUNGHEZZE DELLA BASE b E DELL ALTEZZA

15 Llab.15 Hp. << ; b << b int ± int ( ax in )/ ( ax - in )/ bb int ± b b int (b ax b in )/ b (b ax - b in )/ A int (A ax A in )/ A (A ax - A in )/ A ax ax b ax ( ax )( b ax b) A in in b in ( in - )( b in - b) AALENDOCI DELL IPOTESI FATTA QUANDO ESEGUIAMO I PRODOTTI TRASCUREREMO TUTTI I PRODOTTI DEL TIPO b PERCHE b<< O b ( SONO INFINITESIMI DI ORDINE SUERIORE AL 1 ) QUINDI A ax ax b ax b ax ax b E A in in b in b in - in b A int (A ax A in )/ int b int A (A ax - A in )/ b int int b

16 Llab.16 A f(,b) b A ( A/ ) ( A/ b) b A b b ( A/ )b ; ( A/ b) DA QUI SI DEDUCE LA REGOLA CHE SE yf(x 1,x,x 3,x 4,..x n ) E UNA GRANDEZZA MISURATA INDIRETTAMENYE ATTRAERSO LA MISURA DIRETTA DELLE x i L ERRORE MASSIMO SU y SI DETERMINA DA: y y x 1 x 1 y x x y x 3 x 3... y x n x n APPLICHIAMO LA REGOLA AD UN ALTRO ESEMPIO CHE CI TORNERA UTILE: SUPPONIAMO DI OLER DETERMINARE LA DENSITA r DI UN SOLIDO DA MISURE DI MASSA M E DI OLUME rm/ rf(m,)m/ ρ ρ M M ρ

17 Llab.17 ρ M M PRENDIAMO I ALORI ASSOLUTI PER CONSIDERARE GLI ERRORI MASSIMI E SI HA: ρ M M DA CUI LA REGOLA: L ERRORE MASSIMO DELLA GRANDEZZA OTTENUTA PER IA INDIRETTA SI OTTIENE FACENDO IL DIFFERENZIALE TOTALE DELLA GRANDEZZA STESSA E CONSIDERANDO PER IL CALCOLO I ALORI ASSOLUTI DELLA DERIATE PARZIALI ERRORI RELATII GLI ERRORI RELATII SI OTTENGONO DAL RAPPORTO TRA L ERRORE O INCERTEZZA DI UNA GRANDEZZA E IL

18 Llab.18 ALORE MEDIO DELLA GRANDEZZA STESSA: x GRANDEZZA X DI ERRORE ASSOLUTO ERRORE RELATIO e r /x ERRORE RELATIO PERCENTUALE e rp (/x) 100 ESEMPIO L( ) 0.05 ERRORE ASSOLUTO (MASSIMO) e r /L (0.05/4.87) e rp (/L) 100 1% L INFORMAZIONE DESUMIBILE E ABBASTANZA EIDENTE E CI PERMETTE DI

19 Llab.19 CONFRONTARE SERIE DI MISURE DIFFERENTI IN QUANTO ABBIAMO EFFETTUATO UNA PROCEDURA DI NORMALIZZAZIONE DELLE MISURE STESSE DI PARTICOLARE UTILITA E L USO DEGLI ERRORI RELATII NEL CASO DELLA PROPAGAZIONE DEGLI ERRORI. ESEMPI: A b A b b ERRORE RELATIO fl A b b A b b

20 Llab.0 A b A b QUINDI SI PUO CONCLUDERE CHE: e e ra rb e r L ERRORE RELATIO MASSIMO SU A SI OTTIENE DALLA SOMMA DEGLI

21 Llab.1 ERRORI RELATII SU E b FACCIAMO ORE UN ESEMPIO UTILE PER LE ESPERIENZE DI LABORATORIO: CALCOLO DELL ERRORE PER UNA ρ MISURA INDIRETTA DI DENSITA ρ ρ ρ

22 Llab. RICORDIAMO CHE 1 ρ QUINDI SI HA : ρ ρ e ρ e e

23 Llab.3 SUPPONIAMO CHE L OGGETTO CONSIDERATO SIA UN CILINDRO DI CUI SI E MISURATO IL DIAMETRO, L ALTEZZA E LA MASSA CON I RISPETTII ERRORI. OGLIAMO DETERMINARE L ERRORE RELATIO E L ERRORE ASSOLUTO SULLA DENSITA DETERMINATA INDIRETTAMENTE DAL RAPPORTO TRA MASSA E OLUME DEL CILINDRO. π 4 π π 4 DIIDENDO ENTRAMBI I MEMBRI PER SI HA:

24 Llab.4 E IN DEFINITIA ρ ρ

25 Llab.5 PER UN CILINDRO CAO DI DIAMETRO ESTERNO E E DIAMETRO INTERNO I ED ALTEZZA LA PROCEDURA E ANALOGA: OCCORRE TROARE IL DIFFERENZIALE TOTALE DEL OLUME CHE QUESTA OLTA E : QUINDI SI HA: I E 4 ) ( π I E I I E E π π π 4 ) (

26 Llab.6 CON PASSAGGI ANALOGHI AL CASO PRECEDENTE SI ARA : I I E E I I E E ρ ρ

Tutte le altre grandezze fisiche derivano da queste e sono dette grandezze DERIVATE (es. la superficie e il volume).

Tutte le altre grandezze fisiche derivano da queste e sono dette grandezze DERIVATE (es. la superficie e il volume). Grandezze fisiche e misure La fisica studia i fenomeni del mondo che ci circonda e ci aiuta a capirli. Tutte le grandezze che caratterizzano un fenomeno e che possono essere misurate sono dette GRANDEZZE

Dettagli

IE FISICA Verifica 10 gennaio 2015 tutti gli esercizi e tutte le domande

IE FISICA Verifica 10 gennaio 2015 tutti gli esercizi e tutte le domande 1) Per ciascuno dei due casi determinare: portata e sensibilità dello strumento di misura; grandezza fisica misurata, valore della misura, errore assoluto, errore relativo ed errore percentuale; quindi

Dettagli

3 - La misura. Prof. Stefano SPEZIA

3 - La misura. Prof. Stefano SPEZIA 3 - La misura Prof. Stefano SPEZIA Errori nelle misure Il pendolo semplice Proviamo a misurare il periodo di un oscillazione! Errori casuali - Errori sistematici Ogni volta che si effettua una misura si

Dettagli

GLI ERRORI DI MISURA

GLI ERRORI DI MISURA Revisione del 26/10/15 ISTITUTO TECNICO INDUSTRIALE V.E.MARZOTTO Valdagno (VI) Corso di Fisica prof. Nardon GLI ERRORI DI MISURA Richiami di teoria Caratteristiche degli strumenti di misura Portata: massimo

Dettagli

Elaborazione dei dati sperimentali. Problemi di Fisica

Elaborazione dei dati sperimentali. Problemi di Fisica Problemi di Fisica Elaborazione dei dati sperimentali Nella seguente tabella riportiamo alcune regole per esprimere ualunue numero mediante una potenza di 0: 00000000 = 0 9 456789 = 45,6789 0 4 3, = 0,3

Dettagli

Come errore prendo la semidispersione o errore massimo, cioè il valore più grande meno quello più piccolo diviso 2.

Come errore prendo la semidispersione o errore massimo, cioè il valore più grande meno quello più piccolo diviso 2. Compito di Fisica Classe 1C 9/10/010 Alunno ispondi alle seguenti domande: 1) Cosa significa misurare isurare vuol dire confrontare una grandezza con un altra grandezza omogenea scelta come unità di misura.

Dettagli

Grandezze e Misure 1

Grandezze e Misure 1 Grandezze e Misure 1 Grandezze e Misure Introduzione Il Metodo Sperimentale Unità di Misura Grandezze Fondamentali e Derivate Massa e Densità Misure dirette e indirette Strumenti di misura Errori nelle

Dettagli

Analisi degli Errori di Misura. 08/04/2009 G.Sirri

Analisi degli Errori di Misura. 08/04/2009 G.Sirri Analisi degli Errori di Misura 08/04/2009 G.Sirri 1 Misure di grandezze fisiche La misura di una grandezza fisica è descrivibile tramite tre elementi: valore più probabile; incertezza (o errore ) ossia

Dettagli

Sintesi degli argomenti di fisica trattati (parte uno)

Sintesi degli argomenti di fisica trattati (parte uno) Sintesi degli argomenti di fisica trattati (parte uno) La grandezza fisica è una proprietà dello spazio o della materia che può essere misurata. Fare una misura vuol dire confrontare la grandezza fisica

Dettagli

2 Andiamo subito alle conclusioni

2 Andiamo subito alle conclusioni 1 Misure indirette Per misura indiretta si intende la misura di una qualunque grandezza ottenuta attraverso operazioni matematiche su delle misure dirette. Ad esempio, se vogliamo ricavare una stima dell

Dettagli

Errori sistematici e casuali

Errori sistematici e casuali Errori sistematici e casuali Errori Casuali Tempo di reazione nel far partire o fermare l orologio: Può essere sia in eccesso che in difetto (ad esempio partenza e arrivo), quindi l errore può avere segno

Dettagli

Laboratorio di Fisica-Chimica

Laboratorio di Fisica-Chimica Laboratorio di Fisica-Chimica Lezione n.1. Che cos'è la Fisica? La Fisica è una scienza che si occupa dello studio dei fenomeni che avvengono in natura. Questo studio viene compiuto tramite la definizione

Dettagli

Laboratorio di Fisica I Anno Accademico

Laboratorio di Fisica I Anno Accademico Laboratorio di Fisica I Anno Accademico 018-019 Relazione terza esperienza di Laboratorio Giorgio Campione Misura del periodo di oscillazione e della costante elastica della molla di un oscillatore armonico

Dettagli

Capitolo 2 Le misure delle grandezze fisiche

Capitolo 2 Le misure delle grandezze fisiche Capitolo 2 Le misure delle grandezze fisiche Gli strumenti di misura Gli errori di misura Il risultato di una misura Errore relativo ed errore percentuale Propagazione degli errori Rappresentazione di

Dettagli

L errore percentuale di una misura è l errore relativo moltiplicato per 100 ed espresso in percentuale. Si indica con e p e risulta: e ( e 100)%

L errore percentuale di una misura è l errore relativo moltiplicato per 100 ed espresso in percentuale. Si indica con e p e risulta: e ( e 100)% UNITÀ L ELBORZIONE DEI DTI IN FISIC 1. Gli errori di misura.. Errori di sensibilità, errori casuali, errori sistematici. 3. La stima dell errore. 4. La media, la semidispersione e lo scarto quadratico

Dettagli

Grandezze e Misure.

Grandezze e Misure. Grandezze e Misure www.fisicaxscuola.altervista.org Grandezze e Misure Introduzione Il Metodo Sperimentale Unità di Misura Grandezze Fondamentali e Derivate Massa e Densità Strumenti di misura Misure dirette

Dettagli

MISURE ED ERRORI DI LUIGI BOSCAINO BIBLIOGRAFIA: QUANTUM AUTORE FABBRI - EDITORE SEI IDEE E SPUNTI DEL DOCENTE

MISURE ED ERRORI DI LUIGI BOSCAINO BIBLIOGRAFIA: QUANTUM AUTORE FABBRI - EDITORE SEI IDEE E SPUNTI DEL DOCENTE MISURE ED ERRORI DI LUIGI BOSCAINO BIBLIOGRAFIA: QUANTUM AUTORE FABBRI - EDITORE SEI IDEE E SPUNTI DEL DOCENTE Quanto misura l asse L? Che cosa ritieni si debba riportare come valore della grandezza L?

Dettagli

Significato probabilistico di σ: su 100 misure, 68.3 hanno probabilità di cadere nell intervallo x σ, x +σ, 95.5 nell intervallo

Significato probabilistico di σ: su 100 misure, 68.3 hanno probabilità di cadere nell intervallo x σ, x +σ, 95.5 nell intervallo Significato probabilistico di σ: su 1 misure, 68.3 hanno probabilità di cadere nell intervallo x σ, x +σ, 95.5 nell intervallo x σ, x + σ e 99.7 nell intervallo x 3 σ, x + 3 Se si considerano campioni

Dettagli

Acquisizione, rappresentazione e analisi di dati sperimentali

Acquisizione, rappresentazione e analisi di dati sperimentali Acquisizione, rappresentazione e analisi di dati sperimentali Aurelio Agliolo Gallitto Dipartimento di Fisica, Università di Palermo Introduzione Esperimenti illustrativi, per visualizzare un determinato

Dettagli

Corso di Fisica generale

Corso di Fisica generale Corso di Fisica generale Liceo Scientifico Righi, Cesena Anno Scolastico 2014/15 3B Appunti su Notazione Scientifica ed Incertezza della Misura Sperimentale Riccardo Fabbri Riccardo Fabbri 1 (Dispense

Dettagli

Relazione di fisica ESPERIMENTO N 1

Relazione di fisica ESPERIMENTO N 1 ISTITUTO SUPERIORE "B. RUSSELL" DI ROMA Relazione di fisica ESPERIMENTO N 1 1.TITOLO Misurazione indiretta della massa di un cilindretto metallico mediante i metodi della tara di J.C. Borda e della doppia

Dettagli

Grandezze e Misure.

Grandezze e Misure. Grandezze e Misure www.fisicaxscuola.altervista.org Grandezze e Misure Introduzione Il Metodo Sperimentale Unità di Misura Grandezze Fondamentali e Derivate Massa e Densità Strumenti di misura Misure dirette

Dettagli

Scritto da Administrator Mercoledì 26 Ottobre :57 - Ultimo aggiornamento Domenica 08 Dicembre :43

Scritto da Administrator Mercoledì 26 Ottobre :57 - Ultimo aggiornamento Domenica 08 Dicembre :43 Per misurare una grandezza occorre eseguire una serie di operazioni, manuali e matematiche, il cui risultato finale è esprimibile con un numero e spesso con un'unità di misura. Questo procedimento che

Dettagli

Corso di Laboratorio di Misure Fisiche

Corso di Laboratorio di Misure Fisiche Corso di Laurea in Ingegneria Civile e per l Ambiente e il Territorio Corso di Laboratorio di Misure Fisiche Prof. G. Ausanio ESERCITAZIONE N.1 Misura del volume e della densità di un solido. Gruppo: Data

Dettagli

10 ottobre Marina Bertolini Dipartimento di Matematica F.Enriques Università degli Studi di Milano

10 ottobre Marina Bertolini Dipartimento di Matematica F.Enriques Università degli Studi di Milano Fondamenti e didattica della matematica - Geometria - Corso speciale - Facoltà di Scienze della Formazione - Università Milano Bicocca - a.a. 2007-2008 10 ottobre 2007 Marina Bertolini (marina.bertolini@mat.unimi.it)

Dettagli

Visione d insieme DOMANDE E RISPOSTE SULL UNITÀ

Visione d insieme DOMANDE E RISPOSTE SULL UNITÀ Visione d insieme DOMANDE E RISPOSTE SULL UNITÀ Quali sono le grandezze fisiche? La fisica si occupa solo delle grandezze misurabili. Misurare una grandezza significa trovare un numero che esprime quante

Dettagli

Capitolo 2. La misura

Capitolo 2. La misura Capitolo 2 La misura 1 Gli strumenti di misura Possono essere digitali o analogici: la risposta di uno strumento digitale varia con discontinuità (a scatti) al variare della grandezza misurata e appare

Dettagli

Dati sperimentali Nella serie di 10 misurazioni di tempo effettuate, si sono ottenuti i seguenti valori espressi in secondi:

Dati sperimentali Nella serie di 10 misurazioni di tempo effettuate, si sono ottenuti i seguenti valori espressi in secondi: ESPERIMENTO DI LABORATORIO DI FISICA MISURE DI TEMPO Obiettivo L obiettivo dell esperimento, oltre che familiarizzare con le misure di tempo, è quello di rivelare gli errori casuali, elaborare statisticamente

Dettagli

Misura di grandezze fisiche Stima delle incertezze. Maria Luisa De Giorgi Dipartimento di Fisica UniSalento - Lecce

Misura di grandezze fisiche Stima delle incertezze. Maria Luisa De Giorgi Dipartimento di Fisica UniSalento - Lecce Misura di grandezze fisiche Stima delle incertezze Maria Luisa De Giorgi Dipartimento di Fisica UniSalento - Lecce 1 Scopo della lezione : esporre sinteticamente i metodi di elaborazione dei dati sperimentali

Dettagli

Laboratorio di Fisica I - Anno Accademico Relazione esperienza n 1

Laboratorio di Fisica I - Anno Accademico Relazione esperienza n 1 Laboratorio di Fisica I - Anno Accademico 018-019 Relazione esperienza n 1 Mario Lauriano, Francesco Giosuè, Flavio Magliozzo, Chiara Coppola, Valeria Principato 19 Novembre 018 Sommario L esperienza svolta,

Dettagli

5 cilindri cavi omogenei di dimensioni differenti e dello stesso materiale.

5 cilindri cavi omogenei di dimensioni differenti e dello stesso materiale. RELAZIONE DI LABORATORIO DI FISICA ANNO ACCADEMICO 018/019 Esperienza di laboratorio n 1 19/11/18 Misura della densità di solidi omogenei di forma regolare GRUPPO N 1 Componenti del gruppo: Cirincione

Dettagli

Errori e loro propagazione

Errori e loro propagazione Errori e loro propagazione Introduzione al problema Quando effettuiamo delle misure è inevitabile incorrere in errori: non possiamo liberarcene peró possiamo controllarli. IMMAGINIAMO: un carpentiere che

Dettagli

4 Come facciamo a misurare? 3 A cosa serve misurare? Fondamenti e didattica della matematica - Geometria. Misura

4 Come facciamo a misurare? 3 A cosa serve misurare? Fondamenti e didattica della matematica - Geometria. Misura 1 2 Fondamenti e didattica della matematica - Geometria 3 marzo 2007 Misura Marina Bertolini (marina.bertolini@mat.unimi.it) Dipartimento di Matematica F.Enriques Università degli Studi di Milano Fondamenti

Dettagli

MISURA DELLA DENSITA DI SOLIDI OMOGENEI DI FORMA REGOLARE

MISURA DELLA DENSITA DI SOLIDI OMOGENEI DI FORMA REGOLARE MISURA DELLA DENSITA DI SOLIDI OMOGENEI DI FORMA REGOLARE Esperienza di laboratorio di Fisica n 1 GRUPPO n 1 Umberto La Mantia Loredana Alicata Alessio Ilari Alessia La Barbiera Andrea Gambino 0/11/017

Dettagli

Misura della densità di solidi omogenei di forma regolare

Misura della densità di solidi omogenei di forma regolare Laboratorio di Fisica 1 Modulo 1 Anno Accademico 2018/2019 Esperienza di laboratorio n 1 Misura della densità di solidi omogenei di forma regolare Gruppo 10 Alfano Roberto Broccolo Rita Di Gregorio Giusy

Dettagli

Laboratorio di fisica I

Laboratorio di fisica I Laboratorio di fisica I Relazione esperienza n.1 MISURAZIONE DELLA DENSITA DI SOLIDI OMOGENEI DI FORMA REGOLARE 13/11/2018 Bozzotta Riccardo Di Paola Guido Greco Federico Marino Francesco Pennino Pietro

Dettagli

APPUNTI SUGLI ERRORI. Prof. Romano

APPUNTI SUGLI ERRORI. Prof. Romano APPUNTI SUGLI ERRORI Prof. Romano 5 novembre 2018 ii Indice 1 Richiami sugli errori di misura 1 1.1 Misure dirette non ripetute.................... 1 1.2 Misure dirette ripetute...................... 2

Dettagli

3 - Esercizi: strumenti di misura, propagazione degli errori, media, deviazione standard, intervalli

3 - Esercizi: strumenti di misura, propagazione degli errori, media, deviazione standard, intervalli 3 - Esercizi: strumenti di misura, propagazione degli errori, media, deviazione standard, intervalli Esercizio 1: Si intende misurare la densità di un fluido tramite misure di massa e di volume. Lo si

Dettagli

MISURA DELLA DENSITA DI SOLIDI OMOGENEI DI FORMA REGOLARE

MISURA DELLA DENSITA DI SOLIDI OMOGENEI DI FORMA REGOLARE LABORATORIO DI FISICA Ⅰ ESPERIENZA n 1 13 Novembre 018 Gruppo N 5: Salvatore Mantia, Rosario Lo Varco, Antonio Lo Varco, Silvia Tomasi, Alfredo Scelsa, Gianluca Pusateri, Alessandro Sanseverino. MISURA

Dettagli

PNI 2004 QUESITO 1. Il grado sessagesimale è definito come la novantesima parte dell angolo retto.

PNI 2004 QUESITO 1. Il grado sessagesimale è definito come la novantesima parte dell angolo retto. www.matefilia.it PNI 2004 QUEITO 1 Il grado sessagesimale è definito come la novantesima parte dell angolo retto. Il grado centesimale è definito come la centesima parte dell angolo retto. La misura in

Dettagli

Approssimazioni. π= Approssimazione per troncamento alla quarta cifra decimale del numero π π

Approssimazioni. π= Approssimazione per troncamento alla quarta cifra decimale del numero π π Approssimazioni π=3.14159265358979323846... Approssimazione per troncamento alla quarta cifra decimale del numero π π 3.1415 Approssimazione per arrotondamento alla quarta cifra decimale del numero π π

Dettagli

di misura La scelta dello strumento Si definisce portata il valore massimo della grandezza che uno strumento è in grado di misurare.

di misura La scelta dello strumento Si definisce portata il valore massimo della grandezza che uno strumento è in grado di misurare. Errori di misura La misura di una grandezza fisica, per quanto accurata, non può mai dare come risultato un unico valore. Essa è sempre accompagnata da un imprecisione, più o meno grande, a cui si dà il

Dettagli

La fisica al Mazzotti 5.4

La fisica al Mazzotti 5.4 La fisica al Mazzotti 5.4 Misure indirette Propagazione degli errori 3 Misure dirette Quelle che si fanno con grandezze fisiche misurabili direttamente Esempio: lunghezza, temperatura, massa Misure indirette

Dettagli

Equivalenze. Prof. A. Spagnolo IMS P. Villari - Napoli

Equivalenze. Prof. A. Spagnolo IMS P. Villari - Napoli Equivalenze 12dm 2...mm 2 ; 14037cm 2...m 2 ; 12kg...cg; 12hm 2...m 2 ; 3km/h...m/s; 12,8m/s...km/h; 5,5km/min...m/s; 6700m/h...m/s; 34m/s...m/h; 3,75m/s...km/min; 350kg/m 3...g/cm 3 ; 14,4g/cm 3...kg/m

Dettagli

inferiore ai 180, ha area uguale al quadrato della corda AD che sottende un arco uguale alla somma dell arco AC e dell arco 180

inferiore ai 180, ha area uguale al quadrato della corda AD che sottende un arco uguale alla somma dell arco AC e dell arco 180 L approssimazione di π secondo al-kashi Al-Kashi calcola il π in modo tale che soddisfi una condizione, detta Condizione di Al-Kashi : La circonferenza di un cerchio deve essere espressa in funzione del

Dettagli

RELAZIONE DI LABORATORIO DI FISICA

RELAZIONE DI LABORATORIO DI FISICA RELAZIONE DI LABORATORIO DI FISICA ANNO ACCADEMICO 017/018 Esperienza di laboratorio n 1 0/11/17 Misura della densità di solidi omogenei di forma regolare GRUPPO N 10 Componenti del gruppo: Cirincione

Dettagli

Misurare Che cosa significa misurare incertezza errore assoluto sensibilità Misure dirette e misure indirette misure dirette misure indirette

Misurare Che cosa significa misurare incertezza errore assoluto sensibilità Misure dirette e misure indirette misure dirette misure indirette Misurare Ce cosa significa misurare Aldo e Bruno sono due amici. Se li facciamo stare in piedi con le spalle contro il muro, uno accanto all altro, vediamo ce Aldo è più alto di Bruno. In questo modo abbiamo

Dettagli

Questi appunti costituiscono soltanto una traccia sintetica del Corso di Laboratorio di Fisica, a prescindere dalle opportune spiegazioni e dai

Questi appunti costituiscono soltanto una traccia sintetica del Corso di Laboratorio di Fisica, a prescindere dalle opportune spiegazioni e dai Questi appunti costituiscono soltanto una traccia sintetica del Corso di Laboratorio di Fisica, a prescindere dalle opportune spiegazioni e dai necessari chiarimenti forniti a lezione. 1 MISURA DI UNA

Dettagli

La misura e le incertezze

La misura e le incertezze 1. Gli strumenti di misura Gli strumenti di misura vengono utilizzati per effettuare la misura di una grandezza fisica. Esistono due tipologie di strumenti di misura: 1. strumenti analogici, in cui la

Dettagli

La fisica...le scienze... Metodo scientifico. Scopo della fisica è lo studio dei fenomeni naturali descrizione qualitativa e quantitativa

La fisica...le scienze... Metodo scientifico. Scopo della fisica è lo studio dei fenomeni naturali descrizione qualitativa e quantitativa La fisica...le scienze... Scopo della fisica è lo studio dei fenomeni naturali descrizione qualitativa e quantitativa Metodo scientifico Con Galileo Galilei (1564-1642) è stato introdotto il metodo sperimentale:

Dettagli

Misura. Istituzioni di matematiche 2. Come facciamo a misurare? Come facciamo a misurare? Diego Noja

Misura. Istituzioni di matematiche 2. Come facciamo a misurare? Come facciamo a misurare? Diego Noja Istituzioni di matematiche 2 Diego Noja (diego.noja@unimib.it) 10 marzo 2009 Misura CDL Scienze della Formazione Primaria Istituzioni di matematiche 2 pagina 1 CDL Scienze della Formazione Primaria Istituzioni

Dettagli

Laboratorio di Fisica

Laboratorio di Fisica Laboratorio di Fisica dott. G. Casini ARGOMENTO 1: Misura delle grandezze fisiche LDFM Laboratorio di Fisica presentazione realizzata dal prof. Antonio Covello Schema della relazione di laboratorio Strumenti

Dettagli

Esercizi Prime A_MIO_1 METODO SPERIMENTALE Scrivere la definizione di scienza Scrivere la definizione di fisica.

Esercizi Prime A_MIO_1 METODO SPERIMENTALE Scrivere la definizione di scienza Scrivere la definizione di fisica. METODO SPERIMENTALE 1-1 - Scrivere la definizione di scienza. 1-2 - Scrivere la definizione di fisica. 1-3 - Effettuare una ricerca si Galileo Galilei Per il quaderno di laboratorio. 1-4 - Ricercare la

Dettagli

Appendice 1: Verifiche scritte

Appendice 1: Verifiche scritte ANNO SCOLASTICO 2015-2016 CLASSE 1 LB DISCIPLINA: FISICA DOCENTE: Romio Silvana A. PROGRAMMA Le misure delle grandezze. Introduzione alla fisica: la Fisica come scienza, limiti e validità di una teoria

Dettagli

FISICA. Elaborazione dei dati sperimentali. Autore: prof. Pappalardo Vincenzo docente di Matematica e Fisica

FISICA. Elaborazione dei dati sperimentali. Autore: prof. Pappalardo Vincenzo docente di Matematica e Fisica FISICA Elaborazione dei dati sperimentali Autore: prof. Pappalardo Vincenzo docente di Matematica e Fisica LA MISURA GLI STRUMENTI DI MISURA Gli strumenti di misura possono essere analogici o digitali.

Dettagli

1. Misura di lunghezze. Dr. Paola Romano - Università del Sannio

1. Misura di lunghezze. Dr. Paola Romano - Università del Sannio 1. Misura di lunghezze Misure di lunghezze:calibro (1) Il calibro a nonio o ventesimale è costituito da un'asta graduata (6) con un'estremità piegata a becco e da un corsoio (3), recante anch'esso un becco.

Dettagli

ESERCIZI IN PIÙ LE ESPRESSIONI CON I MONOMI

ESERCIZI IN PIÙ LE ESPRESSIONI CON I MONOMI I MONOMI E I POLINOMI Esercizi in più ESERCIZI IN PIÙ LE ESPRESSIONI CON I MONOMI Semplifica le seguenti espressioni. 1 4 3 ab 4 a b ( ab) 5 x 3 y z 1 3 3 4 a 0 xy z (6xy) [30x 4 y ] 3 ( 3a) 3 4 3 a b

Dettagli

1. Misura della densità di un materiale solido. Dr. Paola Romano - Università del Sannio

1. Misura della densità di un materiale solido. Dr. Paola Romano - Università del Sannio 1. Misura della densità di un materiale solido La densità di un corpo omogeneo è data dal rapporto tra la massa ed il volume ρ=m/v Si tratta di una proprietà intensiva, non dipendente cioè dalla quantità

Dettagli

Argomenti per il Recupero di Fisica

Argomenti per il Recupero di Fisica Argomenti per il Recupero di Fisica (I Quadrimestre) Lo scopo della Fisica Definizioni di Grandezza Fisica, Misura, Unità di Misura Sistemi di misura e Sistema Internazionale Grandezze Fondamentali e Derivate

Dettagli

LABORATORIO DI FISICA I

LABORATORIO DI FISICA I UNIVERSITA DEGLI STUDI DI PALERMO CORSO DI LAUREA IN SCIENZE FISICHE A.A. 2018/2019 13 Dicembre 2018 LABORATORIO DI FISICA I RELAZIONE TERZA ESPERIENZA DI LABORATORIO GRUPPO 1 Nigrelli Giulia Valenti Giuseppe

Dettagli

Se misuriamo lo spessore di una moneta con un calibro ventesimale, 1 possiamo conoscere questo spessore con l errore di mm 0, 05mm

Se misuriamo lo spessore di una moneta con un calibro ventesimale, 1 possiamo conoscere questo spessore con l errore di mm 0, 05mm UNITÀ L ELABORAZIONE DEI DATI IN FISICA 1. Gli errori di misura. Sono gli errori che si commettono inevitabilmente quando si misura una qualunque grandezza fisica, utilizzando un qualunque strumento e

Dettagli

Capitolo 2. Cenni di geometria analitica nel piano

Capitolo 2. Cenni di geometria analitica nel piano Capitolo Cenni di geometria analitica nel piano 1 Il piano cartesiano Il piano cartesiano è una rappresentazione grafica del prodotto cartesiano R = R R La rappresentazione grafica è possibile se si crea

Dettagli

Acquisizione, rappresentazione e analisi di dati sperimentali Aurelio Agliolo Gallitto

Acquisizione, rappresentazione e analisi di dati sperimentali Aurelio Agliolo Gallitto Acquisizione, rappresentazione e analisi di dati sperimentali Aurelio Agliolo Gallitto Dipartimento di Scienze Fisiche ed Astronomiche Introduzione Esperimenti illustrativi, per visualizzare un determinato

Dettagli

Università di Pisa. Concorso di ammissione al tirocinio formativo attivo classe A047 - matematica. Prova scritta - 29 agosto 2012

Università di Pisa. Concorso di ammissione al tirocinio formativo attivo classe A047 - matematica. Prova scritta - 29 agosto 2012 Università di Pisa Concorso di ammissione al tirocinio formativo attivo classe A047 - matematica Prova scritta - 29 agosto 2012 Esercizio 1 Un robot si trova nell origine (0, 0 di un piano cartesiano e

Dettagli

FISICA IN PILLOLE: TEORIA DEGLI ERRORI

FISICA IN PILLOLE: TEORIA DEGLI ERRORI FISICA IN PILLOLE: TEORIA DEGLI ERRORI Il processo di indagine dei fenomeni fisici passa per la quantificazione delle grandezze che lo caratterizzano. La misura di qualsiasi grandezza fisica permette per

Dettagli

Misura del periodo di oscillazione e della costante elastica della molla di un oscillatore armonico semplice.

Misura del periodo di oscillazione e della costante elastica della molla di un oscillatore armonico semplice. Misura del periodo di oscillazione e della costante elastica della molla di un oscillatore armonico semplice. Esperienza n.3 13 Dicembre 2018 Gruppo 9: Gucciardo Gloria; Mazzola Luca Rosario; Nolfo Gloria;

Dettagli

Corso PAS Misure, strumenti ed Errori di misura. Didattica del Laboratorio di Fisica F. Garufi 2014

Corso PAS Misure, strumenti ed Errori di misura. Didattica del Laboratorio di Fisica F. Garufi 2014 Corso PAS Misure, strumenti ed Errori di misura Didattica del Laboratorio di Fisica F. Garufi 2014 Grandezze ed unità di misura grandezza (misurabile) si intende un attributo di un fenomeno, di un corpo

Dettagli

ORDINAMENTO SESSIONE SUPPLETIVA QUESTIONARIO QUESITO 1

ORDINAMENTO SESSIONE SUPPLETIVA QUESTIONARIO QUESITO 1 www.matefilia.it ORDINAMENTO 2003 - SESSIONE SUPPLETIVA QUESTIONARIO QUESITO Tra i rettangoli aventi la stessa area di 6 m 2 trovare quello di perimetro minimo. Indicate con x ed y le misure della base

Dettagli

Prova scritta di Materia Condensata del 5 Luglio 2011

Prova scritta di Materia Condensata del 5 Luglio 2011 Proa scritta di Materia Condensata del Luglio 011 Prof. Paolo Calani Prof. Mario Capizzi Esercizio 1 Si assuma che un cristallo di litio metallico enga cresciuto mescolando in uguali proporzioni i due

Dettagli

34 Tonzig La fisica del calore

34 Tonzig La fisica del calore 34 Tonzig La fisica del calore molecola): ad ogni grado di libertà corrisponde, in media, un energia cinetica pari a kt/. Le molecole monoatomiche, schematizzate come punti materiali, hanno tre gradi libertà

Dettagli

1 Guida alle relazioni di laboratorio

1 Guida alle relazioni di laboratorio 1 Guida alle relazioni di laboratorio Un aspetto basilare dell attività di laboratorio è quello di imparare a registrare accuratamente tutti i dati sperimentali, così come sono stati misurati, in modo

Dettagli

METODO DEI MINIMI QUADRATI

METODO DEI MINIMI QUADRATI METODO DEI MINIMI QUADRATI Torniamo al problema della crescita della radice di mais in funzione del contenuto di saccarosio nel terreno di coltura. Ripetendo varie volte l esperimento con diverse quantità

Dettagli

Appunti di statistica ed analisi dei dati

Appunti di statistica ed analisi dei dati Appunti di statistica ed analisi dei dati Indice generale Appunti di statistica ed analisi dei dati...1 Analisi dei dati...1 Calcolo della miglior stima di una serie di misure...3 Come si calcola μ...3

Dettagli

Il protocollo analitico

Il protocollo analitico PRESENTAZIONE dei RISULTATI di un ANALISI: cifre significative D.C. Harris, Elementi di chimica analitica, Zanichelli, 1999 Capitolo 3 1 Il protocollo analitico Campionamento: 1. estrazione del campione

Dettagli

Ancora sui criteri di divisibilità di Marco Bono

Ancora sui criteri di divisibilità di Marco Bono Ancora sui criteri di divisibilità di Talvolta può essere utile conoscere i divisori di un numero senza effettuare le divisioni, anche se la diffusione delle calcolatrici elettroniche, sotto varie forme,

Dettagli

Facciamo 1 cicli di 25 misure da una popolazione per scatola di resistenze

Facciamo 1 cicli di 25 misure da una popolazione per scatola di resistenze Si supponga di voler verificare che due forniture di resistenze di valore nominale dichiarato (per esempio sia = 470 ) sia affidabile. Si supponga che ogni fornitura sia normalmente distribuita con deviazione

Dettagli

Liceo Scientifico U. Dini Pisa Verifica di Fisica - Classe 1D - 24/01/08

Liceo Scientifico U. Dini Pisa Verifica di Fisica - Classe 1D - 24/01/08 Verifica di Fisica - Classe 1D - 24/01/08 1) Calcola la massa di un cubo (spigolo = 4 cm) di ferro (d = 7860 kg/m 3 ). 2) Calcola lo spigolo di un cubo di rame (d = 8960 kg/m 3 ) avente una massa pari

Dettagli

LABORATORIO DI FISICA I A.A ESPERIENZA 1 21/11/2017

LABORATORIO DI FISICA I A.A ESPERIENZA 1 21/11/2017 LABORATORIO DI FISICA I A.A. 2017-2018 ESPERIENZA 1 21/11/2017 Misura della densità di solidi omogenei di forma regolare Sebastiano Mirabile Eugenio Sapia Fabio Tortora Alberto Ferrara introduzione L'esperimento

Dettagli

LABORATORIO DI FISICA I A.A ESPERIENZA II 30/11/2017 GRUPPO 11. Taratura di una bilancia dinamometrica

LABORATORIO DI FISICA I A.A ESPERIENZA II 30/11/2017 GRUPPO 11. Taratura di una bilancia dinamometrica LABORATORIO DI FISICA I A.A. 2017-2018 ESPERIENZA II 30/11/2017 GRUPPO 11 Taratura di una bilancia dinamometrica Fabio Tortora Sebastiano Mirabile Eugenio Sapia Alberto Ferrara 1. Obiettivo dell'esperienza

Dettagli

TI STIMO. Scuola secondaria di I grado di Incisa - Classe 1^ C Insegnante: Antonio Ezio Ignaccolo

TI STIMO. Scuola secondaria di I grado di Incisa - Classe 1^ C Insegnante: Antonio Ezio Ignaccolo TI STIMO Scuola secondaria di I grado di Incisa - Classe 1^ C Insegnante: Antonio Ezio Ignaccolo A. S. 2017-2018 Obiettivi di apprendimento Comprendere il significato dei concetti di misura, stima, grandezza.

Dettagli

Analisi Statistica dei Dati Sperimentali. M. Trimarchi e P. La Rocca

Analisi Statistica dei Dati Sperimentali. M. Trimarchi e P. La Rocca Analisi Statistica dei Dati Sperimentali M. Trimarchi e P. La Rocca Misura delle Grandezze Fisiche Misure dirette Confronto con un campione dell unità di misura Lunghezze Metro Misure indirette Operazioni

Dettagli

Note su esperienza di misura della densita di un solido

Note su esperienza di misura della densita di un solido Note su esperienza di misura della densita di un solido 1 Distribuzione di GAUSS Distribuzione Piatta D P(entro ± s G ) = 68% 2 Parallelepipedo Spigoli: a, b, c Volume = V = a b c Massa = M Densità = r

Dettagli

Relazione di Laboratorio di Fisica I Anno Accademico 2018/2019

Relazione di Laboratorio di Fisica I Anno Accademico 2018/2019 Relazione di Laboratorio di Fisica I Anno Accademico 018/019 Esperienza di laboratorio n 1 19 Novembre 018 Misura delle densità di solidi omogenei di forma regolare Gruppo n 8 Giuseppe A. Motisi Salvatore

Dettagli

2.1 Numeri naturali, interi relativi, razionali

2.1 Numeri naturali, interi relativi, razionali 2.1 Numeri naturali, interi relativi, razionali Definizione L insieme N = {0, 1, 2, 3,...} costituito dallo 0 e dai numeri interi positivi è l insieme dei numeri naturali. Se a, b 2 N, allora mentre non

Dettagli

LABORATORIO DI FISICA Ⅰ ESPERIENZA N 3 13 DICEMBRE 2018

LABORATORIO DI FISICA Ⅰ ESPERIENZA N 3 13 DICEMBRE 2018 LABORATORIO DI FISICA Ⅰ ESPERIENZA N 3 13 DICEMBRE 018 Gruppo N 5: Salvatore Mantia, Rosario Lo Varco, Antonio Lo Varco, Silvia Tomasi, Alfredo Scelsa, Gianluca Pusateri, Alessandro Sanseverino. MISURA

Dettagli

Prodotto scalare e ortogonalità

Prodotto scalare e ortogonalità Prodotto scalare e ortogonalità 12 Novembre 1 Il prodotto scalare 1.1 Definizione Possiamo estendere la definizione di prodotto scalare, già data per i vettori del piano, ai vettori dello spazio. Siano

Dettagli

LEGGE DI HOOKE. Obiettivi: 1. Calcolare in che modo varia l allungamento di una molla elicoidale in funzione della massa applicata.

LEGGE DI HOOKE. Obiettivi: 1. Calcolare in che modo varia l allungamento di una molla elicoidale in funzione della massa applicata. LEGGE DI HOOKE Obiettivi: 1. Calcolare in che modo varia l allungamento di una molla elicoidale in funzione della massa applicata. 2. Individuare la costante di rigidità della molla k. 3. Applicare ai

Dettagli

La misura si fa utilizzando uno strumento, ogni strumento ha associata un incertezza (non esistono stumenti con

La misura si fa utilizzando uno strumento, ogni strumento ha associata un incertezza (non esistono stumenti con Relazioni di laboratorio brevi (max 1-2 pag) da consegnare a mano o via mail (a bettotti@science.unitn.it e ascenzi@science.unitn.it) in formato pdf (preferito) o doc (ma leggibile da Word 2003) 1 la prima

Dettagli

Misura della densità di solidi omogenei di forma regolare.

Misura della densità di solidi omogenei di forma regolare. Misura della densità di solidi omogenei di forma regolare. Esperienza n. 1 -- 19 Novembre 018 Gruppo 9: Gucciardo Gloria; Mazzola Luca Rosario; Nolfo Gloria; Scordato Iacopo Rosario; Treppiedi Vincenzo.

Dettagli

La distribuzione delle frequenze. T 10 (s)

La distribuzione delle frequenze. T 10 (s) 1 La distribuzione delle frequenze Si vuole misurare il periodo di oscillazione di un pendolo costituito da una sferetta metallica agganciata a un filo (fig. 1). A Figura 1 B Ricordiamo che il periodo

Dettagli

Esercitazione 3 - Sfioratore

Esercitazione 3 - Sfioratore Esercitazione 3 - Sfioratore - compito di suddiidere le portate in arrio tra portate: - all impianto di trattamento - al corpo idrico riceente - limita le portate in arrio al depuratore al di sotto di

Dettagli

Taratura di una bilancia dinamometrica

Taratura di una bilancia dinamometrica Taratura di una bilancia dinamometrica Relazione dell esperienza di laboratorio n del 03/1/018 GRUPPO n 9 Componenti del gruppo: Gucciardo Gloria Mazzola Luca Rosario Nolfo Gloria Scordato Iacopo Treppiedi

Dettagli

Un sistema massa-molla viene fatta oscillare su un piano orizzontale privo di attrito.

Un sistema massa-molla viene fatta oscillare su un piano orizzontale privo di attrito. ESPERIMENTAZIONI DI FISICA I - Appello d esame del 04/07/019 Quesito A (possibilità di svolgerlo con l ausilio di strumenti informatici) Un sistema massa-molla viene fatta oscillare su un piano orizzontale

Dettagli

La fisica al Mazzotti. la fisica e le grandezze fisiche

La fisica al Mazzotti. la fisica e le grandezze fisiche La fisica al Mazzotti 4 la fisica e le grandezze fisiche Capitolo 1: La fisica e la misura 3 1 Che cos è la fisica (lezione 1) La fisica osserva e descrive la natura La fisica: studia i fenomeni naturali

Dettagli

RELAZIONE DELL ESPERIENZA DI LABORATORIO N.3

RELAZIONE DELL ESPERIENZA DI LABORATORIO N.3 RELAZIONE DELL ESPERIENZA DI LABORATORIO N.3 Gruppo 11: Bilardello Naima, Calvaruso Paolo, Daidone Fabio, Marino Martino, Mortillaro Vincenzo, Napoli Leonardo Titolo: Misura del periodo di un oscillatore

Dettagli

Relazione di Laboratorio di Fisica

Relazione di Laboratorio di Fisica 1 MISURA DELLA DENSITÀ DI SOLIDI OMOGENEI DI FORMA REGOLARE Relazione di Laboratorio di Fisica 5 10 Esperienza di laboratorio 2: 13/11/18 Gruppo 4: Francesco Caracausi Christian Chiappara Antonio Martino

Dettagli

Incertezza sperimentale e cifre significative

Incertezza sperimentale e cifre significative Incertezza sperimentale e cifre significative q La fisica è una scienza sperimentale e le misure e l incertezza con cui vengono effettuate sono il fulcro di ogni esperimento. q Le misure possono essere

Dettagli

CALCOLO DELL ERRORE E VALUTAZIONE DI UN METODO ANALITICO

CALCOLO DELL ERRORE E VALUTAZIONE DI UN METODO ANALITICO CALCOLO DELL ERRORE E VALUTAZIONE DI UN METODO ANALITICO In chimica analitica un settore importante riguarda il calcolo dell errore e la valutazione della significatività di una misura. Generalmente nell

Dettagli